
HAL Id: hal-03168889
https://hal.science/hal-03168889

Submitted on 14 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Programming in Distributional Reinforcement
Learning

Elie Odin, Arthur Charpentier

To cite this version:
Elie Odin, Arthur Charpentier. Dynamic Programming in Distributional Reinforcement Learning.
[Research Report] Université du Québec à Montréal. 2020. �hal-03168889�

https://hal.science/hal-03168889
https://hal.archives-ouvertes.fr

Dynamic Programming in Distributional
Reinforcement Learning

Odin Elie∗1 and Charpentier Arthur2

1École Normale Supérieure de Rennes, elie.odin@ens-rennes.fr
2Université du Québec à Montréal, Département de Mathématiques,

charpentier.arthur@uqam.ca

September 2020

Abstract

The classic approach to reinforcement learning is limited in that it only predicts the expected
return. The specialized literature has long tried to remedy this problem by studying risk-sensitive
models, but the distributional approach will not emerge until 2017. Since the seminal article M. G.
Bellemare, Dabney, and Munos 2017 and the state-of-the-art performance of the C51 algorithm
in the ATARI 2600 suite of benchmark tasks (M. G. Bellemare, Naddaf, et al. 2013), research
has focused on understanding the behaviour of distributional algorithms. In this paper we place
Bellemare’s original results in distributional dynamic programming in parallel with the classic
results.

One of the foundations of unsupervised learning is interaction with the environment. This involves
observing how the environment reacts to certain actions and then using this information to achieve a
specific goal. Let’s take the example of a chess game. From one player’s perspective, the environment
consists of the chessboard, the pieces in play and the opponent. For each move made, the opposing
player reacts and moves a piece in turn. The experience accumulated by the player over several games
allows him to get back to situations that he recognizes as advantageous by specific combinations of
moves, and conversely to prevent certain mistakes. Let’s mention the following key idea : if the player,
regardless of the state of the game, has the possibility to determine the chances of winning offered by
each of the actions he can take, then he can easily reach his goal whenever possible.

In more abstract terms, let us consider an agent which interacts with an environment by executing
successive actions. After each interaction, the environment give back a reward that depends on the
state it was in before the action and the state that followed. The reward formalize the notion of goal
and the agent’s objective is to maximize the sum of rewards accumulated during the game by choosing
the appropriate action for each state. This sum will be called the return. It should be noted that
we cannot be satisfied with simply choosing the actions that maximize immediate reward. Indeed, in
many situations, significant gains can only be obtained after moving through intermediate states and

∗This work was carried out during an internship at UQAM.

1

Dynamic Programming in Distributional RL

after performing specific combinations of actions. For example, in chess, it may be more profitable to
capture a queen in three moves than to capture a pawn in one move.

Reinforcement learning studies the methods by which such an agent can achieve this objective using
the experience gained through the interaction. Throughout this paper we will solve this problem using
the dynamic programming approach. Initiated by Bellman in 1957 (Bellman 1957), this approach has
the advantage to provide encouraging theoretical results with a minimal mathematical background. On
the other hand, learning algorithms using dynamic programming require a model of the environment.
This hypothesis allows many simplifications because it is no longer necessary to interact with a real
environment to recognize the effect of an action. It is moreover possible to study all outcomes from
a given state without having to bring the environment into this state. Using the previous example, a
model of the chess game allows the agent to try several possible moves from a particular configuration,
which is not possible in real game conditions. From a practical point of view, it is not always possible
to obtain a model of the environment and the method can become prohibitively time-consuming when
the number of states in the environment becomes very large. For a more complete introduction to
ideas behind reinforcement learning, see Sutton and Barto 2018 and C. J. C. H. Watkins 1989.

In section 2, we will solve the reinforcement learning problem with the classic approach, where
only the expectation of the return is considered. In section 3, we present a variation of the previous
approach where the agent consider the full distribution of the return, which removes the limitations
caused by the mere consideration of expectation. Finally, we discuss in section 4 practical applications
of these results and briefly review recent advances in distributional reinforcement learning.

1 Introduction and setting

The interaction of the agent with the environment is a discrete time process where each step is described
as follows: the environment is in a particular state so the agent chooses an action according to this
state; then, the environment reacts to this action and moves to another state; finally, a reward is given.
Each step occurs at time t ∈ N and the next step at time t + 1. The first step is interpreted as the
first time the agent interacts with the environment and occurs at time t = 0.

The transition from one state to another is allowed to be random but will be assumed Markovian,
i.e. the state at time t+ 1 is a random variable which depends only on the state at time t and on the
action taken by the agent, not on past event. This hypothesis should be viewed more as a restriction on
the states than a restriction on the process. Indeed, in a realistic environment, if a past event produces
an effect at time t, then all the information leading to this effect must be contained in the state at
time t − 1. A sufficiently complete model of the environment must therefore satisfy this hypothesis.
On the other hand, we have at first glance no restriction to pose regarding the dependence in time
of the actions taken by the agent. Note that this freedom will later be restricted because it will be
proved to have no impact on learning.

We emphasize that the environment and the actions constitute two separate random sources. The
agent’s behaviour evolves during the learning process, whereas the response of the environment remains
the same.

Standard theoretical framework to model such a process are Markov decision process (MDP). The
notations and vocabulary we will use are inspired by Sutton and Barto 2018. We let S denote the set
of all possible states of the environment, A denote the set of all possible actions and R ⊂ R is the set
of rewards. It will be convenient to use a probability kernel to describe the transition from one state
to another. We will therefore make the standard assumption that these three sets are countable. Note

2

1 INTRODUCTION AND SETTING

that in reinforcement learning, R is sometimes allowed to be continuous (for example see Morimura
et al. 2012). However, the study of more general models is rather related to dynamic programming and
is outside the scope of this document (Denardo 1967, D. P. Bertsekas 2005, D. Bertsekas and Shreve
1996). To complete this environment, we must specify which actions are accessible from a state s ∈ S.
This is important when some actions are linked to a specific state and have no sense otherwise. We
denote the set of all accessible actions from state s by A(s).

As mentioned above, it is always possible to construct the set of states in such a way that each
state s contains all the informations which could affect the future behaviour of the process. The state
transition will therefore be assumed Markovian. This means that if the agent takes an action a at
a state s, then the probability that the next state will be s′ depends only on the current state s
and on the action a but not on past actions or events. Thus, completely describing the behaviour
of the environment amounts to introduce the probability kernel P : R × S × S × A → [0, 1] which
maps a quadruplet (r, s′, s, a) to the probability P (r, s′; s, a) to reach a state s′ and get the reward r
starting from state s and taking action a. The semicolon separates the random contribution from the
conditional contribution. Note that for all pairs (s, a) in S ×A, we have,∑

r,s′∈R×S
P (r, s′; s, a) = 1.

When we are only concerned with the state following s and a, we introduce,

(1.1) P (s′; s, a) :=
∑
r∈R

P (r, s′; s, a),

the probability to reach s′ starting from state s and taking action a.
At each time t ∈ N, the current state, the action taken by the agent and the reward received after

the transition are modelled by random variables St, At and Rt+1 from a common probability space
(Ω,F ,P) and with values respectively in S, A and R. We say that a sequence of random variables
(S0, A0, S1, R1, A1, S2, . . .) satisfies the Markov decision process (S,A,R, P) with initial state S0

and first action A0 if for all time steps t ≥ 1,

P(Rt = r, St = s′ | St−1 = s, At−1 = a, St−2 = s2, At−2 = a2, . . .)

= P(Rt = r, St = s′ | St−1 = s, At−1 = a)

= P (r, s′; s, a).

(1.2)

This definition clearly expresses the Markovian side of the process. However, it differs from a Markov
chain by the external random source provided by At. From (1.2), one can derive these other formulas,

P(St = s′ | St−1 = s, At−1 = a, St−2 = s2, At−2 = a2, . . .)

= P(St = s′ | St−1 = s, At−1 = a)

= P (s′; s, a).

(1.3)

and using the fact that P(A|B ∩ C) = P(A ∩B|C)/P(B|C),

P(Rt = r | St−1 = s, At−1 = a, St = s′, St−2 = s2, At−2 = a2, . . .)

= P(Rt = r | St−1 = s, At−1 = a, St = s′)

= P (r, s′; s, a)/P (s′; s, a).

(1.4)

3

Dynamic Programming in Distributional RL

The process is summarized in the following diagram,

R1 R2 Rt+1

S0

P (·,S0,A0) // S1

OO

P (·,S1,A1) // S2

OO

··· St
P (·,St,At) // St+1

OO

···

A0

HH

A1

agent’s
action

HH

At

II

In the following, we will often work with probability distributions rather than directly with random
variables. We introduce some notations for this purpose.

Notation. For some random state S and random action A, P (·;S,A) will be the law of any random
variable S′ succeeding to S and A according to the transition kernel P (·; ·, ·). This distribution is
well-defined and, according to the law of total probability, for all s′ in S,

(1.5) P (·;S,A)({s′}) =
∑

s,a∈S×A
P (s′; s, a)P(S = s,A = a).

In addition, we denote by R(S,A) any reward variable succeeding to S and A with respect to the
transition kernel P (·; ·, ·). Then, L

(
R(S,A)

)
is the probability distribution of R(S,A) and for all r ∈ R,

(1.6) L
(
R(S,A)

)
({r}) = P

(
R(S,A) = r

)
=

∑
s,a,s′∈S×A×S

P (r, s′; s, a)P(S = s,A = a).

Since our model allows R(S,A) to be dependent on S1, it will sometimes be useful to denote by,

(1.7) L
(
R(s1;S,A)

)
:= L (R(S,A) | S1 = s1) ,

the conditional distribution of R(S,A) given S1 = s1 and by R(s1;S,A) ∼ L
(
R(s1,S,A)

)
any random

variable following this distribution.

Remark 1.1. By writing P(S = s,A = a) = P(A = a | S = s)·P(S = s), we see that the distribution
of any random variable S′ and R succeeding to S and A with respect to the transition kernel P is
entirely determined by the distribution of the current state S and the conditional distribution L(A|S)
of A with respect to S. Thus, if an initial distribution L(S0) is given and if all conditional distributions
L(At|St), t ≥ 0 are specified, then the process is fully determined in distribution. This precisely means
that, for each random variable involved in the process, the probability for this variable to lie in a
particular set is determined. However, the relationships between these variables are not : there can
be a lot of different joint distributions for this process. We emphasize that taking action only with
respect to the current state is sufficient to determine the expectation of all future rewards and, by
linearity of expectation, sufficient to determine the expected return. Therefore, in the classic approach,
the agent doesn’t need to take into account past actions or states to maximise the expected return
because only actions chosen with the knowledge of the current state have an impact on future rewards.
However, this is not true in the distributional setting since considering the full distribution of return
leads to considering dependences between rewards. (For more details about how the time dependence
of actions impact the process, see D. P. Bertsekas 2005 vol. II)

4

1 INTRODUCTION AND SETTING

As we said earlier, the goal of reinforcement learning is to determine an agent that maximize the
sum of rewards by choosing the best action at each time step. The laws that determine the behaviour
of our agent are specified in a policy. More precisely, for each state s ∈ S and for each time step t ∈ N,
a policy specifies the actions to choose when the state at time t is s. In some cases, a lot of actions can
be taken at a particular state s and it would be arbitrary to impose one of them. We can then choose
the action randomly following a probability distribution depending on state s ; the policy is said to be
stochastic.

The random action At could be either dependent on the previous variables, we say that it is history-
dependent, or independent. More precisely, if At is conditionally independent to the history given St,
then the policy is referred to as Markovian. In the classic approach where we try to maximise the
expected return, this distinction is irrelevant since we are unable to differentiate between an agent
following an history dependent policy and a memoryless agent following a Markovian policy (see
remarks 1.1 and 1.3) ; we will thus left the history dependence of At unspecified. In the distributional
setting, the dependence in history of At has an impact on relations between rewards and could affect
the distribution of the return. For this reason, in this setting we will always assume that policies are
Markovian although this could lead to a loss of performance.

Formally, a policy π is a sequence of functions (π0, π1, . . . , πt, . . .) such that, for all t ∈ N, πt
is a map from S to P(A) the space of probability distributions over (A,P(A)). The distribution
πt(s) models the manner in which the agent chooses the action at when St = s. We will denote the
probability of choosing the action a at time t when St = s by,

πt(a|s) := P(At = a|St = s) = πt(s)({a}).

Note that in order for a policy to be strictly consistent with our model, we must have πt(a|s) 6= 0 if
and only if a is accessible from s, that is a ∈ A(s). A policy satisfying this condition is said to be
admissible.

Remark 1.2. In practice, we will not restrict ourself to admissible policies. In fact, it is possible to
construct the kernel transition P in such a manner that it takes into account the restriction to A(s)
regardless of the policy. For example, we can left the environment unchanged and give a null reward
after each non-accessible action. That is, we impose P (0, s; s, a) = 1 when a /∈ A(s).

The set of all (admissible) policies is denoted by Π. A subclass of policies will prove to be very
important later, that of policies which do not change over time. Theses policies are said to be stationary
and are written π = (π0, π0, . . .). The set of stationary policies is denoted by Π. In this case, we will
omit the mention of t in the notation πt(a|s).

We can now complete the previous Markov Decision Process (MDP). A sequence of random variables
(S0, A0, S1, R1, A1, S2, . . .) satisfies the MDP (S,A,R, P, π), π ∈ Π, if it satisfies the MDP (S,A,R, P)
and if for all a, s ∈ A× S,

(1.8) P(At = a | St = s) = πt(a|s), for all t ∈ N.

Note that under a Markovian stationary policy, the sequence (St × At)t∈N becomes a well-defined
Markov-chain with transition kernel P (s′, a′; s, a) = P (s′; s, a) · π(a′|s′).

As mentioned before, we will often work with the probability distribution of At. Then, πt(·|S) will
denote the law of any random variable At following the policy π at time t from a random state St,

(1.9) πt(·|S)({a}) =
∑
s∈S

πt(a|s)P(St = s).

5

Dynamic Programming in Distributional RL

From the beginning of this document, we implicitly assumed that the process, which is in discrete-
time, has an infinite number of steps. This is an infinite horizon process. We will not treat the case of
finite-horizon processes because they can be interpreted as a special case of infinite-horizon processes
(see Sutton and Barto 2018 for details).

Since our goal is to find a policy which maximize the return, that is the cumulative reward, we
must discuss the definition of this infinite summation. The most straightforward way to do this is
to assume that rewards at any time are bounded above and below uniformly over Ω by a common
constant, and then to assign multiplicative weights to each reward such that the sum of these weights
over time is finite. As is usual, we prefer to give more importance to immediate performance so we
will give more weight to rewards immediately following the action taken by the agent by introducing
a discount factor γ < 1 and define the return by

(1.10) Z =

∞∑
k=0

γkRk+1.

Here the weights strictly decrease over time and their sum is 1/(1 − γ). Thanks to the Markovian
properties of the environment, an agent is not required to consider past events to be optimal. Each
time step can be considered as the initial one and it is enough for the agent to maximize the return
calculated from time t. We thus define the return after time t by,

(1.11) Zt =

∞∑
k=0

γkRt+k+1.

In the same way, we introduce Zπ(S,A) the return of an MDP sequence (A,S,R, P, π) with initial
pair (S,A). If π is a stationary policy, then according to the Markov property, Zt the return after time
t and Zπ(St, At) the return from the initial pair (St, At) have the same distribution,

(1.12) Zt
d
= Zπ(St, At).

Remark 1.3. Zπ(S,A) is a random variable which is only partly determined by the MDP quin-
tuplet (A,S,R, P, π) and that depends strongly on the underlying MDP sequence. Fortunately, its
expectation does not. Indeed, Zπ(S,A) is bounded and, by remark 1.1 the sequence of distribu-
tions L(Rt) is completely determined, so by the dominated convergence theorem the expectation of
Zπ(S,A) is equal to the infinite sum of discounted expectations γt ERt. This reasoning no longer
work in the distributional setting. In fact, Rt is not necessarily independent of Rt+1 so the distribu-
tion Zπ(S,A) := L(Zπ(S,A)) is not fully determined. For the distributional Reinforcement Learning
perspective, we need more informations, namely the joint law of all random rewards. It is sufficient
for this to precise the dependence of At with all preceding variables. Then, for two MDP sequences
(A,S,R, P, π) with reward variables Rt and R′t respectively, both sequences

(∑t
k=0 γ

kRk+1

)
t
and(∑t

k=0 γ
kR′k+1

)
t
converge almost surely to Zπ(S,A) and Z ′π(S,A) so the two sequences of probability

distributions converge weakly to Z and Z′ respectively. By uniqueness of the weak limit of sequences
of measures (see Billingsley 2013), we have Z = Z′.

2 Classic approach : value function
In this chapter, we will focus on two reinforcement learning problems and solve them with the classic
approach of dynamic programming, that is, by only considering the expected return. The first problem,

6

2 CLASSIC APPROACH : VALUE FUNCTION

called prediction problem or sometimes policy evaluation consist in determining the return we can
expect by following a particular policy. That is, we determine how good the policy is. The second
problem consist in identifying the best policies among all existing ones. This is the control problem.

From then on, we will assume that rewards at any steps are bounded above and below by a common
constant. As a consequence, remark 1.3 applies. We also make the additional assumption that the
space of actions is finite ; other spaces are countable.

Improving an agent following a policy π requires knowing if it is profitable or not to be in a state
s, choosing an action a and then following this policy. The classic approach for determining the
effectiveness of a policy and answer the prediction problem is to use the value function,

(2.1) Qπ(s, a) := E[Zπ(s, a)],

which maps each state-action pair (s, a) to the expected return of a MDP sequence with initial state
S0 = s, initial action A0 = a and which follows the policy π from this point. Obviously, the value
function lies in B(S × A,R), the set of bounded functions from S × A to R. The evaluation of this
function is apparently computationally costly. However, when the policy is stationary, it is possible to
rewrite Qπ as the unique solution of a fixed point problem. Let π ∈ Π be a stationary policy. Then,

Qπ(s, a) = E
[∞∑
k=0

γkRk+1

∣∣ S0 = s,A0 = a
]

(Markov property) = E[R(s, a)] + γ E
[∞∑
k=0

γkR(Sk+1, Ak+1)
∣∣ S0 = s,A0 = a

]
= E[R(s, a)] + γ E

[∑
s′,a′∈S×A

Zπ(s′, a′)1{S1=s′,A1=a′}
∣∣ S0 = s,A0 = a

]

= E[R(s, a)] + γ E
[∑
s′,a′∈S×A

Qπ(s′, a′)1{S1=s′,A1=a′}
∣∣ S0 = s,A0 = a

]
= E[R(s, a)] + γ E

[
Qπ(·, ·) ◦ (S1 ×A1)

∣∣ S0 = s,A0 = a
]

= E[R(s, a)] + γ E
[
Qπ(S1, A1)

∣∣ S0 = s,A0 = a
]
.

(2.2)

with At ∼ π(·|St) and St+1 ∼ P (·;St, At). This recursive expression for Qπ was first stated by Bellman
in Bellman 1957 and is known as the Bellman equation. This key result in dynamic programming is
the basis for the characterisation of value functions by fixed point equations.

From now on, we will omit the conditional part in the expectations since the MDP sequence of
random variables (S0, A0, S1, R1, A1, S2, . . .) implicitly admits S0 = s as initial state and A0 = a as
initial action. We will therefore simply write,

(2.3) Qπ(s, a) = E[R(s, a)] + γ E [Qπ(S1, A1)] .

To complete our problem, we introduce the Bellman operator T π from B(S × A,R) to itself such
that for all s, a ∈ S ×A and Q ∈ B(S ×A,R),

(2.4) T πQ(s, a) = E[R(s, a)] + γ E [Q(S1, A1)] ,

where A1 follows policy π. Hence, the Bellman operator T π is a map between value functions and
admits Qπ as fixed point. As in Denardo 1967, we will use the fact that the value function space

7

Dynamic Programming in Distributional RL

B(S ×A,R) is complete under the uniform distance d∞,

d∞(u, v) = sup
s,a∈S×A

|u(s, a)− v(s, a)|, u, v ∈ B(S ×A,R).

It remains to prove that the Bellman operator is a contraction under this distance.

Theorem 2.1. Let π ∈ Π be a stationary policy. Then the Bellman operator T π is a γ-contraction
over (B(S ×A,R), d∞). That is, for all u, v ∈ B(S ×A,R),

d∞(T πu, T πv) ≤ γ · d∞(u, v).

Proof. Let u and v be elements of B(S ×A,R). Then,

d∞(T πu, T πv) = sup
s,a∈S×A

γ · |E [u(S1, A1)]− E [v(S1, A1)]| ,

with S1 ∼ P (·|s, a) and A1 ∼ π(·|S1). In addition, the object of the supremum in the right-hand side
of the above equation satisfies,

|E [u(S1, A1)]− E [v(S1, A1)] | ≤ E [|u(S1, A1)− v(S1, A1)|] ≤ sup
s,a∈S×A

|u(s, a)− v(s, a)|.

As a result,
d∞(T πu, T πv) ≤ γ sup

s,a∈S×A
|u(s, a)− v(s, a)| = γ · d∞(u, v),

which ends the proof.

Now we can apply the Banach fixed point theorem and conclude with,

Corollary 2.2. If π is a stationary policy, then Qπ is the unique bounded solution of the Bellman
equation. Moreover, the recursive application of T π over an arbitrary bounded function Q induces a
sequence (Q, T πQ, . . . , (T π)nQ, . . .) which converges exponentially quickly to Qπ.

At this point, a natural question arises. How to find a policy that maximise the value function
from some starting point ? We could first solve the following subsidiary issue : What is the maximum
return we can hope by starting from some states s, then taking action a and following a policy π ?
For this purpose, we introduce the notion of optimal value function.

Definition 2.1. A value function will be said to be optimal if it is greater at any points to any other
value functions. More precisely the optimal value function, denoted Q∗, is the point-wise supremum
of all value functions over all admissible policies,

(2.5) Q∗(s, a) = sup
π∈Π

Qπ(s, a).

In the same way, a policy π whose value function is Q∗ is an optimal policy. It is not clear that
there exists an optimal policy (see Denardo 1967) and if it exists, there could be a lot of them. The
set of all optimal policies, which could be empty, will be denoted by Π∗. In the following paragraphs,
we prove that under our assumptions there indeed exists a stationary deterministic optimal policy and
it has an explicit formula depending on Q∗. First, let us try to intuitively draw this formula. We first
use the principle of optimality stated by Bellman.

8

2 CLASSIC APPROACH : VALUE FUNCTION

Principle of optimality (Bellman 1957). An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

This principle justify the research for a stationary optimal policy. From a starting configuration
(s, a) we receive a random reward r1 and pass to a random state s′. Then the best strategy is a
priori to choose the action a′ that maximizes the optimal value function, that is, to choose a′ in
arg maxa∈AQ

∗(s′, a). The policy which, at each steps, chooses a such action a′ is denoted π∗. Thus,

(2.6) π∗(s) ∈ arg max
a∈A

Q∗(s, a),

and the Bellman operator associated with this policy T π∗ satisfies,

(2.7) T π
∗
Q∗(s, a) = E[R(s, a)] + γ E

[
max
a′∈A

Q∗(S1, a
′)

]
,

where maxa′∈AQ
∗(S1, a

′) is the function which maps a state s ∈ S to maxa∈AQ
∗(s, a) composed with

S1. This maximum formulation only applies for Q∗ and is not correct for other value functions because
π∗ takes after each state the best decision with the knowledge of Q∗. We say that π∗ is greedy with
the knowledge of Q∗. More generally, we can define greedy policies for any value function Q.

Definition 2.2. A greedy policy for a value function Q maximises Q(s, ·) for each s ∈ S. The set
of greedy policies for Q is

GQ :=
{
π ∈ Π : ∀s ∈ S,

∑
a∈A

π(a|s)Q(s, a) = max
a∈A

Q(s, a)
}

=
{
π ∈ Π : suppπ(s) ⊂ arg max

a∈A
Q(s, a)

}
.

We can then complete (2.7) by introducing an operator T ∗ that mimics a greedy update for all
value functions Q, i.e.

(2.8) T ∗Q(s, a) = E[R(s, a)] + γ E
[
max
a′∈A

Q(S1, a
′)

]
.

This is the Bellman optimality operator. In the following we prove that the optimal value function Q∗
is a fixed point of T ∗. In other words, Q∗ is the only bounded function that satisfies the optimality
equation,

(2.9) Q∗(s, a) = E[R(s, a)] + γ E
[
max
a′∈A

Q∗(S1, a
′)

]
, ∀s ∈ S, a ∈ A.

Then, we prove that any greedy policy with respect to Q∗ is optimal. As a result, π∗ is an optimal
stationary policy.

Proposition 2.3. The optimal value function Q∗ satisfies the optimality equation (2.9).

The following proof is from Ross 1983 and recopied to make this document self-sufficient.

Proof. Let us prove that the left hand-side of (2.9) is everywhere inferior to the right hand-side. Let
s, a ∈ S × A and let π = (π1, π2, . . .) be an admissible policy. We denote π+ = (π2, π3, . . .) the

9

Dynamic Programming in Distributional RL

one-step-shifted policy, that is, the policy starting at time t = 1 instead of t = 0. We have,

Qπ(s, a) = E[R(s, a)] + γ E [Qπ+(S1, A1)]

≤ E[R(s, a)] + γ E [Q∗(S1, A1)]

≤ E[R(s, a)] + γ E
[
max
a′∈A

Q∗(S1, a
′)

]
.

This inequality is true for all policies so taking the supremum in the left hand-side Qπ(s, a) and we
have the desired result. For the reversed inequality, we remark that for all ε > 0 and all s ∈ S, there
exists an ε-optimal policy πε,s such that Qπε,s (s, π∗(s)) ≥ Q∗ (s, π∗(s)) − ε. We then constrain the
sequence of random actions such that the first one is greedy according to Q∗, that is, A1 = π∗(S1) and
such that the sequence follows an ε-optimal policy thereafter, namely, if S1 = s′, then the sequence
A2, A3, . . . will follow πε,s

′
conditionally with S1 = s′. This sequence of actions is dependent on the

past event S1 but only the induced policy πε impacts the expected return. In fact, we have for all
t > 1,

πεt (at|st) := P(At = at | St = st) =
∑
s1∈S

πε,s1t−1 (at|st) · P(S1 = s1 | St = st).

If s and a are fixed, then L(S1) is also fixed and πε is well-defined. By writing Qπε we obtain,

Qπε(s, a) = E[R(s, a)] + γ
∑
s′∈S

Qπε(s
′, π∗(s′))P(S1 = s′)

≥ E[R(s, a)] + γ
∑
s′∈S

(Q∗(s′, π∗(s′))− ε)P(S1 = s′)

= E[R(s, a)] + γ E
[
max
a′∈A

Q∗(S1, a
′)

]
− ε.

And because Q∗(s, a) ≥ Qπε(s, a) for all s, a ∈ S ×A we have,

Q∗(s, a) ≥ E[R(s, a)] + γ E
[
max
a′∈A

Q∗(S1, a
′)

]
− ε.

This result is true for all ε > 0 so we have the other inequality.

Proposition 2.4. The Bellman optimality operator T ∗ is a γ-contraction and admits Q∗ as fixed
point. In particular, the optimal value function Q∗ is the unique bounded solution of the optimal
equation (2.9) and the recursive application of T ∗ to any bounded function Q produce a sequence that
converges exponentially quickly to Q∗.

Proof. It only remains to prove that T ∗ is a contraction for the d∞ distance. The rest follows directly
from the Banach fixed point theorem. Let u and v be bounded functions of B(S ×A,R). Then,

d∞(T ∗u, T ∗v) = sup
s,a∈S×A

γ

∣∣∣∣E [max
a′∈A

u(S1, a
′)

]
− E

[
max
a′∈A

v(S1, a
′)

]∣∣∣∣
≤ sup

s,a∈S×A
γ E
[∣∣∣∣max
a′∈A

u(S1, a
′)−max

a′∈A
v(S1, a

′)

∣∣∣∣]
≤ sup

s∈S
γ

∣∣∣∣max
a∈A

u(s, a)−max
a∈A

v(s, a)

∣∣∣∣ ≤ γ sup
s,a∈S×A

|u(s, a)− v(s, a)| .

10

3 DISTRIBUTIONAL PERSPECTIVE

Proposition 2.5. Any greedy policy π with respect to Q∗ is optimal in the sense that Qπ = Q∗.

Proof. Because Q∗ satisfies the optimality equation, one can precise equation (2.7). For all s, a ∈ S×A,
we have,

T πQ∗(s, a) = E[R(s, a)] + γ E
[
max
a′∈A

Q∗(S1, a
′)

]
= Q∗(s, a).

Thus Q∗ is a fixed point of T π and according to corollary (2.2), we have Qπ = Q∗.

From the previous results we can deduce an algorithm which, starting from any value function,
successively applies the Bellman operator to it. We thus have a sequence that converges exponentially
quickly to Q∗. When the iterates get close enough to each other, we could consider that the optimal
value function is almost reached and use the last iteration to calculate an almost optimal policy.

Algorithm 1: Classic dynamic programming
Parameters: ε > 0 a small threshold determining accuracy of estimation.
Input : Q a value function in B(S ×A,R).
∆← ε+ 1
while ∆ > ε do

for s, a ∈ S ×A do
Q′(s, a)← T ∗Q(s, a) =

∑
s′,r∈S×R P (r, s′; s, a) (r + γmaxa′∈AQ(s′, a′))

end
∆← d∞(Q,Q′) = maxs,a∈S×A |Q(s, a)−Q′(s, a)|
Q← Q′

end
Output an almost optimal stationary policy π such that for all s ∈ S,
π(s) is in arg maxa∈AQ(s, a).

Note that, due to the multiple sweeps over the product space S × A, this algorithm can only be
used when the state space is finite and particularly small. For example, it cannot be applied to a
chess game where the number of states is combinatorially large although finite. We discuss in the last
section the extensions that overcome this problem.

3 Distributional perspective
In the previous chapter we answered the prediction and the control problems by considering the
expected return through a value function. This approach is limiting from the agent’s perspective
and insufficient to get a deeper understanding of the return, for example variance or multimodality.
Algorithms with value function based agents are thereby not risk sensitive. The distributional Re-
inforcement Learning counteract this difficulty by considering the full distribution of the return. In
dynamic programming, the distributional approach is almost as old as the theory itself (see Jaquette
1973, Sobel 1982, White 1988), but these efforts have focused more on probabilistic criterias about
the return than on the distribution itself. In reinforcement learning, the distributional setting has
been used for specific purposes, for example to model parametric uncertainty (Dearden, Friedman,
and Russell 1998) or to design risk-sensitive algorithms (Morimura et al. 2010, Morimura et al. 2012).
It will take until 2017 for the prediction and control problems to be resolved in a purely distributional

11

Dynamic Programming in Distributional RL

way in M. G. Bellemare, Dabney, and Munos 2017. This article has laid the foundations for one of
the most promising fields of reinforcement learning. Following their approach, this section is devoted
to the extention of classic results introduced earlier to the distributional setting.

As in the previous section, all rewards function will be bounded by a common constant C. For
simplicity, we will assume that the space of states S is finite, instead of countable. This is the standard
theoretical framework for many recent studies (Rowland et al. 2018, M. G. Bellemare, Roux, et al.
2019), although the results we will present in dynamic programming can be extended to the countable
case (M. G. Bellemare, Dabney, and Munos 2017). Moreover, all policies π will be assumed to be
Markovian, i.e. for all t ∈ N,

(3.1) P(At = a | St = s, Rt = r, St−1, . . .) = πt(a|s).

This implies in particular that, for a MDP sequence (A,S,R, P, π) with initial pair (S,A), the distri-
bution of the return is well-defined (see remark 1.3).

To deal with the prediction problem, we proceed similarly as in the precedent section : we first
define a distributional Bellman operator associated with the distributional return ; then, we will prove
that it is a contraction in an appropriate metric and conclude that the distributional return is the
unique fixed point of the Bellman operator. Let us start by defining the distributional equivalent of
the value function Qπ.

Notation. We will be led to see the return both as a distribution and as a random variable. To
make the notation less cluttered, we will use the Fraktur letter Z when the return is a distribution and
the regular font Z when it is a random variable. Thus, when the random variable Zπ(s, a) is defined,
we have Zπ(s, a) := L(Zπ(s, a)), and conversely when the distribution Zπ(s, a) is defined, Zπ(s, a) is a
random variable with distribution Zπ(s, a).

We define the value distribution as a function from S ×A to the space of probability distributions,

Zπ : S ×A → P(R)

(s, a) 7→ Zπ(s, a),

where P(R) is the space of all probability distributions over R. Its equivalent in terms of random
variables is

Zπ : S ×A → F(Ω,R)

(s, a) 7→ Zπ(s, a).

The space of all value distributions is denoted Z. Obviously, the expectation of the value distribution
is equal to the value function, Qπ(s, a) = EZπ(s, a) for all s, a ∈ S ×A.

If the policy is stationary, we can, as in (2.2), write Zπ in a recursive form.

Proposition 3.1 (distributional Bellman equation). Let π ∈ Π be a stationary policy. Then we
have the distributional Bellman equation,

Zπ(s, a) =
∑

s1,a1∈S×A

[
L
(
R(s1;s,a)

)
? L
(
γZπ(s1, a1)

)]
π(a1|s1) · P (s1; s, a),(3.2)

where ? is the convolution between probability measures.

12

3 DISTRIBUTIONAL PERSPECTIVE

The distributional Bellman equation exposed in M. G. Bellemare, Dabney, and Munos 2017 appear
to be more straightforward but, as Morimura et al. 2010 and Morimura et al. 2012, we prefer to detail
all independent contributions.

Proof. According to the weak Markov property, for all s1 ∈ S and for all sequences of sets (B1, B2, B3, . . .) ∈
P(R)N we have,

P(R2 ∈ B2, R3 ∈ B3, . . . | R1 ∈ B1, S1 = s1) = P(R2 ∈ B2, R3 ∈ B3, . . . |S1 = s1).

Consequently, R1 and
∑∞
k=2Rk are conditionally independent given S1. Then,

Zπ(s, a) = L

(
R1 + γ

∞∑
k=0

γkRk+2

)

=
∑
s1∈S

[
L (R(s, a) | S1 = s1) ? L

(
γ

∞∑
k=0

γkRk+2

∣∣∣ S1 = s1

)]
P (s1; s, a)

=
∑
s1∈S

[
L
(
R(s1;s,a)

)
? L
(
γZπ(s1, A1)

)]
P (s1; s, a),

where ? is the convolution between probability measures and where A1 is taken conditionally to s1,
A1 ∼ π(·|s1). Moreover, π is Markovian so A1 and R1 are conditionally independent given S1. Thus,

Zπ(s, a) =
∑

s1,a1∈S×A

[
L
(
R(s1;s,a)

)
? L
(
γZπ(s1, a1)

)]
π(a1|s1) · P (s1; s, a).

In the following, we will see Zπ as a vector of P(R)S×A. We can therefore write the vectorial
expectation,

EZ =
t(EZ(s, a)

)
s,a∈S×A.

We then define the distributional Bellman operator Tπ between value distributions as a function from
P(R)S×A to itself,

Tπ : P(R)S×A → P(R)S×A

Z 7→ TπZ,

such that for all s, a ∈ S ×A,

(3.3) TπZ(s, a) =
∑

s1,a1∈S×A

[
L
(
R(s1;s,a)

)
? L
(
γZ(s1, a1)

)]
π(a1|s1) · P (s1; s, a).

The fraktur font is used to prevent confusion with the classic Bellman operator. The link between T π
and Tπ is derived as follows ; by linearity of the expectation, we get,

ETπZ(s, a) = E

[∑
s1∈S

P (s1; s, a) [R(s1; s, a) + γZ(s1, A1)]

]
= E [R(S1; s, a) + γZ(S1, A1)]

= ER(s, a) + γ EQ(S1, A1) = T πQ(s, a).

13

Dynamic Programming in Distributional RL

where Q = EZ. Hence, in a more concise way,

(3.4) ETπZ = T πQ.

It now remains to define a metric over P(R)S×A for which Tπ will be a contraction. Several statistical
distances can already be eliminated. Indeed, M. G. Bellemare, Dabney, and Munos 2017 emphasize
that T π is neither a contraction in total variation distance nor in Kullback-Leibler divergence or
Kolmogorov distance. In fact, these divergences ignore the geometry of the distributions. Moreover,
the KL-divergence is only defined for distributions whose support of one is included in the support of
the other. Yet, in the discrete case, value distributions and their Bellman update often have disjoint
supports. In the next section we introduce a family of distances between distributions which behaves
well with respect to the Bellman operator.

3.1 The `p family of distances between distributions
From now on, Pp(R) will denote the collection of probability distributions with finite pth moment,
that is, for all real valued random variables X, we have L(X) ∈Pp(R) if and only if E |Xp| < +∞.

To counteract the disjoint-support issues and the lack of sensitivity to the geometry of certain sta-
tistical distances, M. G. Bellemare, Dabney, and Munos 2017 used a maximal form of the Wasserstein
metric and solve both prediction and control problems. Recall that for two probability distributions
µ and ν in Pp(R), the p-Wasserstein distance between µ and ν is defined as

wp(µ, ν) := inf
X∼µ
Y∼ν

‖X − Y ‖p .

The infimum is attained by the quantile transform F−1
µ (U) and F−1

ν (U) of a random variable U
uniformly distributed on [0, 1]. Hence,

wp(µ, ν) =
∥∥F−1

µ (U)− F−1
ν (U)

∥∥
p

=
∥∥F−1

µ − F−1
ν

∥∥
p
,

where F−1
µ and F−1

ν are the quantile functions of µ and ν. The p-Wasserstein metric is scale sensitive,
sum invariant (see definitions below) and makes complete the space Pp(R). It is thus adapted to our
problem.

Another family of metrics can be used in distributional reinforcement learning: the `p family of
metrics. Let µ, ν ∈ P1(R) be two probability distributions over R. For 1 ≤ p ≤ ∞, the `p distance
between µ and ν is defined as the Lp distance between cumulative distribution functions Fµ and Fν ,

(3.5) `p(µ, ν) := ‖Fµ − Fν‖p =
[∫

R
|Fµ(x)− Fν(x)|p dx

] 1
p

.

Since Lp distances are metrics over Lp spaces, the `p distance is a metric over probability distributions.
As the p-Wasserstein metric, the `p metric is both scale sensitive and sum invariant and makes the
space P1(R) complete. It should be noted that the p-Wasserstein and the `p metrics coincide when
p = 1 and are disjoint otherwise. When p = 2, the squared `2 metric coincide with the Cramér distance
which, unlike Wasserstein, has unbiased sample gradients (M. Bellemare et al. 2017).

If we limit ourselves strictly to the theoretical analysis that follows, we can choose indifferently one
or the other of these two family of metrics. We will use `p metrics just because some intermediate
results are automatically verified. In practice, where algorithms learn from samples, the impact of

14

3 DISTRIBUTIONAL PERSPECTIVE

each of these metrics on learning performances is still unclear (see section 4 for further details). Let
us now define and prove the properties of `p metrics previously stated.

Let d be a divergence, that is an application which maps each pair of probability distributions to
a non-negative number and such that, for all µ, ν ∈ P(R), d(µ, ν) = 0 if and only if µ = ν. For two
random variables X and Y with distributions X ∼ µ and Y ∼ ν, we write d(X,Y) := d(µ, ν). We say
that d is scale sensitive of order β > 0 if it has the property (S),

d(γX, γY) ≤ |γ|βd(X,Y), ∀γ ∈ R∗.(S)

Likewise, if Z ∼ η is a random variable independent of X and Y , then d is said to be sum invariant
if it has the property (I),

d(X + Z, Y + Z) ≤ d(X,Y),(I)

or identically,
d(µ ? η, ν ? η) ≤ d(µ, ν).

Proposition 3.2. The `p metric is both scale sensitive of order 1/p and sum invariant. That is, it
has both properties (S) and (I).

The proof of the sum invariance is taken from M. Bellemare et al. 2017.

Proof. Let γ ∈ R∗. Then,

`p(γX, γY) =

∥∥∥∥Fµ(·γ
)
− Fν

(
·
γ

)∥∥∥∥
p

=

(∫
R

∣∣∣∣Fµ(xγ
)
− Fν

(
x

γ

)∣∣∣∣p dx)
1
p

.

Use the change of variable u = x/γ in the integral and see,

`p(γX, γY) =

(
γ

∫
R
|Fµ(u)− Fν(u)|p du

) 1
p

≤ |γ|
1
p `p(µ, ν).

To prove the sum invariance, we use the dual form of the `p metric, which is then viewed as an Integral
Probability Metric (IPM),

(3.6) `p(µ, ν) = sup
f∈Fq

∣∣∣∣∫
R
fdµ−

∫
R
fdν

∣∣∣∣ ,
where Fq :=

{
f, f absolutely continuous,

∥∥ df
dx

∥∥
q
≤ 1
}
, q is the conjugate exponent of p, i.e. 1

p + 1
q = 1

and df
dx is the Radon-Nikodym derivative of f . A proof of (3.6) is given in Dedecker and Merlevède

2007 (see also Rachev 1991). We thus have,

`p(X + Z, Y + Z) = sup
f∈Fq

∣∣∣∣∫
R
fdµ ? η −

∫
R
fdν ? η

∣∣∣∣
= sup

f∈Fq

∣∣∣∣∫
R

(∫
R
f(x+ y)dµ(x)−

∫
R
f(x+ y)dν(x)

)
dη(y)

∣∣∣∣
≤
∫
R

sup
f∈Fq

∣∣∣∣∫
R
f(x+ y)dµ(x)−

∫
R
f(x+ y)dν(x)

∣∣∣∣ dη(y),

15

Dynamic Programming in Distributional RL

where the second line is obtained using the fact that
∫
R fdµ ? η =

∫
R2 f(x + y)dµ(x)dη(y) and then

applying the Fubini’s theorem. Since for all y ∈ R, Fq :=
{
f(·+ y), f absolutely continuous,

∥∥ df
dx

∥∥
q
≤

1
}
, Fq is invariant by translation and we have,

`p(X + Z, Y + Z) ≤
∫
R

sup
f∈Fq

∣∣∣∣∫
R
fdµ−

∫
R
fdν

∣∣∣∣ dη
= sup

f∈Fq

∣∣∣∣∫
R
fdµ−

∫
R
fdν

∣∣∣∣ = `p(X,Y),

hence the result.

In order to work with value distributions, we will use the maximal form `p of the `p metric, i.e. for
all Z,Z′ ∈P1(R)S×A,

(3.7) `p(Z,Z
′) := sup

s,a∈S×A
`p(Z(s, a),Z′(s, a)).

This is a metric over value distributions since we have the general fact,

Lemma 3.3. If d is a metric over a set E and I any index set, then the maximal form d of this
metric,

d(x,y) := sup
i∈I

d(xi, yi), ∀x,y ∈ EI ,

is a metric over EI .

Proof. We only prove the triangular inequality, the other points are trivial. For all z ∈ EI we have,

d(x,y) = sup
i∈I

d(xi, yi) ≤ sup
i∈I

[
d(xi, zi) + d(zi, yi)

]
≤ sup

i∈I
d(xi, zi) + sup

i∈I
d(zi, yi) = d(x, z) + d(z,y).

3.2 Policy evaluation
To solve the prediction problem, it remains to prove that the distributional Bellman operator is a
contraction in the `p metric, 1 ≤ p ≤ ∞. For this purpose, it is useful to rewrite (3.3) in term of
cumulative distribution functions. Let π ∈ Π be a stationary policy. Then, for all Z ∈P(R)S×A, and
for all s, a ∈ S ×A, we have,

FTπZ(s,a)(x) = P(TπZ(s, a) ≤ x)

=
∑
s1∈S

[
L
(
R(s1;s,a)

)
? L
(
γZ(s1, A1)

)]
(]−∞, x[) · P (s1; s, a)

=
∑
s1∈S

FR(s1;s,a)+γZ(s1,A1)(x) · P (s1; s, a).

(3.8)

We can now state the theorem,

16

3 DISTRIBUTIONAL PERSPECTIVE

Theorem 3.4. The distributional Bellman operator is a γ
1
p -contraction in the `p metric.

Proof. Let Z and Z′ be in P(R)S×A. Then, for all s, a ∈ S ×A,

`p (TπZ(s, a),TπZ′(s, a)) =

∥∥∥∥∥∑
s1∈S

(
FR(s1;s,a)+γZ(s1,A1) − FR(s1;s,a)+γZ′(s1,A1)P (s1; s, a)

)∥∥∥∥∥
p

≤
∑
s1∈S

P (s1; s, a) · `p
(
L
(
R(s1;s,a)

)
? L
(
γZ(s1, A1)

)
,L
(
R(s1;s,a)

)
? L
(
γZ ′(s1, A1)

))
≤
∑
s1∈S

P (s1; s, a) · γ
1
p `p (Z(s1, A1),Z′(s1, A1))

≤ γ
1
p sup
s1∈S

`p (Z(s1, A1),Z′(s1, A1)) ,

where we use (3.8) for the first line, the second line is obtained by triangular inequality and the third
is obtained by using both properties (S) and (I) satisfied by `p. Then, by a similar reasoning we have,

`p (Z(s1, A1),Z′(s1, A1)) ≤
∑
a1∈A

π(a1|s1) · `p (Z(s1, a1),Z′(s1, a1)) ≤ sup
a1∈A

`p (Z(s1, a1),Z′(s1, a1)) .

So,
`p (TπZ(s, a),TπZ′(s, a)) ≤ γ

1
p sup
s1,a1∈S×A

`p (Z(s1, a1),Z′(s1, a1)) .

Finally taking the supremum over S ×A in the last equation and we have the result.

3.3 The distributional control problem

We now turn to the control problem. We will first clarify the notion of optimality in the distributional
setting and then show that the distributional Bellman optimality operator still converges in a sense
that will be specified. The uniqueness of an optimal value distribution will be, however, invalidated.
Recall that in the classic approach, the optimal value function defined as

Q∗(s, a) = sup
π∈Π

Qπ(s, a),

is unique even though there exists a lot of optimal policies. That’s because only the expectation of
the return is taken into account. In the distributional setting, the value distribution strongly depend
on the underlying policy and there can exists a lot of value distributions with the same expectation.
Formally, we will say that an optimal value distribution is a value distribution corresponding to an
optimal policy. The set of optimal value distributions is denoted Z∗. Hence we have,

(3.9) Z∗ ∈ Z∗ ⇐⇒ ∀s, a ∈ S ×A, EZ∗(s, a) = Q∗(s, a) ⇐⇒ ∃π∗ ∈ Π∗ such that Z∗ = Zπ∗ .

The same differences arises for Bellman operators. The classic Bellman operator (2.8) execute a greedy
update on any value function Q in a universal way, but in the distributional setting, we need to specify
how the update is performed, that is to specify which greedy policy is chosen.

17

Dynamic Programming in Distributional RL

Definition 3.1. A distributional Bellman optimality operator is any operator T∗ which implements
a greedy selection rule, i.e. for all Z ∈ Z, there exists a greedy policy π ∈ GZ such that,

T∗Z = TπZ.

Note that since the policy π = (π1, π2, . . .) is not necessarily stationary, we extend the definition of the
Bellman operator to non-stationary policies by setting,

Tπ := Tπ1 .

As in the prediction problem, we are interested in the behaviour of any value distribution under
successive applications of T∗. We will denote Zk+1 = T∗Zk for any Z0 ∈ Z. From (3.4) we have
ET∗Z = ETπZ = T πQ and because π is greedy w.r.t Z we have ET∗Z = T ∗Q. Then, the expected
distributional Bellman operator behave like the classic Bellman optimality operator and for all Z1,Z2 ∈
Z, we have,

(3.10) ‖ET∗Z1 − ET∗Z2‖∞ ≤ γ ‖EZ1 − EZ2‖∞ .

However, the iterates Zk cannot converges in any sense to a unique optimal value distribution. It
converges in fact to the set of non-stationary optimal value distributions Z∗.

Theorem 3.5. For 1 ≤ p ≤ ∞, the sequence of value distributions (Zk)k∈N converges uniformly in
`p to the set of optimal non-stationary value distributions Z∗,

(3.11) `p(Zk,Z∗) = inf
Z∗∈Z∗

`p(Zk,Z
∗) −→

k→+∞
0.

Note that the convergence is uniform because we imposed a finite states space. The countable
states space case is treated in M. G. Bellemare, Dabney, and Munos 2017. Before proving theorem
3.5, let us state this useful lemma,

Lemma 3.6. There exists a time after which all greedy policies with respect to Zk are optimal. In
other words, there exists k ∈ N such that for all k′ ≥ k, GZk′ ⊂ Π∗.

Proof. Recall that all rewards are bounded by a constant C. So, all value distributions are bounded by
1

1−γC. We can then define the upper boundB := 2 supZ∈Z ‖Z‖∞ where ‖Z‖∞ = sups,a∈S×A ‖Z(s, a)‖∞.
We will show that, for any state s ∈ S, the optimal actions for s induce a return which is significantly
greater than returns after non-optimal actions. In this case, if we choose a time k such that the value
function Qk is close enough to Q∗, then we have the same result for Qk : optimal actions for Qk are a
great deal better than the other and they coincide with optimal actions for Q∗. Greedy policies with
respect to Qk then must be optimal policies. The set of optimal actions from a state s is denoted
A∗(s) := arg maxa∈AQ

∗(s, a). The minimal difference between the optimal return and returns after
non-optimal actions is,

∆(s) := Q∗(s, a∗)− max
a/∈A∗(s)

Q∗(s, a),

where a∗ ∈ A∗(s). Taking εk := γkB, then there exists a time ks such that,

εks = γksB <
∆(s)

2
.

18

3 DISTRIBUTIONAL PERSPECTIVE

So, for all k′ > ks and for all optimal action a∗ ∈ A∗(s),

∆(s) > 2εk′ .

The greedy actions for state s at time k′ > ks are then optimal. In fact, by (3.10), for all non-optimal
actions a /∈ A∗(s) we have,

|Qk′(s, a)−Q∗(s, a)| ≤ γk
′
|Q0(s, a)−Q∗(s, a)| ≤ εk′ ,

and the same for all optimal actions a∗ ∈ A∗(s), then

|Qk′(s, a∗)−Q∗(s, a∗)| ≤ εk′ .

So,
Qk′(s, a

∗)−Qk′(s, a) ≥ Q∗(s, a∗)−Q∗(s, a)− 2εk′ ,

and Qk′(s, a∗) > Qk′(s, a) for all a /∈ A∗(s). Therefore, greedy actions for s at time k′ are in A∗(s).
We have finitely many states so we can take K the maximum of ks over S. From then on, for all
k′ > K, greedy actions for any states at time k′ are optimal. So any greedy policies πk

′ ∈ GZk′ are in
Π∗.

Proof of theorem 3.5. Recall that for all k ∈ N, there exists a greedy policy πk ∈ GZk such that
T∗Zk = Tπ

k

Zk. Let us fix i ∈ N. By lemma 3.6, there exists K ∈ N such that πK , πK+1, . . . , πK+i is
a familly of optimal policies. Moreover,

(3.12) ZK+i+1 = Tπ
K+i

◦ . . . ◦ Tπ
K

ZK .

In the same way, let us choose an optimal value distribution Z∗ ∈ Z∗ and define Z∗i+1 := Tπ
K+i ◦

. . . ◦ TπKZ∗. Since Z∗ corresponds to some optimal policy π∗ = (π∗1 , π
∗
2 , . . .), it is easily checked that

Z∗1 = Tπ
K

Z∗ corresponds to the optimal policy (πK1 , π
∗
1 , π
∗
2 , . . .) so Z∗1 ∈ Z∗. Then, by induction we

deduce that Z∗i+1 is also an optimal value distribution. We can now prove that the distance between
ZK+i and Z∗ tends to zero when i tends to infinity. By theorem 3.4, we have,

`p
(
ZK+i+1,Z

∗
i+1

)
= `p

(
Tπ

K+i

ZK+i,T
πK+i

Z∗i

)
≤ γ`p (ZK+i,Z

∗
i) .

All value distributions are bounded by C/(1− γ) so by induction on i, we have

`p
(
ZK+i+1,Z

∗
i+1

)
≤ γi+1`p (ZK ,Z

∗) ≤ C
γi+1

1− γ
.

Thus, for all ε > 0, there exists i ∈ N such that C γi+1

1−γ < ε. Hence, `p(Zk,Z∗) −→
k→+∞

0.

This last theorem suggest a certain instability in the distributional Bellman optimality operators.
Indeed, the non-stationarity of the underlying greedy policy could leads to operators that, after reaching
the set Z∗, indefinitely switch between optimal value distributions. For those interested, a number of
negative results were given by M. G. Bellemare, Dabney, and Munos 2017 in the distributional setting.
Nevertheless, it should be noted that, under the hypothesis of existence of a unique optimal policy, the
theorem states that the Bellman optimality operator is a contraction and that the sequence (Zk)k∈N
converges exponentially quickly to the optimal value distribution.

19

Dynamic Programming in Distributional RL

3.4 The projected distributional Bellman operator
The previous analysis cannot lead directly to a practical algorithm. Indeed, it seems natural to start
from any value distribution, then successively compute its Bellman updates to finally obtain an almost
optimal value distribution. However, it is impossible to perform computations on general probability
distributions (in our case, distributions over R) due to the potentially infinite number of data to
be processed. Following the framework proposed by M. G. Bellemare, Dabney, and Munos 2017,
we will work on the set of discrete probability distributions P whose support is the set of atoms
{z1, . . . , zN} ⊂ R,

P =

{
N∑
i=1

piδzi

∣∣∣ p1, . . . , pN ≥ 0,

N∑
i=1

pi = 1

}
.

If R ⊂ R is finite, then given a probability distribution Z in PS×A with Z(s, a) =
∑N
i=1 pi(s, a)δzi for

all s, a ∈ S ×A, it is then possible to compute its Bellman update TπZ :

TπZ(s, a) =
∑

s1,a1∈S×A

[(∑
r∈R

P (r, s1; s, a)

P (s1; s, a)
· δr
)
?

(N∑
i=1

pi(s1, a1)δγzi

)]
π(a1|s1)P (s1; s, a)

=
∑
r∈R

1≤i≤N

(∑
s1,a1∈S×A

P (r, s1; s, a)pi(s1, a1)π(a1|s1)

)
δr+γzi ,

(3.13)

for all s, a ∈ S × A. The distribution thus calculated obviously no longer lies in the family P, as its
support contains about card(R) times more atoms. We will therefore project this new distribution
on the support {z1, . . . , zN} using a projection operator P : P(R) → P. The categorical projection
PC , first used in M. G. Bellemare, Dabney, and Munos 2017, has proven to be particularly well suited
when the `2 norm is used (Rowland et al. 2018). Since the Bellman update is also discrete, we just
have to define this operator over the categorical distributions. Given y ∈ R, PC(δy) is defined as

PC(δy) =

δz1 if y ≤ z1,
zi+1−y
zi+1−zi δzi + y−zi

zi+1−zi δzi+1 if zi < y ≤ zi+1, 1 ≤ i ≤ N − 1,

δzN if y > zN .

This operator is extended affinely to any categorical distributions. That is, for such a distribution∑K
i=1 piδyi , we have PC(

∑K
i=1 piδyi) =

∑K
i=1 piPC(δyi). Finally, we extend PC to categorical value

distributions by applying the projection coordinate by coordinate, so that, for any categorical value
distribution Z ∈ PS×A, we have (PC(Z))(s, a) = PC(Z(s, a)).

To summarize, starting from a categorical value distribution, we calculate at each step its Bellman
update and then project this new distribution on the support {z1, . . . , zN} with PC . The operator
to iterate is thus PC ◦ Tπ. One may wonder whether the convergence of the sequence (Zk)k defined
recursively by Z0 := Z,Zk+1 := PCT

π(Zk), is preserved. Before answering in the affirmative, let us
introduce a result by Rowland et al. 2018.

Proposition 3.7 (Rowland et al. 2018). The Cramér metric `2 endows a subset of P(R) containing
all bounded probability distributions with a notion of orthogonal projection, and the orthogonal projec-
tion onto the subset P is exactly the heuristic projection PC. Consequently, PC is a non-expansion
with respect to `2.

20

4 DISCUSSIONS

Hence, using the fact that Tπ is a √γ-contraction in the `2 metric, we have that, for two categorical
value distributions Z and Z′ in PS×A,

`2(PCT
π(Z),PCT

π(Z′)) ≤ `2(Tπ(Z),Tπ(Z′)) ≤ √γ · `2(Z,Z′).

Consequently, PCTπ is a √γ-contraction in the `2 metric and the sequence (Zk)k converges exponen-
tially quickly to the unique categorical value distribution Zπ satisfying PCT

πZπ = Zπ.
As for the control problem, if we suppose the uniqueness of the optimal policy π∗, then T∗ = Tπ

∗

so the projected Bellman update 3.13 becomes,

T∗Z(s, a) =
∑
r∈R

1≤i≤N

(∑
s1∈S

P (r, s1; s, a)pi(s1, a
∗
s1)
)
δr+γzi ,

with a∗s1 ∈ arg max
a′∈A

N∑
i=1

pi(s1, a
′)zi,

(3.14)

and we derive the same conclusion.
Therefore, when S,A and R are finite, we deduce the following algorithm,

Algorithm 2: Categorical distributional dynamic programming
Parameters: {z1, . . . , zN} a support for categorical distributions, ε > 0 a small threshold

determining accuracy of estimation.
Input : Z =

(∑N
i=1 pi(s, a)δzi

)
s,a∈S×A

a categorical value distribution in PS×A.

∆← ε+ 1
while ∆ > ε do

for s, a ∈ S ×A do
Compute the distributional Bellman update according to 3.14
Z′(s, a)← T∗Z(s, a)
Project Z′(s, a) onto the set of atoms {z1, . . . , zN}
Z′(s, a)← PC(Z

′(s, a))
end
∆← `2(Z,Z′)
Z← Z′

end
Output an almost optimal stationary policy π such that for all s ∈ S,
π(s) is in arg maxa∈A EZ(s, a).

4 Discussions
In this last section we discuss the scope of our results, their extension and practical applications. The
analysis carried out in section 2 allowed us to exhibit an algorithm (Algorithm 1) that approximates
the optimal value function Q∗ by successively applying the Bellman operator T to an initial value
function Q and then derives an almost optimal policy from it. The method used has two drawbacks :

21

Dynamic Programming in Distributional RL

it needs a model of the environment and any update on Qk = T kQ requires a sweep over the entire
states space. In practice, the model is not always available and the space of states can be so large
that the algorithm becomes prohibitively long when performed by any existing computer (take the
example of a chessboard). When no models are available, we are restricted to learn online, that is
to learn by directly interacting with the environment and consider samples rewards and transitions.
Recall that given a state s ∈ S and any action a ∈ A, then the optimal value function satisfies the
Bellman optimality equation,

Q∗(s, a) = ES1∼P (·;s,a)

[
R(s, a) + γ max

a′∈A
Q∗(S1, a

′)

]
,

so R(s, a) + γmaxa′∈AQ
∗(S1, a

′) is an unbiased estimate of Q∗(s, a). This observation leads to a new
method for estimating Q∗(s, a). Considering a value function Qk; if we are in a state s, taking an
action a, moving to the state s′ and receiving the reward r, then, the Bellman update takes the form,

Qk+1(s, a) = Q(s, a) + α
[
r + γ max

a′∈A
Qk(s1, a

′)︸ ︷︷ ︸
target

−Q(s, a)
]
,

where r + γmaxa′∈AQk(s1, a
′) is the target return and α can be interpreted as the learning rate. In

other words, for each sample transition (s, a, s1, r), we move the old estimation Q(s, a) towards the
target. This method, called Q-learning, is a special case of temporal difference (TD) learning methods
and is one of the most popular in reinforcement learning. The iterates still converge to Q∗ provided
that all states are visited an infinite number of times. This condition is for example verified if the
agent follows a policy which acts according to the current knowledge most of the time and sometimes
randomly choose an exploratory action. Q-learning was first introduced in C. J. C. H. Watkins 1989
and the proof was made rigorous by C. Watkins and Dayan 1992 and by Tsitsiklis 1994.

The second problem concerns the size of the states space. When the states space is small, it is
possible to store all entries of the value function Q and to use them for updates. These methods
are refered to as tabular methods. When the space is overwhelmingly large, the best we can do is
computing an approximate version of Q. This is commonly achieved by invoking a rich class of
functions {Qθ, θ ∈ Rn} parametrized by a weight vector θ ∈ Rn. Given a target value function Qt, the
weights that minimize the difference between Qθ and Qt is then computed using various methods, such
as gradient descent. When the approximate function is linear with respect to the weight vector, then
the precedent method is still guaranteed to converge (see Tsitsiklis and Van Roy 1997). Deep Neural
Networks are also used as approximators and are partly responsible for the impressive performances of
some recent agents (see Mnih et al. 2015) even if theoretical properties of such combinations are still
poorly understood.

As for the distributional setting, we have obtained in section 3.4 an algorithm that approximates
the optimal value distribution but the two previous problems persist. The first concrete solution was
given by Bellemare in M. G. Bellemare, Dabney, and Munos 2017 when the categorical distribution
approximation has regularly spaced outcomes. Their algorithm, C51, uses a deep neural network which
takes as input the current state s and output the approximate categorical distribution of the return.
It then compute the target value distribution from a sample, as in classic Q-learning. They then
faced a problem when trying to minimize the distance between the old distribution estimation and the
target. In their setting, an obvious choice for the loss distance could have been the Wasserstein metric.
However, they showed that a Wasserstein loss cannot be minimized by stochastic gradients methods
(see M. Bellemare et al. 2017). Instead, they minimized the Kullback-Leibler divergence between the

22

REFERENCES

projected target and the distribution estimation. Their algorithm performed state-of-the-art results
but they did not provide theoretical justifications and left readers with several questions, namely
whether there is a guarantee of convergence in a distributional algorithm that learns from samples and
how the combination of a projection step and a KL minimization affects performance.

This theory-practice gap was partially elucided in Rowland et al. 2018. They provided a theoretical
framework for the analysis of categorical distributional reinforcement learning and derive the first
proof of samples based distributional algorithms in the tabular case. In concrete terms, they proved
the convergence of a distributional version of Q-learning when there exists a unique optimal policy
π∗. Moreover, the Cramér metric `22 made its first appearance in DRL as they proved that the
projection step in the C51 has the property to minimize the Cramér distance between the projected
distribution and the original one (see proposition 3.7). However, the role of the Kullback-Leibler
divergence remained unclear.

On the other hand, Dabney et al. 2018 created an algorithm that directly minimize the Wasserstein
metric between the output of the approximator (for example a deep neural network) and the target.
This enabled them to do away the undesired projection step since the Wasserstein metric prevent the
disjoint-support issue and to remove the fixed range constraint imposed in the C51 algorithm. The
minimization of the Wasserstein metric was performed by using quantile regression instead of gradient
descent. These improvements allowed their algorithm to outperform the original C51.

The most recent theoretical contribution to distributional reinforcement learning is from M. G.
Bellemare, Roux, et al. 2019. They created an algorithm that operate end-to-end on the Cramér
metric and they offered theoretical guarantees of the behaviour of this algorithm when combined with
linear functions approximation.

Acknowledgements
The authors thank Hélène Guérin for her thoughtful feedback on this paper.

References
Bellemare, Marc et al. (May 2017). “The Cramer Distance as a Solution to Biased Wasserstein

Gradients”. In: ArXiv 1705.10743,
Bellemare, Marc G., Will Dabney, and Rémi Munos (2017). “A Distributional Perspective on

Reinforcement Learning”. In: ArXiv 1707.06887,
Bellemare, Marc G., Yavar Naddaf, et al. (2013). “The Arcade Learning Environment: An Eval-

uation Platform for General Agents”. In: Journal of Artificial Intelligence Research 47, pp. 253–
279.

Bellemare, Marc G., Nicolas Le Roux, et al. (Feb. 2019). “Distributional reinforcement learning
with linear function approximation”. In: Proceedings of AISTATS 2019.

Bellman, Richard (1957). Dynamic Programming. 1st ed. Princeton, NJ, USA: Princeton University
Press.

Bertsekas, D.P. and S.E. Shreve (1996). Stochastic Optimal Control: The Discrete Time Case.
Athena scientific optimization and computation series. Athena Scientific.

Bertsekas, Dimitri P. (2005). Dynamic Programming and Optimal Control. 3rd ed. Vol. I & II.
Belmont, MA, USA: Athena Scientific.

23

Dynamic Programming in Distributional RL

Billingsley, P. (2013). Convergence of Probability Measures. Wiley Series in Probability and Statis-
tics. Wiley.

Dabney, Will et al. (Feb. 2018). “Distributional Reinforcement Learning with Quantile Regression”.
In: Proceedings of the AAAI Conference on Artificial Intelligence.

Dearden, Richard, Nir Friedman, and Stuart Russell (1998). “Bayesian Q-Learning”. In: Proceed-
ings of the Fifteenth National Conference on Artificial Intelligence.

Dedecker, Jerome and F. Merlevède (2007). “The empirical distribution function for dependent
variables: asymptotic and non asymptotic results in Lp”. In: ESAIM: Probability and Statistics 11,
Publisher: EDP Sciences, pp. 102–114.

Denardo, Eric (Apr. 1967). “Contraction Mappings in the Theory Underlying Dynamic Program-
ming”. In: SIAM Review 9(2), pp. 165–177.

Jaquette, Stratton C. (1973). “Markov Decision Processes with a New Optimality Criterion: Discrete
Time”. In: The Annals of Statistics 1(3), pp. 496–505.

Mnih, V. et al. (2015). “Human-level control through deep reinforcement learning”. In: Nature 518,
pp. 529–533.

Morimura, Tetsuro et al. (2010). “Nonparametric Return Distribution Approximation for Reinforce-
ment Learning”. In: Proceedings of the 27th International Conference on Machine Learning (ICML-
10), pp. 799–806.

— (2012). “Parametric Return Density Estimation for Reinforcement Learning”. In: Proceedings of the
Conference on Uncertainty in Artificial Intelligence.

Rachev, Svetlozar T. (Mar. 1991). Probability Metrics and the Stability of Stochastic Models. Chich-
ester ; New York: John Wiley & Sons Ltd.

Ross, Sheldon (1983). Introduction to Stochastic Dynamic Programming. New York: Academic Press.
Rowland, Mark et al. (2018). “An Analysis of Categorical Distributional Reinforcement Learning”. In:

Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics.
Sobel, Matthew J. (Dec. 1982). “The variance of discounted Markov decision processes”. In: Journal

of Applied Probability 19(4), pp. 794–802.
Sutton, Richard S. and Andrew G. Barto (2018). Reinforcement Learning: An Introduction. Cam-

bridge, MA, USA: A Bradford Book.
Tsitsiklis, John N. (1994). “Asynchronous Stochastic Approximation and Q-Learning”. In: Machine

Learning 16, pp. 185–202.
Tsitsiklis, John N. and Benjamin Van Roy (May 1997). “An Analysis of Temporal-Difference Learn-

ing with Function Approximation”. In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL
42(5), pp. 674–690.

Watkins, Chris and Peter Dayan (1992). “Q-learning”. In: Machine Learning 8, pp. 279–292.
Watkins, Christopher John Cornish Hellaby (May 1989). “Learning from Delayed Rewards”. PhD

thesis. Cambridge, UK: King’s College.
White, D. J. (Jan. 1988). “Mean, variance, and probabilistic criteria in finite Markov decision pro-

cesses: A review”. In: Journal of Optimization Theory and Applications 56, pp. 1–29.

24

	Introduction and setting
	Classic approach : value function
	Distributional perspective
	The p family of distances between distributions
	Policy evaluation
	The distributional control problem
	The projected distributional Bellman operator

	Discussions

