
HAL Id: hal-03168856
https://hal.science/hal-03168856v1

Submitted on 14 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimalist And Customisable Optimisation Package
Jérôme Buisine, Samuel Delepoulle, Christophe Renaud

To cite this version:
Jérôme Buisine, Samuel Delepoulle, Christophe Renaud. Minimalist And Customisable Optimisa-
tion Package. Journal of Open Source Software, 2021, 6 (59), pp.2812. �10.21105/joss.02812�. �hal-
03168856�

https://hal.science/hal-03168856v1
https://hal.archives-ouvertes.fr


Minimalist And Customisable Optimisation Package
Jérôme Buisine1, Samuel Delepoulle1, and Christophe Renaud1

1 Univ. Littoral Côte d’Opale, LISIC Calais, France, F-62100
DOI: 10.21105/joss.02812

Software
• Review
• Repository
• Archive

Editor: Melissa Weber
Mendonça
Reviewers:

• @stsievert
• @torressa

Submitted: 09 September 2020
Published: 12 March 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Optimisation problems are frequently encountered in science and industry. Given a real-valued
function f defined on a set called the search space X, optimising the function f consists of
finding a point x ∈ X that has the optimal value f(x), or at least constructing a sequence
(xt)t∈N ∈ XN that is close to the optimum. Depending on the search space X, optimisation
problems can be globally classified as discrete problems (e.g. X = {0, 1}n) or as continuous
problems (e.g. X = Rn). Tools for modelling and solving discrete (Soni, 2017) and continuous
(Agarwal et al., 2020) problems are proposed in the literature.
In this paper, Macop for Minimalist And Customisable Optimisation Package, is
proposed as a discrete optimisation Python package which doesn’t implement every algorithm
in the literature, but provides the ability to quickly develop and test your own algorithm and
strategies. The main objective of this package is to provide maximum flexibility, which allows
easy implementation when experimenting new algorithms.
Based on a common interaction loop (see Figure 1) of all the algorithms, Macop wants to
allow users to quickly focus on one of the main parts of this loop.

Figure 1: Macop common interation loop.

Statement of Need

Most of the operational research libraries developed in Python offer users either problems
and algorithms where it is possible to choose parameters to obtain optimal (or near optimal)

Buisine et al., (2021). Minimalist And Customisable Optimisation Package. Journal of Open Source Software, 6(59), 2812. https://doi.org/
10.21105/joss.02812

1

https://doi.org/10.21105/joss.02812
https://github.com/openjournals/joss-reviews/issues/2812
https://github.com/jbuisine/macop
https://doi.org/10.5281/zenodo.4595986
http://mtm.ufsc.br/~melissa
http://mtm.ufsc.br/~melissa
https://github.com/stsievert
https://github.com/torressa
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02812
https://doi.org/10.21105/joss.02812


results such as proposed in (Maher et al., 2016), or, libraries targeted to a specific problem
or algorithm such as (Perry, 2019). Another package is proposed in (Soni, 2017) which is a
comprehensive gradient-free optimization framework written in Python. It seems very similar
to Macop. However, hiearchic dependencies between algorithms, the notion of callbacks and
adaptive operator selection are proposed within Macop.
On the other hand, available libraries (Hart et al., 2017; Perez et al., 2012) in the literature
did not allow to attach custom evaluation function to each algorithm used in this hierarchy of
algorithms. Indeed, it is sometimes possible that the main algorithm manages local searches.
Each local search may evaluate the solution differently using a different evaluation function of
the parent algorithm (the main algorithm). Such as example, using a surrogate mathematical
model (Leprêtre et al., 2019) with a quick-to-evaluate function if the real evaluation function
is very expensive in time. This is why in Macop, each algorithm can have its own mechanism
(or partially), i.e. its evaluation function, its operators for obtaining new solution, as well as
its solution update policy. This is independent of the parent algorithm to which it is linked.
This means that only the results (solutions found) are exchanged.
Hence, motivation behind Macop is a flexible discrete optimisation package allowing a quick
implementation of problems. In particular it meets the following needs:

• Common basis: the interaction loop during the solution finding process proposed within
the package is common to all heuristics. This allows the user to modify only a part of
this interaction loop if necessary without rendering the process non-functional;

• Hierarchy: a hierarchical algorithm management system is available, especially when
an algorithm needs to manage local searches. This hierarchy remains transparent to the
user. The main algorithm will be able to manage and control the process of searching
for solutions;

• Flexibility: although the algorithms are dependent on each other, it is possible that
their internal management (search mechanism) is different. This means that the ways
in which solutions are evaluated and updated, for example, may be different;

• Abstraction: thanks to the modular separability of the package, it is quickly possible
to implement new problems, solutions representation, way to evaluate, update solutions
within the package;

• Extensible: the package is open to extension, i.e. it does not partition the user in these
developer choices. It can just as well implement continuous optimization problems if
needed while making use of the main interaction loop proposed by the package;

• Easy Setup: as a pure Python package distributed is pip installable and easy to use.

Target Audience

This package would meet the expectations of people wishing to:

• Solve a problem using an evolutionary algorithm but without developing their own
frawmework. They can rely on what the package already proposes but also on its
generic and flexible contribution in order to adapt their own content;

• Conduct research work leading to the rapid modification of meta-heuristics and the
interaction of different algorithms. More precisely:

– test new combinations of algorithms. Changing algorithms during evaluations,
e.g. different local searches;

– provide reinforcement learning during searches (e.g. adaptive operator choice strat-
egy).

Buisine et al., (2021). Minimalist And Customisable Optimisation Package. Journal of Open Source Software, 6(59), 2812. https://doi.org/
10.21105/joss.02812

2

https://doi.org/10.21105/joss.02812
https://doi.org/10.21105/joss.02812


– test new multi-objective methods quickly thanks to the proposed algorithmic hierar-
chy allowing to easily decompose the multi-objective problem into single-objective
sub-problems.

• Take advantage of a system for launching calculations from a backup in order to avoid
any loss in case of unwanted program interruption;

• Quickly model a problem that is still unknown, i.e. the type of solution and the evaluation
function, while taking advantage of the interaction loop proposed by the package.

Description

At the beginning of the development of this library, the idea of making it as modular as possible
was topical. The library divide into sub-module forms considered to be the most important
to build and solve an optimisation problem.
The package consists of main several modules:

• solutions: representation of the solution;
• validator: such as constraint programming, a validator is a function which is used

to validate or not a solution data state;
• evaluator: stores problem instance data and implements a compute method in order

to evaluate a solution;
• operators: mutators, crossovers operators to update and obtain new solution;
• policies: the way you choose the available operators (might be using reinforcement

learning);
• algorithms: generic and implemented optimisation research algorithms;
• callbacks: callbacks to automatically keep track of the search space advancement and

restart from previous state if nedded.

The primary advantage of using Python is that it allows you to dynamically add new members
within the new implemented solution or algorithm classes. This of course does not close the
possibilities of extension and storage of information within solutions and algorithms. It all
depends on the current need.

In macop.algorithms module:

Both single and multi-objective algorithms have been implemented for demonstration pur-
poses.
A hierarchy between dependent algorithms is also available, based on a parent/child link,
allowing quick access to global information when looking for solutions, such as the best
solution found, the number of global evaluations.
The mono-objective Iterated Local Search (Lourenço et al., 2003) algorithm has been imple-
mented. This algorithm aims to perform local searches (child algorithms linked to the main
algorithm) and then to explore again (explorations vs. exploitation trade-off). On the multi-
objective side, the MOEA/D algorithm (Zhang & Li, 2007) has been implemented by using the
weighted-sum of objectives to change multi-objectives problem into a set of mono-objective
problems (Tchebycheff approach can also be used (Alves & Almeida, 2007)). Hence, this
algorithm aims at decomposing the multi-objective problem into µ single-objective problems
in order to obtain the Pareto front (Kim & De Weck, 2005) where single-objective problems
are so-called child algorithms linked to the multi-objective algorithm.
The main purpose of these developed algorithms is to show the possibilities of operational
search algorithm implementations based on the minimalist structure of the library.

Buisine et al., (2021). Minimalist And Customisable Optimisation Package. Journal of Open Source Software, 6(59), 2812. https://doi.org/
10.21105/joss.02812

3

https://doi.org/10.21105/joss.02812
https://doi.org/10.21105/joss.02812


In macop.solutions module:

Currently, only combinatorial solutions (discrete problem modelisation) are offered, with the
well-known problem of the knapsack as an example. Of course, it’s easy to add your own
representations of solutions. Solutions modeling continuous problems can also be created by
anyone who wants to model his own problem.

In macop.operators and macop.policies modules:

A few mutation and crossover operators have been implemented. However, it remains quite
simple. What is interesting here is that it is possible to develop one’s own strategy for choosing
operators for the next evaluation. The available UCBPolicy class proposes this functionality
as an example, since it will seek to propose the best operator to apply based on a method
known as the Adaptive Operator Selection (AOS) via the use of the Upper Confidence Bound
(UCB) algorithm (Li et al., 2014).

In macop.callbacks module:

The use of callback instance allows both to do an action every k evaluations of information,
but also to reload them once the run of the algorithm is cut. Simply inherit the abstract
Callback class and implement the apply method to backup and load to restore. It is possible
to add as many callbacks as required. As an example, the implemented UCBPolicy has its
own callback allowing the instance to reload previously collected statistics and restart using
them.

Conclusion

Macop aims to allow the modelling of discrete (usually combinatorial) optimisation problems.
It is therefore open to expansion and not closed specifically to a kind of problem.
Macop proposes a simple structure of interaction of the main elements (algorithms, operators,
solutions, policies, callbacks) for the resolution of operational research problems inside an
interaction loop. From its generic structure, it is possible, thanks to the flexible programming
paradigm of the Python language, to easily allow the extension and development of new
algorithms and problems. Based on simple concepts, this package can therefore meet the
needs of the rapid problem implementation.

Acknowledgements

This work is supported by Agence Nationale de la Recherche : project ANR-17-CE38-0009

References

Agarwal, S., Mierle, K., & Others. (2020). Ceres solver (Version 2.0.0). http://ceres-solver.
org.

Alves, M. J., & Almeida, M. (2007). MOTGA: A multiobjective Tchebycheff based genetic
algorithm for the multidimensional knapsack problem. Computers & Operations Research,
34(11), 3458–3470. https://doi.org/10.1016/j.cor.2006.02.008

Buisine et al., (2021). Minimalist And Customisable Optimisation Package. Journal of Open Source Software, 6(59), 2812. https://doi.org/
10.21105/joss.02812

4

http://ceres-solver.org
http://ceres-solver.org
https://doi.org/10.1016/j.cor.2006.02.008
https://doi.org/10.21105/joss.02812
https://doi.org/10.21105/joss.02812


Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D. L., Hackebeil, G. A., Nicholson, B. L.,
& Siirola, J. D. (2017). Pyomo–optimization modeling in python (Second Edition, Vol.
67). Springer Science & Business Media.

Kim, I. Y., & De Weck, O. L. (2005). Adaptive weighted-sum method for bi-objective opti-
mization: Pareto front generation. Structural and Multidisciplinary Optimization, 29(2),
149–158. https://doi.org/10.1007/s00158-004-0465-1

Leprêtre, F., Verel, S., Fonlupt, C., & Marion, V. (2019). Walsh functions as surrogate model
for pseudo-boolean optimization problems. Proceedings of the Genetic and Evolutionary
Computation Conference, 303–311. https://doi.org/10.1145/3321707.3321800

Li, K., Fialho, Á., Kwong, S., & Zhang, Q. (2014). Adaptive operator selection with ban-
dits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans-
actions on Evolutionary Computation, 18(1), 114–130. https://doi.org/10.1109/TEVC.
2013.2239648

Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated local search. In F. Glover
& G. A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 320–353). Springer US.
https://doi.org/10.1007/0-306-48056-5_11

Maher, S., Miltenberger, M., Pedroso, J. P., Rehfeldt, D., Schwarz, R., & Serrano, F. (2016).
PySCIPOpt: Mathematical programming in python with the SCIP optimization suite.
In G.-M. Greuel, T. Koch, P. Paule, & A. Sommese (Eds.), Mathematical software –
ICMS 2016 (pp. 301–307). Springer International Publishing. https://doi.org/10.1007/
978-3-319-42432-3_37

Perez, R. E., Jansen, P. W., & Martins, J. R. R. A. (2012). PyOpt: A Python-based object-
oriented framework for nonlinear constrained optimization. Structures and Multidisci-
plinary Optimization, 45(1), 101–118. https://doi.org/10.1007/s00158-011-0666-3

Perry, M. (2019). Simanneal. In GitHub repository (Version 0.5.0). https://github.com/
perrygeo/simanneal; GitHub.

Soni, D. (2017). Solid. In GitHub repository (Version 0.11). https://github.com/100/Solid;
GitHub.

Zhang, Q., & Li, H. (2007). MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731. https:
//doi.org/10.1109/TEVC.2007.892759

Buisine et al., (2021). Minimalist And Customisable Optimisation Package. Journal of Open Source Software, 6(59), 2812. https://doi.org/
10.21105/joss.02812

5

https://doi.org/10.1007/s00158-004-0465-1
https://doi.org/10.1145/3321707.3321800
https://doi.org/10.1109/TEVC.2013.2239648
https://doi.org/10.1109/TEVC.2013.2239648
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/s00158-011-0666-3
https://github.com/perrygeo/simanneal
https://github.com/perrygeo/simanneal
https://github.com/100/Solid
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.1109/TEVC.2007.892759
https://doi.org/10.21105/joss.02812
https://doi.org/10.21105/joss.02812

	Summary
	Statement of Need
	Target Audience
	Description
	In macop.algorithms module:
	In macop.solutions module:
	In macop.operators and macop.policies modules:
	In macop.callbacks module:

	Conclusion
	Acknowledgements
	References

