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1 Introduction

This document reports on the Framework to Relate / Combine Modeling Languages and Tech-
niques of Working Group1 on Foundations of the ICT COST Action IC1404 Multi-Paradigm
Modelling for Cyber-Physical Systems (MPM4CPS). It first presents an ontology of Cyber Physi-
cal Systems in chapter 3 and then an ontology of Multi-Paradigm Modeling in chapter 4. Then,
these ontologies are combined to define an ontology of Multi-Paradigm Modeling for Cyber-
Physical Systems presented in chapter 5. Finally, a number of megamodel examples are pre-
sented in chapter 6 that instantiate the core ontologies and make use of the catalog of languages
and tools individuals.

The work of working group 1 on foundations revealed that the dependencies between the
framework targeted in this report and the state-of-the-art report in form of deliverable D1.1
(78) was much more tight than initially expected. To avoid capturing some content of the state-
of-the-art report also in a redundant form in the ontologies of the framework of this report, it
was decided instead to include the relevant information in the ontologies and extract it from
there automatically for generating the state-of-the-art report.

Figure 1.1: Overview of the structure of the MPM4CPS ontology

In figure 1.1, the structure of the framework and its elements in form of the different ontologies
and its instances is presented.

The first column depicts the framework and its ontologies as presented in this report. This
includes the ontology of Cyber-Physical Systems presented in chapter 3, the ontology of Multi-
Paradigm Modeling presented in chapter 4 and the combined ontology of Multi-Paradigm
Modeling for Cyber-Physical Systems presented in chapter 5.

The Glossary of Terms for Cyber-Physical Systems presented in the report on the State-of-the-
art on Current Formalisms used in Cyber-Physical Systems Development covered by deliver-
able D1.1 (78) is extracted automatically from these ontologies and the contained concepts
defining the framework.

1



1. Introduction

In the second column, the catalog of modeling languages and tools that is an instance
of the MPM4CPS ontology presented in the report on the State-of-the-art on Current For-
malisms used in Cyber-Physical Systems Development covered by deliverable D1.1 (78) is
depicted. The catalog of that deliverable will be automatically derived from this instance
such that ontology and instances can be kept consistent with only minimal coordination ef-
forts.https://www.sharelatex.com/project/5ae2fed74797f945fcb70b13

In the third column, some examples for CPS employing MPM in form of mega models are de-
picted that are presented in detail in the Catalog of Megamodel Examples in chapter 6. As
shown in the figure, these examples employ the languages and tools listed in the report on
the State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development and
covered by deliverable D1.1 (78), and also instantiate the MPM4CPS ontology.

1.1 Ontology Development Approach

To define the ontologies of WG1, we have carried out a domain analysis process (97). The do-
main analysis process can be defined as the process of identifying, capturing and organizing
domain knowledge about the problem domain with the purpose of making it reusable when
creating new systems. A domain is usually defined as an area of knowledge or activity charac-
terized by a set of concepts and terminology understood by practitioners in that area. In our
context, the domains of consideration are the domains of CPS and MPM, and we aim to derive
and model the concepts of these domains. Figure 1.2 represents the common structure of do-
main analysis methods as it has been derived from survey studies on domain analysis methods.

Conventional domain analysis methods consist generally of the activities Domain Scoping and
Domain Modeling: Domain Scoping identifies the domains of interest, the stakeholders, and
their goals, and defines the scope of the domain. Domain Modeling is the activity for repre-
senting the domain, or the domain model. In our study the outputs of the domain modeling
process will be the set of ontologies for CPS and MPM as identified by figure 1.1.

The domain model can be represented in different forms such as ontological languages, object-
oriented language, algebraic specifications, rules, conceptual models etc. Typically, a domain
model is formed through a commonality and variability analysis to concepts in the domain.
A domain model is used as a basis for engineering components intended for use in multiple
applications within the domain.

One of the popular approaches for domain modeling is feature modeling. A feature is a system
property that is relevant to some stakeholder and is used to capture commonalities or discrimi-
nate between. A feature model is a model that defines features and their dependencies. Feature
models are usually represented in feature diagrams (or tables). A feature diagram is a tree with
the root representing a concept (e.g., a software system), and its descendent nodes are features.
Relationships between a parent feature and its child features (or sub-features) are categorized
as:

• Mandatory - child feature is required.

• Optional - child feature is optional.

• Or -at least one of the sub-features must be selected.

• Alternative (xor) - one of the sub-features must be selected

A feature configuration is a set of features which describes a member of an SPL. A feature con-
straint further restricts the possible selections of features to define configurations. The most
common feature constraints are:

• A requires B - The selection of A in a product implies the selection of B.
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Figure 1.2: Common structure of domain analysis methods (adopted from: (131))

• A excludes B - A and B cannot be part of the same product.

Feature modeling is a domain modeling technique, which is widely used to model the com-
monality and variability of a particular domain or product family. Another domain modeling
technique that is used in software engineering is ontology modeling. A commonly accepted
definition of an ontology is “an explicit specification of conceptualization” (84). An ontology
represents the semantics of concepts and their relationships using some description language.
Basic feature modeling is also a concept description technique that focuses on modeling both
the commonality and variability. It has been indicated that feature models can be seen as views
on ontologies (54).

To develop the WG1 ontologies presented in details in the following chapters, the aforemen-
tioned techniques have been used. For the CPS ontology, feature modeling has been used
while for the MPM ontology, modeling with the W3C OWL language and its tool Protege has
been used.
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2 Ontology of Shared Concepts

As outlined in the introduction of Chapter 1 in Figure 1.1, the structure of the framework and
its elements are organized in the form of different ontologies providing classes for the covered
domains and individuals (instances) for these classes. The ontology presented in this chapter
serves in this context as foundation to define an ontology of Cyber-Physical Systems later in
Chapter 3 and an ontology of Multi-Paradigm Modeling in Chapter 4. Then, these ontologies
together with the one of this chapter are combined to define an ontology of Multi-Paradigm
Modeling for Cyber-Physical Systems presented in Chapter 5.

2.1 Ontology Overview

The shared ontology defines concepts that do not pertain to the CPS and neither to the MPM
domain, but that are still required by one of these domains or both. It is a place to define con-
cepts reusable by all the ontologies developed in this effort. The class provided in this ontology
may be refined to provide extend the definitions to more specific domains.

Figure 2.1 shows an overview of the shared ontology. The details of each concept are provided
in the following subsections.

Figure 2.1: Overview of the shared ontology

2.2 DomainConcept

This class groups all concepts of the MPM4CPS ontology. It is further divided into into sub-
classed whose names end with DC in order to organize the ontology into sub-domains thus
facilitating the navigation across the many concepts of the MPM4CPS ontology. Note that the
sub-domain classes are not necessarily disjoints so that a class may belong to several domain
concepts.

2.2.1 ParadigmDC (Paradigm Domain Concepts)

This class groups concepts that are related to the paradigm domain.

2.2.1.1 Paradigm

In the usual sense, a paradigm is a set of concepts, patterns, theories, research methods, pos-
tulates, and standards that together constitutes a contribution to a domain.

Subclass of

• ParadigmDC (see section 2.2.1)
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References

• https://en.wikipedia.org/wiki/Paradigm

2.2.1.2 Principle

A principle is a law or rule that has to be, or usually is to be followed, or can be desirably fol-
lowed, or is an inevitable consequence of something, such as the laws observed in nature or the
way that a system is constructed. The principles of such a system are understood by its users
as the essential characteristics of the system, or reflecting system’s designed purpose, and the
effective operation or use of which would be impossible if any one of the principles was to be
ignored.

Subclass of

• ParadigmDC (see section 2.2.1)

2.2.2 ProcessDC (Process Domain Concepts)

This class groups concepts that are related to the development process domain.

2.2.2.1 Action

This class represents an action performed during an activity.

Subclass of

• ProcessDC (see section 2.2.2)

2.2.2.2 Activity

This class represents an activity performed during a process.

Subclass of

• ProcessDC (see section 2.2.2)

2.2.2.3 Process

A process is a sequence of activities executed in order to achieve a result or a goal.

Subclass of

• ProcessDC (see section 2.2.2)

References

• https://en.wikipedia.org/wiki/Process

2.2.2.4 Project

Subclass of

• ProcessDC (see section 2.2.2)

2.2.3 RelationDC (Relation Domain Concepts)

This class groups concepts that are related to the relation domain.

2.2.3.1 Constraint

A limitation or a restriction over a relation.

Subclass of

• RelationDC (see section 2.2.3)
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2. Ontology of Shared Concepts

2.2.3.2 Relation

Relation or relations may refer to anything that involves communicating with another person,
group, society or country.

Subclass of

• RelationDC (see section 2.2.3)

2.2.4 StakeholderDC (Stakeholder Domain Concepts)

This class groups concepts that are related to the stakeholder domain.

2.2.4.1 Concern

In computer science, a concern is a particular set of information that has an effect on the code
of a computer program. A concern can be as general as the details of database interaction or as
specific as performing a primitive calculation, depending on the level of conversation between
developers and the program being discussed. IBM uses the term concern space to describe the
sectioning of conceptual information.

Subclass of

• StakeholderDC (see section 2.2.4)

2.2.4.2 ConcernedElement

Subclass of

• StakeholderDC (see section 2.2.4)

• ConcernedElement (see section 2.2.4.2)

2.2.4.3 Organization

Subclass of

• StakeholderDC (see section 2.2.4)

2.2.4.4 Purpose

The object for which something exists

Subclass of

• StakeholderDC (see section 2.2.4)

2.2.4.5 Role

A role (also role or social role) is a set of connected behaviours, rights, obligations, beliefs, and
norms as conceptualized by people in a social situation. It is an expected or free or continu-
ously changing behaviour and may have a given individual social status or social position. It is
vital to both functionalist and interactionist understandings of society.

Subclass of

• StakeholderDC (see section 2.2.4)

2.2.4.6 Stakeholder

A stakeholder or stakeholders, as defined in its first usage in a 1963 internal memorandum
at the Stanford Research Institute, are "those groups without whose support the organization
would cease to exist." The theory was later developed and championed by R. Edward Freeman
in the 1980s. Since then it has gained wide acceptance in business practice and in theorizing
relating to strategic management, corporate governance, business purpose and corporate so-
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cial responsibility (CSR). A corporate stakeholder can affect or be affected by the actions of a
business as a whole.

Subclass of

• ConcernedElement (see section 2.2.4.2)

• StakeholderDC (see section 2.2.4)

2.2.4.7 ToolProvider

Who provides the product and gives the licenses (e.g. company, university, group, ..)

Subclass of

• Stakeholder (see section 2.2.4.6)

2.2.5 ToolDC (Tool Domain Concepts)

This class groups concepts that are related to the tool domain.

2.2.5.1 Tool

Set of different tools that are used during system development.

Subclass of

• ToolDC (see section 2.2.5)

2.3 Properties
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3 Ontology of Cyber-Physical Systems

3.1 State-of-the-art

Cyber-Physical Systems (CPS) are systems that tightly integrate computation with networking
and physical processes. Such systems form large networks that communicate with each other
and rely on actuators and sensors to monitor and control complex with physical processes, cre-
ating complex feedback loops between the physical and the cyber worlds. CPS bring innova-
tion in terms of economic and societal impacts for various kinds of industries, creating entirely
new markets and platforms for growth. CPS have growing applications in various domains, in-
cluding healthcare, transportation, precision agriculture, energy conservation, environmental
control, avionics, critical infrastructure control (electric and nuclear power plants, water re-
sources, and communications systems), high confidence medical devices and systems, traffic
control and safety, advanced automotive systems, process control, distributed robotics (telep-
resence, telemedicine), manufacturing, and smart city engineering. The positive economic
impact of any one of these applications areas is enormous.

Technically, CPS systems are inherently heterogeneous, typically comprising mechanical, hy-
draulic, material, electrical, electronic, and computational components. The engineering pro-
cess of CPS requires distinct disciplines to be employed, resulting in a collection of models that
are expressed using correspondingly distinct modelling formalisms.

An important realization is that distinct models need to be weaved together consistently to
form a complete representation of a system that enables, among other global aspects, perfor-
mance analysis, exhaustive simulation and verification, hardware in the loop simulation, deter-
mining best overall parameters of the system, prototyping, or implementation. A new frame-
work is required that is able to represent these connections between models and, moreover,
enable reasoning about them. No single formalism is able to model all aspects of a system;
modelling of a CPS system is inherently multi-paradigm, which calls for a trans-disciplinary
approach to be able to conjoin abstractions and models from different worlds. Physically, CPS
systems are inherently heterogeneous, typically comprising mechanical, hydraulic, material,
electrical, electronic, among others. Those areas correspond to engineering disciplines with
their own models and abstractions designed to best capture the dynamics of physical pro-
cesses (e.g., differential equations, stochastic processes, etc.). Computationally, CPS systems
leverage the half-century old knowledge in computer science and software engineering to es-
sentially capture how data is transformed into other useful data, abstracting away from core
physical properties occurring in the real world, and particularly the passage of time in physical
processes.

The key challenge, as identified a decade ago, is then to provide mathematical and technical
foundations to conjoin physical abstractions that describe the dynamics of nature in various
engineering domains, as described earlier, with models focusing solely on data transforma-
tion. This is necessary to adequately capture and bridge both aspects of a complex, realistic
cyber-physical system, and become able to reason and explore system designs collaboratively,
allocating responsibilities to software and physical elements, and analyzing trade-offs between
them.

Currently, there is a few common design and modelling approaches that allow engineers to
handle both aspects of CPS, allowing to bridge the involved disciplines into a shared, common
one. Among the existing ones, co-simulation showed that it is possible for computation and
physics engineers to cooperate efficiently without enforcing new tools or design methods.
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3.2 Ontology Overview

After a domain analysis to CPS we have derived the feature model as shown in figure 3.1. The
different components of a CPS system can be designed together or separately: in the latter case,
the various different components need to be integrated. A CPS has different component types
which can be computational or physical. Furthermore, a CPS has a network which can have
different configurations and protocols.

Interoperability relates to how well the different components can operate together. Here we
can have syntactic or semantic interoperability. Since both are required in CPS, these two fea-
tures are considered mandatory, rather than alternative. Different components in a CPS can be
of the same type or of different types, thereby distinguishing between homogeneous or hetero-
geneous CPS. The final feature in the feature model presents the various application domains
in which CPS can be applied including manufacturing, healthcare, transportation etc.

3.2.1 Ontology Diagram

In this section we describe the metamodel for CPS which represents the concepts and their
relations. The metamodel is shown in figure 3.2. A CPS system consists of CPS Components
that interact by using one or more Communication Protocols running on a Communication
Network. CPS Components interact with other components. A CPS Component is a Compu-
tational Component or Physical Component. A computational component is a Software Com-
ponent or Hardware Component that can include zero or more Sensors and Actuators. Sensors
monitor the Physical Component while Actuators can drive them. Essentially, sensors take a
mechanical, optical, magnetic or thermal signal and convert it into voltage and current. This
provided data can then be processed and used to define the required action. Both computa-
tional components and physical components could have a virtual surrogate. Virtual entities
can have different representations such as 3D models, avatars, objects or even a social network
account. Some Virtual Entities can also interact with other Virtual Entities to fulfill their goal.

3.2.2 Architecture

The architecture of a CPS represents the gross level structure of the system consisting of cyber-
physical components. Current architecture design approaches for CPS seem to be primarily
domain-specific and no standard reference architecture has been yet agreed upon. In this line,
the development of an ontology for CPS also contributes to the efforts for designing a reference
architecture.

A CPS reference architecture defines the generic structure of CPS architectures for particular
application domains, laying the foundation for functionality, dependability, and other quality
properties. An architecture organizes the functionality and the properties of a system to enable
partitioning, verification, and management.

Figure 3.3 presents a layered view of a CPS architecture inspired on the IoT stack that arranges
a CPS into successive layers of cohesive modules that share similar concerns. The four layers at
the center include device layer, network layer, CPS layer, application layer, and business layer.
The CPS component layer includes the capabilities for the CPS components to undertake sens-
ing and actuation. The network layer provides functionality for networking connectivity and
transport capabilities enabling the coordination of components. The Services layer consists of
functionality for generic support services (such as data processing or data storage), and specific
support capabilities for the particular applications that may already apply a degree of intelli-
gence. The application layer orchestrates the services to provide emergent properties. Then,
there are two main cross-cutting concerns. A Security layer captures the security functional-
ity, while the management layer supports capabilities such as device management, traffic and
congestion management.
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The reference architecture can be used to derive concrete application architectures. A con-
crete architecture defines the boundaries and constraints for the implementation and is used
to analyze risks, balance trade-offs, plan the implementation project and allocate tasks.

3.3 Ontology Overview

Figure 3.4 shows an overview of the CPS ontology. The details of each concept are provided in
the following subsections.

3.4 Domain Concepts

This ontology of cyber-physical systems contains concepts divided into sub-domains as pre-
sented in the following subsections.

3.4.1 ApplicationDomainsDC

Various studies have addressed the domains and domain specific applications of CPS. Gunes et
al. summarize a number of research efforts that address some of those domains, namely Smart
Manufacturing, Emergency Response, Air Transportation, Critical Infrastructure, Health Care
and Medicine, Intelligent Transportation, and Robotic for Service.

3.4.2 ArchitectureDC

3.4.3 QualityRequirementsDC

Cyber-Physical Systems revolutionize our interaction with the physical world. Of course, this
revolution does not come free. Since even legacy embedded systems require higher standards
than general-purpose computing, we need to pay special attention to this next generation
physically-aware engineered system requirements if we really want to put our full trust in them.
Therefore, we want to clarify the definitions of some common CPS system-level requirements
/challenges.

3.4.3.1 Accuracy

Accuracy refers to the degree of closeness of a system’s measured/observed outcome to its ac-
tual/calculated one. A highly accurate system should converge to the actual outcome as close
as possible. High accuracy especially comes into play for CPS applications where even small
imprecisions are likely to cause system failures. For example, a motion-based object tracking
system under the presence of imperfect sensor conditions may take untimely control action
based on incorrect object position estimation, which in return leads to the system failure.

Subclass of

• Predictability (see section 3.4.3.13)

3.4.3.2 Adaptability

Adaptability refers to the capability of a system to change its state to survive by adjusting its
own configuration in response to different circumstances in the environment. A highly adapt-
able system should be quickly adaptable to evolving needs/circumstances. Adaptability is one
of the key features in the next generation air transportation systems (e.g. NextGen). NextGen’s
capabilities enhance airspace performance with its computerized air transportation network
which enables air vehicles immediately to accommodate themselves to evolving operational
environment such as weather conditions, air vehicle routing and other pertinent flight trajec-
tory patterns over satellites, air traffic congestion, and issues related to security.

Subclass of

• Sustainability (see section 3.4.3.21)
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3.4.3.3 Availability

Availability refers to the property of a system to be ready for access even when faults occur. A
highly available system should isolate malfunctioning portion from itself and continue to oper-
ate without it. Malicious cyber-attacks (e.g. denial of service attacks) hinder availability of the
system services significantly. For example, in Cyber-Physical Medical Systems, medical data
shed light on necessary actions to be taken in a timely manner to save a patient’s life. Mali-
cious attacks or system/component failure may cause services providing such data to become
unavailable, hence, posing risk on the patient’s life.

Subclass of

• Dependability (see section 3.4.3.7)

• Security (see section 3.4.3.20)

3.4.3.4 Composibility

Composibility refers to the property of several components to be merged within a system and
their inter-relationships. A highly composable system should allow recombination of the sys-
tem components repeatedly to satisfy specific system requirements. Composibility should be
examined in different levels (e.g. device composibility, code composibility, service composibil-
ity, system composibility). Certainly, system composibility is more challenging, hence the need
for well-defined composition methodologies that follow composition properties from the bot-
tom up. Additionally, requirements and evaluations must be composable accordingly. In the
future, it will probably be of paramount importance to incrementally add emerging systems
to the system of systems (e.g. CPS) with some predictable confidence without degrading the
operation of the resulting system.

Subclass of

• Interoperability (see section 3.4.3.11)

3.4.3.5 Compositonality

Compositionality refers to the property of how well a system can be understood entirely by
examining every part of it. A highly compositional system should provide great insight about
the whole from derived behaviors of its constituent parts/components. Achieving high com-
positionality in CPS design is very challenging especially due to the chaotic behavior of con-
stituent physical subsystems. Designing highly compositional CPS involves strong reasoning
about the behavior of all constituent cyber and physical subsystems/components and devising
cyber-physical methodologies for assembling CPSs from individual cyber and physical compo-
nents, while requiring precise property taxonomies, formal metrics and standard test benches
for their evaluation, and well-defined mathematical models of the overall system and its con-
stituents.

Subclass of

• Predictability (see section 3.4.3.13)

3.4.3.6 Confidentiality

Confidentiality refers to the property of allowing only the authorized parties to access sensi-
tive information generated within the system. A highly confidential system should employ the
most secure methods of protection from unauthorized access, disclosure, or tampering. Data
confidentiality is an important issue that needs to be satisfied in most CPS applications. For
example, in an emergency management sensor network, attacks targeting confidentiality of
data transmitted may degrade effectiveness of an emergency management system. Confiden-
tiality of data transmitted through attacked sensor nodes can be compromised and that can
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cause data flow in the network to be directed over compromised sensors; critical data to be
eavesdropped; or fake node identities to be generated in the network. Further, false/malicious
data can be injected into the network over those fake nodes. Therefore, confidentiality of data
circulation needs to be retained in a reasonable degree.

Subclass of

• Security (see section 3.4.3.20)

3.4.3.7 Dependability

Dependability refers to the property of a system to perform required functionalities during its
operation without significant degradation in its performance and outcome. Dependability re-
flects the degree of trust put in the whole system. A highly dependable system should operate
properly without intrusion, deliver requested services as specified and not fail during its oper-
ation. The words dependability and trustworthiness are often used interchangeably. Assuring
dependability before actual system operation is a very difficult task to achieve. For example,
timing uncertainties regarding sensor readings and prompt actuation may degrade depend-
ability and lead to unanticipated consequences. Cyber and physical components of the sys-
tem are inherently interdependent and those underlying components might be dynamically
interconnected during system operation, which, in return, renders dependability analysis very
difficult. A common language to express dependability related information across constituent
systems/underlying components should be introduced in the design stage.

Subclass of

• QualityRequirementsDC (see section 3.4.3)

3.4.3.8 Efficiency

Efficiency refers to the amount of resources (such as energy, cost, time etc.) the system requires
to deliver specified functionalities. A highly efficient system should operate properly under op-
timum amount of system resources. Efficiency is especially important for energy management
in CPS applications. For example, smart buildings can detect the absence of occupants and
turn off HVAC (Heating, Ventilation, and Air Conditioning) units to save energy. Further, they
can provide automated pre-heating or pre-cooling services based on the occupancy prediction
techniques.

Subclass of

• Sustainability (see section 3.4.3.21)

3.4.3.9 Heterogeneity

Heterogeneity refers to the property of a system to incorporate a set of different types of inter-
acting and interconnected components forming a complex whole. CPSs are inherently hetero-
geneous due to constituent physical dynamics, computational elements, control logic, and de-
ployment of diverse communication technologies. Therefore, CPSs necessitate heterogeneous
composition of all system components. For example, incorporating heterogeneous computing
and communication capabilities, future medical devices are likely to be interconnected in in-
creasingly complex open systems with a plug-and-play fashion, which makes a heterogeneous
control network and closed loop control of interconnected devices crucial. Configuration of
such devices may be highly dynamic depending on patient-specific medical considerations.
Enabled by the science and emerging technologies, medical systems of the future are expected
to provide situation-aware component autonomy, cooperative coordination, real-time guar-
antee, and heterogeneous personalized configurations far more capable and complex than to-
day’s.
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Subclass of

• Interoperability (see section 3.4.3.11)

3.4.3.10 Integrity

Integrity refers to the property of a system to protect itself or information within it from unau-
thorized manipulation or modification to preserve correctness of the information. A high
integrity system should provide extensive authorization and consistency check mechanisms.
High integrity is one of the important properties of a CPS. CPSs need to be developed with
greater assurance by providing integrity check mechanisms on several occasions (such as data
integrity of network packets, distinguishing malicious behaviors from the ambient noise, iden-
tifying false data injection and compromised sensor/actuator components etc.). Properties of
the physical and cyber processes should be well-understood and thus can be utilized to define
required integrity assurance.

Subclass of

• Security (see section 3.4.3.20)

3.4.3.11 Interoperability

Interoperability refers to the ability of the systems/components to work together, exchange in-
formation and use this information to provide specified services. A highly interoperable system
should provide or accept services conducive to effective communication and interoperation
among system components. Performing far-reaching battlefield operations and having more
interconnected and potentially joint-service combat systems, Unmanned Air Vehicles (UAVs)
call for seamless communication between each other and numerous ground vehicles in op-
eration. The lack of interoperability standards often causes reduction in the effectiveness of
complicated and critical missions. Likewise, according to changing needs, dynamic standards
should be developed and tested for devices, systems, and processes used in the Smart Grid to
ensure and certify the interoperability of those ones being considered for a specific Smart Grid
deployment under realistic operating conditions.

Subclass of

• QualityRequirementsDC (see section 3.4.3)

3.4.3.12 Maintainability

Maintainability refers to the property of a system to be repaired in case a failure occurs. A
highly maintainable system should be repaired in a simple and rapid manner at the minimum
expenses of supporting resources, and free from causing additional faults during the main-
tenance process. With the close interaction among the system components (e.g. sensors,
actuators, cyber components, and physical components) underlying CPS infrastructure, au-
tonomous predictive /corrective diagnostic mechanisms can be proposed. Continuous moni-
toring and testing of the infrastructure can be performed through those mechanisms. The out-
come of monitoring and testing facilities help finding which units need to be repaired. Some
components, which happen to be the source of recurrent failures, can be redesigned or dis-
carded and replaced with the ones with better quality

Subclass of

• Dependability (see section 3.4.3.7)

3.4.3.13 Predictability

Predictability refers to the degree of foreseeing of a system’s state/behavior/functionality ei-
ther qualitatively or quantitatively. A highly predicable system should guarantee the speci-
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fied outcome of the system’s behavior/functionality to a great extent every moment of time
at which it is operating while meeting all system requirements. In Cyber-Physical Medical
Systems (CPMS), smart medical devices together with sophisticated control technologies are
supposed to be well adapted to the patient’s conditions, predict the patient’s movements, and
change their characteristics based on context awareness within the surrounding environment.
Many medical devices perform operations in real-time, satisfying different timing constraints
and showing diverse sensitivity to timing uncertainties (e.g. delays, jitters etc.). However, not
all components of CPMS are time-predictable. Therefore, in addition to new programming and
networking abstractions, new policies of resource allocation and scheduling should be devel-
oped to ensure predictable end-to-end timing constraints.

Subclass of

• QualityRequirementsDC (see section 3.4.3)

3.4.3.14 Reconfigurability

Reconfigurability refers to the property of a system to change its configurations in case of failure
or upon inner or outer requests. A highly reconfigurable system should be self-configurable,
meaning able to fine-tune itself dynamically and coordinate the operation of its components at
finer granularities. CPSs can be regarded as autonomously reconfigurable engineered systems.
Remote monitoring and control mechanisms might be necessity in some CPS application sce-
narios such as international border monitoring, wildfire emergency management, gas pipeline
monitoring etc. Operational needs (e.g. security threat level updates, regular code updates,
efficient energy management etc.) may change for such scenarios, which calls for significant
reconfiguration of sensor/actuator nodes being deployed or the entire network to provide the
best possible service and use of resources.

Subclass of

• Sustainability (see section 3.4.3.21)

3.4.3.15 Reliability

Reliability refers to the degree of correctness which a system provides to perform its function.
The certification of system capabilities about how to do things correctly does not mean that
they are done correctly. So a highly reliable system makes sure that it does the things right.
Considering the fact that CPSs are expected to operate reliably in open, evolving, and uncertain
environments, uncertainty in the knowledge, attribute (e.g. timing), or outcome of a process in
the CPS infrastructure makes it necessary to quantify uncertainties during the CPS design stage.
That uncertainty analysis will yield to effective CPS reliability characterization. Besides, accu-
racy of physical and cyber components, potential errors in design/control flow, cross-domain
network connections in an ad-hoc manner limit the CPS reliability.

Subclass of

• QualityRequirementsDC (see section 3.4.3)

3.4.3.16 Resilience

Resilience refers to the ability of a system to persevere in its operation and delivery of services
in an acceptable quality in case the system is exposed to any inner or outer difficulties (e.g. sud-
den defect, malfunctioning components, rising workload etc.) that do not exceed its endurance
limit. A highly resilient system should be self-healing and comprise early detection and fast
recovery mechanisms against failures to continue to meet the demands for services. High re-
silience comes into play in delivering mission-critical services (e.g. automated brake control in
vehicular CPS, air and oxygen flow control over an automated medical ventilator etc.). Mission-
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critical CPS applications are often required to operate even in case of disruptions at any level
of the system (e.g. hardware, software, network connections, or the underlying infrastructure).
Therefore, designing highly resilient CPS requires thorough understanding of potential failures
and disruptions, the resilience properties of the pertinent application, and system evolution
due to the dynamically changing nature of the operational environment.

Subclass of

• Sustainability (see section 3.4.3.21)

3.4.3.17 Robustness

Robustness refers to the ability of a system to keep its stable configuration and withstand any
failures. A highly robust system should continue to operate in the presence of any failures with-
out fundamental changes to its original configuration and prevent those failures from hinder-
ing or stopping its operation. In addition to failures, the presence of disturbances possibly
arising from sensor noises, actuator inaccuracies, faulty communication channels, potential
hardware errors or software bugs may degrade overall robustness of CPS. Lack of modeling in-
tegrated system dynamics (e.g. actual ambient conditions in which CPSs operate), evolved op-
erational environment, or unforeseen events are other particular non-negligible factors, which
might be unavoidable in the run-time, hence the need for robust CPS design.

Subclass of

• Reliability (see section 3.4.3.15)

3.4.3.18 Safety

Safety refers to the property of a system to not cause any harm, hazard or risk inside or outside
of it during its operation. A very safe system should comply with both general and application-
specific safety regulations to a great extent and deploy safety assurance mechanisms in case
something went wrong. For example, among the goals for Smart Manufacturing (SM), point-
in-time tracking of sustainable production and real-time management of processes through-
out the factory yield to improved safety. Safety of manufacturing plants can be highly opti-
mized through automated process control using embedded control systems and data collec-
tion frameworks (including sensors) across the manufacturing enterprise. Smart networked
sensors could detect operational failures/anomalies and help prevention of catastrophic inci-
dents due to those failures/anomalies.

Subclass of

• Dependability (see section 3.4.3.7)

3.4.3.19 Scalability

Scalability refers to the ability of a system to keep functioning well even in case of change in its
size/increased workload, and take full advantage of it. The increase in the system throughput
should be proportional to the increase in the system resources. A highly scalable system should
provide scatter and gather mechanisms for workload balancing and effective communication
protocols to improve the performance. Depending on their scale, CPSs may comprise over
thousands of embedded computers, sensors, and actuators that must work together effectively.
Scalable embedded many-core architectures with a programmable interconnect network can
be deployed to deliver increasing compute demand in CPS. Further, a high performance and
highly scalable infrastructure is needed to allow the entities of CPS to join and leave the existing
network dynamically. In the presence of frequent data dissemination among those entities,
dynamic software updates (i.e. changing the computer program in run-time) can help update
CPS applications dynamically and use CPS resources more productively.
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Subclass of

• Interoperability (see section 3.4.3.11)

3.4.3.20 Security

Security refers to the property of a system to control access to the system resources and pro-
tect sensitive information from unauthorized disclosures. A highly secure system should pro-
vide protection mechanisms against unauthorized modification of information and unautho-
rized withholding of resources, and must be free from disclosure of sensitive information to a
great extent. CPSs are vulnerable to failures and attacks on both the physical and cyber sides,
due to their scalability, complexity, and dynamic nature. Malicious attacks (e.g. eavesdrop-
ping, man-in-the-middle, denial-of-service, injecting fake sensor measurements or actuation
requests etc.) can be directed to the cyber infrastructure (e.g. data management layer, commu-
nication infrastructure, decision making mechanisms etc.) or the physical components with
the intent of disrupting the system in operation or stealing sensitive information. Making use
of a large-scale network (such as the Internet), adopting insecure communication protocols,
heavy use of legacy systems or rapid adoption of commercial off-the-shelf (COTS) technologies
are other factors which make CPSs easily exposed to the security threats.

Subclass of

• QualityRequirementsDC (see section 3.4.3)

3.4.3.21 Sustainability

Sustainability means being capable of enduring without compromising requirements of the
system, while renewing the system’s resources and using them efficiently. A highly sustain-
able system is a long lasting system which has self-healing and dynamic tuning capabilities
under evolving circumstances. Sustainability from energy perspective is an important part of
energy provision and management policies. For example, the Smart Grid facilitates energy
distribution, management, and customization from the perspective of customers or service
providers by incorporating green sources of energy extracted from the physical environment.
However, intermittent energy supply and unknown/ill-defined load characterization hinders
the efforts to maintain long-term operation of the Smart Grid. To maintain sustainability, the
Smart Grid requires planning and operation under uncertainties, use of real-time performance
measurements, dynamic optimization techniques for energy usage, environment-aware duty
cycling of computing units, and devising self-contained energy distribution facilities (such as
autonomous micro grids).

Subclass of

• QualityRequirementsDC (see section 3.4.3)

3.4.4 SystemDC

3.4.4.1 Component

Subclass of

• SystemDC (see section 3.4.4)

3.4.4.2 System

Subclass of

• Component (see section 3.4.4.1)

• SystemDC (see section 3.4.4)
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3.4.4.3 SystemPart

Subclass of

• SystemDC (see section 3.4.4)

3.5 Properties
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Figure 3.1: Feature Model of a CPS representing common and variant properties
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Figure 3.2: Basic concepts of CPS

Figure 3.3: Layered view for CPS architectures
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Figure 3.4: Overview of the CPS ontology
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4 Ontology of Multi-Paradigm Modeling

This chapter presents the ontology of Multi-Paradigm Modeling (MPM), which consists of
classes and properties to support a classification of MPM approaches. First, a state-of-the-art
on MPM focusing on global model management, model integration and multi-formalism mod-
elling is presented. Then an overview of the developed MPM ontology is presented followed by
a detailed presentation of the proposed classes and properties.

4.1 State-of-the-art

Developing nowadays complex systems with Multi-Paradigm Modeling requires Global Model
Management (GMM) (24; 67) to ensure that the models of different subsystems, of different
views and of different domains are properly combined, even though the models might reside
at different levels of abstraction. GMM must also ensure that the development activities that
operate on the models are properly coordinated such that the models lead to a proper system as
a whole, where the different elements and aspects covered by the different models are correctly
integrated and are consistent with each other.

A classification of model integration problems and fundamental integration techniques has
been introduced in (79). It highlights the techniques of decomposition and enrichment, which
characterize two orthogonal dimensions of development where the system is decomposed
into subsystems and domains (horizontal dimension) and into a set of models with increas-
ing level of details (vertical dimension). Another approach to support interoperability among
languages and tools is presented in (112). The approach is general, however it is exemplified
on interoperability among architectural languages and tools (111). An approach to extend ar-
chitectural languages is presented in (59). The technique is based on some operators to in-
tegrate models and it is generalized in (60). Model integration requires coordinating all
activities operating on the models across these dimensions to ensure their consistency. A
model-driven approach to automate the propagation of changes among Architecture Descrip-
tion Languages (111) is presented in (65). However, inconsistency management goes beyond
simply identifying and resolving inconsistencies, since as pointed out in (69), inconsistencies
may need to be tolerated at some stage of the development. Therefore, living with inconsis-
tencies must be manageable and consequently, an approach is required to detect, resolve, but
also tolerate inconsistencies for a significant amount of time during development. The work
in (138) provides empirical evidence of how culture, processes, and organization impact trace-
ability management and collaboration, and principles support practitioners with collaborative
traceability management. The work shows that collaboration and traceability management
have the potential to be mutually beneficial - when investing in one, also the other one is posi-
tively affected.

The development activities for nowadays complex systems and in particular CPSs encompass
multiple domains and teams, with each team using a dedicated set of modelling languages,
thus requiring their proper integration and management. Using a single "model-it-all" lan-
guage to cover all domains would certainly lead to large, monolithic languages that become
less efficient, not easily customisable for development environments and tools needed by de-
velopment teams, therefore adding difficulties to the already demanding effort of developing
CPS. These considerations lead to Multi-Paradigm Modeling (MPM) (135), which advocates
the combination of reusable modular modeling languages instead of large monolithic lan-
guages. Hence, GMM must support integrating models and modeling languages with appro-
priate abstractions and modularity, but also coordinating all activities operating on the models
and specified as model operations / transformations. The execution of these model operations
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has to be scalable for being able to handle large models. This requires incrementality, where
only the operations impacted by a model change are re-executed, thus avoiding the effort to
recompute entire models, as in the case of incremental code compilers.

GMM is also known as modeling-in-the-large, which consists of establishing global relation-
ships (e.g. model operations that generated one model from other models) between macro-
scopic entities (models and meta models), while ignoring the internal details of these enti-
ties (24). Mega modeling (25; 67) has been introduced for the purpose of describing these
macroscopic entities and their relations. Nowadays only preliminary approaches exist that
provide ad-hoc solutions for fragments of the sketched problem and a solid understanding of
the underlying needs including new foundations to address this problem as proposed to be
developed by WG1 of MPM4CPS. In particular, the current approaches do at most offer some
modularity and/or incrementality for a single aspect as modeling languages or model opera-
tions. However, support for handling complex modeling landscapes as a whole in a modular
and incremental fashion as required for the large-scale problems that exist in practice is not
offered so far.

In the following, we will first look at existing solutions that address the construction and exe-
cution of models and modeling languages in Section 4.1.1, model operation sin Section 4.1.2,
and mega models in Section 4.1.3.

4.1.1 Models and Modeling Languages: Construction and Execution

The construction of models and modeling languages is addressed in the current approaches
in three main ways via (1) linking of models and model elements, (2) model interfaces and (3)
meta model composition.

4.1.1.1 Model / Model Elements Links

Many approaches rely on traceability links between models and/or model elements to capture
megamodelling relations/operations. We adopt here the definition proposed by the Center of
Excellence for Software Traceability (CoEST): a trace link is "[...] a specified association between
a pair of artifacts, one comprising the source artifact and one comprising the target artifact...".
The CoEST specialises those links into two dimensions: vertical trace links link [...] artifacts
at different levels of abstraction so as to accommodate lifecycle-wide or end-to-end traceability,
such as from requirements to code [...]"; while horizontal trace links associate "[...] artifacts at
the same level of abstraction, such as: (i) traces between all the requirements created by ’Mary’,
(ii) traces between requirements that are concerned with the performance of the system, or (iii)
traces between versions of a particular requirement at different moments in time".

A plethora of approaches have been proposed that make use of trace links for model integration
(cf. e.g., (AMW; Epsilon; 68; 109; 87; 129; 31) (MoTE)). The Atlas Model Weaving (AMW) lan-
guage (AMW) provided one of the first approaches for capturing hierarchical traceability links
between models and model elements. The purpose was to support activities such as automated
navigation between elements of the linked models. In this approach, a generic core traceability
language is made available and optionally extended to provide semantics specific to the meta-
models of the models to be linked. Similarly, the Epsilon framework (Epsilon) provides a tool
named ModeLink to establish correspondences between models. MegaL Explorer (68) sup-
ports relating heterogeneous software development artifacts using predefined relation types,
linking elements that do not necessary have to be models or model elements. SmarfEMF (109)
is another tool for linking models based on annotations of Ecore metamodels to specify simple
relations between model elements through correspondence rules for attribute values. Com-
plex relations are specified with ontologies relating the concepts of the linked languages. The
whole set of combined models is converted into Prolog facts to support various activities such
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as navigation, consistency and user guidance when editing models. The CONSYSTENT tool
and approach (87) make use of a similar idea. However, graph structures and pattern match-
ing are used to represent the combined models in a common formalism and to identify and
manage inconsistencies instead of Prolog facts as in the case of SmartEMF.

There are also a number of approaches, such as (129) and (31), that build on establishing links
between models through the use of integration languages developed for a specific set of inte-
grated modeling languages, where the integration language embeds constructs specific to the
linked languages. This is also the case for model weaving languages extending the core AMW
language. However, AMW has the advantage of capturing the linking domain with a core com-
mon language. Other means for linking and integrating models are Triple Graph Grammars
(TGG) such as the Model Transformation Engine (MoTE) tool (MoTE), which similarly requires
the specification of some sort of integration language (correspondence meta model) specific
to the integrated languages. However, an important asset of this approach is that it automati-
cally establishes and manages the traceability links and maintains the consistency of the linked
models (model synchronization) in a scalable, incremental manner. Finally, in (128; 126)(23),
an approach is presented to automatically create and maintain traceability links between mod-
els in a scalable manner. While the approach focuses on traceability management rather than
model integration, compared to integration languages, it relies on link types defined at the
model level (and not at the meta model / language level), thus avoiding the need to update the
integration language every time a new language must be integrated.

The comparison of these approaches shows that apart from the approach (128; 126)(23), all
approaches suffer from being dependent on the set of integrated languages, thus requiring to
better support modularity. Furthermore, only (MoTE)(128; 126)(23) supports automated man-
agement of traceability links.

4.1.1.1.1 Interfaces

In addition to links, a few more sophisticated approaches (e.g., (106; 88; 96)) introduce the
concept of model interface for specifying how models can be linked. In (106), the Analysis Con-
straints Optimization Language (ACOL) is proposed, which has been designed to be pluggable
to an Architecture Description Language (ADL). A concept of interface specific to ACOL is in-
cluded so that constraints can refer to these interfaces to relate to the model elements expected
from the ADL.

SmartEMF (88; SmartEMF) proposes a more generic concept of model interface to track de-
pendencies between models and metamodels and provide automated compatibility checks.
Composite EMF Models (96; Composite EMF Models) introduces export and import interfaces
to specify which model elements of a main model (body) should be exposed to other models
(i.e. are part of the public API), and which elements of a body model are to be required from an
export interface.

However, these approaches are only preliminary and need to be enriched to cover a larger num-
ber of model integration use cases such as for example, specifying modification policies of the
linked model elements required to ensure the models can be kept consistent. They also lack
integration into GMM.

4.1.1.1.2 Metamodel Composition

Some approaches (e.g., (Kompren; Kompose; 66; EMF Views) (28)) consider the construction of
metamodels for expressing views in terms of other metamodels or language fragments. In (66),
an approach implemented in the Gaspard2 tool (Gaspard2) is presented where meta models
are artificially extended for the purpose of combining independent model transformations re-
sulting in an extended transformation for the extended meta models. The work in (60) presents
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operators to compose metamodels while preserving specific properties. In (27), the language
and tool (Kompren) (Kompren) is proposed to specify and generate slices of metamodels via
the selection of classes and properties of an input metamodel. A reduced metamodel is then
produced from the input metamodel. However the produced metamodel must be completely
regenerated when the input metamodel is changed. Such is the case for the Kompose approach
(Kompose), which on the contrary to Kompren, proposes to create compound metamodels,
where a set of visible model elements from each combined metamodels is selected, and op-
tionally related. The EMF Views (EMF Views; 50) provides similar approach however without
the need to duplicate the meta model elements as opposed to Kompose and Kompren where a
new metamodel is created. These virtual view metamodels seem to be usable transparently by
tools. Finally, the Global Model Management language (GMM*)1 (28) provides means to spec-
ify and interpret reusable language subsets as sets of constraints combined to form subsetted
meta models. Like for EMF Views, these reduced meta models can to some extent be used
transparently by tools.

While each of these approaches provides interesting support for modular modeling languages,
their unification into a common formalism, the use of an explicit notion of a model interface
and their integration into GMM is lacking, except for subsetted metamodels already integrated
within the GMM* language.

The execution of integrated models concerns the evaluation of the well-formedness constraints
of each combined model alone, but also of the combined models as a whole. To our knowledge,
no approach addresses the incremental checking of well-formedness conditions across the dif-
ferent language fragments of compound models. However, some approaches on incremental
constraints evaluation exist. In (26), changes on models are expressed as sequences of atomic
model operations to determine which constraint is impacted by the changes, so that only these
constraints need to be re-evaluated. In (EMF-IncQuery; 133), a graph-based query language
(EMF-IncQuery) relying on incremental pattern matching for improved performance is also
proposed. In (61), an approach is presented for incremental evaluation of constraints based
on a scope of model elements referenced by the query and determined during the first query
evaluation. This scope is stored into cache and used to determine which queries need to be
re-evaluated according for some model changes. In (83), this approach is extended for the case
where the constraints themselves may change besides the constrained models. Finally in (43),
an incremental OCL checker is presented where a simpler OCL expression and reduced con-
text elements set are computed from an OCL constraint and a given structural change event.
Evaluating this simpler constraint for the reduced context is sufficient to assert the validity of
the initial constraint and requires significantly less computation resources.

4.1.2 Model Operations: Construction and Execution

The construction of model operations is addressed in two ways in the literature. Most ap-
proaches combine model operations as model transformations chains (named (1) flow com-
position), where each chained transformation operates at the granularity of complete models.
In order to support reuse and scalability for complex modeling languages, which are defined by
composing them from simpler modeling languages, a few approaches have considered spec-
ifying model transformations as white boxes. Composed of explicit fine grained operations
processing model elements for a given context, these operations are reusable across several
model transformations (named (2) context composition).

1We use * to distinguish this existing language and tool from the generic Global Model Management (GMM)
acronym.
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4.1.2.1 Flow Composition Approaches

Formal United System Engineering Development (FUSED) (31) is an integration language to
specify complex relationships between models of different languages. It supports model trans-
formation chains, but only implicitly via execution of tools, without explicit representation of
the involved transformations and processed data. On the contrary, there is a plethora of ap-
proaches allowing the explicit specification and construction of model transformation chains
implementing a data flow paradigm. A popular one is the AtlanMod Mega Model Management
(AM3) tool (AM3), for which the Atlas Transformation Language (ATL) (ATL) is used to specify
the model transformations. Besides, a type system has been developed (136), which enables
type checking and inference on artifacts related via model transformations. Another similar
but less advanced tool is the Epsilon Framework (Epsilon), which provides model transforma-
tion chaining via ANT tasks. Wires (124) and ATL Flow (ATLFlow) are tools providing graphical
languages for the orchestration of ATL model transformations. The Formalism Transforma-
tion Graph + Process Model (FTG+PM) formalism (110) implemented in the AToMPM (A Tool
for Multi-Paradigm Modeling) tool (AToMPM) provides similar functionality. However, it has
the advantage of also specifying the complete modeling process in addition to the involved
model transformations. This is achieved via activity diagrams coupled with model transfor-
mation specifications executed automatically to support the development process. Finally,
GMM* (28) also supports model transformation chaining, but through the specification of re-
lations between models of specific metamodels that can be chained. One advantage of this ap-
proach is that automated incremental (re-)execution of the specified relations between models
is provided in response to received model change events. Incrementality of the execution of
the transformations is also made possible by the integration of the MoTE (MoTE) incremental
model transformation tool into GMM*.

However, while chaining model transformations offers some degree of modularity of model
transformation specifications, apart from GMM*, most approaches suffer from scalability is-
sues for large models, since the used transformation tools do not support incremental execu-
tion. In addition, the case where a generated model is modified by hand to add information
not expressible with the language of the original model(s) cannot easily be handled by these
approaches, since regenerating the model modified by hand will destroy the user-specific in-
formation. This need is better supported by context composition approaches.

4.1.2.2 Context Composition Approaches

A few approaches allow context composition of model operations. In (66) as mentioned above,
independent model transformations are combined, resulting in extended transformations for
corresponding extended meta models. In (57), view models are built using contextual com-
position of model operations (derivation rules) encoded as annotations of queries of the EMF
IncQuery (EMF-IncQuery) language. Traceability links between view and source model ele-
ments are automatically established and maintained. The use of EMF IncQuery natively pro-
vides incremental execution of the derivation rules to synchronize the view model with the
source model. Some views may be derived from other views thus allowing flow composition
as chains of view models. This approach achieves results similar to TGGs supporting incre-
mentality, however with the drawback of being unidirectional. Similarly, but equpped with
bi-directionality, the MoTCoF language (127) allows for both flow- and fine-grained context
composition of model transformations. An advantage over (66) however is that model trans-
formations are used as black boxes without the need to adapt the transformations according to
the context.

As can be seen, most approaches only support flow type modularity for model operations with
batch execution except for the GMM* language thanks to its integration of MoTE providing
incremental execution. This will not scale and lead to information losses in case of partial
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model information overlap. Only a few approaches allow context modularity, which better sup-
ports incremental application where only the impacted operations can be re-applied following
a change in order to avoid the cost of re-computing complete transformations. Such is the
case of MoTCoF, which theoretically permits incremental execution, but a concrete technical
solution is still lacking for it.

4.1.3 Megamodels and other Global Model Management Approaches

Two strands can be identified for GMM. A first one makes use of (1) model integration lan-
guages, which are defined for a specific set of integrated modeling languages and tools mean-
ing that the integration language must be updated every time a new language or tool is used.
The second strand attempts to solve this problem by making use of (2) mega models providing
configurable global model management.

4.1.3.1 Integration Language and other Approaches

The CyPhy (129) used in the GME modeling tool (GME) and FUSED (31; FUSED) are examples
of model integration languages. But as mentioned above, these languages must be adapted as
soon as a different set of integrated languages and tools must be used, thus requiring highly
skilled developers. Integration languages are therefore not practical.

Open Services for Lifecycle Collaboration (OSLC) (OSLC) provides standards for tool integra-
tion through the Web. Many specifications are available for change management, resource pre-
views, linked data, etc. It builds on the W3C linked data standard, which aims at providing best
practices for publishing structured data on the Web based on the W3C Resource Description
Framework (RDF). RDF is a model for data interchange on the Web where data is represented
as graphs. However, OSLC is more services (and tools) oriented and inherits the problems of
linked data, which is specific to the Web and therefore does not separate the concerns of data
representation and persistence as opposed to Model-Driven Engineering (MDE) where an ab-
stract syntax is used independently of the way the data is stored.

Another approach making use of these standards is (87) and is implemented in a the CON-
SYSTENT tool used to identify and resolve inconsistencies across viewpoints due to informa-
tion overlapping. The information of all models involved during development is captured in
a common RDF graph. The approach relies on a human (in parallel, an automated method
making use of Bayesian Belief Networks is also under study (86)) to specify patterns represent-
ing semantic equivalence links (semantic connections) across the graph models. Inconsistency
patterns based on these semantic connections are continuously checked over the RDF model
for potential matches identifying inconsistencies. Means to automatically resolve inconsisten-
cies are under development. However, since the conversion of all models as an RDF graph is
required, this approach is not incremental and will not scale for large models.

4.1.3.2 Mega Models

In this second strand, megamodels serve to capture and manage MDE resources such as mod-
eling languages, model transformations, model correspondences and tools used in modeling
environments. There are several mega modeling approaches as already mentioned. AM3 (AM3)
is one of the first initiatives where a megamodel is basically a registry for MDE resources. Model
transformations are specified with ATL (ATL) and model correspondences with the Atlas Model
Weaving (AMW) language [2]. Similarly, FTG+PM (110) as well as MegaL Explorer (68), allow
to model the artifacts used in software development environments and their relations from a
linguistic point of view. The involved software languages, related technologies and technolog-
ical spaces can be captured with linguistic relationships between them such as membership,
subset, conformance, input, dependency, definition, etc. Operations between entities can also
be captured. The artifacts do not need to be represented as models, but each entity of the
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megamodel can be linked to a Web resource that can be browsed and examined. However,
the language seems to be used mostly for visualization providing a better understanding of the
developments artifacts but cannot be executed to perform model management. The afore-
mentioned GMM* infrastructure (28) consists of a megamodeling language inspired from (85).
Metamodels can be declared, as well as relations between models of these meta models. In par-
ticular, synchronization relations can relate models of two different meta models making use
of the MoTE TGG engine (MoTE) to transform or synchronize the models. As mentioned ear-
lier, chains of model transformations can be specified and executed incrementally in response
to model change events and subsets of modeling languages can be declared. GMM* is experi-
mented within the Kaolin tool (29) making use of complex and rich industrial languages such
as AADL and VHDL thus challenging GMM for realistic specifications.

However, most of these mega modeling approaches only cover to a certain degree the core in-
gredients of specifying MDE resources by means of meta models and model operations with
appropriate modularity and incrementality. Only fragments of the problem are solved. Fur-
thermore, all these megamodeling languages are monolithic and as a result, predefined meg-
amodel fragments cannot be easily composed and reused to avoid rebuilding complete meg-
amodel specifications from scratch for new projects. An attempt towards the reuse of meg-
amodel fragments is presented in (90; 89). The work makes use of megamodeling techniques
to propose an automated infrastructure to facilitate customization, composition and reuse of
the architect’s representational resources to meet project-, domain- and organization-specific
needs. Among these megamodeling approaches, only FTG+PM, GMM* and (128; 126) address
the automated execution of megamodels in response to model changes or modeling events
from the tool’s user interface. GMM* and (128; 126) provide incremental execution of mega
models to some extent by re-evaluating only the relations concerned with the detected model
changes.

4.1.4 Multiformalism Modelling Approaches

According to (117), multiformalism modeling is one of the three dimensions of the Computer
Automated Multi-Paradigm Modeling framework, established to allow the representation, the
analysis and the synthesis of intricate knowledge at various levels of abstraction, together with
multilevel abstraction and metamodeling. Multiformalism, Multiresolution, Multiscale Mod-
eling (M4) environments may provide (55) an important and manageable resource to fulfill the
needs for modeling and simulation of modelers that have to deal with complex systems, where
complexity derives from heterogeneity of components and relationships, multiple scales, mul-
tiple interacting requirements. Besides performance (or verification) oriented issues, multifor-
malism approaches may also deal with software architecture oriented issues, e.g. by integrating
UML as one of the formalisms to assist the development cycle of large, complex software sys-
tems (123): in general, literature proposes very popular dedicated transformational approaches
for computer automated or assisted software generation, that provide a formal framework to
support the steps that lead from a formal or semiformal specification to code, but in the rest of
this subsection the focus is on performance oriented approaches.

In multiformalism modeling, many formalisms may be used simultaneously in a model. This
may or may not exploit compositionality in the modeling approach, as elements of the differ-
ent formalisms may coexist in the model, or the model may be composed of submodels written
in different (single and particular) formalisms, or the different formalisms may be used in dif-
ferent steps of the processing of the model, by means of model transformation or generation.
A general introduction to these themes can be found in (113).

Metamodeling is an important resource for both performance oriented approaches (105)(134)
and software oriented transformation based tools, consequently metamodeling-based mul-
tiformalism approaches can be considered a peculiar category. Another special category of
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approaches is constituted by the ones that deal with hybrid systems, that support multifor-
malisms with both continuous and discrete nature, and are thus capable of modeling natural
systems in a better way (141). These approaches should be able to describe and solve jointly
and coherently differential equation like descriptions and state space-based descriptions, for
a same complex system. While the problem has been popular in the 70s and 80s, there is cur-
rently a renovated interest in it from the point of view of cyberphysical systems: the interested
reader can find specific general multiformalism approaches in (140), (18) and (19), that also
provides an overview of selected previous, classical literature.

Approaches

With reference to multiformalism approaches oriented to performance evaluation, a number
of different naive and structured approaches to the problem have been presented in literature
(a survey is provided in (12)). In the second group, the approaches have been implemented in a
number of different tools, with different backgrounds, such as SHARPE, SMART, DEDS, AToM3,
Möbius, OsMoSys and SIMTHESys. These tools also differ in the solution strategy adopted for
the evaluation of models, and are designed with different purposes (e.g. some of them are
designed to be extensible, some for experimenting new formalism variants, some optimize the
solution process).

SHARPE (132) supports the composition by submodels of some given different formalisms,
solved by different solvers, but based on Markovian approaches. The composition consists
in the exchange of probability distributions between submodels. SMART (47)(48)(46) supports
the specification and solution, by simulation or approximation, of complex discrete-state sys-
tems. DEDS (22) provides a common abstract notation in which submodels written in different
formalisms are translated. Möbius (125)(49)(53)(56) supports, by states and events superposi-
tion, a number of different formalisms (that can be extended by user provided code) and alter-
native solvers (that can be chosen by the modeler) in a very articulated modeling and solution
process.

Other approaches exploit, in different ways, metamodeling too. AToM3 (107; 58) exploits meta-
modeling to implement model transformations, used to solve models by its solver. OsMoSys
(71; 137; 72; 73; 81) and SIMTHESys (14; 16; 94; 93) use metamodeling to let different user-
defined formalisms interact by founding them over common metaformalisms and using el-
ements and formalism level inheritance, and to implement different compositional mecha-
nisms: while OsMoSys implements ad-hoc operators for parameters exchange between sub-
models, and integrates external solvers by means of orchestration and adapters, SIMTHESys
privileges the experimentation of user-defined formalisms and embeds into formalism ele-
ments the interactions between different formalisms implementing multiformalism by arcs
superposition, allowing the automatic synthesis of proper solvers, according to the nature of
the involved formalisms (with no claim for their optimality): there is an explicit specification
of both syntax and semantics of every formalism element to allow high flexibility in the specifi-
cation of custom, user defined formalisms. For more details, the reader may refer to (113), that
provides a more detailed analysis on multiformalism features and implementation, solution
processes, purposes, compositional and transformational mechanisms of these approaches.

Solution

Most of the approaches are backed up with state space analysis techniques. Both analytical-
and simulation-based methods are applied to perform the analysis, eventually with specific so-
lutions to cope with the state space explosion problem, such as folding, decomposition, prod-
uct forms solutions. The most common way is to directly generate the whole state space, with
(e.g. in Möbius or in (120)) or without (e.g. in SMART or in some SIMTHESys solvers) an in-
termediate step of simple translation or more sophisticated transformation towards a specific
intermediate representation, or by using partial state spaces exploiting modularity (e.g. in Os-
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MoSys or in some SIMTHESys solvers(21)), or by transformation (e.g. in AToM, or in (30)). No-
ticeable are the approaches that exploit mean field analysis to cope with very large space states
(e.g. (32) or (44)).

Applications

The literature provides a conspicuous number of applications: here some significant examples
are provided. The effect of cyber-exploits have on information sharing and task synchroniza-
tion have been studied in (108); performance evaluation of Service Oriented Architecture have
been studied in (1) and (95); cardiovascular system and its regulation has been studied, with a
hybrid approach, in (? ); interdependencies in electric power systems have been studied in (45);
the ERMTS/ETCS European standard for high speed trains has been studied in (70); security at-
tacks have been studied in (82); exceptions aware systems have been studied in (20); effects of
software rejuvenation techniques have been studied in (13); NoSQL systems have been stud-
ied in (17). Multiformalism has been also applied as an implementation technique to provide
higher level tools or formalisms: in (122) a flexible, optimized Repairable Fault Tree modeling
and solution approach is presented; a performance oriented model checking example is given
in (15); an analysis framework for detecting inconsistencies in high level semantic relationships
between models has been developed in (121).

4.2 Ontology Overview

This ontology captures the Multi-Paradigm Modeling Domain (MPM). It includes concepts for
the related modeling, linguistic and formal sub domains.

Figure 4.1 shows an overview of the MPM ontology. The details of each concept are provided in
the following subsections.

Figure 4.1: Overview of the MPM ontology

4.3 Domain Concepts

This ontology of multi-paradigm modeling contains concepts divided into sub-domains as pre-
sented in the following subsections.

4.3.1 FormalDC

This class groups domain concepts that are related to the formal aspects of MPM.

4.3.1.1 Architecture

A system architecture is a conceptual model that defines the structure, behavior, and more
views of a system. An architecture description is a formal description and representation of a
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system, organized in a way that supports reasoning about the structures and behaviors of the
system.

Subclass of

• FormalSemantics (see section 4.3.3.14)

4.3.1.2 Behavioral

Subclass of

• Architecture (see section 4.3.3.2)

4.3.1.3 BehavioralConstraintLanguage

Subclass of

• ConstraintLanguage (see section 4.3.3.9)

4.3.1.4 Centralized

Subclass of

• Deployment (see section 4.3.3.10)

4.3.1.5 Communication

Communication is the act of conveying intended meanings from one entity or group to another
through the use of mutually understood signs and semiotic rules.

Subclass of

• Behavioral (see section 4.3.3.4)

4.3.1.6 ConstraintLanguage

Subclass of

• FormalLanguage (see section 4.3.3.13)

4.3.1.7 Deployment

The deployment of a mechanical device, electrical system, computer program, etc., is its as-
sembly or transformation from a packaged form to an operational working state. Deployment
implies moving a product from a temporary or development state to a permanent or desired
state.

Subclass of

• FormalSemantics (see section 4.3.3.14)

4.3.1.8 Distributed

Subclass of

• Deployment (see section 4.3.3.10)

4.3.1.9 FormalLanguage

A formal language is a language whose semantics is formally defined. This formal semantics
relates to the formalism(s) the language realizes. A formal language has its abstract syntax for-
mally defined.

Subclass of

• FormalDC (see section 4.3.1)
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• Language (see section 4.3.3.16)

References

• TODO Moussa

4.3.1.10 FormalSemantics

In programming language theory, semantics is the field concerned with the rigorous mathe-
matical study of the meaning of programming languages. It does so by evaluating the meaning
of syntactically legal strings defined by a specific programming language, showing the com-
putation involved. In such a case that the evaluation would be of syntactically illegal strings,
the result would be non-computation. Semantics describes the processes a computer follows
when executing a program in that specific language. This can be shown by describing the re-
lationship between the input and output of a program, or an explanation of how the program
will execute on a certain platform, hence creating a model of computation.

Subclass of

• FormalDC (see section 4.3.1)

• Semantics (see section 4.3.3.19)

4.3.1.11 Structural

Structure is an arrangement and organization of interrelated elements in a material object or
system, or the object or system so organized.

Subclass of

• Architecture (see section 4.3.3.2)

4.3.1.12 StructuralConstraintLanguage

Subclass of

• ConstraintLanguage (see section 4.3.3.9)

4.3.2 FormalismDC

This class groups classes related to formalisms

4.3.2.1 AutomataBasedFormalism

The class of formalisms that are based on automata

Subclass of

• Formalism (see section 4.3.2.6)

4.3.2.2 BehavioralCharacteristic

Subclass of

• FormalismCharacteristic (see section 4.3.2.7)

4.3.2.3 ContinuousCharacteristic

Subclass of

• BehavioralCharacteristic (see section 4.3.2.2)

4.3.2.4 DiscreteCharacteristic

Subclass of
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• BehavioralCharacteristic (see section 4.3.2.2)

4.3.2.5 FlowBasedFormalism

Subclass of

• Formalism (see section 4.3.2.6)

4.3.2.6 Formalism

Formalisms are mathematical objects consisting of an abstract syntax and a formal semantics.
Languages are concrete implementations of formalisms. A language has a concrete syntax,
may deviate slightly from the formalism in the semantics that it implements, or may implement
multiple semantics (e.g., changing the type of numerical solver in a simulation tool may change
the behavior of a model). Also, a language may implement more than one formalisms.

Subclass of

• FormalismDC (see section 4.3.2)

References

•

4.3.2.7 FormalismCharacteristic

Subclass of

• FormalismDC (see section 4.3.2)

4.3.2.8 FormalismFamily

Subclass of

• FormalismDC (see section 4.3.2)

4.3.2.9 HybridAutomataBasedFormalism

Subclass of

• AutomataBasedFormalism (see section 4.3.2.1)

4.3.2.10 LogicBasedFormalism

Subclass of

• Formalism (see section 4.3.2.6)

4.3.2.11 PetriNetBasedFormalism

Petri nets (also known as a place/transition net or P/T net) are formalisms for the description
of distributed systems.

Subclass of

• Formalism (see section 4.3.2.6)

4.3.2.12 StructureCharacteristic

Subclass of

• FormalismCharacteristic (see section 4.3.2.7)

4.3.2.13 TimedAutomataBasedFormalism

Subclass of
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• HybridAutomataBasedFormalism (see section 4.3.2.9)

4.3.2.14 TimedCharacteristic

Subclass of

• BehavioralCharacteristic (see section 4.3.2.2)

4.3.2.15 UncertaintyCharacteristic

Subclass of

• BehavioralCharacteristic (see section 4.3.2.2)

4.3.3 LinguisticDC

This class groups domain concepts related to the linguistic aspects of MPM, such as modeling,
programming, formal and even natural languages and their syntax.

4.3.3.1 AbstractSyntax

metamodel

Subclass of

• Syntax (see section 4.3.3.22)

4.3.3.2 Architecture

A system architecture is a conceptual model that defines the structure, behavior, and more
views of a system. An architecture description is a formal description and representation of a
system, organized in a way that supports reasoning about the structures and behaviors of the
system.

Subclass of

• FormalSemantics (see section 4.3.3.14)

4.3.3.3 ArchitectureDescriptionLanguage

Architecture description languages (ADLs) are used in several disciplines: system engineering,
software engineering, and enterprise modelling and engineering.

The system engineering community uses an architecture description language as a language
and/or a conceptual model to describe and represent system architectures.

The software engineering community uses an architecture description language as a computer
language to create a description of a software architecture. In the case of a so-called techni-
cal architecture, the architecture must be communicated to software developers; a functional
architecture is communicated to various stakeholders and users. Some ADLs that have been
developed are: Acme (developed by CMU), AADL (standardized by the SAE), C2 (developed by
UCI), SBC-ADL (developed by National Sun Yat-Sen University), Darwin (developed by Impe-
rial College London), and Wright (developed by CMU).

The up-to-date list of currently existing architectural languages might be found at Up-to-date
list of ADLs.

The ISO/IEC/IEEE 42010 document, Systems and software engineering-Architecture descrip-
tion, defines an architecture description language as "any form of expression for use in archi-
tecture descriptions" and specifies minimum requirements on ADLs.

The enterprise modeling and engineering community have also developed architecture de-
scription languages catered for at the enterprise level. Examples include ArchiMate (now a
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standard of The Open Group), DEMO, ABACUS (developed by the University of Technology,
Sydney). These languages do not necessarily refer to software components, etc. Most of them,
however, refer to an application architecture as the architecture that is communicated to the
software engineers.

Most of the writing below refers primarily to the perspective from the software engineering
community.

Subclass of

• ModelingLanguage (see section 4.3.4.13)

4.3.3.4 Behavioral

Subclass of

• Architecture (see section 4.3.3.2)

4.3.3.5 BehavioralConstraintLanguage

Subclass of

• ConstraintLanguage (see section 4.3.3.9)

4.3.3.6 Centralized

Subclass of

• Deployment (see section 4.3.3.10)

4.3.3.7 Communication

Communication is the act of conveying intended meanings from one entity or group to another
through the use of mutually understood signs and semiotic rules.

Subclass of

• Behavioral (see section 4.3.3.4)

4.3.3.8 ConcreteSyntax

textual/graphics as in AADL

Subclass of

• Syntax (see section 4.3.3.22)

4.3.3.9 ConstraintLanguage

Subclass of

• FormalLanguage (see section 4.3.3.13)

4.3.3.10 Deployment

The deployment of a mechanical device, electrical system, computer program, etc., is its as-
sembly or transformation from a packaged form to an operational working state. Deployment
implies moving a product from a temporary or development state to a permanent or desired
state.

Subclass of

• FormalSemantics (see section 4.3.3.14)

34



Framework to Relate / Combine Modeling Languages and Techniques

4.3.3.11 Distributed

Subclass of

• Deployment (see section 4.3.3.10)

4.3.3.12 DomainSpecificLanguage

A domain-specific language (DSL) is a computer language specialized to a particular applica-
tion domain. This is in contrast to a general-purpose language (GPL), which is broadly appli-
cable across domains.

Subclass of

• Language (see section 4.3.3.16)

4.3.3.13 FormalLanguage

A formal language is a language whose semantics is formally defined. This formal semantics
relates to the formalism(s) the language realizes. A formal language has its abstract syntax for-
mally defined.

Subclass of

• FormalDC (see section 4.3.1)

• Language (see section 4.3.3.16)

References

• TODO Moussa

4.3.3.14 FormalSemantics

In programming language theory, semantics is the field concerned with the rigorous mathe-
matical study of the meaning of programming languages. It does so by evaluating the meaning
of syntactically legal strings defined by a specific programming language, showing the com-
putation involved. In such a case that the evaluation would be of syntactically illegal strings,
the result would be non-computation. Semantics describes the processes a computer follows
when executing a program in that specific language. This can be shown by describing the re-
lationship between the input and output of a program, or an explanation of how the program
will execute on a certain platform, hence creating a model of computation.

Subclass of

• FormalDC (see section 4.3.1)

• Semantics (see section 4.3.3.19)

4.3.3.15 Graphical

Subclass of

• ConcreteSyntax (see section 4.3.3.8)

4.3.3.16 Language

A language is a concrete realization of a set of formalisms. A language has a set of concrete
syntaxes. The language may deviate slightly from the formalisms it realizes in the semantics
that it realizes, or may realize multiple semantics.

Subclass of

• LinguisticDC (see section 4.3.3)
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References

•

4.3.3.17 ModelingLanguage

A modeling language is any artificial language that can be used to express information or
knowledge or systems in a structure that is defined by a consistent set of rules. The rules are
used for interpretation of the meaning of components in the structure.

Subclass of

• Language (see section 4.3.3.16)

• ModelingDC (see section 4.3.4)

4.3.3.18 ProgrammingLanguages

A programming language is a formal computer language designed to communicate instruc-
tions to a machine, particularly a computer. Programming languages can be used to create
programs to control the behavior of a machine or to express algorithms.

Subclass of

• Language (see section 4.3.3.16)

4.3.3.19 Semantics

Semantics (from Ancient Greek: "significant") is primarily the linguistic, and also philosophical
study of meaning in language, programming languages, formal logics, and semiotics. It focuses
on the relationship between signifiers-like words, phrases, signs, and symbols-and what they
stand for, their denotation.

Subclass of

• LinguisticDC (see section 4.3.3)

4.3.3.20 Structural

Structure is an arrangement and organization of interrelated elements in a material object or
system, or the object or system so organized.

Subclass of

• Architecture (see section 4.3.3.2)

4.3.3.21 StructuralConstraintLanguage

Subclass of

• ConstraintLanguage (see section 4.3.3.9)

4.3.3.22 Syntax

Subclass of

• LinguisticDC (see section 4.3.3)

4.3.3.23 Textual

Subclass of

• ConcreteSyntax (see section 4.3.3.8)
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4.3.3.24 TransformationLanguage

A transformation language is a computer language designed to transform some input text in a
certain formal language into a modified output text that meets some specific goal.

Subclass of

• Language (see section 4.3.3.16)

4.3.4 ModelingDC

This class groups domain concepts related to the modeling aspects of MPM.

4.3.4.1 ApplicationMegaModel

A representation of the real models in the CPS development environment.

Subclass of

• Megamodel (see section 4.3.4.6)

4.3.4.2 ArchitectureDescriptionLanguage

Architecture description languages (ADLs) are used in several disciplines: system engineering,
software engineering, and enterprise modelling and engineering.

The system engineering community uses an architecture description language as a language
and/or a conceptual model to describe and represent system architectures.

The software engineering community uses an architecture description language as a computer
language to create a description of a software architecture. In the case of a so-called techni-
cal architecture, the architecture must be communicated to software developers; a functional
architecture is communicated to various stakeholders and users. Some ADLs that have been
developed are: Acme (developed by CMU), AADL (standardized by the SAE), C2 (developed by
UCI), SBC-ADL (developed by National Sun Yat-Sen University), Darwin (developed by Impe-
rial College London), and Wright (developed by CMU).

The up-to-date list of currently existing architectural languages might be found at Up-to-date
list of ADLs.

The ISO/IEC/IEEE 42010 document, Systems and software engineering-Architecture descrip-
tion, defines an architecture description language as "any form of expression for use in archi-
tecture descriptions" and specifies minimum requirements on ADLs.

The enterprise modeling and engineering community have also developed architecture de-
scription languages catered for at the enterprise level. Examples include ArchiMate (now a
standard of The Open Group), DEMO, ABACUS (developed by the University of Technology,
Sydney). These languages do not necessarily refer to software components, etc. Most of them,
however, refer to an application architecture as the architecture that is communicated to the
software engineers.

Most of the writing below refers primarily to the perspective from the software engineering
community.

Subclass of

• ModelingLanguage (see section 4.3.4.13)

4.3.4.3 CapturingOperation

The process of capturing information (e.g from users) into a model.

Subclass of
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• TransformationOperation (see section 4.3.4.17)

4.3.4.4 ConfigurationMegaModel

Declares types for the models and relations contained in application megamodel. (language
and relation types)

Subclass of

• Megamodel (see section 4.3.4.6)

4.3.4.5 IntegrationOperation

The process to integrate many models together.

Subclass of

• ModelOperation (see section 4.3.4.10)

4.3.4.6 Megamodel

A model that contains models and relations between them.

Subclass of

• Model (see section 4.3.4.8)

4.3.4.7 MegamodelFragment

The fragment is not a complete megamodel, and can’t be used alone. It can be reused to take
part in another megamodel. (e.g. physical part, view of the system, self-adaptation .... etc.)

Subclass of

• Model (see section 4.3.4.8)

4.3.4.8 Model

A representation of real artifacts regardless of the metamodeling technical space. e.g. xml file,
equations...etc.

Subclass of

• ModelingDC (see section 4.3.4)

4.3.4.9 ModelConstraint

A restriction over model that is input or output for relation

Subclass of

• ModelingDC (see section 4.3.4)

• Constraint (see section 2.2.3.1)

4.3.4.10 ModelOperation

It is any kind of transformation from input set of models to output set of models.

Subclass of

• ModelRelation (see section 4.3.4.11)

• Action (see section 2.2.2.1)

4.3.4.11 ModelRelation

A relation that connects models.
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Subclass of

• ModelingDC (see section 4.3.4)

• Relation (see section 2.2.3.2)

4.3.4.12 ModelingActivity

Subclass of

• ModelingDC (see section 4.3.4)

• Activity (see section 2.2.2.2)

4.3.4.13 ModelingLanguage

A modeling language is any artificial language that can be used to express information or
knowledge or systems in a structure that is defined by a consistent set of rules. The rules are
used for interpretation of the meaning of components in the structure.

Subclass of

• Language (see section 4.3.3.16)

• ModelingDC (see section 4.3.4)

4.3.4.14 ModelingParadigm

Subclass of

• ModelingDC (see section 4.3.4)

4.3.4.15 ModelingTool

Tools to model the system.

Subclass of

• ModelingDC (see section 4.3.4)

• Tool (see section 2.2.5.1)

4.3.4.16 TracabilityRelation

Subclass of

• ModelOperation (see section 4.3.4.10)

4.3.4.17 TransformationOperation

The process to transform one model to another.

Subclass of

• ModelOperation (see section 4.3.4.10)

4.4 Properties
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5 Ontology of Multi-Paradigm Modeling for
Cyber-Physical Systems

5.1 Introduction

This ontology of MPM for CPS provides cross-cutting concepts between the two domains of
CPS and MPM. At the current stage of development, this ontology only contains a limited num-
ber of classes related to viewpoints inspired from (34).

5.2 Ontology Overview

Figure 4.1 shows an overview of the MPM4CPS ontology. The details of each concept are pro-
vided in the following subsections.

Figure 5.1: Overview of the MPM4CPS ontology

5.3 Domain Concepts

This ontology of multi-paradigm modeling contains concepts divided into sub-domains as pre-
sented in the following subsections.

5.3.1 MPM4CPSDC

5.3.1.1 View

Subclass of

• MPM4CPSDC (see section 5.3.1)

• View (see section 5.3.1.1)

5.3.1.2 ViewPoint

Subclass of

• MPM4CPSDC (see section 5.3.1)

• ConcernedElement (see section 2.2.4.2)

• ViewPoint (see section 5.3.1.2)

• ViewPoint (see section 5.3.1.2)
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5.4 Properties

5.4.1 hasActions

Subproperty of: None

Domains:

• Activity (see section 2.2.2.2)

Ranges:

• Action (see section 2.2.2.1)

5.4.2 hasActivities

Subproperty of: None

Domains:

• Process (see section 2.2.2.3)

Ranges:

• Activity (see section 2.2.2.2)

5.4.3 hasCharacteristic

Subproperty of: None

Domains:

• Formalism (see section 4.3.2.6)

Ranges:

• FormalismCharacteristic (see section 4.3.2.7)

5.4.4 hasChildFormalism

Subproperty of: None

Domains:

• FormalismFamily (see section 4.3.2.8)

Ranges:

• Formalism (see section 4.3.2.6)

5.4.5 hasChildLanguage

Subproperty of: None

Domains:

• Language (see section 4.3.3.16)

Ranges:

• Language (see section 4.3.3.16)

5.4.6 hasConcerns

A concern of stakeholder. Subproperty of: None

Domains:

• ConcernedElement (see section 2.2.4.2)

41



5. Ontology of Multi-Paradigm Modeling for Cyber-Physical Systems

Ranges:

• Concern (see section 2.2.4.1)

5.4.7 hasConstraint

A constraint applied on relation. Subproperty of: None

Domains:

• Relation (see section 2.2.3.2)

Ranges:

• Constraint (see section 2.2.3.1)

5.4.8 hasContext

Subproperty of: None

Domains:

• ModelOperation (see section 4.3.4.10)

Ranges:

• ModelOperation (see section 4.3.4.10)

5.4.9 hasEvolvedTo

An updated version of an element. (e.g.Tool evolved to another) Subproperty of: None

Domains: None

Ranges: None

5.4.10 hasInput

The model need inputs to do perform the determined task. Subproperty of:

• isConnecting (see section 5.4.34)

Domains:

• ModelOperation (see section 4.3.4.10)

Ranges:

• Model (see section 4.3.4.8)

5.4.11 hasInputModel

It describes the input model for a model relation. Subproperty of: None

Domains:

• ModelRelation (see section 4.3.4.11)

Ranges:

• Model (see section 4.3.4.8)

5.4.12 hasLanguage

The relation defines the formal language for a formalism. It is an inverse of hasFormalism.
Subproperty of: None

Domains:
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• Formalism (see section 4.3.2.6)

Ranges:

• Language (see section 4.3.3.16)

5.4.13 hasMegamodelFragment

It describes the relation between megamodel and its fragments. Subproperty of:

• hasModel (see section 5.4.14)

Domains:

• Megamodel (see section 4.3.4.6)

Ranges:

• MegamodelFragment (see section 4.3.4.7)

5.4.14 hasModel

It describes a recursive relation. e.g. MegaModelFragment hasModel xModel ... Subproperty
of: None

Domains:

• Model (see section 4.3.4.8)

Ranges:

• Model (see section 4.3.4.8)

5.4.15 hasModelConstraint

Subproperty of:

• hasConstraint (see section 5.4.7)

Domains:

• ModelOperation (see section 4.3.4.10)

Ranges:

• ModelConstraint (see section 4.3.4.9)

5.4.16 hasModelOperation

It defines a model operation for a model. Subproperty of:

• hasModelRelation (see section 5.4.17)

Domains:

• Model (see section 4.3.4.8)

Ranges:

• ModelOperation (see section 4.3.4.10)

5.4.17 hasModelRelation

It defines a model relation for a model. Subproperty of: None

Domains:

• Model (see section 4.3.4.8)
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Ranges:

• ModelRelation (see section 4.3.4.11)

5.4.18 hasNext

Subproperty of: None

Domains:

• Action (see section 2.2.2.1)

Ranges:

• Action (see section 2.2.2.1)

5.4.19 hasOutput

The model provides results in the following form. Subproperty of:

• isConnecting (see section 5.4.34)

Domains:

• ModelOperation (see section 4.3.4.10)

Ranges:

• Model (see section 4.3.4.8)

5.4.20 hasOutputModel

It describes the output model for a model relation. Subproperty of: None

Domains:

• ModelRelation (see section 4.3.4.11)

Ranges:

• Model (see section 4.3.4.8)

5.4.21 hasProvider

The company/university which the tool is developed by. Subproperty of: None

Domains: None

Ranges: None

5.4.22 hasPurpose

Subproperty of: None

Domains:

• Model (see section 4.3.4.8)

Ranges:

• Purpose (see section 2.2.4.4)

5.4.23 hasRelations

Subproperty of: None

Domains:

• Model (see section 4.3.4.8)

44



Framework to Relate / Combine Modeling Languages and Techniques

Ranges:

• ModelRelation (see section 4.3.4.11)

5.4.24 hasRole

A role of stakeholder Subproperty of: None

Domains:

• Stakeholder (see section 2.2.4.6)

Ranges:

• exactly 1 Role (see section 2.2.4.5)

5.4.25 hasStakeholders

Subproperty of: None

Domains:

• ViewPoint (see section 5.3.1.2)

Ranges:

• Stakeholder (see section 2.2.4.6)

5.4.26 hasSubFormalismFamily

Subproperty of: None

Domains:

• FormalismFamily (see section 4.3.2.8)

Ranges:

• FormalismFamily (see section 4.3.2.8)

5.4.27 hasSystemPart

Subproperty of: None

Domains:

• ViewPoint (see section 5.3.1.2)

Ranges:

• SystemPart (see section 3.4.4.3)

5.4.28 hasTool

The tool that represent the Language. It is an inverse of isToolFor. Subproperty of: None

Domains:

• Language (see section 4.3.3.16)

Ranges:

• Tool (see section 2.2.5.1)

5.4.29 hasViewpoint

Subproperty of: None

Domains:
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• View (see section 5.3.1.1)

Ranges:

• ViewPoint (see section 5.3.1.2)

5.4.30 isAppliedTo

A constraint is applied to a some element. (e.g. relation) Subproperty of: None

Domains:

• Constraint (see section 2.2.3.1)

Ranges: None

5.4.31 isAppliedToModel

Subproperty of:

• isAppliedTo (see section 5.4.30)

Domains:

• Constraint (see section 2.2.3.1)

Ranges:

• Model (see section 4.3.4.8)

5.4.32 isBasedOnFormalism

The relation defines the formalism for a formal language. It is an inverse of hasLanguage. Sub-
property of: None

Domains:

• Language (see section 4.3.3.16)

Ranges:

• Formalism (see section 4.3.2.6)

5.4.33 isCharacterizedBy

Subproperty of: None

Domains:

• ViewPoint (see section 5.3.1.2)

Ranges:

• Concern (see section 2.2.4.1)

5.4.34 isConnecting

A relation connects a model. Subproperty of: None

Domains:

• ModelOperation (see section 4.3.4.10)

Ranges:

• Model (see section 4.3.4.8)
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5.4.35 isExtending

This property captures a language extensions. Typically, a language extends another one by
adding constructs and possibly refining / overriding some ot the extended language. Subprop-
erty of: None

Domains:

• Language (see section 4.3.3.16)

Ranges:

• Language (see section 4.3.3.16)

5.4.36 isExtendingFormalism

Subproperty of: None

Domains:

• Formalism (see section 4.3.2.6)

Ranges:

• Formalism (see section 4.3.2.6)

5.4.37 isPerformedBy

Subproperty of: None

Domains: None

Ranges: None

5.4.38 isReturningTo

Subproperty of: None

Domains:

• IntegrationOperation (see section 4.3.4.5)

Ranges:

• IntegrationOperation (see section 4.3.4.5)

5.4.39 isSpecializing

Subproperty of: None

Domains:

• Formalism (see section 4.3.2.6)

Ranges:

• Formalism (see section 4.3.2.6)

5.4.40 isSupportedBy

Subproperty of: None

Domains:

• ViewPoint (see section 5.3.1.2)

Ranges:
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• Formalism (see section 4.3.2.6)

5.4.41 isToolFor

The language that is represented by a tool. It is an inverse of hasTool. Subproperty of: None

Domains:

• Tool (see section 2.2.5.1)

Ranges:

• Language (see section 4.3.3.16)
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6 Examples

6.1 Ensemble-based CPS

6.1.1 Overview

An Ensemble-Based Cyber-Physical System (EBCPS) is an emergent system that is distributed,
decentralized, dynamic, self-adaptive and scalable. It consists of autonomous components
and forms ensembles of them depending on the context in the aim of achieving determined
goals (i.e. organizing and decision-making). More specifically, the composition of components
changes according to the fact of having the components appear and disappear dynamically,
in addition to the unexpected changes in the environment and new requirements. There are
many applications in different domains such as Traffic and Transport, Robotics, and Clouds.
For instance, an ensemble of vehicle planning for optimal route with considering the road and
traffic conditions.

The interest of building such systems was reflected in many European projects such as AS-
CENS1, ALLOW Ensembles2 and FoCAS 3, which are FP7 projects. ASCENS is oriented towards
design and verification, while ALLOW Ensembles is more oriented towards performance. More
specifically, ASCENS targets formalizing and modeling ensembles of autonomic-service com-
ponents (SCs) that depend on knowledge units (K). It considers also the expression of self-
adaption and provides tools and use cases. ALLOW Ensembles focuses on developing algo-
rithms that improve ensembles utility and system dependability. Both previous projects are
involved in FoCAS, which is a platform for communities that care about developing Collective
Adaptive Systems (CASś).

As part from ASCENS project, a formalism language was introduced to express the ensembles
called Service Component Ensemble Language (SCEL) Figure 6.1. The language allows to de-
fine Knowledge, Behaviors, Aggregations, and Policies. It allows the developer to define in-
terfaces with attributes or knowledge for Service Components (SCs) and their behavior using
processes. Also, the developer can define the Service Component Ensembles (SCEs) and the
conditions or policies to form them. The ensembles are responsible for exchanging knowl-
edge between the components. Each ensemble evaluates the constraints over the interface
attributes of the involved components. The support of context-awareness comes from using
attributes in the constraint evaluation of forming ensembles.

Figure 6.1: Service Component

Furthermore, ASCENS provides many tools for modeling (e.g. HELENA, KnowLang, DEECo)
and for simulation (e.g. ARGoS, SPL, jDEECo Java, SimSOTA). Additionally, the concepts are

1http://www.ascens-ist.eu/
2http://www.allow-ensembles.eu/
3http://www.focas.eu/
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presented in three use cases in different domains, which are: Clouds, Traffic and Transport,
and Robotics.

6.1.2 Dependable Emergent Ensembles of Components (DEECo)

To manifest the new concepts of EBCPS, the Department of Distributed and Dependable Sys-
tems (d3s: http://d3s.mff.cuni.cz/) at Charles University in Prague developed an
EBCPS toolchain that is used as development environment which merges the concepts of
emergent systems with the CPS parts (i.e. physical, computational and network). More specif-
ically, the parts that will be explained here are requirements, design, runtime, self-adaptation,
analysis, composition and simulation. Moreover, there are many integrations and transforma-
tions between the models.

Figure 6.2: Overview of the models provided by DEECo and their relations

6.1.2.1 Requirements

Starting with modeling EBCPS requirements, Invariant Refinement Method (IRM) (98) (see Fig-
ure ??, which is developed in Epsilon, is used to represent the tree of invariants and assump-
tions for the system. The tree ends with leaves of two types: 1) processes which are part of
a component, 2) or exchange knowledge between components which are ensembles. Simply
put, the IRM allows to connect the requirements to the architecture entities directly. Later on,
the developer can transform the IRM model to code which is Java for the current represented
tool-chain under DEECo specification.

6.1.2.2 Design and Runtime

Regarding the design and runtime parts (35)(2) , the team developed a runtime environment
which is implemented in java and is known as jDEECo. The developer is able to design systems
that respect the DEECo specification (i.e. SCEL specification), which is captured by specific
Java annotations provided by jDEECo runtime Figure 6.4. More specifically, the designed sys-
tem consists of roles, components, and ensembles. Each role has a set of attributes, which rep-
resent the knowledge related to this specific role. Furthermore, each component is defined as a
set of processes featuring (a) role(s) having by that the role knowledge besides its local knowl-
edge. Having knowledge in the role allows for preserving the encapsulation of the components
that features the role and provides a separation in concerns. Hence, each ensemble forms de-
pending on the context and perform knowledge exchange between different components with
determined roles.
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Figure 6.3: IRM tree for a smart parking senario

Figure 6.4: Snippet of jDEECo code

It is worth mentioning that there is another framework that integrates with jDEECo, which is
called Intelligent Ensemble framework4 (103). It provides the developer with Ensemble Defini-
tion Language (EDL) that was developed using XText and XPand on Eclipse Modelling Frame-
work. At runtime the formation of the ensemble is optimized by using Z3 SMT solver.

4http://d3s.mff.cuni.cz/software/deeco/files/seams-2017.zip or http://dx.doi.
org/10.4230/DARTS.3.1.6
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Figure 6.5: jDEECo runtime framework architecture

Figure 6.6: An example with an EDL specification

Figure 6.7: Framework high-level architecture that supports Ensemble Definition Language (EDL)

Not only is DEECo implemented in java, but also it is implemented in C++ 5 and Scala6. Nev-
ertheless, the model operations that we mentioned here (i.e. transformation and integrations)
are applied on jDEECo (i.e. java implementation).

5http://d3s.mff.cuni.cz/projects/components_and_services/deeco/files/CDEECo.
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6.1.2.3 Self-Adaptation

Self-adaptation is done in two methods. The first method is by transforming IRM tree to java
code with annotations, then at runtime the annotations are processed by IRM-SA engine which
uses SAT solver to make decisions between the different paths. The other method is by using
modes and mode-switching annotations that are provided by DEECo. It is possible to associate
a mode to a set of processes, thus when a mode-switch happens a different set of processes is
activated.

There is a part that is presented as an extension of mode-switch transition logic, which are:
1) ordinary differential equation (ODE) to evaluate the inaccuracy boundaries of physical at-
tribute s(6), 2) statistical testing to use prediction depending on trends of historical dat a(38).

Another essential point that DEECo focuses on is forming ensembles and exchanging knowl-
edge. DEECo manifests those concepts and allows for using conditions that are a representa-
tion of context to form ensembles. The conditions are refined by using a Z3 SMT Solve r(103)
and fitness, which filter out the less suitable compositions between all possible ones. Regard-
ing exchanging knowledge between components, it could be determined by context constraints
or by adding boundaries on gossip protocol that is responsible of spreading informatio n(36).
Furthermore, DEECo allows a hierarchical composition for ensemble s (41)(40).

Figure 6.8: Membership vs. boundary conditions in ensemble formation

6.1.2.4 Simulation

Finally, the simulation part targets two domains for vehicles(99) and robots(114). Concerning
vehicles, jDEECo has an integration with MATSim which allows to simulate vehicles and OM-
NET++ which simulates the network delays. Regarding the robots case, jDEECo has an integra-
tion with ROS which simulates movements of robots. While ROS has in its turn an integration
with OMNET++ to simulate network delays and with Stage to simulate sensors and actuators.

To conclude, DEECo development environment provides a toolchain for modeling CPS system
with an emergent behavior starting from requirement to runtime and simulation. To get the
different views of system developmen,t many transformation and integration operations are
involved which supports the idea of multi-paradigm modeling. These are further presented in
the developed ontology of DEECo briefly presented below.

6.1.2.5 Applications

Many applications were introduced using DEECo concepts, which are in Automotive, Robotics,
Clouds and Industry domains.

The Automotive example (92) is basically to present aspects of requirements, self-adaptation,
networking, and simulation. The IRM tree represents finding a free parking and MATSim 7

simulates the traffic. The models involved in this example are IRM Model, DEECo Design time
Model, DEECo Runtime Model, and MATSim. Furthermore, in (100), the example presents

6http://github.com/d3scomp/tcof
7https://matsim.org
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Figure 6.9: jDEECo integration with MATSim

Figure 6.10: jDEECo integration with ROS

road trains that use MANETs network and utilizes the knowledge exchange by using bounded
gossiping (37).

Figure 6.11: Illustration of communication groups; each is associated with an instance of SameDestina-
tion
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Also, a railroad emergency response service example includes trucks helping damaged trains
(e.g. because of low fuel quality) (104). The service should take into account the performance
and the balance in serving between different clients. In other words, repairing the trains should
be fast, but also the trucks should consider the situation in case another farther train was dam-
aged at the same time (i.e. not only going to the closest train). Here, the development starts
with defining EDL Files, compiling them, and then generating the DEECo Design time Model.
At runtime, the DEECo Runtime Model integrates with Z3 SMT Solver to optimize forming the
ensembles.

Figure 6.12: Example of two well-chosen emergency groups.

The FireFighter Coordination example is another example that represents the use of IRM-SA
model and DEECo (76) (77). The example describes groups of firefighters that have to oper-
ate using low-power nodes and without communication guarantees. The work presents self-
adaptation using multi-layered architecture, which are: Meta-Adaptation Layer, Adaptation
Layer,and Business System. Thus, the example involves IRM-SA model, Self-Adaptation Model,
DEECo Runtime Model and DEECo Design time Model.

Another example related to parking places but with edge cloud usage is presented in (42) Fig-
ure 6.13. The example describes vehicles that detect parking spots and informs other vehicles
about it. The used simulation tool is Veins LTE, which is based on OMNeT++8 (i.e. network sim-
ulator), INET9 and SimuLTE10 (i.e. radio simulators), and SUMO11 (i.e. road traffic simulator).
The main concern is performance model that is presented by Queueing Networks (QN), and it
is planned to be integrated with DEECo.

Figure 6.13: Scanning cars (on the right) are sending a photo stream to the edge cloud server reporting
spot availability to the parking cars (on the left)

Regarding Clouds domain, the example concerns are performance and adaptation, and targets
real-time guarantees for image processing application that runs on edge-cloud architecture
[(91)]. The work is in progress and it will involve Statistical Model with Self-Adaptation Model
from the current models.

As for predictability and adaptability, the use case present cleaners that detect the need for
charging or cleaning, and the active mode is determined statistically to avoid premature mode-
switch (39). This example involves the statistical mode-switching in Self-Adaptation Model, in

8https://www.omnetpp.org
9https://inet.omnetpp.org

10http://simulte.com
11http://sumo.dlr.de
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addition to DEECo Design time Model and DEECo Runtime Model. The evaluation of statistical
functions was done on STM32F4-DISCOVERY board.

Figure 6.14: Sample battery energy level during continuous discharge

Another case is Autonomous Cleaning Robots Coordination (ACRC) (115) where robots have
tasks of visiting and cleaning the offices. The problems that robots encounter here are impre-
cise localization, limited communication range, and latencies, which are solved by introducing
self-healing in the self-adaptation logic. The testbed is done using ROS simulation for robots
with camera (i.e. Stage) for navigation and IEEE 802.15.4 transceiver for communication (i.e.
OMNet++). 12

Figure 6.15: A visualization of the the area that cleaners should visit and clean

The scalability issue was targeted in an example about intelligent production line (IPL) 13 (116).
The example also aims at preserving the safety conditions in the work place with taking into
account the scalabe QoS grantees. To put it differently, the robots have safety zone and speed
grantees, which change depending on the number of human and robots in the area. The used
models are OMNeT++ and INET simulators with DEECo Design Model and DEECo Runtime
Model.

The privacy and trust use case describes the exchange of the sensitive data between compa-
nies or inside the company itself (5),(4),(3) (i.e. as part of Trust 4.0 project14). More specifically,
the system preserves information by preventing physical encounter between different teams,
which is done through granting/denying access for the employees depending on the time table
and existing people in the room (4). Another example is about production shifts, the foreman
role has access only for employees’ names in that shift. In case the system detects a possible
delay of one of the employees, the system grants the foreman an access to name and phone
number of a backup employee. Similarly, the confidentiality levels between companies de-
pends on the context such as encountering incidents. These examples uses the basic concepts
of DEECo (i.e. DEECo Design time Model and DEECo Runtime Model) in Scala 15. It involves

12http://d3s.mff.cuni.cz/projects/components_and_services/deeco/files/
seams-2016-artifact.zip

13https://github.com/d3scomp/scalable-reliability
14http://trust40.ipd.kit.edu/home/
15https://www.scala-lang.org/
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Figure 6.16: Intelligent production line: home, proximity, and outer zones

fitness model in the lunch room example (4), and ValueStreamer 16 and PCM 17 on industry 4.0
example.

Figure 6.17: Entry for the developer A1 to room W1 is rejected due to the presence of the developer B1

6.1.3 Ontology

The structure of DEECo is described using the ontologies provided by MPM4CPS. This is done
by instantiating its classes, so the created set of individuals represents DEECo.

6.1.3.1 CPS

In this part, the individuals represents the system domain and its parts, in addition to the its
requirements.

• ApplicationDomainsDS: BuildingAutomation, IntelligentTransport, RoboticForService,
SmartManufacturing

16https://www.valuestreamer.de/en/home/
17https://www.palladio-simulator.com/science/palladio_component_model/
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Figure 6.18: The use case illustrates a production area, which has many halls. For each hall, there is a
single foreman who manages the workers.

• Architecture: Generic Architecture

• SystemDC:

SystemPart: regarding the CommunicationProtocol, the short range communication
(P2P) is used in most of the use cases (e.g. MANET, gossip protocol, ...).

Component: entities which are modeled in CPS using DEECo are hardware/physical
components. For instance, vehicle or cleaner are physical components with a need for
representation of physical process dynamics (i.e. differential equations). Additionally, it
is possible to model components in the environment such as human.

• QualityRequirementsDC

Dependability: Safety, Availability

Interoperability: Scalability

Predictability: Accuracy

Reliability: Robustness

Security: Confidentiality

Sustainability: Adaptability, Efficiency (i.e. performance), Resilience

6.1.3.2 MPM

In this part, the individuals includes a DEECo megamodel and its fragments defining all model
operations supported by DEECo as outlined in Figure 6.2 and Figure 6.20. Model operations
are of different kinds such as transformation and integrations operations. The first model op-
eration is the capture of requirements followed by a transformation operation from the re-
quirements model into a design model, then by an instantiation operation to create runtime
model and simulation model. The runtime model integrates with the self-adaptation model
Figure 6.19.

Formalism, Models, and Tools

• Formalism

AutomataBasedFormalism: LTS (Labeled Transition System)
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Figure 6.19: Models and Tools Transformations and integrations

Figure 6.20: The example of DEECo represented by OntoGraf using Protoge

• Language

FormalLanguage: SCEL (Service Component Ensemble Language)

ArchitecturalDescriptionLanguage: DEECo realizes SCEL

ModelingLanguage: IRM, IRM-SA

• Model

MegaModel: DEECo (DEECo stands for Dependable Emergent Ensembles of Compo-
nents)

MegaModelFragment: mentioned below in details

• ModelRelation: mentioned below in details

• Tool
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ModelingTool: IRM-SA (Invariant Refinement Method - Self-Adaptation) developed
in D3S Charles University in Prague, EclipseEpsilon

RuntimeTool: jDEECo from Department of Distributed and Dependable Systems,
Charles University in Prague

SimulationTool: ROS from Open Source Robotics Foundation, OMNet++ from Open-
Sim Ltd, MATSim from MATSim Community, Stage from Richard Vaughan and contribu-
tors 1998-2011 Part of the Player Project

MegaModel Fragments / Models for DEECo

• Requirements MegaModel Fragment

Models: IRM Model

• Design MegaModel Fragment

Models: DEECo Design Model

• Self-Adaptation MegaModel Fragment

Models: IRM-SA Model, Mode-Switching Model

• Runtime MegaModel Fragment

Models: DEECo Runtime Model

• Simulation MegaModel Fragment

Models: MATSim, ROS, OMNET++, Stage

Tools / Model Operations for DEECo

• Model Operation: Requirements Capturing Operation - Modeling requirements refine-
ments by Human

Input: Human

Output Model(s): IRM-SA Model

• Model Operation: Requirements-Design Transformation Operation - Capturing require-
ments refinements in design time

Input Model(s): IRM-SA Model

Output Model(s): DEECo Design Model

• Model Operation: Instantiation-Transformation Operation - Instantiation of the DEECo
components and ensembles

Input Model(s): DEECo Design Model

Output Model(s): DEECo Runtime Model

• Model Operation: Instantiation-Transformation Operation2 - Instantiation of the Simu-
lation Model

Input Model(s): DEECo Design Model

Output Model(s): ROS, MATSim , OMNet++

• Model Operation: Runtime-to-Vehicle Simulation Integration Operation - System Design
Validation

Input Model(s): DEECo Runtime Model

Output Model(s): MATSim , OMNet++
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• Model Operation: Runtime-to-Robot Simulation Integration Operation - System Design
Validation

Input Model(s): DEECo Runtime Model

Output Model(s): ROS

• Model Operation: Simulation-to-Simulation Integration Operation - System Design Vali-
dation

Input Model(s): ROS

Output Model(s): Stage , OMNet++

Development Process

The development process starts with capturing requirements operation in which a human is
responsible of defining the IRM-SA model. Afterwards, the IRM tree is transformed to DEECo
Design Model, which its instantiation are DEECo Runtime Model and Simulation Models.

The DEECo Runtime Model is integrated with self-Adaptation model. It is possible also to de-
fine modes and their transitions in DEECo Design time model. Hence, the logic over transitions
are extensible with ODE or statistical reasoning. Similarly, it is possible to define in the DEECo
Design Model formation of ensembles by using gossiping boundary and fitness. The boundary
defines limits on gossiping protocol and the fitness evaluates the history of forming ensembles
and select the best fitting group of components that are involved to form the ensemble.

Finally, DEECo Runtime Model is also integrated with simulation models. For more informa-
tion, please check the following links:

• DEECO website: http://d3s.mff.cuni.cz/software/deeco/

• jDEECo: https://github.com/d3scomp/JDEECo/tree/simulation

• IRM: http://d3s.mff.cuni.cz/software/irm/

• Modes: https://github.com/d3scomp/JDEECo/tree/master/jdeeco-modes

• Statistical Operations: https://github.com/d3scomp/TimeSeriesStatistics

• OMNet++: http://d3s.mff.cuni.cz/projects/components_and_
services/deeco/files/jDEECo-OMNeT.zip

• MATSim: http://d3s.mff.cuni.cz/projects/components_and_services/
deeco/files/jDEECo-MATSim.zip

• ROS: http://d3s.mff.cuni.cz/projects/components_and_services/
deeco/files/seams-2016-artifact.zip

• Intelligent Ensemble framework: http://d3s.mff.cuni.cz/software/deeco/
files/seams-2017.zip

6.1.3.3 MPM4CPS

In this part, the views and viewpoints for this system are described as following:

• View: Requirement Designer

• ViewPoint: The concerns in this viewpoint is related to resilience, and involves both roles
and ensembles in the system. The designer determines the environmental assumptions
to each choice to ensure preserving the required invariants. That makes this viewpoint
related to the cyber part of the system (i.e. software).

• View: Component Designer
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• ViewPoint: The concerns in this viewpoint is related to performances, accuracy, robust-
ness and self-adaptation. It involves designing roles, processes and modes, in addition
to relations between processes and the assumptions from requirement phase. Also, com-
ponents contain controllers, sensors, and actuators, which means that this viewpoint is
related to physical and cyber parts of the system.

• View: Ensemble Designer

• ViewPoint: The concerns in this viewpoint are related to knowledge exchange, security,
optimization, scalability and performances. The designer should determine the roles in-
volved in ensembles, the context constraints and what information to exchange. Addi-
tionally, the designer can optimize forming the ensembles by using fitting function and
defining a boundary over gossip protocol. The design of ensembles could be also associ-
ated to system requirements as it is mentioned in the Requirement Designer view. This
makes this viewpoint related to network and cyber (i.e. software) parts of the system.

6.2 HPI CPSLab18

To structure the presentation of this case study according to the efforts for the MPM4CPS
project, we will at first in Section 6.2.1 provide an overview about the case study and lab, then
in Section 6.2.2 review the technical setting and derive the required needs concerning the CPS
ontology, thereafter in Section 6.2.3 we will outline how the models, tools, and tool chain em-
ployed in the case study can be captured as multi-paradigm modeling and derive the required
needs concerning the MPM ontology, and finally in Section 6.2.4 we discuss how the CPS char-
acter of the case study is reflected in its multi-paradigm modeling and the use of the MPM4CPS
ontology.

6.2.1 Overview

As outlined in more details from a conceptual point of view in (139), the presented CPSLab19

at the Hasso Plattner Institute (HPI)20 at the University of Potsdam applied, adapted, and eval-
uated an existing industrial-strength development methodology from the automotive domain
(33) (see also Figure 6.21) for the robotic system application domain. We therefore evaluated
and adapted a component-based approach using an MDE approach supporting the combina-
tion of soft and hard real-time behavior.

The resulting methodology for robotic systems supports several development activities such as
modeling, simulation, verification/testing at different stages, prototyping and pre-production.
The lab supports tools and related libraries in an integrated tool-chain that reflects physical
and cyber aspects of distributed robotics systems.

We consider a robot system as depicted in Figure 6.22, where a single robot has the duty to
transport pucks as advised by the overall factory automation. The regular behavior of the robot
is to move around, transport pucks, or charge its batteries. The behavior must meet strict con-
straints, such as preventing complete discharge of the batteries and with a lower priority, en-
sure to transport pucks as requested. It must also perform reasonably well with respect to some
soft goals to minimize energy consumption and maximize throughput.

Figure 6.23 depicts a structural overview of the robot system. The whole cyber-physical eval-
uation scenario consists of four different rooms. In the first room, the pucks are packed and
dropped for transportation in area AP . A robot RP transports the puck to a second room and
drops it within the sorting area AS . Based on the current delivery status, the robot RS chooses

18Acknowledgements: We thank Sebastian Wätzoldt, Stefan Neumann, Joachim Hänsel, and Falk Benke for their
contributions to the lab described in this section and their contribution to the presented content and figures.

19http://www.cpslab.de
20http://www.hpi.de
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methodology

MT = model test

MiL = model-in-the-loop

RP = rapid prototyping

SiL = software-in-the-loop

HiL = hardware-in-the-loop

ST = system test

MT/MiL

RP
SiL

HiL

ST

Simulation
stage

Prototyping
stage

Pre-production
stage

Figure 6.21: Overview of the methodology for modeling, verification, and validation employing simula-
tion and testing (see (33))

Figure 6.22: Photo of the lab (see (139))

one of the two booths and a band-conveyor transports the puck to the customer or stock de-
livery area (AC D , ASD ) afterwards. In a third step, the robot RSt transfers the puck to stock in
St . The doors can be opened or closed dynamically to vary the scenario. A robot can charge its
battery at one of the two charging points. Each robot acts as an autonomous unit. Therefore,
the tasks transportation, sorting and stocking are independent from each other.

For the evaluation of our research activities, we use our CPSLab robot laboratory consisting
of three Robotino robots (see Figure 6.24). The robots can be equipped with several sensors
(e.g., laser scanner, infrared (IR) distance sensors, GPS-like indoor navigation systems) as well
as different actuators (e.g., servo motors, omnidirectional drive, gripper).
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Figure 6.23: Structural overview of the employed evaluation scenario (see (139))

evaluation_scenario_3

Figure 6.24: Photo of the employed robots (see (139))

The general idea of our evaluation scenario is the realization of a variable production setting,
where robots can transport small pucks (representing goods in a production system) to differ-
ent locations. The robots must fulfill different requirements, e.g., they must provide basic func-
tionality like moving and avoiding obstacles in hard real-time (reacting on obstacles within a
few milliseconds). Further, the robots must achieve high level goals, e.g., energy saving of the
battery, short routing to the destination points and optimizing the throughput while transport-
ing the pucks. While basic functionalities, such as obstacle avoidance,must be realized in hard
real-time, we use existing libraries to realize higher functionalities such as path planning or
creating a map by evaluating measured distance values. The latter can rarely be realized under
hard real-time constraints because of insufficient libraries. Furthermore, we run a RTAI Linux
operating system on the robot to enable hard real-time execution.

6.2.2 CPS

In the following, we will use the details of the different development steps to outline how the
development is linked to CPS and the concepts of the CPS ontology introduced in Chapter 3.
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6.2.2.1 Simulation Stage

The first step of the development process of Figure 6.21 is a simulation stage that focus on the
model development resp. functional development for the employed control laws. At this stage,
many details resulting from the physical and cyber parts of the system are ignore resp. simpli-
fied such as real sensor values with noise, specific effects of scheduling, the impact of commu-
nication interaction and messages, and timing/memory/computation constraints.

mt

MT/MiL

RP

Figure 6.25: Overview of the model test in the simulation stage of (33)

Model Test

In a first activity named model test (MT) (see Figure 6.25), a so-called one-way/one-shot sim-
ulation with MATLAB/Simulink is supported where the model of the control behavior can be
stimulated by inputs to see that they react properly. This provides some confidence that the
setup control behavior works as intended.

Model Test - CPS Ontology

In the model test as outlined in Figure 6.25, the abstract control algorithm from the cyber do-
main for a specific function is confronted with the physics as present in the input data plus
expected outcomes relevant for the function and thus we have a very simple cyber-physical
setting. Thus we cover the elements CyberPart from the CPS ontology for a particular function.

mil

MT/MiL

RP

Figure 6.26: Overview of the model in loop simulation in the simulation stage of (33)
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Model-in-the-Loop

In a second step, the model of the control behavior is combined with a MATLAB/Simulink
model of the plant by means of a model-in-the-loop (MiL) simulation as shown in Figure 6.26,
which uses the feedback provided by the plant model to evaluate that the control behavior is as
expected.

Model-in-the-Loop - CPS Ontology

The model in the loop depicted in Figure 6.26 in contrast, the abstract control algorithm from
the cyber domain is combined with the idealized physics as present in the plant model and
thus we have a simple cyber-physical setting. Here we cover thus the elements CyberPart and
PhysicalPart from the CPS ontology for a particular function.

rp

MT/MiL

RP

Figure 6.27: Overview of the rapid prototyping in the simulation stage of (33)

Rapid Prototyping

As the validity of plant models is often only rather limited when it comes to sophisticated as-
pects of the physical behavior, as an additional step rapid prototyping as depicted in Figure 6.27
is supported. For smaller control behavior, the model of the control behavior is linked to the
real robot such that real sensor values with noise and timing constraints of the environment
and platform can be covered. However, specific effects of scheduling, the impact of commu-
nication interaction and messages, and memory/computation constraints remain uncovered.
For larger scenarios and for the multi robot scenarios a link to a real hardware setup is not
feasible here. Instead we employ a model-in-the-loop (MiL) simulation where a complex en-
vironment and the communication between the robots can be explored. While this covers the
impact of communication interaction and messages, other aspects like real sensor values with
noise, specific effects of scheduling and timing/memory/computation constraints are, how-
ever, not covered.

Rapid Prototyping - CPS Ontology

The rapid prototyping against the robot as depicted in Figure 6.27, the abstract control algo-
rithm from the cyber domain is brought together with the real physics of the robot and thus we
have clearly a cyber-physical setting.

Our rapid prototyping based on a sophisticated robot simulator, again the abstract control al-
gorithm from the cyber domain is brought together with the physics as present in the sophisti-
cated robot model of the simulator and thus we have clearly a cyber-physical setting.
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In both cases we cover thus the elements CyberPart from the CPS ontology for a particular func-
tion and the elements PhysicalPart from the CPS ontology for the part of the robot relevant for
a particular function that is either simulated or considered directly.

6.2.2.2 Prototyping Stage

The second stage supported is the prototyping stage where the focus changes from models to
their implementation in software or hardware and where besides the individual functions also
the system architecture is covered. Due to this refined view, in particular discretization effects
of the cyber part that are absent in the abstract mathematical models employed in the former
stage now become visible. At this stage, less details are ignore resp. simplified as step by step
specific effects of scheduling, the impact of communication interaction and messages, and
timing/memory/computation constraints are taken into account.

More Detailed Modeling

To consider the more detailed view outlined, at the prototyping stage the models must be re-
fined such that besides the individual functions also the system architecture is defined.

SiL

Prototyping Stage

Figure 6.28: Overview of the definition of the software architecture in the prototyping stage of (33)

As depicted in Figure 6.28, this is done by first defining components and their communication
via port types, messages, interfaces, and data types with AUTOSAR and map the beforehand
considered functional parts on them. In this step, we also have to map the functionality ex-
tending the existing models and where necessary add custom implementation files. In a second
step, we then define the overall architecture using AUTOSAR including besides the components
and their communication also task specification and the hardware configuration.

As depicted in Figure 6.29, an important element of this refinement is also real-time con-
straints, e.g. to guarantee safety constraints. A combination of hard and soft real-time aspects
at functional as well as architectural levels must be defined including a mapping to hard and
soft real-time task with proper levels for the priorities.

Concerning the verification, we employ code generation at the prototyping stage and try to step
by step add more and more details of the software and hardware to the picture in the following
steps.

Software in the Loop (SiL)

The software-in-the-loop (SiL) simulation at the prototyping stage as depicted in Figure 6.30
requires that code generation is employed to derive code for the functional models and archi-
tectural models. In special cases, also additional manually developed code has to be integrated.
Then, the code is executed and run against the available simulation of the robot and its envi-
ronment.
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map

Task description:

Task 1

Task n

…
Task 1

Task n

…

hard real-time soft real-time

trigger via 
data event

report
results

High priority Low priority

Figure 6.29: Overview of the mapping of the architecture to tasks and communication in the prototyping
stage of (33)

sil

SiL

Code 
Generation

Figure 6.30: Overview of software-in-the-loop (sil) simulation in the prototyping stage of (33)

As we still do not always use the real hardware, we still ignore resp. simplify elements such
as real sensor values with noise and not by the simulator covered timing constraints of the
environment or platform, while specific effects of scheduling, the impact of communication
interaction and messages, and by the simulator covered timing constraints of the environment
or platform, and timing/memory/computation constraints of the software.

Software in the Loop (SiL) - CPS Ontology

The first form of software in the loop (SiL) executing the software on a desktop computer
against a simulator features that the detailed control algorithm from the cyber domain is
brought together with the physics as present in the sophisticated robot model of the simulator
and thus we have clearly a cyber-physical setting.

The second form of software in the loop (SiL) executing the software on a desktop computer
against a remote controlled robot ensures that the detailed control algorithm from the cyber
domain is brought together with the physics as present in the remote controlled robot and
thus we have clearly a cyber-physical setting.

In both cases we cover thus the elements CyberPart from the CPS ontology for the combination
of all function and the elements PhysicalPart from the CPS ontology for the whole robot.

Hardware in the Loop (HiL)

By moving on to the lab itself, we can then also consider a hardware-in-the-loop (HiL) simu-
lation at the prototyping stage as sketched in Figure 6.31, where besides the software that is
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hil

HiL

Code 
Generation

Figure 6.31: Overview of hardware-in-the-loop (HiL) testing in the prototyping stage of (33)

generated or integrated also the specific characteristics of the robot hardware and lab environ-
ment and its hardware can be experienced.

As we now employ the real hardware, we no longer ignore resp. simplify elements. Therefore,
now real sensor values with noise, specific effects of scheduling, the impact of communication
interaction and messages, and timing/memory/computation constraints are all considered.

Hardware in the Loop (HiL) - CPS Ontology

The hardware in the loop (HiL) executing the software on the robot depicted in Figure 6.31
ensures that the detailed control algorithm from the cyber domain is brought together with the
physics as present in the robot and thus we have clearly a cyber-physical setting.

Thus we cover the elements CyberPart from the CPS ontology for the combination of all func-
tion and the elements PhysicalPart from the CPS ontology for the whole robot.

6.2.2.3 Pre-Production Stage

In our specific setting and due to our focus on the software development, the system test in the
pre-production stage is not really different as we do not produce any system we want to sell
later. In a commercial setting the robots in the prototyping, the robots in the lab would likely
be equipped with more testing hardware or prototypical hardware, while in our lab only one
level exists here.

The outlined methodology and tool chain adjusted from the automotive domain, provides suit-
able guidance due to the different focus in stages and follows where possible an MDE approach
where tools and libraries are integrated such that the models drive the development. Only later
the code and configuration data automatically generated from the models are employed to
consider more details concerning the verification, simulation, and testing. We put special fo-
cus on supporting also hard and soft real-time considerations, which are oftentimes ignored in
robotic development scenarios.

6.2.3 MPM

For the MPM ontology introduced in Chapter 4, we will in the following use the details of the
different development steps to outline how the development is linked to MPM.

6.2.3.1 Overview

In Figure 6.32 the tool landscape for developing the aforementioned robot CPS is depicted. It
consists of MATLAB/Simulink for modeling and simulation, dSPACE SystemDesk for modeling
software architecture, hardware configuration, and task mapping, dSPACE TargetLink for code
generation and the FESTO Robotino-Library with the FESTO Robotino©Sim simulator.
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Figure 6.32: Tool landscape and its relation to the development methdology

Figure 6.33: All MegaModelFragments of the CPSLabMM MegaModel

On overview about the stages and activities with an emphasis on models, tools, and multi-
paradigm modeling is depicted in Figure 6.34.
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Figure 6.34: Overview over the megamodel fragments of the CPSLab megamodel and how the models
are related (dashed arrows)
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In the following, we outline to which elements of the MPM ontology of Chapter 4 the elements
of the megamodel refer and which megamodel fragements cover the scenarios introduced in
the last subsection.

Formalism, Languages, Models, and Tools

• Used Language and Models

• MATLAB/Simulink Language: ControlModel, PlantModel

• FESTO Robotino©Sim Language: RobotModel

• AUTOSAR Language: SystemModel

• MegaModel

• MegaModel: CPSLabMM

• MegaModelFragments: CPSLabMTMMF, CPSLabMiLMMF, CPSLabRPaMMF, CP-
SLabRPbMMF, CPSLabSiLaMMF, CPSLabSiLbMMF, CPSLabHiLMMF

• ModelRealtions: (see detailed definition of the megamodel fragments)

• Tool

• SimulationTool: MATLAB/Stateflow Simulator

• TransformationTool: dSPACE TargetLink

• ModelingTool: dSPACE SystemDesk

• SimulationTool: FESTO Robotino©Sim

• VisualizationTool: FESTO Robotino©View

• ExecutionTool: Execution on a Desktop computer

• ExecutionTool: Remote execution on a Robotino Robot

• ExecutionTool: Local execution on a Robotino Robot

The added elements for the CPSLab ontology outlined in the text are depicted also in Fig-
ure 6.33.

6.2.3.2 Simulation Stage

In the simulation stage we have two development activities: model test and model-in-the loop.
In the following, we will outline how they can be captured with mega-model fragments consist-
ing of model instances and tool applications.

Model Test

The model test introduced in Figure 6.25, is rather trivial as it only employ a single model of
the planned control algorithm plus some auxiliary models for test inputs. Then, as depicted in
Figure 6.35 the model of the control algorithm is simulated by employing the test inputs.

Model Test - MPM Ontology

MegaModel Fragment CPSLabMTMMF

• MegaModelFragment: CPSLabMTMMF

• Model(s): ControlModel

Tools / Models Operations of CPSLabMiLMMF

• ModelOperation: One Shot Simulation

• Input Model(s): ControlModel, Input data (entered with MATLAB/Stateflow Simulator)

• Output Model(s): Output data (visualized with MATLAB/Stateflow Simulator)
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Figure 6.35: Model Test

• Employed Tool: MATLAB/Stateflow Simulator

Figure 6.36: Part of the ontology for the MegaModelFragment CPSLabMTMMF covering Model Test

In Figure 6.36, the added MegaModel Fragment CPSLabMTMMF and its elements for the CP-
SLab ontology outlined in the text are presented.
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Model-in-the-Loop

In contrast to model test, model-in-the-loop simulation as introduced in Figure 6.26 employed
besides a model of the control algorithm also a model of the plant and uses as depicted in
Figure 6.37 simulation to explore how well both fit together.

Figure 6.37: Model in the Loop

Model-in-the-Loop - MPM Ontology

MegaModel Fragment CPSLabMiLMMF

• MegaModelFragment: CPSLabMiLMMF

• Model(s): ControlModel, PlantModel

Tools / Models Operations of CPSLabMiLMMF

• ModelOperation: Model-in-the-Loop Simulation

• Input Model(s): ControlModel, PlantModel

• Output Model(s): Output data (visualized with MATLAB/Stateflow Simulator)

• Employed Tool: MATLAB/Stateflow Simulator

The added MegaModel Fragment CPSLabMiLMMF and its elements for the CPSLab ontology
outlined in the text are depicted also in Figure 6.38.

Rapid Prototyping

The rapid prototyping as introduced in Figure 6.27 is supported in two forms. At first rapid
prototyping can be done employing a sophisticated simulator for the robot as depicted in Fig-
ure 6.39. While not necessary exposing the control algorithm to physical reality as far as cap-
tured by the sophisticated model of the robot, the simulator already capture much more details
than the plan model while still allow to analyze the behavior much easier then in the case of
using the real robot.

The second case depicted in Figure 6.40 connects the abstract control algorithm with the real
robot and therefore expose the algorithm to all physical effects. However, analysis might be
difficult as running the algorithm against the robot is less easy to analyze then when running it
against a simulator.
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Figure 6.38: Part of the ontology for the MegaModelFragment CPSLabMiLMMF covering Model-in-the-
Loop (MiL)

Figure 6.39: Rapid Prototyping (RP) with a detailed robot simulation

Rapid Prototyping - MPM Ontology

MegaModel Fragment CPSLabRPaMMF

• MegaModelFragment: CPSLabRPaMMF

• Model(s): ControlModel, RobotModel
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Figure 6.40: Rapid Prototyping (RP) with a remote controlled robot

Tools / Models Operations of CPSLabRPaMMF

• ModelOperation: Rapid Prototyping with Robot Simulation

• Input Model(s): ControlModel, RobotModel

• Output Model(s): Output data (visualized with MATLAB/Stateflow Simulator and/or
FESTO Robotino©View)

• Employed Tool: MATLAB/Stateflow Simulator, FESTO Robotino©Sim

In Figure 6.41, the added MegaModel Fragment CPSLabRPaMMF and its elements for the CP-
SLab ontology outlined in the text are presented.

MegaModel Fragment CPSLabRPbMMF

• MegaModelFragment: CPSLabRPbMMF

• Model(s): ControlModel

Tools / Models Operations of CPSLabRPbMMF

• ModelOperation: Rapid Prototyping with Robot Execution

• Input Model(s): ControlModel

• Output Model(s): Output data (visualized with MATLAB/Stateflow Simulator and/or
observed)

• Employed Tool: MATLAB/Stateflow Simulator, Remote execution on a Robotino Robot

The added MegaModel Fragment CPSLabRPbMMF and its elements for the CPSLab ontology
outlined in the text are depicted also in Figure 6.42.

Simulation Stage - MPM Ontology

Some issues are no yet covered by the MPM ontology and the employed megamodel and meg-
amodel fragments: While the same types of models and tools are employed at several stages
and activities as visible in the megamodel depicted in Figure 6.34, the models developed for
each of these activities are quite different in the simulation stage. For the model test, only
simply MATLAB Simulink models with the standard block set and input signals are usually em-
ployed. For the model-in-the-loop simulation, both the model of the control behavior and of
the related fragment of the plant are modeled and evaluated using MATLAB/Simulink models
with the standard block set. To link the behavior to the FESTO Robotino©Sim Simulator and
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Figure 6.41: Part of the ontology for the MegaModelFragment CPSLabRPaMMF covering Rapid Proto-
typing with Robot Simulation

visualize the outcome with FESTO Robotino©View, a specific block set compatible with the
FESTO Robotino-Library has to be employed.

6.2.3.3 Prototyping

6.2.3.4 Software in the Loop (SiL)

Software in the Loop (SiL) as introduced in Figure 6.30, can actually be done in different ways:
A first version executes the generated software on a desktop computer and run it against a
simulator as depicted in Figure 6.43.

A second form executes the generated software in contrast on a desktop computer and links it
to the robot as depicted in Figure 6.44.

Software in the Loop (SiL) - MPM Ontology

MegaModel Fragment CPSLabSiLaMMF

• MegaModelFragment: CPSLabSiLaMMF
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Figure 6.42: Part of the ontology for MegaModelFragment CPSLabRPbMMF covering Rapid Prototyping
with Robot Execution

Figure 6.43: Software in the Loop (SiL) vs. Desktop + Sim

• Model(s): ControlModel *, SystemModel, RobotModel

Tools / Models Operations of CPSLabSiLaMMF

• ModelOperation: FunctionCodeGeneration*

• Input Model(s): ControlModel

• Output Model(s): ControlCode

• Employed Tool: dSPACE TargetLink
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Figure 6.44: Software in the Loop (SiL) vs. Desktop + Robot

• ModelOperation: SystemCodeGeneration

• Input Model(s): SystemModel

• Output Model(s): SystemCode

• Employed Tool: dSPACE SystemDesk

• ModelOperation: Software-in-the-Loop Simulation

• Input Model(s): ControlCode *, SystemCode, RobotModel

• Output Model(s): Output data (visualized with MATLAB/Stateflow Simulator and/or
FESTO Robotino©View)

• Employed Tool: Execution on a Desktop computer, FESTO Robotino©Sim

The added MegaModel Fragment CPSLabSiLaMMF and its elements for the CPSLab ontology
outlined in the text are depicted also in Figure 6.45.

MegaModel Fragment CPSLabSiLbMMF

• MegaModelFragment: CPSLabSiLbMMF

• Model(s): ControlModel *, SystemModel

Tools / Models Operations of CPSLabSiLbMMF

• ModelOperation: FunctionCodeGeneration*

• Input Model(s): ControlModel

• Output Model(s): ControlCode

• Employed Tool: dSPACE TargetLink

• ModelOperation: SystemCodeGeneration

• Input Model(s): SystemModel

• Output Model(s): SystemCode

• Employed Tool: dSPACE SystemDesk

• ModelOperation: Software-in-the-Loop Execution

• Input Model(s): ControlCode *, SystemCode

• Output Model(s): Output data (visualized with MATLAB/Stateflow Simulator and/or
observed)
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Figure 6.45: Part of the ontology for the MegaModelFragment CPSLabSiLaMMF covering Sil with Simu-
lation

• Employed Tool: Remote execution on a Robotino Robot, Execution on a Desktop com-
puter

The added MegaModel Fragment CPSLabSiLbMMF and its elements for the CPSLab ontology
outlined in the text are depicted also in Figure 6.46.

6.2.3.5 Hardware in the Loop (HiL)

Hardware in the Loop (HiL) as introducted in Figure 6.31 in contrast links the generated soft-
ware such that it can be executed on the robot as depicted in Figure 6.47.
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Figure 6.46: Part of the ontology for the MegaModelFragment CPSLabSiLbMMF covering Sil with Exe-
cution

Hardware in the Loop (HiL) - MPM Ontology

MegaModel Fragment CPSLabHiLMMF

• MegaModelFragment: CPSLabHiLMMF

• Model(s): ControlModel *, SystemModel

Tools / Models Operations of CPSLabHiLMMF

• ModelOperation: FunctionCodeGeneration*

• Input Model(s): ControlModel

• Output Model(s): ControlCode

• Employed Tool: dSPACE TargetLink

• ModelOperation: SystemCodeGeneration

• Input Model(s): SystemModel
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Figure 6.47: Hardware in the Loop (HiL)

• Output Model(s): SystemCode

• Employed Tool: dSPACE SystemDesk

• ModelOperation: Hardware-in-the-Loop Execution

• Input Model(s): ControlCode *, SystemCode

• Output Model(s): Output data (observed)

• Employed Tool: Local execution on a Robotino Robot

The added MegaModel Fragment CPSLabHiLMMF and its elements for the CPSLab ontology
outlined in the text are depicted also in Figure ??.

Prototyping - MPM Ontology

Again, the MPM ontology and the employed megamodel and megamodel fragments do not
cover all issues: In contrast to the restriction to MATLAB/Simulink during the simulation stage,
for the prototyping stage also dSPACE SystemDesk for describing a component-based archi-
tecture with AUTOSAR must be considered as well as outlined above and depicted in the meg-
amodel presented in Figure 6.34. For the software-in-the-loop simulation, it is necessary to
adjust the functional models to the specific dSPACE TargetLink block set such that the dSPACE
TargetLink for code generation can be employed. In addition, dSPACE SystemDesk is employed
to define the software architecture, hardware configuration, and task mapping with AUTOSAR.
Then, this combination of models is linked via the blocks for the FESTO Robotino-Library and
simulated by linking the MATLAB/Simulink and FESTO Robotino©Sim simulators and visu-
alize the outcome with FESTO Robotino©View. In case of the hardware-in-the-loop testing,
the same block set for the FESTO Robotino-Library can be reconfigured such that either the
compiled software runs on a host computer and controls the Robotino robots remotely or the
compiled and linked software runs directly on the Robotino robots.

6.2.4 MPM4CPS

In order to discuss the role of MPM for the development CPS as present in the case study, we
refer to the inherent integration needs underlying the development of embedded real-time sys-
tems and cyber-physical systems in particular as outlined in (79). Furthermore, we link these
observations to the MPM4CPS ontology as presented in Chapter 5 and further needs to extend
it.
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Figure 6.48: Part of the ontology for the MegaModelFragment CPSLabHiLMMF covering Hil

6.2.4.1 Simulation Stage

Model Test

In the model test as outlined in Figure 6.35 and in its megamodel fragment, the abstract control
algorithm from the cyber domain captured by the Matlab/Simulink model (ControlModel) for
the control is confronted with the physics as present in the input data plus expected outcomes
and thus we have a very simple cyber-physical setting. We further often have a multi-formalism
setting as the control is discrete while the input is at least conceptually continuous.

Model-in-the-Loop

The model in the loop depicted in Figure 6.37 and in its megamodel fragment in contrast, the
abstract control algorithm from the cyber domain captured by the Matlab/Simulink model
(ControlModel) is combined with the idealized physics as present in the plant captured by the
Matlab/Simulink model (PlantModel) and thus we have a simple cyber-physical setting. We
again often have a multi-formalism setting as the control is discrete while the input is at least
conceptually continuous.

Rapid Prototyping

Our rapid prototyping based on a sophisticated robot simulator as depicted in Figure 6.39
and in its megamodel fragment, again the abstract control algorithm from the cyber domain
captured by the Matlab/Simulink model (ControlModel) is brought together with the physics
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as present in the sophisticated robot model (RobotModel) of the simulator and thus we have
clearly a cyber-physical setting. We again often have a multi-formalism setting as the control
is discrete, while the sophisticated model of the robot simulation is at least conceptually con-
tinuous. Consistency is checked via co-simulation as the simulator for the robot model runs in
parallel with the sophisticated robot simulator.

The rapid prototyping against the robot as depicted in Figure 6.40 and in its megamodel frag-
ment, the abstract control algorithm from the cyber domain captured by the Matlab/Simulink
model (ControlModel) is brought together with the real physics of the robot and thus we have
clearly a cyber-physical setting. Consistency is checked via co-simulation as the simulator for
the robot model runs in parallel with the robot.

6.2.4.2 Prototyping

6.2.4.3 Software in the Loop (SiL)

The first form of software in the loop (SiL) executing the software on a desktop computer
against a simulator as depicted in Figure 6.43 and in its megamodel fragment features that
the detailed control algorithm from the cyber domain captured by the Matlab/Simulink and
AUTOSAR SystemDesk models (multiple ControlModels and one SystemModel ) are brought
together with the physics as present in the sophisticated robot model of the simulator
(RobotModel) and thus we have clearly a cyber-physical setting. We again often have a multi-
formalism setting as the control is discrete while the sophisticated robot mode is at least con-
ceptually continuous. Consistency is checked via co-simulation as the software for the robot
control runs in parallel with the sophisticated robot simulator.

The second form of software in the loop (SiL) executing the software on a desktop com-
puter against a remote controlled robot depicted in Figure 6.44 and in its megamodel frag-
ment ensures that the detailed control algorithm from the cyber domain captured by the Mat-
lab/Simulink model and AUTOSAR SystemDesk models (multiple ControlModels and one Sys-
temModel ) are brought together with the physics as present in the remote controlled robot and
thus we have clearly a cyber-physical setting. Consistency is checked via co-execution as the
software for the robot control runs in parallel with the remote controller robot.

6.2.4.4 Hardware in the Loop (HiL)

The hardware in the loop (HiL) executing the software on the robot depicted in Figure 6.44 and
in its megamodel fragment ensures that the detailed control algorithm from the cyber domain
aptured by the Matlab/Simulink model (ControlModel) is brought together with the physics as
present in the robot and thus we have clearly a cyber-physical setting. Consistency is checked
via executing the software on the robot.

6.2.5 Summary

We have demonstrated that the framework introduced in this report is suitable to capture the
needs concerning this case study for CPS in form of the extensions of the CPS ontology dis-
cussed in Section 6.2.2, covering the needs concerning this case study for MPM in form of the
extensions of the MPM ontology and the catalog discussed in Section 6.2.3, and captures the
cyber-physical aspects of the development quite well as outlined in Section 6.2.4.
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7 Summary and Future Work

In this report on the Framework to Relate / Combine Modeling Languages and Techniques of
Working Group1 on Foundations of the ICT COST Action IC1404 Multi-Paradigm Modelling for
Cyber-Physical Systems (MPM4CPS), we first presented an ontology of Cyber Physical Systems
in Chapter 3 and then an ontology of Multi-Paradigm Modeling in Chapter 4. Then, we pre-
sented an MPM4CPS ontology that combine these ontologies to cover Multi-Paradigm Mod-
eling for Cyber Physical Systems presented in Chapter 5. Finally, we presented two examples
for CPS development cases and sketched how they fit into our framework and how their meg-
amodels resp. megamodel fragments covering development scenarios look like in Chapter 6.
These examples instantiate the MPM4CPS ontology and also make use of the catalog of lan-
guages and tools.

We developed a CPS ontology such that the catalog of languages can be well classified, de-
veloped a MPM ontology such that all needs of the example cases for CPS development ap-
proaches are covered, and developed a first MPM4CPS ontology that integrate both based
on viewpoints. Furthermore, we developed documentation generators that produce detailed
specifications from the ontologies.

As future work, we plan to further enrich the CPS ontology, the MPM ontology, and the
MPM4CPS ontology as ongoing community effort. Furthermore, we plan to further develop
documentation generators such that they can also produce detailed specifications for develop-
ment environment examples.
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