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Abstract 

Organoids are self-organizing, self-renewing three-dimensional cellular structures that resemble organs in structure 
and function. They can be derived from adult stem cells, embryonic stem cells, or induced pluripotent stem cells. They 
contain most of the relevant cell types with a topology and cell-to-cell interactions resembling that of the in vivo 
tissue. The widespread and increasing adoption of organoid-based technologies in human biomedical research is 
testament to their enormous potential in basic, translational- and applied-research. In a similar fashion there appear 
to be ample possibilities for research applications of organoids from livestock and companion animals. Furthermore, 
organoids as in vitro models offer a great possibility to reduce the use of experimental animals. Here, we provide an 
overview of studies on organoids in livestock and companion animal species, with focus on the methods developed 
for organoids from a variety of tissues/organs from various animal species and on the applications in veterinary 
research. Current limitations, and ongoing research to address these limitations, are discussed. Further, we elaborate 
on a number of fields of research in animal nutrition, host-microbe interactions, animal breeding and genomics, and 
animal biotechnology, in which organoids may have great potential as an in vitro research tool.
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1 Introduction
In the first decade of the present century, it was shown 
that stem cells grown in vitro with required growth and 
differentiation factors in the presence of extracellular 
matrix (ECM) components can proliferate while main‑
taining “stemness”, the ability to self‑renew and give rise 
to self‑organizing three dimensional (3D) structures 
[1, 2]. While the term “organoids” has been used in the 
literature for decades, the feature of stem cell‑based 
self‑renewal and self‑organization of multicellular (3D) 
structures containing multiple organ‑specific cell in a 
manner similar to in  vivo is used to define “organoids” 
in most current studies [3, 4]. Organoids can be gener‑
ated from adult stem cells (ASCs) [2]; embryonic stem 
cells (ESCs) [1]; or from induced pluripotent stem cells 
(iPSCs), i.e. stem cells generated by “reprogramming” dif‑
ferentiated somatic cells (e.g. skin fibroblasts) to regain 
pluripotency [5, 6]. This review will focus on stem cell‑
derived self‑organizing and self‑renewing organoids, as 
defined by Lancaster and Knoblich [4]. Moreover, we will 
briefly mention other studies on 3D cell structures that 
do not feature stem cell‑based self‑renewal, and also do 
not demonstrate the recent criteria defining the term 
organoid [4].

Organoid cultures can typically be maintained for very 
long times (months, or even longer than a year), as shown 
for organoids derived from e.g. intestine [2], stomach [7], 
liver [8], and pancreas [9], as well as for iPSC‑derived 
[10] organoids and ESC‑derived [11] organoids. Orga‑
noid cultures can remain committed to their tissue of ori‑
gin and capable of recapitulating the pathology of disease 
when cultured with tissues derived from clinical patients 
[12, 13]. Moreover, organoids can be easily cryopreserved 
[14] and cultures can be restored from cryopreserved 
stocks, retaining functionality similar to that of the tis‑
sue of origin. They are amenable to genetic manipulation 
[15], live imaging, gene expression analysis, sequencing 
and epigenetic analysis, and other standard biological 
analyses. Organoids contain multiple cell types, with tis‑
sue topology and cell–cell interaction resembling many 
key features of the in  vivo organ or tissue [16] whereas 
cell lines are usually derived from tumors or have become 
cancerous in  vitro. Cancer‑derived cell lines typically 
possess chromosomal aberrations and mutations [17] 
affecting growth, metabolism and physiology and are 
known to evolve during continuous passage in  vitro 
creating problems with reproducibility [18]. Organoids 
also have an advantage over tissue explants or primary 
cell cultures, which undergo senescence, cell death and 

necrosis over relatively short time spans, leading to poor 
reproducibility and accuracy of biological experiments. 
These qualities have led to an exponentially increasing 
interest in this field during the last decade [3, 4, 19], and 
organoid technology was announced as one of the biggest 
scientific advancements of 2013 by The Scientist [20] and 
“Method of the Year 2017” in the Nature Methods edito‑
rial [21].

As organoids can be derived from cells or tissue from 
individual humans or animals, they can be used for 
testing patient‑specific drug response [22] or patient‑
specific–autologous–grafting of genetically “repaired” 
tissues [23, 24]. For farm animals, animal‑specific orga‑
noids could potentially be used for in vitro phenotyping, 
testing in vitro characteristics of organoids that may be a 
proxy for traits of interest [25, 26].

In human biomedical research, organoids are find‑
ing broad applications as in  vitro research models, for 
instance for studying toxicology, developmental pro‑
cesses, congenital diseases, infectious diseases [27, 28], 
cancer [29, 30] and in regenerative medicine [31].

In contrast, there have been relatively few studies on 
organoids in veterinary and animal production research, 
despite the potential application and impact in research 
on animal physiology, animal nutrition, host‑microbe 
interaction (HMI), and for in vitro phenotyping of breed‑
ing animals. In this paper, we focus on organoid research 
in livestock and companion animals, reviewing the used 
methodologies, applications, and future prospective for 
organoid research in livestock and companion animals 
(Figure 1).

2  Organoid derivation and culture methods
Organoids can be generated from ASCs, ESCs, or iPSCs 
(Figure  2). ESCs are the stem cells from the inner cell 
mass of pre‑implantation embryos. ASCs in principle 
are obtained from “mature” or adult tissue, but this is not 
necessarily tissue from adult animals but may be from 
juveniles or even from advanced embryos [3, 4]. ASC‑
derived organoids are intrinsically programmed with 
their location‑specific functions [32], making them more 
“adult‑like” than organoids derived from iPSC or ESC, 
although the latter retain tissue‑associated mesenchymal 
cells [33].

Under appropriate conditions, stem cells can divide to 
give rise to one daughter cell that maintains “stemness”, 
while the other daughter cell can differentiate to a dedi‑
cated tissue‑specific cell type. In tissues in vivo, the direct 
microenvironment, or “niche” of the stem cells and the 
differentiating daughter cells provide various signals that 
direct these processes and steer the direction of differen‑
tiation and thus determine what types of cells and tissue 
will develop. These signals include cell‑to‑cell contacts 

5.4  Routine testing
6  Conclusion
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[34], contacts of cells to compounds of the ECM, auto‑
crine growth factors and hormones from neighboring 
cells, from cells elsewhere in the tissue, or from periph‑
eral organs [4]. The 3D architecture itself is instrumental 
in directing the spatial organization of cell lineages, as it 
creates gradients of growth factors determining the spe‑
cific cellular differentiation steps [35].

The use of 3D culture matrices for organoids exploit the 
mechanisms that steer development of the cells in vivo. 
Therefore, the knowledge gained from stem cell biology 
and the insights obtained through 3D in  vitro culturing 
methodology have been crucial in developing methods 
for generating organoid models for a multitude of organs 
[36].

Figure 1 Application opportunities of organoids in livestock and veterinary research. 



Page 4 of 17Kar et al. Vet Res           (2021) 52:43 

Figure 2 Current organoid culture techniques. Organoids can be derived from tissue samples containing adult stem cells (ASCs). Here, intestinal 
crypts are shown as example, but methods for other tissues (see main text) are similar. Organoids can also be derived from embryonic stem cells 
(ESCs), or induced pluripotent stem cells (iPSCs). Under appropriate conditions, using various growth factors and an extracellular matrix, such as 
matrigel (MG), the stem cells can proliferate while their daughter cells can differentiate to multiple cell types that self-organize into functional three 
dimensional (3D) structures. Different tissues require different (combinations of ) growth factors. The 3D organoids can be dissociated, and plated 
onto membrane supports coated with MG or collagen, to form 2D monolayer organoid models. This is particularly useful of intestinal organoids as it 
allows access to the apical side, for instance to study interaction with microbes, or transport of nutrients.
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Matrigel® (MG), a de‑cellularized ECM secreted by 
Engelbreth‑Holm‑Swarm mouse sarcoma cells [37], is 
typically used as matrix for 3D culture. Alternative ECMs 
include the synthetic hydrogel matrices [38].  Matrigel® 
provides specific signals conferred from the binding of 
cells to ECM components like ECM‑proteins e.g. laminin, 
collagen IV, entactin/nidogen, heparan sulfate proteogly‑
cans. Furthermore, it provides ECM‑associated‑growth 
factors like IGFs, FGFs, TGF‑beta’s, and HGF [39]. More‑
over, the ECM density, stiffness, viscoelasticity, as well as 
topology and fibrosity are key ECM parameters that gov‑
ern stem cell expansion and organoid formation [40].

In the case of epithelial organoids, the 3D structure can 
be a disadvantage for practical reasons. For instance, 3D 
intestinal organoids feature a miniature internal “lumen”, 
very much like a true intestine, making it difficult to 
access the apical (luminal) side for studying interaction 
with microbes or trans‑epithelial nutrient transport. For 
that reason, methods have been developed to generate 
two‑dimensional (2D) polarized epithelial monolayers 
by seeding dissociated cells of 3D organoids onto MG 
or collagen‑coated Transwell membranes [41–43], as 
described in more detail in Sect. 4.

3  Research in major livestock and companion 
animals

3.1  Tissue‑explants and re‑aggregated dissociated cells
In this section, we only briefly touch on studies on “orga‑
noid‑like” 3D cultures that have used tissue explants 
and/or re‑aggregated dissociated tissue cells, (Table  1). 
Many of these studies are focused on tissue engineer‑
ing for repair or replacement, or for extracorporeal arti‑
ficial organ devices, rather than on developing in  vitro 
research models. However, the 3D cultures in some of the 

earlier papers listed in Table 1 do seem to share certain 
features with self‑renewing organoids, describing differ‑
entiation of organ‑like structures from progenitor cells 
using ECM components and growth factors to induce 3D 
tissue development.

Two studies reported the production of porcine testicu‑
lar “organoids” from dissociated testis [44, 45]. The devel‑
oped testicular structures contained all relevant cell types 
in a 3D organization with physiological cell–cell inter‑
actions of germ cells with supporting cells [44]. In addi‑
tion, the cultured testicular structures contained Sertoli 
cells and germ cells which assembled into seminiferous 
tubule‑like structures delimited by a basement mem‑
brane along with Leydig cells and peritubular cells. In one 
of these studies, the cellular structures were maintained 
for 45 days [45]. However, long term self‑renewal was not 
well‑controlled, as the number of Sertoli cells increased 
and that of Leydig cells decreased over time. Yet, these 
organoids appear to provide an in vitro platform for stud‑
ying germ cell function, testicular development, and drug 
toxicity in a cellular context representative of the testis 
in vivo.

In chicken, two early studies showed long term culture 
of 3D organ‑like structures (“organoids”) of chicken mus‑
cle [46] and nervous and lymphoid tissues [47], respec‑
tively. These studies used ECM (MG or collagen) and 
certain growth factors, but these models lacked continu‑
ous stem cell‑driven proliferation.

In cattle, Ellis et  al. reported long‑term culture of 
bovine 3D mammary gland organoids that recapitulated 

Table 1 Studies on tissue explants and re-aggregated 
dissociated cells in livestock and companion species

Species Tissue References

Pigs Intestine & stomach [145]

Bile duct [146]

Liver [147–151]

Urinary bladder [152]

Testis [44, 45]

Chicken Nervous and lymphoid tissue [47]

Skeletal muscles [46]

Cattle Arteries [153–157]

Articular cartilage [158, 159]

Intestine [160]

Mammary gland [48–52]

Parathyroid gland [161–166]

Dog Intestine [167]

Table 2 Summary of livestock and companion species organoid

Species Tissue References

Pig Esophagus submucosal gland [58]

Intestine [43, 53–56, 
59–64, 71–74, 
76–81]

Rectum [57]

Chicken Intestine [55, 82–87]

Cattle Intestine [55, 56, 88, 89]

Sheep Intestine [55]

Pancreatic duct [90]

Dog Skin (Keratinocyte) [93]

Prostate gland [98]

Urinary bladder [99]

Kidney [97]

Intestine [55, 91]

Liver [96]

Cat Intestine [55, 100]

Liver [101, 102]

Horse Intestine [55, 103]
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glandular duct morphology and function [48]. Their cul‑
ture methods included the use of ECM (collagen) and 
growth factors, such as IGF1, TGFβ, and mammary gland 
extract. Similar methods were used by other authors 
[49–52].

3.2  Stem cell‑derived organoids in livestock 
and companion animals

Stem cell‑derived organoids that are capable of self‑
renewal and self‑organization in long‑term culture (Fig‑
ure 2), are listed in Table 2. In all these studies, organoids 
were derived from tissue ASCs. To our knowledge no 
published scientific studies are available on iPSC‑derived 
organoids in farm or companion animals.

3.2.1  Pig
Intestinal organoids (enteroids) were the first organoids 
reported from pigs. Gonzalez et al. demonstrated devel‑
opment of enteroids in vitro from intestinal crypts from 
new‑born piglets [53]. These enteroids showed budding 
(forming buds with a crypt‑like structure) and contained 
the principal cell types of the intestinal epithelium includ‑
ing stem/progenitor cells, absorptive enterocytes, enter‑
oendocrine cells, goblet cells, and Paneth‑like cells. Later 
studies applied similar methods with small modifications 
that were necessary for, or contributed to, the develop‑
ment of enteroids from juvenile and adult pig intestinal 
tissue [54], or the ability to maintain the enteroids in cul‑
ture for several months [43, 55, 56]. Organoids have also 
been derived successfully from the rectum [57], esopha‑
geal submucosal gland [58], and colon (often referred 
to as “colonoids”) [59]. A recent study showed that dif‑
ferential gene‑ and pathway expression of independ‑
ent organoid cultures from the same pig was stable over 
12 weeks of culture [60]. Furthermore the batch‑to‑batch 
variation in organoid gene expression was low during 
long term culture, which may have aided by simultaneous 
passage to limit differences in their differentiation state. 
Moreover, in the same study, the authors also compared 
the transcriptomes profiles of jejunal organoids, the cor‑
responding jejunum mucosa tissue from which the orga‑
noids were derived, and IPEC‑J2 cells (a porcine cell line 
derived from the jejunum, often used as model for small 
intestinal epithelium). Below in Sect. 4.4, the same study 
is mentioned as “validation” in the lights that organoids 
are compared with tissue and IPEC‑J2 cells.

Pig intestinal organoids have been applied to study 
nutrition, nutrient uptake, feed efficiency, and inter‑
action with pathogenic microbes (viruses, bacteria). 
Koltes and Gabler have applied porcine intestinal orga‑
noids to study LPS‑induced intestinal inflammation in 
pigs [61]. Likewise, Derricott et  al. also produced and 

characterized murine, bovine, and porcine enteroids 
as potential research models for the study of species‑
specific intestinal infections with a variety of pathogens 
[56]. They demonstrated in vitro infection of bovine and 
porcine enteroids by the eukaryotic parasite Toxoplasma 
gondii and the bacterial pathogen Salmonella typhimu-
rium. Resende et al. showed that Lawsonia intracellula-
ris is capable of infecting and replicating intracellularly 
in 2D pig enteroids, which resulted in epithelial changes 
as observed in the Lawsonia‑infected enteroids, specifi‑
cally regarding the intestinal cell constitution and gene 
expression [62]. Further, a pig enteroid model was used to 
study porcine epidemic diarrhea virus (PEDV) infection 
[63, 64]. The identity of the specific cell types targeted by 
PEDV in vivo has remained elusive. Most in vitro stud‑
ies on PEDV infection have been performed in cell lines 
of other than pig origin, such as Vero cells from African 
green monkey kidney and HEK293 cells from human 
embryonic kidney [65–67]. Vero cells are incapable of 
producing type I interferons when infected by viruses 
[68]. PEDV clinical isolates generally do not replicate very 
well in IPEC‑J2 cells either [69, 70]. In contrast, PEDV 
was shown to infect multiple types of epithelial cells of 
a porcine enteroid model, including enterocytes, stem 
cells, and goblet cells [63, 64]. These studies also provided 
insights into the porcine interferon defense mechanisms. 
Furthermore, pig enteroid model has been employed 
to study Porcine deltacoronavirus (PDCoV) tropism 
to different intestinal segments [71] and the molecular 
mechanisms of PDCoV infection [72]. Recently, Li et al. 
reported to have developed a porcine apical‑out intesti‑
nal organoid culture system and verified its infectivity, 
type I and type III interferon (IFN) antiviral responses, 
and inflammatory responses following infection by a 
swine enteric virus i.e. by transmissible gastroenteritis 
virus [73]. Overall, the above cited studies on the interac‑
tion of pathogens with intestinal epithelia clearly shows 
the suitability of enteroids and colonoids as in vitro intes‑
tinal models to study host–pathogen interaction in pigs.

At the interface of nutritional and immune research, 
Ellen et  al. used porcine enteroids and colonoids to 
study host–pathogen interaction in relation to feed effi‑
ciency [59]. Ferrandis et  al. used porcine and murine 
enteroids to study the role of cytokines (like interleukins 
(IL)‑1β and IL‑4) in the regulation of mucin production 
(i.e. expression of the MUC2 gene) by the epithelium, as 
dietary fiber and fiber‑degrading enzymes in pig feed are 
known to affect expression of cytokines in the gut [74]. 
They found different effects of interleukins in porcine 
and murine enteroids, which shows the importance of 
using species‑specific in vitro models for the target ani‑
mal species. Additionally, Olayanju et al. argued that the 
use of porcine intestinal organoids have great potential 
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in human biomedical research, for drug screening and 
biomarker discovery, as, pigs are closer to humans in 
anatomy and physiology than rodents [75]. In biomedi‑
cal research on epithelial injury or diseases, porcine 
organoids may offer possibilities, particularly in  situa‑
tions where collection of tissue samples in humans from 
the pathogenic site for producing organoids may be too 
invasive or might induce pathology. Towards this, Von 
Furstenberg et al. developed an organoid model for por‑
cine esophageal submucosal glands (ESMGs) and showed 
that the organoid model could be used to study differen‑
tiation into squamous versus columnar epithelium, and 
the mechanisms of ESMG proliferation and regenera‑
tion of injured epithelium [58]. Likewise, several studies 
aimed at providing an animal (porcine) organoid model 
for (human) biomedical research on small intestinal stem 
cell physiology and epithelial regeneration in short bowel 
syndrome, ischemic injury, and other conditions related 
to intestine [53, 54, 76]. Further, Adegbola et al. derived 
organoids from the anorectal epithelium to study etiol‑
ogy of, and therapies for, perianal Crohn’s fistulae [57]. 
Zhu et al. used porcine enteroids to study effects of (die‑
tary) glutamate on pathways of importance for intestinal 
stem cell biology and intestinal epithelial proliferation 
[77]. Recently, Engevik et  al. produced enteroids from 
genetically modified pigs to study microvillus inclusion 
disease, a rare genetic human disease of the intestine, 
characterized by chronic, watery, life‑threatening diar‑
rhea in infants [78].

In the area of pig nutrition, Wang et al. used pig enter‑
oids as in vitro model, showing that vitamin A regulates 
the “stemness” of intestinal stem cells [79]. In other stud‑
ies, porcine enteroids were used to demonstrate the 
impact of the food/feed‑associated mycotoxin, deox‑
ynivalenol [80] or the dietary amino acid l‑Glutamate 
on intestinal stem cell activity, in particular by effects 
on molecular pathways that are essential for intestinal 
homeostasis and functionality [77, 81].

3.2.2  Chicken
Chicken intestinal organoids (small intestine, cecum) can 
be readily derived from sampled intestinal tissue follow‑
ing methods similar to those used for enteroids of pig 
and other species. Tissues were obtained from either pre‑
hatch chicklets [82–85], day‑old male broiler chicks [86], 
young (2–3  week post‑hatch) chicks [85, 87], or from 
adult chicken carcasses [55, 87].

Reverse transcriptase‑polymerase chain reaction (RT‑
PCR), immunoblot analysis, and immunofluorescence 
microscopy indicated that the chicken intestinal orga‑
noids expressed markers for crypt stem cells, and for 
proliferating, differentiating, and mature enterocytes [82, 

85], as well as goblet cells, enterochromaffin‑like‑cells’, 
and “Paneth‑like” cells [86].

These studies give a clear outlook on applications of 
organoids, e.g. research on avian intestine physiology, 
drugs and feed absorption, interaction with microor‑
ganisms, and gut immunity [82, 85]. Pierzchalska et  al. 
applied organoid cultures to study interactions of the 
intestinal epithelium with the probiotic Lactobacillus aci-
dophilus, as well as ligands for toll‑like receptors (TLR) 
2 and TLR 4 [83, 84]. They described how organoids in 
culture can migrate and fuse with each other thereby 
forming bigger size organoids, and how this is influenced 
by the TLR4 ligand LPS. These results show the potential 
of chicken organoids to study early gut development and 
maturation as well as the interaction of the intestine with 
probiotic bacteria and with pathogenic and commensal 
microbiota, which is important for gut health and home‑
ostasis, feed efficiency, and productivity.

3.2.3  Cattle
In several recent studies, bovine enteroids and colonoids 
have been generated (Table  2), using similar methods 
as described for other species. Like in other species, the 
bovine enteroids and colonoids could be maintained 
in culture for a long time [55, 88]. Bovine enteroids 
have been characterized by microscopy and histology, 
5‑Ethynyl‑2′‑deoxyuridine (EdU) staining for prolifera‑
tive activity [55], and transcriptome analysis [89]. It was 
shown that enteroids can be cryopreserved and thawed 
to start continued culture for at least several passages [56, 
89]. Transcriptome analysis at various time points (pas‑
sages) confirmed long‑term stability of the organoid cul‑
tures [89]. As mentioned for the pig, also cattle enteroids 
were used to study the interaction with pathogens Toxo-
plasma gondii and Salmonella typhimurium [56].

3.2.4  Sheep
Powell et al. showed that sheep enteroids can be readily 
derived from terminal ileum tissue, using similar meth‑
ods as for example used in pigs [55]. In fact, they showed 
that these methods can be applied with minor modifica‑
tions to a range of farm and companion animals including 
cat, dog, cow, horse, pig, sheep and chicken. The sheep 
enteroids were maintained in culture for a very long time, 
i.e. 239 days or 66 passages. Histology and transcriptome 
analysis confirmed that the sheep enteroids contained 
the principle cell types of the intestine epithelium which 
include absorptive enterocytes and stem/progenitor cells.

Liu et al. have established sheep pancreatic duct orga‑
noids to investigate the role and mechanism of copper 
in the sheep pancreas [90]. They showed that moder‑
ate concentrations of copper promote sheep pancreatic 
duct organoids and detailed the molecular mechanism 
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through which copper induces the cell proliferation in 
the organoids.

3.2.5  Dog
In several recent studies, organoids have been generated 
from tissues from various organs of the dog (Table  2). 
Powell et  al. derived ileum enteroids that were main‑
tained in culture for as long as 229  days or 64 passages 
[55]. Chandra and et al. obtained organoids from several 
duodenum, jejunum, ileum, and colon, which they main‑
tained in culture for more than 20 passages [91]. Both 
groups demonstrated that the intestinal organoids could 
be cryopreserved, thawed and expanded, providing a 
banked resource for continued experimentation. Similar 
to enteroids in other species, such as the pig, intestinal 
organoids from dogs consisted of different cell popula‑
tions of intestinal epithelium including stem/progenitor 
cells, absorptive enterocytes (having microvilli expressing 
brush‑border enzymes), tuft cells (expressing SOX9 and 
DCLK1 genes), tight junctions and Paneth‑like cells [91]. 
It is noteworthy that while Paneth cells are reported to 
be absent in dogs [92], however, Chandra and et al. dem‑
onstrated functionally equivalent cells (Paneth‑like cells) 
in the dog intestinal epithelium and enteroids [91]. The 
same authors applied a number of functional assays that 
can demonstrate and quantify organoid epithelial func‑
tions, such as optical metabolic imaging, the cystic fibro‑
sis transmembrane conductance regulator function assay, 
and an assay for the uptake of exosome‑like vesicles (from 
the parasitic nematode Ascaris suis). Such assays may be 
used to “phenotype” performance and drug response of 
animal‑specific dog enteroids, which might be relevant 
for both human and veterinary gastrointestinal research 
and “personalized” medicine.

Dog keratinocyte organoids were produced to address 
skin disorders and alopecia in dogs [93]. These organoids 
are generated from either micro‑dissected hair follicles 
or interfollicular epidermis. They could be maintained in 
culture for several months, remaining phenotypically sta‑
ble as characterized by gene expression analyses, micros‑
copy, histology and protein expression analyses.

Dogs are often used as a model in human biomedi‑
cine research, as the dog for some diseases bridges the 
gap between (often used) rodent models and humans 
[94, 95]. Using both wild type dogs and dogs deficient in 
COMMD1, which is essential for liver copper homeo‑
stasis, Nantasanti et  al. developed a dog liver organoid 
culture system to validate stem cell and gene therapy 
strategies to cure copper storage disease in human [96]. 
Liver organoids were derived from fresh explanted or 
dimethyl sulfoxide (DMSO)‑frozen liver, or from biopsy 
samples (wedge, or “Tru‑Cut” or fine‑needle aspiration 
biopsies) [96]. Like enteroids of dog and other species, 

the dog liver organoid cultures were maintained for as 
long as 8  months (28 passages) and could be resumed 
after cryopreservation of organoids. Furthermore, karyo‑
type analysis of organoids showed that most cells (> 85%) 
retained the normal chromosome number, even after 
8 months of culture [96], reflecting long‑term genetic sta‑
bility of the organoids. Further, budding tubule‑like kid‑
ney organoids could be grown on MG from dissociated 
adult canine kidney cells [97], showing high self‑renewal 
capacity in long‑term culture (> 13  months). In this 
study, the authors hypothesized that the remarkable self‑
renewal capacity and the differentiation towards tubular 
cells is due to induced STAT3 expression at high cell den‑
sity in these cells.

In addition to organoids from healthy tissues, prostate 
cancer [98] and bladder cancer organoids [99] have been 
generated from cancerous cells in urine from dogs with 
prostate or bladder cancer, respectively. Both organoid 
models resembled histopathological characteristics and 
gene expression profiles of the original tissues, and could 
be useful tools to provide insights into cancer therapy in 
dogs and as a translational model in prostate and bladder 
cancers in human.

3.2.6  Cat
In cats, organoids have been generated successfully from 
intestine and liver (Table 2) using current organoid tech‑
niques (as described in Figure  2). Cat organoids have 
been used in biomedical research and/or in veterinary 
research for the species itself. Ileum tissue obtained 
from euthanized cats was used to generate enteroids 
that were maintained for 67 days or 18 passages in cul‑
ture and could be cryopreserved [55]. Similar to the 
enteroids from other species, enteroids from cats formed 
budding structures with distinct regions of cell prolifera‑
tion (shown by EdU staining) in areas exhibiting crypt‑
like budding and folding. The cat enteroids expressed 
crypt stem cell marker LGR5. But unlike enteroids in 
the other species, the mesenchymal marker vimentin 
was expressed quite strongly, which disappeared around 
passage 7–9, followed by cessation of expansion around 
passage 10 with further growth arrest around passage 
13–18. This suggested that mesenchymal‑like cell types 
are essential for cat enteroid growth. Recently, Tekes 
et al. reported to have generated colon‑derived organoids 
and studied host–pathogen interactions and immune 
response against feline enteric coronavirus [100].

Cat liver organoids were generated from post‑mortem 
liver samples which were maintained for 25 passages in 
culture condition [101]. Further, karyotyping analysis has 
shown 80–85% of the cell population in the liver orga‑
noid retaining the normal chromosome number (i.e. 38), 
when maintained up to 23 passages in culture, reflecting 
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long‑term genetic stability of the organoids. The liver 
organoids could be cryopreserved and formed organoids 
again upon thawing. Feline liver organoids expressed 
markers of adult stem cells (LGR5, PROM1, and BMI1); 
hepatic progenitor cells (KRT7, KRT19, and HNF1b); 
early hepatocytes (HNF4a and TBX3, ALB), and mature 
hepatocyte (PROX1, PC, HMGCL, TTR, FAH, and 
CYP3A132). Recently, in a study by the same research 
group using cat liver organoids, two potential drugs use‑
ful in the treatment of hepatic lipidosis in cats were rec‑
ognized [102].

3.2.7  Horse
Enteroids have also been derived in the horse (Table 2), 
as an additional in vitro model for studying gastrointes‑
tinal developmental biology, interactions with nutrients 
or with (pathogenic) microbes. Enteroids were gener‑
ated using intestinal samples from euthanized horses [55, 
103]. Immunofluorescent antibody histological staining 
and PCR indicated the presence of stem cells, enteroen‑
docrine cells, absorptive enterocytes, goblet cells, and 
Paneth cells [103]. A long term maintenance (168  days, 
46 passages) of horse enteroids has been reported [55], 
and enteroids could be cryopreserved, thawed, and 
expanded [55, 103].

4  Potential improvements of organoid culture 
systems in livestock and veterinary research

Organoids offer a great potential for livestock and veteri‑
nary research. There seems to be little restriction regard‑
ing the types of tissue/organ and species from which 
organoids could potentially be derived. This also applies 
to other farmed animal species not covered in this 
review, such as rabbit [104] and fish species, e.g. rain‑
bow trout [105]. However, to increase the scope of (large 
scale) application of organoids several challenges need to 
be addressed.

4.1  High throughput, low cost, reproducible organoid 
platforms

Large scale applications of organoids would require 
reproducible, accurate, low‑cost and high‑throughput 
organoid platforms. Reproducibility may be improved 
by using well standardized protocols and more defined 
medium ingredients. Purified lyophilized (commercially 
available) niche factors appear to provide better defined 
and more constant quality than “conditioned medium”, 
i.e. medium from cultures of recombinant cells express‑
ing the required niche factors Noggin, R‑spondin, and 
WNT3A. The ECM, MG, with its complex, poorly 
defined and variable composition may also contribute to 
variation in the physical and biochemical culture condi‑
tions [106, 107]. Furthermore, the niche factors and MG 

contribute substantially to the high costs of organoid 
culture. For the culture of mouse intestinal organoids it 
was shown that epidermal growth factor can be replaced 
by lysophosphatidic acid [112]. Similarly, for the culture 
of chicken intestinal organoids, the expensive agonists 
R‑spondin 1 and Noggin may be replaced by prostaglan‑
din E2 [92]. As an alternative for MG, more defined and 
less costly biomaterials have been studied, like natural, 
synthetic and protein‑engineered hydrogels [107–109].

The costs of organoid culture may also be reduced by 
using the “hanging drop culture”, which physically favors 
cell‑to‑cell interactions due to the lack of rigid support 
or solidified ECM scaffold [82]. This method features 
a lower concentration of MG (only 5%), resulting in an 
overall 70% lower expenditure of MG in comparison to 
the standard protocol [82]. In addition, this hanging drop 
culture method takes less time as it does not involve MG 
solidification. A recent review paper [38], describes how 
microfabrication methods and devices, such as lithogra‑
phy, microcontact printing, and microfluidic delivery sys‑
tems, can help overcome current limitations of organoid 
culture regarding complexity, throughput, and repro‑
ducibility. In a study on bovine colonoids, Töpfer et  al. 
introduced methodological advances such as extrusion 
bioprinting of colonoid fragments into multi‑well plates 
as an alternative seeding and culture methodology, as 
well as in‑plate cryopreservation as convenient alterna‑
tive to conventional in‑vial cryopreservation to enable 
a “plug and play” format for cell‑based bio‑efficacy and 
biosafety testing [88]. This and other cost and time effec‑
tive findings may contribute to producing high through‑
put organoid platforms from various tissue/organs from 
livestock and companion animals.

4.2  2D organoid platforms
To enable access to the apical membrane of epithelial 
organoids, which is necessary to study e.g. interaction 
with microbes or transport of nutrients, 2D organoid 
models have been developed [41–43, 110–112]. It is nec‑
essary for farm animals that such 2D models are devel‑
oped and validated. Recently, for pig intestinal organoids 
such 2D cultures on Transwell membranes have been 
established and used [43]. These 2D organoids are ame‑
nable for high‑throughput systems e.g. measuring tran‑
scriptome response to variables of interests, including 
interactions with feed ingredients, drugs or pathogenic 
microorganisms [62, 72]. Furthermore, 2D intestinal 
organoid models allow electrophysiological studies using 
Ussing chambers as well as measurement of trans‑epi‑
thelial permeability and electrical resistance as read‑outs 
for intestinal (organoid) function which are relevant for 
studying “transport capacity” of the intestine. Such abili‑
ties make the 2D intestinal organoid model a powerful 
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and sophisticated experimental model of mammalian 
biology for studying complex interactions occurring in 
the intestinal lumen. However, 2D models can also have 
disadvantages compared to 3D models. The 2D monolay‑
ers can contain all cell lineages found in ASC‑derived 
organoids [43], but in other studies (reviewed in [113]) it 
has also been reported that some cell types present in 3D 
organoids may not be represented in 2D cultures. Moreo‑
ver, the propagation from 2D to 2D can only be accom‑
plished for a limited number of iterations [114].

4.3  Collection of tissue samples; biopsies
Organoids in livestock and companion animals have only 
been produced from “parent” tissues (containing ASCs) 
collected from abattoir or euthanized animals. If animals 
need to be sacrificed specifically for this purpose, this 
would not comply with the 3R concept‑Replacement, 
Reduction and Refinement. Also, the sacrifice of ani‑
mals would not be desired by livestock breeders if the 
animals belong to their valued nucleus breeding popu‑
lation nor by animal owners in case of companion ani‑
mals. Enabling the collection of tissue samples by biopsy, 
a common practice to collect tissue from human, can be 
a solution to collect “parent” tissue to culture organoids 
from livestock and companion animals, provided this can 
be achieved with minimal discomfort for the animals. A 
limited number of research articles reported collection 
of biopsies for the production of intestinal organoids in 
pigs [54, 115]. We have recently carried out a pilot study 
with the aim of using biopsy materials to culture intesti‑
nal organoids in pigs (unpublished). With the aid of colo‑
noscopy, we collected sufficient biopsied tissue samples 
and successfully produced colonoids from these samples. 
Similarly, biopsy techniques (including needle biopsy 
[96]) may be used for obtaining tissue samples to pro‑
duce organoids from other organs including gastrointes‑
tinal‑, respiratory‑, urinary‑, and reproductive‑ tracts, as 
well as liver, mammary gland, fat and muscle, collected 
from livestock and companion animals. However, if this 
would be applied, utmost care must be given to minimiz‑
ing discomfort or pain. When tissues from several organs 
are to be taken it may most likely require the sacrifice of 
an animal. The possibility of re‑use of organoids (espe‑
cially generated in a serum‑free organoid culture sys‑
tem) stored in a biorepository would be in line with the 
3Rs. Additionally, interesting non‑invasive approaches 
seem to be possible in specific cases. For example from 
urine, human kidney tubuloids [116] and dog prostate 
cancer, organoids [98] have been cultured and expanded. 
It would be interesting to explore if similar approaches 
would be feasible for producing udder organoids from 
(stem) cells in milk for dairy cattle.

4.4  Validation
It is important to validate organoids as a model for the 
organ or tissue of origin, or even as proxy for in vivo per‑
formance characteristics and animal (genetic) differences 
thereof. This would involve comparing characteristics 
and performance of tissue from animals, or even of intact 
animals, with characteristics and performance of orga‑
noids derived from these tissues. There have been only 
a few studies in that regard in livestock and companion 
animal species. In the pig, Van der Hee et al., have com‑
pared the transcriptomes profiles of jejunal organoids, 
the corresponding jejunum mucosa tissue from which 
the organoids were derived, and IPEC‑J2 cells [60]. They 
found that the set of genes expressed in the organoids 
closely resembled that of the tissue of origin, including 
small intestine‑specific genes, most of which were not 
expressed in the IPEC‑J2 cells. Regarding nutrient uptake 
studies, mouse and human organoid models have been 
validated in a qualitative sense as valuable tool [117]. In 
a quantitative sense, studies would be needed to compare 
both expression of transporter proteins and actual nutri‑
ent transport kinetics with uptake kinetics of intestinal 
tissue measured in Ussing chambers [118] or with uptake 
kinetics measured in live (farm) animals [119]. Preferably, 
organoids derived from animals that have a clear con‑
trast in a trait such as disease resistance or feed efficiency 
could be compared. For instance we are currently looking 
at genome wide gene expression of intestinal organoids 
derived from pigs with different feed efficiency [59, 120].

4.5  Development of more complex systems
The in  vivo intestine contains, in addition to the epi‑
thelium, a complex immune and neural system. In the 
in vitro organoid system, this complex immune and neu‑
ral system is lacking, which reduces its ability to study 
interactions between these (sub)systems. Co‑culturing of 
organoids with immune or neural cells and providing tis‑
sue specific biochemical cues resembling the in vivo con‑
dition could in part enable the study of such interactions. 
However, co‑culture of various cell types in an organoid 
system has not been reported for livestock and compan‑
ion animals yet. Techniques such as 3D bioprinting (e.g. 
[38, 88]) for seeding culture devices may enable co‑cul‑
turing of various cell types with defined spatial position‑
ing to generate more complex organoid systems that may 
better mimic the in vivo host physiology.

5  Potential uses of organoids in livestock 
and veterinary research

5.1  Fundamental biology and pathology
The respiratory, gastrointestinal, urogenital, and mam‑
mary epithelia, along with the skin, are the most 
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important sites of contact with the outside environ‑
ment, with intimate contacts with the respective micro‑
biomes of these organs, including potential pathogens. 
While interaction with microbes has mostly been stud‑
ied in organoid models of intestinal epithelia of different 
species [55, 56, 59, 61–64, 71–73, 83, 84, 91, 100, 103], 
similar studies could be done in organoid models as have 
been done in human and rodents for the lung [121] and 
the mammary gland [122]. In the gut, the epithelium is 
constantly screening the contents of the intestinal lumen 
[123, 124]. Intestinal immune signaling can be triggered 
by nutrients, the digestion products from feed, and the 
intestinal microbiome, including pathobionts. The signal‑
ing modulates the innate and the adaptive immune sys‑
tem while trying to maintain a balance between pro‑ and 
anti‑inflammatory conditions to preserve gut health and 
homeostasis [73]. Some aspects of this sensing and sign‑
aling may be studied in intestinal organoids, for instance 
the production of, and response to immune signaling 
molecules such as cytokines and/or enteroendocrine 
hormones [74, 125, 126].

Research on primary epithelial samples form human 
fetal and pediatric samples has shown changes in DNA 
methylation associated with different expression pro‑
grammes [127]. These changes are likely to be mediated 
by the exposure to environmental factors changing dur‑
ing early life. Epigenetic modifications have also been 
reported in colon cancer, for example hypermethylation 
of the promoters of tumour suppressor genes influenc‑
ing tumour growth [128]. Research emerging from bio‑
medical domain provide evidences that organoids offer 
possibility to study epigenetics in health and diseases 
[129–131]. In livestock or veterinary research, organoids 
(of relevant tissue) from livestock or companion animal 
species could be employed as a tool to study epigenet‑
ics, that may generate new knowledge towards various 
aspects of early life programming or imprinting in live‑
stock species [132, 133] acquired via the nutritional or 
managemental practices adopted in animal husbandry.

5.2  Nutritional research
In the area of animal nutrition, intestinal organoids may 
be used to study the gastro‑intestinal epithelial response 
to feed ingredients (as has been done with mouse orga‑
noids [112]). Performing such studies could aid nutrition‑
ist to determine “non‑strict‑nutritional” properties e.g. 
anti‑oxidative and oxidative effects, immune responses 
and signaling, arising from digestion of proteins [134], 
carbohydrate [135] or other dietary components [136].

5.3  Breeding
A wholly different concept of implementing organoids 
is their use for phenotyping animals for the purpose of 

selective breeding. Here, the goal is not necessarily to 
advance our understanding of animal traits, or to under‑
stand specific mechanisms, but simply to characterize 
(“phenotype”) organoids of as many as possible animals 
with known genotypes. This could be an important tool 
to further improve production performance in livestock. 
For instance, in finding quantitative trait loci (QTLs) and 
potentially causative genes for specific traits by searching 
for genome wide associations between specific pheno‑
types and genomic information [25, 26, 137]. Organoids 
may also contribute to genomic selection, in which the 
genetic merit of breeding stock is not directly obtained 
by phenotyping but is rather inferred from genomic 
information for which the relationship with the pheno‑
type is established in a “training” population of pheno‑
typed animals [138, 139]. It can thus be envisaged that a 
repository of organoids is established from animals rep‑
resenting the training population. In vitro phenotyping of 
these organoids could then be used instead of, or in addi‑
tion to, “normal” phenotyping of these animals, as this 
would provide phenotypic information on more defined 
underlying (cellular, molecular) aspects of the traits of 
interest. Livestock improvement currently has a focus 
on traits related to animal health and resilience, animal 
welfare, and feed efficiency [140, 141]. Animals may 
have genotypic differences regarding their interaction 
with microbes and this may manifest itself on a cellular 
or molecular phenotypic level. Organoids represent‑
ing the relevant epithelia may be suited for measuring 
certain aspects of the interaction with microbes or the 
transport of nutrients [59, 120]. Large‑scale application 
of organoids in breeding programs would require a high‑
throughput and low‑cost organoid platform allowing 
standardized, reproducible and accurate measurements 
of in  vitro performance of epithelial functions. Further, 
if tissues for deriving organoids could be obtained from 
biopsies from live animals (discussed in Sect.  4), this 
would have the advantage that after in  vitro phenotyp‑
ing the high merit animals are still available as breeding 
stock.

5.4  Routine testing
Lastly, organoids may be used to constitute a routine 
testing platform. Here, the goal is not necessarily to 
understand mechanisms or develop medicines or diets, 
but rather to apply (validated) relationships. For instance, 
organoid platforms may be made available for testing of 
effectiveness and side effects of (veterinary) drugs. Large‑
scale and high‑throughput organoid platforms could also 
be made available for routine toxicologic testing [142], 
or for routine quality testing of diet or feed ingredients 
[80, 143]. Also, for human health, human (or animal) 
organoid platforms may be used for routine testing of 
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products for human consumption [144]. Especially in 
such routine applications, organoids and other in vitro or 
ex  vivo models can contribute to a reduction of animal 
studies, in line with the principles of the 3Rs.

6  Conclusion
Organoids can be important in  vitro research tools, in 
fundamental, applied, or routine aspects of veterinary 
and animal production sciences and may complement 
and partly replace animal studies. This would require 
more research, especially regarding organoids of other 
organs, as the majority of studies have been on intestinal 
organoids. Organoids have distinctive advantages over 
other in  vitro models, as they better recapitulate struc‑
ture and function of tissues. Compared to intact organs 
they are strongly reduced models, which may be an 
advantage for studies on specific mechanisms, but also 
confers clear limitations to the model. Organoids thus 
provide a well‑defined, accessible research model that 
may be used to obtain phenotypic information on defined 
underlying cellular and molecular aspects of important 
complex traits such as feed efficiency and disease resist‑
ance. Thus, organoids can be of great value in livestock 
and veterinary research.
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