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Abstract. Geometric algebra has become popularly used in applications
dealing with geometry. This framework allows us to reformulate and re-
define problems involving geometric transformations in a more intuitive
and general way. In this paper, we focus on 2D bijective digitized reflec-
tions and rotations. After defining the digitization through geometric al-
gebra, we characterize the set of bijective digitized reflections in the plane.
We derive new bijective digitized rotations as compositions of bijective
digitized reflections since any rotation is represented as the composition
of two reflections. We also compare them with those obtained through
geometric transformations by computing their distributions.

1 Introduction

Bijectivity of digitized rotations in two and three dimensions has been studied.
Its characterization was initiated by the work on two-dimensional rotations fol-
lowed by a digitized operator in the square grid [8,9]. It was then shown in [12]
that an arithmetic proof of the characterization is provided through Gaussian
integers. Similar arithmetic characterization on the hexagonal grid was also
shown using the Eisenstein integers [11]. Concerning digitized rotations in the
space, using the Lipschitz quaternions [7] allows to verify the bijectivity of a
given digitized rotation [10]. A bijective reflection algorithm over the plane, on
the other hand, was proposed in [3] where the line of reflection is digitized.

These arithmetic approaches using algebraic numbers are intuitive and con-
venient for providing the proofs of the characterization/certification of the bi-
jective digitized rotations. However, each algebraic number provides different
operations and definitions, so that they cause the lack of generality and exten-
siblity. In contrast, geometric algebra is designed to retain generality and offer
operators that are capable of computing considered geometric transformations
for any geometric objects of the algebra in any dimension. This algebra was
defined thanks to the work of Clifford [4] to unify and generalize Grassmann
algebra and Hamilton’s quaternion into a whole algebra. Geometric algebra is
a framework that encompasses both quaternion algebra and complex numbers
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and extends rigid transformations of geometric objects to higher dimensions by
expressing them as composition of reflections. We therefore consider that geo-
metric algebra is a natural tool for reasoning with both digitized reflections and
rotations.

In order to exploit the generality and extensibility of geometric algebra for
tackling digital geometry problems, we first formulate digitization of reflec-
tions and rotations in n dimensions using geometric algebra. We then focus
on two dimensions and study bijectivity of digitized reflections. We then show
that composition of bijective digitized reflections results in new bijective digi-
tized rotations, allowing us to approximate any digitized rotation by bijective
digitized rotations.

2 Reflections and rotations via geometric algebra

Geometric algebra of a vector space is an algebra over a field such that its mul-
tiplication called geometric product is defined on a space of elements, i.e., mul-
tivectors [6]. Geometric algebra is an intuitive and geometric object-oriented
algebra that allows to define geometric transformations in an efficient way. Def-
initions and compositions of geometric transformations are given through ge-
ometric products which are invertible. Let us briefly review geometric product
rules.

2.1 Geometric product

Given two vectors m, n, the geometric product is defined as

mn = m · n + m ∧ n, (1)

where m · n = ‖m‖‖n‖ cos(α) and m ∧ n = ‖m‖‖n‖ sin(α)I with angle α be-
tween m and n, and I as the bivector basis spanned by m and n. Briefly, a
bivector (or 2-vector) is an element of the algebra different from a scalar and
a vector such that it geometrically represents an oriented area spanned by two
vectors. Here the bivector I represents the unit oriented area element of the
plane spanned by the vectors m and n.

Letting d be the dimension of the vector space, the geometric product acts
on the basis vectors ei, ej and basis bivectors eij (i, j ∈ [1, d]) as follows:

eiej =

{
1 if i = j
−eji otherwise and eijek =


eijk if j 6= k, i 6= k
ei if j = k
−ej if i = k

. (2)

If we permute ek and eij, the above multiplication becomes

ekeij =


ekij if j 6= k, i 6= k
−ei if j = k
ej if i = k

. (3)
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Given a vector x defined as the weighted sum of components over the basis
vectors, namely, x = ∑i=1,...,d uiei the norm of x is defined as ‖x‖ =

√
x · x =√

∑i=1,...,d u2
i . Then, by definition, the inverse of x is defined as x−1 = 1

x =
x
‖x‖2 = x

xx . The geometric product is invertible. In addition, the geometric prod-
uct is associative and distributive over the addition but not commutative. The
inner product results in a scalar. Namely, for given ei, ej

ei · ej =

{
1 if i = j
0 otherwise. (4)

2.2 Reflections

A reflection is the isometric mapping from Rn to itself with a hyperplane as a
set of fixed (invariant) points. It is defined as follows with geometric algebra
when the hyperplane goes through the origin.

Definition 1. Given a hyperplane passing through the origin, with its normal vector
m ∈ Rd, denoted by H(m), the reflection of point x ∈ Rn with respect to H(m) is
defined as ∣∣∣∣∣Um : Rd → Rd

x 7→ −mxm−1 = − 1
‖m‖2 mxm.

Reflections Um are said rational if all the components of m are rational. Note
that any rational reflection Um can be represented by m = ∑i=1···d uiei such that
ui ∈ Z and gcd(u1, · · · , ud) = 1.

2.3 Rotations

Any rotation is expressed as the composition of two reflections with geometric
algebra. If a first reflection w.r.t. H(m) followed by a second reflection w.r.t.
H(n), is applied to point x ∈ Rd, we have point x′ such that

x′ = −n(−mxm−1)n−1 = (nm)x(nm)−1. (5)

In other words, x′ is the rotation of x around the intersection of m and n. Indeed,
assuming n and m are both normalized, we have

x′ = (cos φ + sin φ I)x(cos φ− sin φ I), (6)

where φ is the angle between n and m in the rotation plane whose bivector is I
(cf. Eq. (1)). Note that the angle of this rotation corresponds to 2φ.

More generally, the algebraic entity representing the rotation of angle θ in
the rotation plane whose bivector is I is defined as

Q = cos
θ

2
+ sin

θ

2
I
‖I‖ . (7)
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Fig. 1: (a) shows the set of points (denoted with small black point) in the digital
square grid Ze1 ⊕Ze2 (also denoted by Z2). Such points are obtained as linear
combinations of the basis vectors e1 and e2 illustrated with red arrow. (b) shows
digitization cells associated to the square grid using gray dashed square. The
red hatched square denote the digitization cell associated with the origin or
C(0) ; the border of C(0) is denoted with red circle.

Then, a point x is rotated to x′ as follows:

x′ = QxQ†, (8)

where Q† = cos( θ
2 )− sin θ

2
I
‖I‖ . Note that I = e12 in the 2D case.

3 Digitized reflections

In order to define digitized reflection, we need to define the grid to digitize
points.

3.1 Cubic grids

In a similar way as the state-of-the-art, we denote the set of vectors of geometric
algebra in the space with real coordinates as

Rd =
{

x = ∑
i=1,...,d

uiei | ui ∈ R
}

.

Those with integer coordinates are called the cubic grid or the integer lattice in
Rd, defined as

Zd =
{

x = ∑
i=1,...,d

aiei | ai ∈ Z
}

.

This cubic grid is also written as Zd = ⊕i=1,...,dZei. An illustration of such a
cubic grid in the plane is given in Figure 1a.

By extension, any square grid generated by two orthogonal vectors, ue1 +
ve2 and −ve1 + ue2, in the plane is defined as:

Z(ue1 + ve2)⊕Z(−ve1 + ue2). (9)
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3.2 Digitization of reflections

A digitized reflection is a reflection followed by a digitization. Let us consider
reflections of points in Zd.

As Um(Zd) * Zd in general, we need to define the digitization operator
again on the cubic grid in order to obtain digitized reflection points. To this
end, we first define digitization cells of the cubic grid Zd.

Definition 2. For any κ ∈ Zd, we define the digitization cell of κ as

C(κ) :=
{

x ∈ Rd | ∀i ∈ [1, d] ‖x− κ‖ ≤ ‖x− κ + ei‖
and ‖x− κ‖ < ‖x− κ − ei‖

}
.

This can be rewritten as:

C(κ) :=
{

x = ∑i=1,...,d xiei ∈ Rd | ∀i ∈ [1, d] ai − 1
2 ≤ xi < ai +

1
2

}
,

where κ = ∑i=1,...,d aiei. An example of the set of digitization cells obtained
from the square grid of Figure 1a is shown in Figure 1b.

We also define the digitization cell associated to a transformation such as
reflection, rotation, and scaling.

Definition 3. Given a transformation T such that any basis vector ei is transformed
to T eiT †, the digitization cell of κ ∈ Zd transformed by T is defined as

CT (κ) :=
{

x ∈ Rd | ∀i ∈ [1, d] ‖x− κ‖ ≤ ‖x− κ + T eiT †‖
and ‖x− κ‖ < ‖x− κ − T eiT †‖

}
.

Note that Definition 3 covers:

– a reflected digital cell, if T = ∑i=1,...,d uiei with ∑i=1,...,d u2
i = 1;

– a rotated digital cell, if T = u + vI with u2 + v2 = 1;
– a scaled digital cell, if T = u with u ∈ R and the digital cell is scaled by a

factor u2.

We also note that the non-transformed digitization cell centered in κ is identical
with the digitization cell defined in Definition 2: C1(κ) = C(κ). This comes
simply from the fact that the multiplication of the scalar 1 and the basis vector
ei is 1ei = 1ei = ei.

Similarly to [11], we define the digitization operator as follows:

Definition 4. The digitization operator on a cubic grid is defined as∣∣∣∣D : Rd → Zd

∑i=1,...,d uiei 7→ ∑i=1,...,dbui +
1
2cei

where buc (u ∈ R) denotes the greatest integer not greater than u.
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Now we define the digitized reflection as the composition of the reflection
and the digitization.

Definition 5. Given a hyperplane H(m), a digitized reflection with respect to H(m)
is defined as ∣∣∣∣Rm : Zd → Zd

x 7→ D ◦ Um(x).

Hereafter we focus on the case of d = 2.

4 Bijective digitized reflections

In order to describe the bijectivity of digitized reflections Rm in the plane, we
need to explore the structure of the square grid after reflection Um. We start by
the reflection of the basis vectors. Let us denote the reflection of e1 and e2 with
respect to H(m) by φφφ and ψψψ, respectively. Applying Definition 1 to e1 and e2
results in

φφφ = Um(e1) = −me1m−1 =
v2 − u2

u2 + v2 e1 +
2uv

u2 + v2 e2, (10)

ψψψ = Um(e2) = −me2m−1 =
2uv

u2 + v2 e1 +
u2 − v2

u2 + v2 e2. (11)

Reflection of any point y ∈ Z2 is expressed as a linear combination of the
reflected unit vectors φφφ and ψψψ . Namely, the reflected points of Ze1 + Ze2 are
the points of the grid Zφφφ + Zψψψ. An example of the transformed grid is shown
in Figure 2.

4.1 Set of remainders

In a similar way as in [12], let us first consider the set of remainders to give the
definition of bijective reflections.

Definition 6. Given a reflection Um, the set of remainders Sm is defined as∣∣∣∣Sm : Z2 ×Z2 → R2

(x, y) 7→ Um(x)− y.

Definition 7. A digitized reflectionRm = D ◦ Um is bijective if and only if

∀y ∈ Z2, ∃!x ∈ Z2,Sm(x, y) ∈ C1(0), (12)

where 0 corresponds to the null vector.
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Fig. 2: (a) Discrete square grid Ze1 ⊕ Ze2 illustrated by gray dots, and their
associated digitization cells illustrated by gray dashed squares, using the ge-
ometric algebra implementation ganja.js [5]. The reflected points with respect
to the line H(m), i.e., Zφφφ + Zψψψ, illustrated by blue dots. (b) and (c) Set of re-
mainders illustrated by blue (and red) dots; in (b) the set of remainders satisfies
the bijectivity condition while (c) does not (see the red dots for non-bijective
points).

Note that this definition can be divided into two parts like [12]:{
∀y ∈ Z2, ∃x ∈ Z2,Sm(x, y) ∈ C1(0)
∀x ∈ Z2, ∃y ∈ Z2,Sm(x, y) ∈ C m

||m||
(0) (13)

provided Sm(Z2, Z2) ∩ C1(0) = Sm(Z2, Z2) ∩ C m
‖m‖

(0), that is to say:

I = Sm(Z2, Z2) ∩
(
C1(0) ∪ C m

‖m‖
(0)
)
\
(
C1(0) ∩ C m

‖m‖
(0)
)
= ∅. (14)

As an illustration, Fig. 2b verifies the above condition whereas Fig. 2c does not.

4.2 Non-rational reflection

We first show that non-rational digitized reflections are not bijective. To achieve
this, we study the structure of the set of remainders Sm(Z2, Z2) with respect to
the parameters of the digitized reflection.
G denotes the set composed of the lattice Ze1 ⊕Ze2 and Zφφφ⊕Zψψψ:

G = Ze1 ⊕Ze2 ⊕Zφφφ⊕Zψψψ. (15)

Proposition 1. If the digitized reflection Um is non-rational, the set G is dense and
infinite.

Non-rational digitized reflection means the reflected components computed
in Eq.(10) and Eq.(11), are not integers (non-Pythagorean primitive triples).
From [9], the set obtained with non-Pythagorean is dense and infinite. In such a
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case the digitized reflection is not bijective since the two vectors a, b ∈ Sm(Z2, Z2)∩
C1(0) exist such that Sm(x, y) = a and Sm(x + e1, y) = b (consequence of
the Bolzano-Weirstrass theorem). This violates the bijectivity condition because
bothRm(x) ∈ C1(y) andRm(x + e1) ∈ C1(y).

4.3 Bijectivity of digitized reflections

In order to characterize normal vectors leading to bijective digitized reflections,
we use the bijectivity condition of digitized rotations. Let us first recall the bi-
jectivity condition defined in [9] with primitive Pythagorean triples. A digitized
rotation whose rotation angle is θ is bijective if and only if

{cos(θ), sin(θ)} =
{

2k+1
2k2+2k+1 , 2k(k+1)

2k2+2k+1

}
, k ∈N. (16)

Using the half angle formula and assuming θ ∈ [0, π
4 ] , we have

cos( θ
2 ) =

√
1
2 + 2k+1

2(2k2+2k+1)

= (k+1)√
2k2+2k+1

,
sin( θ

2 ) =
√

1
2 − 2k+1

2(2k2+2k+1)

= k√
2k2+2k+1

.

With Eq. (7), this can be rewritten using the digitized rotation given by the
entity Q as

Q = (k + 1) + ke12, k ∈N. (17)

Note that the rotation operator does not change by any scale.
Conversely, from Eq. (17) we have

QxQ−1 =
(
((k + 1)x + ky)e1 + ((k + 1)y− kx)e2

)(
k+1−ke12
2k2+2k+1

)
= 1

2k2+2k+1

(
(2k + 1)x− 2k(k + 1)y

)
e1 +

(
(2k + 1)y + 2k(k + 1)x

)
e2,
(18)

which leads to Eq. (16). This indicates that Eq. (17) and Eq. (16) are equivalent
with each other. Eq. (17) is thus the bijectivity condition of digitized rotations
with geometric algebra. We remark that Gaussian integers defined in [12] gives
us similar argument.

Proposition 2. Given a rational reflection line H(m̃) such that

m̃ = −ke1 + (k + s)e2, k ∈N, s ∈N,

the rational digitized reflectionRm̃ is bijective if and only if s = 1.

Proof. The idea is simply to express the set of remainders of digital reflections
Sm̃ by the set of remainders of digitized rotations SQ where Q is a digitized
rotation entity. This is performed through the fact that a composition of any
digitized reflection and the digitized reflection with respect to H(e2 does not
induce any change in the set of remainders, namely

Se2m(Z2, Z2) = Sm(Z2, Z2).
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Fig. 3: Distribution of (reflection and rotation) angles within [0, π
2 ] that make the

digitized transformations bijective: (a) digitized reflections, (b) digitized rota-
tions, (c) digitized rotation approximations through pairs of bijective digitized
reflections. The same integer parameter kmax = 20 was used for the three fig-
ures. Note that the distribution of angles in [π

4 , π
2 ] is obtained by the reflection

of that in [0, π
4 ] with respect to the line x = y .

Besides,

C m̃
‖m̃‖

(0) = Ce2
m̃
‖m̃‖

(0).

Algebraically e2m = e2(−ke1 +(k+ s)e2) = (k+ s)+ ke12. The resulting entity
is homogeneous to a rotation. From Eq. (17), this entity is bijective if and only
if s = 1.

4.4 Finding the closest bijective digitized reflections

Let us consider the set of all bijective digitized reflections such that the reflec-
tion lines have slant angles θ ∈ [0, π

4 [:

B = {U m̃ | m̃ = −ke1 + (k + 1)e2, k ∈N}.

We show in Fig. 3a that the slant angles of such reflection lines defined by m̃ are
sparse around θ = 0 while dense around θ = π

4 . We remark that in practice, we
have to limit the maximum value kmax of k because of the image size. Hereafter,
instead of B, we use Bkmax with the condition k ≤ kmax.

The sparsity of Bkmax motivates us to approximate a given reflection Rm

with the closest digitized reflection Rm̃ such that U m̃ ∈ Bkmax . More precisely,
given m with slant angle θ of its reflection line, we seek for m̃ with reflection
line having the slant angle θ̃ that minimizes the absolute difference between the
angles:

arg min
U m̃∈Bkmax

∣∣∣θ̃ − θ
∣∣∣.
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Fig. 4: (a) digitized rotation with θ = π
6 which yields holes and double points.

(b) same digitized rotation approximation with composition of two bijective
reflections.

Since tan monotonically increases in [−π
4 , π

4 ], we can consider | tan(θ̃ − θ)|
instead of |θ̃ − θ|. This minimization is thus equivalent with

arg min
U m̃∈Bkmax

∣∣∣∣ tan(θ̃)− tan(θ)
1 + tan(θ̃) tan(θ)

∣∣∣∣ = arg min
k̃∈N

∣∣∣∣ k̃x− (k̃ + 1)y
(k̃ + 1)x + k̃y

∣∣∣∣,
where (x, y) are the components of m, i.e., tan θ = y/x (x > y). Assuming
k̃ ∈ Q+, we find that k̃ = y

x−y achieves the minimum of the objective function
by making its numerator 0 because the denominator is always positive. As the
function f (k) = (kx − (k + 1)y)/((k + 1)x + ky) is increasing for all k ≥ 0,
f (k) ≤ 0 when 0 ≤ k ≤ y/(x− y) and f (k) > 0 otherwise, we can find k̃ ∈ N

such as

k̃ = arg min
k̃∈{b y

x−y c,d
y

x−y e}

∣∣∣∣ k̃x− (k̃ + 1)y
(k̃ + 1)x + k̃y

∣∣∣∣.
Note that we consider the case where x > y. If x = y, we have m̃ = −e1 + e2.

5 Bijective digitized rotations via bijective digitized
reflections

From the set of bijective digitized reflections, we can obtain the set of bijective
digitized rotations since any rotation can be expressed as the composition of
two reflections. We see such rotation angles are distributed sparsely as shown
in Fig. 3b, thus most digitized rotations are likely to be non-bijective and yield
holes and/or double points (see Fig. 4a).
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5.1 Composition of bijective digitized reflections without error

As any rotation is composed of a pair of reflections, it is easy to see that if the
first digitized reflection Rm = D ◦ Um induces no digitization error and the
second digitized reflectionRn is bijective, thenRn ◦ Rm is a bijective digitized
rotation. Such cases occur when m = e1, e2 or e1 + e2. However, it is also easy
to see that such composed bijective digitized rotations have the same rotation
angle distribution as that of direct (non-composed) bijective digitized rotations,
which is illustrated in Figure 3b. This leads us to investigate the composition of
two general bijective digitized reflections.

5.2 Approximating digitized rotations with bijective digitized reflections

Any composition of bijective digitized reflections is also bijective, that is Rn ◦
Rm is bijective if Rn and Rm are both bijective. Based on this fact, given a ro-
tation angle θ, the aim here is to find the best approximated rotation composed
of a pair of bijective digitized reflections.

The idea of our algorithm for this is simple (see Algorithm 1). Given a max-
imum possible integer kmax that defines the set of bijective digitized reflections
Bkmax (see Section 4.4), we first loop over all possible bijective digitized reflec-
tions Um1 ∈ Bkmax . For each Um1 ∈ Bkmax , the second bijective digitized re-
flection Um2 ∈ Bkmax is then selected such that arccos m1 ·m2 is closest to θ

2 . For
that, we use the approximation method proposed in Section 4.4. We remark that
since the computations in the loop run in constant time, the overall complexity
of Algorithm 1 is linear with respect to card(Bkmax).

The proposed algorithm was implemented in C++ and also with the library
DGtal [1] for the digital geometry part. The code is available online3. Figure 5
shows some results on a single image with different rotation angles.

Fig. 5: Original image and its digitized rotations by bijective digitized reflec-
tions for angles π

8 , π
4 , 7π

16 from left to right.

5.3 Distributions of bijective digitized reflections and rotations

With a similar idea to Algorithm 1, we can compute from Bkmax , all the rotation
angles of such bijective approximations of digitized rotations. The distribution

3 https://github.com/sbreuils/GADigitizedTransformations.git

https://github.com/sbreuils/GADigitizedTransformations.git
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Algorithm 1: Digitized rotation by bijective digitized reflections
1 Function approximationRotation

Input: kmax, rotation angle θ
Output: mutivector R for bijective approximated digitized rotation

2 R̃← geometric algebra rotation ; θ̃ = 2π
3 for Um1 ∈ Bkmax do
4 x = m1 · e2 cos( θ

2 ) + m1 · e1 sin( θ
2 ), y = m1 · e2 sin( θ

2 )−m1 · e1 cos( θ
2 )

// look for the best approximation of digitized reflection

5 if x = y then
6 m2 = −e1 + e2

7 else

8 k̃ = arg min
k̃∈{b y

x−y c,d
y

x−y e}

∣∣∣∣ k̃x−(k̃+1)y
(k̃+1)x+k̃y

∣∣∣∣
9 m2 = −k̃e1 + (k̃ + 1)e2

10 θ12 ← cos−1(m1 ·m2)

11 if |θ12| < θ̃ then
12 R = m2m1, θ̃ = θ12

13 return R

of such angles is shown in Fig. 3c; it is even less sparse compared to those of
Fig. 3a and 3b.

In order to compare the angle distribution between Fig. 3a and 3b, we de-
fine the angle sparsity as the maximum angle between two successive bijective
digitized transformations. The angle sparsity for bijective digitized reflections
is 0.46 rad whereas it is 0.93 rad for bijective digitized rotations. Note that they
do not depend on the value of kmax.

We can also evaluate the angle fineness (denoted by ∆θmin) in terms of the
minimum angle between two successive bijective digitized transformations. We

have from a given kmax(> 1), ∆θmin = arctan
(

1
2k2

max

)
for bijective digitized re-

flections while ∆θmin = arctan
(

4k2
max

4k4
max−1

)
for bijective digitized rotations. Note

that if kmax = 1, ∆θmin = arctan( 1
2kmax+1 ) = arctan( 1

3 ) ≈ 0.32 rad for bijective

digitized reflections while it is ∆θmin = arccos
(

2kmax(kmax+1)
2k2

max+2kmax+1

)
= arccos

(
4
5

)
≈

0.64 rad for bijective digitized rotations.

We easily check that ∀kmax ∈ N∗, ∆θmin of the bijective digitized reflection
is lower than that of bijective digitized rotation. For example, with kmax = 20 in
Fig. 3, ∆θmin of bijective digitized reflections is 1.25× 10−3 rad whereas that of
bijective digitized rotations is 2.5× 10−3 rad.
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6 Conclusion

We visited reflections, rotations, and their digitization using geometric alge-
bra. The geometric algebra framework allows us to characterize the bijective
digitized reflections. We first showed that compositions of bijective digitized
reflections result in new bijective digitized rotations using geometric algebra.
We then demonstrated that any digitized rotation is approximated by one of
these new bijective digitized rotations.

There are other approximation methods that preserve bijectivity for rota-
tions or reflections on Z2, such as quasi-shear rotations [2] and digital bijective
reflections [3]. Naturally, a comparative study of our approach with them is ex-
pected as a perspective of this article. We are also interested in adapting the
presented algorithm to the case where the number of considered points of Z2 is
finite; there would be more bijective digitized reflections. Finally, an extension
of the concept to higher dimensions is also our interest.
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de Clermont-Ferrand I (September 1995)

9. Nouvel, B., Rémila, E.: Characterization of Bijective Discretized Rotations. In: Inter-
national Workshop on Combinatorial Image Analysis. pp. 248–259. Springer (2004)

10. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Bijectivity Certification of 3D Digi-
tized Rotations. In: Computational Topology in Image Context. pp. 30–41. Springer
International Publishing (2016)

11. Pluta, K., Roussillon, T., Cœurjolly, D., Romon, P., Kenmochi, Y., Ostromoukhov, V.:
Characterization of bijective digitized rotations on the hexagonal grid. Journal of
Mathematical Imaging and Vision 60(5), 707–716 (2018)

12. Roussillon, T., Coeurjolly, D.: Characterization of bijective discretized rotations by
Gaussian integers. Research report, LIRIS UMR CNRS 5205 (2016)

https://dgtal.org/
https://doi.org/10.5281/ZENODO.3635774
https://zenodo.org/record/3635774
https://zenodo.org/record/3635774

	Visiting bijective digitized reflections and rotations using geometric algebra
	Introduction
	Reflections and rotations via geometric algebra
	Geometric product
	Reflections
	Rotations

	Digitized reflections
	Cubic grids
	Digitization of reflections

	Bijective digitized reflections
	Set of remainders
	Non-rational reflection
	Bijectivity of digitized reflections
	Finding the closest bijective digitized reflections

	Bijective digitized rotations via bijective digitized reflections
	Composition of bijective digitized reflections without error
	Approximating digitized rotations with bijective digitized reflections
	Distributions of bijective digitized reflections and rotations

	Conclusion


