N
N

N

HAL

open science

State-of-the-art on Current Formalisms used in
Cyber-Physical Systems Development

Rima Al Ali, Moussa Amrani, Ankica Barisic, Fernando Barros, Dominique

Blouin, Holger Giese, Miguel Goulao, Mauro Iacono, Navarro Eva, Hans

Vangheluwe, et al.

» To cite this version:

Rima Al Ali, Moussa Amrani, Ankica Barisic, Fernando Barros, Dominique Blouin, et al.. State-
of-the-art on Current Formalisms used in Cyber-Physical Systems Development. [Technical Report]

COST European Cooperation in Science and Technology. 2017. hal-03168840

HAL Id: hal-03168840
https://hal.science/hal-03168840

Submitted on 14 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03168840
https://hal.archives-ouvertes.fr

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

1201234567891 "0

Multi-Paradigm

Modeling
CcosE

EUROPEAN COOPERATION
IN SCIENCE AND TECHNOLOGY

ICT COST Action IC1404

State-of-the-art on Current Formalisms
used in Cyber-Physical Systems

Development

Rima Al-Ali, Moussa Amrani, Ankica Barisic, Fernando Barros,
Dominique Blouin, Holger Giese, Miguel Goulao, Mauro Iacono, Eva
Navarro, Hans Vangheluwe, Ken Vanherpen, Manuel Wimmer

Deliverable: WG1.1

Core Team Document Info

University of Antwerp Deliverable WG1.1

New University of Lisbon Dissemination Restricted
University of Malaga Status Final
Hasso-Plattner Inst., Potsdam Doc’s Lead Partner Hasso-Plattner Inst.
University of Twente Date January 8, 2017
fortiss GmbH, Miinchen Version 2.0

University of Lisbon Pages 61

Contents

1 Introduction

2 Structured Catalog of Modeling Languages and Tools

2.1 Introduction e
2.2 Formalisms
2.2.1 AbstractStateMachines. L oo,
2.2.1.1 ImplementingLanguages
2212 References.

2.2.2 BayesianNetworks
2.2.2.1 ImplementingLanguages
2222 References. i e

2.2.3 CTLSpecification it
2.2.3.1 ImplementingLanguages
2232 References.

2.2.4 CausalBlockDiagramsot
2.24.1 ImplementinglLanguages
2242 References.

2.25 CellularAutomatat e e
2.2.,5.1 ImplementinglLanguages
2252 References. e e

226 DEECOttt
2.2.6.1 ImplementinglLanguages
2.2.6.2 References. i

2.2.7 DEECoSpecification
2.2.7.1 ImplementingLanguages
2272 References.

228 DataFlow e
2.2.8.1 ImplementinglLanguages
2282 References.

229 DataFlowTimed e
2.29.1 ImplementinglLanguages
2292 References. i e

2.2.10 DifferentialEquations e
2.2.10.1 Implementing Languages
2.210.2 References e e

2.2.11 DiscreteEvent e

ENTEEN BN BN RN BN I~ - B~ R~ MR MRS BN, BN IS, NS, BN, BN S, NS, BN S, BN S, BN S BN S B G G G G G NG SO SO SO SO O

iii

CONTENTS

2.2.11.1 Implementing Languages
22112 Referenceso e
2.2.12 ElectricalLinearNetworks
2.2.12.1 ImplementingLanguages
22122 References
2.2.13 EntityRelationship
2.2.13.1 Implementing Languages
22132 References e
2214 FaultTrees oo
2.2.14.1 Implementing Languages
22142 References
2.2.15 FiniteStateProcess e
2.2.15.1 Implementing Languages
22152 References
2.2.16 FirstOrder Logic i
2.2.16.1 Implementing Languages
2.2.16.2 References
2.2.17 HyFlow (Hybrid Flow System Specification)
2.2.17.1 Implementing Languages
22172 References e
2.2.18 DiscontinuousSystems Lo
2.2.18.1 Implementing Languages
22182 References
2.2.19 HybridAutomatat
2.2.19.1 LinearHybridAutomata
2.2.19.2 NonLinearHybridAutomata 10
2.2.19.3 StochasticHybridAutomata 10
2.2.19.4 TimedAutomata, 10

2.2.19.5 TimeAutomataPriced (Priced/Probabilistic Timed Automata
(PTAS)) . . o e e e e e e e e e e 10

2.2.19.6 TimedAutomataStochastic 10
2.2.19.7 I/O_Automata o e e e e e e e e e e e e e e 11

© © © © ©W ©W W 0 . & . W . W . W © & © & N N N N N

2.2.19.8 Implementing Languages 11
22199 References e 11
2.2.20 LabelledTransitionSystem 11
2.2.20.1 Implementing Languages 11
2.220.2 References 11
2.2.21 LinearSignalFlow L 11
2.2.21.1 ImplementingLanguages 11

iv

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

22212 Referenceso e 11
2.222 MarkovChains e 11
2.2.22.1 Implementing Languages 12
22222 References 12
2.2.23 MessageDescriptionSpecification, 12
2.2.23.1 Implementing Languages 12
22232 References 12
2224 PetriNet e 12
2.2.24.1 Supported Extended Formalisms 12
2.2.242 SupportingTools 13
22243 References 13
2.2.24.4 Implementing Languages 13
22245 References e 13
2.2.25 PetriNetColoured e 13
2.2.25.1 ImplementingLanguages 13
22252 References 14
2.2.26 PetriNetDualistic 14
2.2.26.1 Implementing Languages 14
2.2.26.2 References 14
2.2.27 PetriNetPrioritised 14
2.2.27.1 Implementing Languages 14
22272 References e 14
2.2.28 PetriNetStochastic 14
2.2.28.1 Implementing Languages 14
22282 References e e 14
2.2.29 PetriNetTimed e 14
2.2.29.1 Implementing Languages 14
22292 References 14
2.2.30 ProcessAlgebras 14
2.2.30.1 Implementing Languages 14
2.230.2 References 15
2.2.31 TFPG (Timed Failure Propagation Graph) 15
2.2.31.1 Implementing Languages 15
22312 References 15
2.2.31.3 Implementing Languages 15
22314 References e 15
2.2.32 ComplexNetworks 15
2.2.32.1 Implementing Languages 15

vi

CONTENTS

22322 References e 15

2.3 Languages e e e e e 15
2.3.1 AADL (Architecture Analysis and Design Language) 15
2.3.1.1 Supported Formalisms 16
2.3.1.2 SupportingTools 16
23.1.3 References. 16

2.3.2 ACME (Architecture Description Interchange Language) 16
2.3.2.1 Supported Formalisms 16
2.3.2.2 SupportingTools 16
2323 References. e 16

233 AML e e 16
2.3.3.1 Supported Formalisms 17
2.3.3.2 SupportingTools 17
2333 References. e e 17

234 ATL . . e e e e 17
2.3.4.1 Supported Formalisms 17
2.3.4.2 SupportingTools 17
2343 References. 17

2.3.5 AUTOSARLanguage (AUTomotive Open System ARchitecture) 17
2.3.5.1 Supported Formalisms 17
2.3.5.2 SupportingTools 17
2353 References. e 17

2.3.6 Alloy e e 17
2.3.6.1 Supported Formalisms 17
2.3.6.2 SupportingTools 17
23.6.3 References. 17

237 ATHSAN e e e e 17
2.3.7.1 Supported Formalisms 17
2.3.72 SupportingTools 18
2373 References. 18

2.3.8 AsmL (Abstract State Machine Language) 18
2.3.8.1 Supported Formalisms 18
2.3.8.2 SupportingTools 18
23.83 References. 18

239 Asmetal. 18
2.3.9.1 Supported Formalisms 18
2.3.9.2 SupportingTools 18
2393 References. e e 18

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.10 BlockDiagram e 18
2.3.10.1 Supported Formalisms 18
2.3.10.2 SupportingTools 18
23103 References 19

2.3.11 BondGraph 19
2.3.11.1 Supported Formalisms 19
2.3.11.2 SupportingTools e 19
23113 References e 19

2302 C .o e e e 19
2.3.12.1 Supported Formalisms 19
2.3.12.2 SupportingTools 19
23123 References e e 19

2313 CHt o o e e e 19
2.3.13.1 Supported Formalisms 19
2.3.13.2 SupportingTools 19
23133 References 19

2.3.14 CCSL (Clock Constraint Specification Language) 19
2.3.14.1 Supported Formalisms 19
2.3.14.2 SupportingTools e 19
23143 References e 20

2.3.15 CDL (Context Description Language) 20
2.3.15.1 Supported Formalisms 20
2.3.15.2 SupportingTools 20
23153 References e 20

2.3.16 CTL (Computation Tree Logic) 20
2.3.16.1 Supported Formalisms 20
2.3.16.2 SupportingTools 20
23.16.3 References 20

2317 Clafer 20
2.3.17.1 Supported Formalisms 20
2.3.17.2 SupportingTools 20
23173 References e 21

2.3.18 CoCoME e e 21
2.3.18.1 Supported Formalisms 21
2.3.18.2 SupportingTools 21
23183 References e 21

2.3.19 DEECoDSL (Dependable Emergent Ensembles of Component-Domain
SpecificLanguage) e 21
2.3.19.1 Supported Formalisms 21

vii

CONTENTS

2.3.19.2 SupportingTools 21
23193 References 21
2320 DSLITans v oo e e e e e e e e e e e e e e 21
2.3.20.1 Supported Formalisms 21
2.3.20.2 SupportingTools 21
23203 References 21
2321 EAST-ADL 21
2.3.21.1 Supported Formalisms 22
2.3.21.2 SupportingTools 22
23213 References e 22
2.3.22 ECL (Epsilon Comparison Language) 22
2.3.22.1 Supported Formalisms 22
2.3.22.2 SupportingTools 22
23223 References e 22
2.3.23 EGL (Epsilon Generation Language) 22
2.3.23.1 Supported Formalisms 22
2.3.23.2 SupportingTools 22
23233 References 22
2.3.24 EML (Epsilon Merging Language) 22
2.3.24.1 Supported Formalisms 22
2.3.24.2 SupportingTools L 22
23243 References 23
2.3.25 EOL (Epsilon Object Language) 23
2.3.25.1 Supported Formalisms 23
2.3.25.2 SupportingTools 23
23253 References 23
2.3.26 ERD (Entity Relationship Diagram) 23
2.3.26.1 Supported Formalisms 23
2.3.26.2 SupportingTools 23
23263 References 23
2.3.27 ETL (Epsilon Transformation Language) 23
2.3.27.1 Supported Formalisms 23
2.3.27.2 SupportingTools L 23
23273 References e 23
2.3.28 EVL (Epsilon Validation Language) 23
2.3.28.1 Supported Formalisms 23
2.3.28.2 SupportingTools 23
23283 References e 24

viii

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.29 EWL (Epsilon Wizard Language) 24
2.3.29.1 Supported Formalisms 24
2.3.29.2 SupportingTools 24
23293 References 24

2330 EclipseEGL e 24
2.3.30.1 Supported Formalisms 24
2.3.30.2 SupportingTools e 24
23303 References 24

2.3.31 EpsilonFlock e e 24
2.3.31.1 Supported Formalisms 24
2.3.31.2 SupportingTools 24
23313 References e 25

2332 FIACRE e 25
2.3.32.1 Supported Formalisms 25
2.3.32.2 SupportingTools 25
23323 References 25

2.3.33 FUML (Foundational Subset for Executable UML Models) 25
2.3.33.1 Supported Formalisms 25
2.3.33.2 SupportingTools 25
23333 References 25

2334 IRM . . . e e 25
2.3.34.1 Supported Formalisms 25
2.3.34.2 SupportingTools 26
23343 References e 26

2335 IRM-SA . . . o e 26
2.3.35.1 Supported Formalisms 26
2.3.35.2 SupportingTools 26
23353 References 26

2.3.36 IconicDiagrams e e e 26
2.3.36.1 Supported Formalisms 26
2.3.36.2 SupportingTools 26
2.336.3 References 26

2337 Java e e e 26
2.3.37.1 Supported Formalisms 26
2.3.37.2 SupportingTools 26
23373 References e 26

2.3.38 LTL (Linear Temporal Logic) 26
2.3.38.1 Supported Formalisms 27

CONTENTS
2.3.38.2 SupportingTools 27
23383 References e 27

2.3.39 MARTE (Modeling and Analysis of Real-Time and Embedded systems) .. 27

2.3.39.1 Supported Formalisms 27
2.3.39.2 SupportingTools 27
23393 References 27
2.3.40 MTL (Model to Text Language) v v v v v v v v i et oo e 27
2.3.40.1 Supported Formalisms 27
2.3.40.2 SupportingTools 27
23403 References 27
2.3.41 MessagesDescriptionLanguage 27
2.3.41.1 Supported Formalisms 27
2.3.41.2 SupportingTools L 28
23413 References 28
2342 MetaH e e e 28
2.3.42.1 Supported Formalisms 28
2.3.42.2 SupportingTools 28
23423 References 28
2343 MOTiF e 28
2.3.43.1 Supported Formalisms 28
2.3.43.2 SupportingTools 28
23433 References 28
2344 Modelica e 28
2.3.44.1 Supported Formalisms 28
2.3.44.2 SupportingTools 28
23443 References e e 29
2345 ModelicaML e e 29
2.3.45.1 Supported Formalisms 29
2.3.45.2 SupportingTools 29
23453 References 29
2.3.46 Naturallanguage o vttt it e e 29
2.3.46.1 Supported Formalisms 29
2.3.46.2 SupportingTools L 29
23463 References 29
2.3.47 NUSMVLaAnguage o v v ittt e e e e e 29
2.3.47.1 Supported Formalisms 29
2.347.2 SupportingTools L 29
23473 References 29

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2348 OCL e 29
2.3.48.1 Supported Formalisms 29
2.3.48.2 SupportingTools 30
23483 References 30

2349 OMEGA2 e 30
2.3.49.1 Supported Formalisms 30
2.3449.2 SupportingTools L 30
23493 References e e 30

2.3.50 OSATE2 o e e 30
2.3.50.1 Supported Formalisms 30
2.3.50.2 SupportingTools 30
23503 References 30

2.3.51 PRISMLanguage ittt 30
2.3.51.1 Supported Formalisms 30
2.3.51.2 SupportingTools 30
23513 References 31

2.3.52 ParallelAssignmentlLanguage 31
2.3.52.1 Supported Formalisms 31
2.3.52.2 SupportingTools 31
23523 References e 31

2.3.53 PetriNetLanguage e 31
2.3.53.1 Supported Formalisms 31
2.3.53.2 SupportingTools 31
23533 References 32

2354 ProMoOBOX 32
2.3.54.1 Supported Formalisms 32
2.3.54.2 SupportingTools 32
23543 References 32

2355 Promela 32
2.3.55.1 Supported Formalisms 32
2.3.55.2 SupportingTools 32
23553 References e 32

2356 PHAYOS . . . o o o 32
2.3.56.1 Supported Formalisms 32
2.3.56.2 SupportingTools 32
2356.3 References 32

2357 QVT .« o oo e e e 32
2.3.57.1 Supported Formalisms 32

xii

CONTENTS

2.3.57.2 SupportingTools 32
23573 References e 33
2.3.58 Reo_Coordination_Language 33
2.3.58.1 Supported Formalisms 33
2.3.58.2 SupportingTools 33
23583 References 33
2359 SMT_LIB 33
2.3.59.1 Supported Formalisms 33
2.3.59.2 SupportingTools 33
23593 References e 33
2.3.60 STUML (Spatio-Temporal UML Statechart) 33
2.3.60.1 Supported Formalisms 33
2.3.60.2 SupportingTools 33
2.3.60.3 References e 33
2.3.61 SIMPL e e e 33
2.3.61.1 Supported Formalisms 33
2.3.61.2 SupportingTools 33
23613 References 34
2.3.62 SimulinkLanguage 34
2.3.62.1 Supported Formalisms 34
2.3.62.2 SupportingTools 34
23.623 References e 34
2.3.63 Stitch e e e 34
2.3.63.1 Supported Formalisms 34
2.3.63.2 SupportingTools 34
23633 References e 34
2.3.64 SysML (Systems Modeling Language) 34
2.3.64.1 Supported Formalisms 34
2.3.64.2 SupportingTools 34
23643 References 34
2.3.65 SystemCSpecification 34
2.3.65.1 Implementing Languages 35
2.3.65.2 References 35
2.3.66 SystemC e e e 35
2.3.66.1 Supported Formalisms 36
2.3.66.2 SupportingTools 36
2.3.66.3 References e 36
2.3.67 TCTL (Timed Computation Tree Logic) 36

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.67.1 Supported Formalisms 36
2.3.67.2 SupportingTools 36
23673 References e 36
2.3.68 TEPE (Temporal Property Expression Language) 36
2.3.68.1 Supported Formalisms 36
2.3.68.2 SupportingTools e 36
23683 References 36
2.3.69 TimedTransitionSystemLanguage 36
2.3.69.1 Supported Formalisms 36
2.3.69.2 SupportingTools L 36
2.3.693 References e 37
2.3.70 UML (Unified Modeling Language) 37
2.3.70.1 Supported Formalisms 37
2.3.70.2 SupportingTools 37
23.70.3 References e e 37
2371 UML-RT e 37
2.3.71.1 Supported Formalisms 37
2.3.71.2 SupportingTools e 37
23713 References 37
2372 UMLMARTE 37
2.3.72.1 Supported Formalisms 37
2.3.72.2 SupportingTools 37
23723 References e 37
2373 UMLProfile e 37
2.3.73.1 Supported Formalisms 37
2.3.73.2 SupportingTools 38
23733 References 38
2374 UMLSYSML . . .ottt e e 38
2.3.74.1 Supported Formalisms 38
2.3.74.2 SupportingTools e 38
23743 References 38
2.3.75 UPPAALRequirementSpecificationLanguage 38
2.3.75.1 Supported Formalisms 38
2.3.75.2 SupportingTools L 38
23753 References e 38
2.3.76 UPPAALSMCSpecificationLanguage 38
2.3.76.1 Supported Formalisms 38
2.3.76.2 SupportingTools L L 38

xiii

Xiv

CONTENTS

23.76.3 References e 38
2.3.77 VDM-SL e e 38
2.3.77.1 Supported Formalisms 39
2.3.77.2 SupportingTools 39
23773 References 39
2378 Xtend e e 39
2.3.78.1 Supported Formalisms 39
2.3.78.2 SupportingTools 39
23783 References 39
2379 XtEXt. . . e 39
2.3.79.1 Supported Formalisms 39
2.3.79.2 SupportingTools 39
23.793 References e 39

24 Tools e 39
241 20SiM e e e e e e e e e e e 39
2.4.1.1 SupportedLanguages e 40
24.1.2 References. 40

242 AADLINSPECIOT o o it i i e e e e e e e e e e e 40
2.4.2.1 SupportedLanguages 40
2422 References. 40

243 AF3 . e 40
2.4.3.1 Supported Languages 40
2432 References. e 40

2.4.4 AMESim (AMESim (Advanced Modeling Environment for Simulations)) . 40

2.4.4.1 SupportedLanguages 40
2442 References. i 40
245 ATOM3 e 40
2.4.5.1 SupportedLanguages 40
2452 References. 40
24.6 ATOMPM 40
2.4.6.1 SupportedLanguages 41
24.6.2 References. 41

2.4.7 AVATAR (AVATAR stands for Automated Verification of reAl Time softwARe.) 41

2.4.7.1 SupportedLanguages 41
2472 References. e 41
248 Acceleo e 41
2.4.8.1 SupportedLanguages 41
2482 References. i 42

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

249 AcmeStudio 42
2.49.1 SupportedLanguages 42
2492 References. 42

2.4.10 AlloyTool e 42
2.4.10.1 Supported Languages e 42
2.4.10.2 References 42

2411 AnyLogiC e e e e e e 42
2.4.11.1 Supported Languages 42
24.11.2 References e 43

2402 ArcGIS . . . L 43
2.4.12.1 Supported Languages e 43
24122 References e 43

2413 ASImeta e e 43
2.4.13.1 Supported Languages 43
24132 References e e 43

2.4.14 CHESS 43
2.4.14.1 Supported Languages e 43
24.14.2 References e 43

2415 COMSOL 43
2.4.15.1 Supported Languages 43
24.15.2 References e 43

2416 Capella e e e 43
2.4.16.1 Supported Languages 43
24.16.2 References e e 44

2407 CrescendO i e e e e e e e e e 44
2.4.17.1 Supported Languages 44
24172 References 44

24.18 CyPhySim 44
2.4.18.1 Supported Languages 44
24.18.2 References 44

2.4.19 DIPLODOCUS e e e e e 44
2.4.19.1 Supported Languages 44
24.19.2 References e 44

2420 Dymola e 44
2.4.20.1 Supported Languages e 45
2.4.20.2 References e 45

2421 BBTIesos oo o e e 45
2.4.21.1 Supported Languages 45

CONTENTS

24212 References e 45
2422 ESMOL e e 45
2.4.22.1 Supported Languages 45
24222 References 45
2.4.23 EclipseEDT e 45
2.4.23.1 Supported Languages 45
24232 References 45
2.4.24 EclipseEMF 45
2.4.24.1 Supported Languageso 45
24242 References 45
2.4.25 EclipseERD e e e 45
2.4.25.1 Supported Languages o 46
24252 References e 46
2.4.26 EclipseEpsilon e 46
2.4.26.1 Supported Languages 46
24.26.2 References 46
2427 FCM . . . o o 46
2.4.27.1 Supported Languages 46
24272 References 46
2428 FOMA 46
2.4.28.1 Supported Languageso 46
24282 References 46
2429 GEMOCStUdio oo e 46
2.4.29.1 Supported Languages o 46
24292 References 46
2.4.30 IRM-SATOOL o 46
2.4.30.1 Supported Languages e 46
24.30.2 References 47
2431 Kronos e e 47
2.4.31.1 Supported Languages 47
24312 References 47
2432 ITSA . . o 47
2.4.32.1 Supported Languageso 47
24322 References e 47
2433 MASSIF . . . o 47
2.4.33.1 Supported Languages 47
24332 References e e 47
2434 MAST . . . e 47

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.4.34.1 Supported Languages e 47
24342 References 47
2435 MATSIM ot e e e e e 47
2.4.35.1 Supported Languages e 48
24352 References 48
2436 MoDeS 48
2.4.36.1 Supported Languages 48
2.4.36.2 References 48
2437 MyCCM-Hi.o 48
2.4.37.1 Supported Languages 48
24372 References 48
2438 NUSMV . . . o 48
2.4.38.1 Supported Languages 48
24382 References e 48
2439 OBPEXplorer 48
2.4.39.1 Supported Languageso 48
24392 References 49
2440 OMNEt++. . . o oot e e 49
2.4.40.1 Supported Languages 49
2.4.40.2 References e 49
2441 OSATE 49
2.4.41.1 Supported Languages oo 49
24412 References e 49
2442 0CariNa o e e e e e e e e e e 49
2.4.42.1 Supported Languages 49
24422 References e e 49
2443 OpenModelica e 49
2.4.43.1 Supported Languages e e 49
24432 References 49
2444 OVEItUI® v ittt e e e e e e 49
2.4.44.1 Supported Languages 49
24442 References e 50
2445 PHAVET 50
2.4.45.1 Supported Languages oo 50
24452 References e 50
2446 PRISM 50
2.4.46.1 Supported Languages 50
24462 References e e 50

xvii

xviii

CONTENTS

2447 Palladio e 50
2.4.47.1 Supported Languages 50
24472 References e e 50
2448 PapyrusS e e e e 50
2.4.48.1 Supported Languages e 50
24482 References 50
2449 ProCom e 50
2.4.49.1 Supported Languages 51
24492 References e 51
2450 Ptolemy 51
2.4.50.1 Supported Languages 51
2.4.50.2 References e 51
2451 ROS . . o e 51
2.4.51.1 Supported Languages 51
24512 References o .o e e 51
2452 RSA . o e 51
2.4.52.1 Supported Languages e 51
24522 References 51
2453 Rainbow L 51
2.4.53.1 Supported Languages 51
24532 References 52
2454 RemeS e 52
2.4.54.1 Supported Languageso . 52
24542 References 52
2455 SCADE e 52
2.4.55.1 Supported Languages 52
24552 References 52
2456 SOFA-HI 52
2.4.56.1 Supported Languages 52
2.4.56.2 References 52
2457 SPL . . 52
2.4.57.1 Supported Languages 53
24572 References 53
2458 STOOD e 53
2.4.58.1 Supported Languages 53
24582 References e 53
2459 Simulink 53
2.4.59.1 Supported Languages 53

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

24592 References e 53
2460 Spin 53
2.4.60.1 Supported Languages 53
24.60.2 References 53
2461 Stage e e e 53
2.4.61.1 Supported Languages 53
24.61.2 References 54
2.4.62 StrataGEM (Strategy Generic Extensible Modelchecker) 54
2.4.62.1 Supported Languages 54
2.4.62.2 References e 54
2463 SYVOLT 54
2.4.63.1 Supported Languages 54
24.63.2 References e 54
2.4.64 SystemDesk L 54
2.4.64.1 Supported Languages 54
24.64.2 References 54

2.4.65 TINA_SELT (TIme petri Net Analyzer - State/Event LTL model checker) . . 54

2.4.65.1 Supported Languages e 55
2.4.65.2 References 55
2.4.66 TTool (tea-tool) 55
2.4.66.1 Supported Languages 55
24.66.2 References e 55
2.4.67 TURTLE e e e e e e e e 55
2.4.67.1 Supported Languages 55
24.67.2 References e 55
2.4.68 TargetLink 55
2.4.68.1 Supported Languageso e 55
24.68.2 References 55
2.4.69 UMLAnalyzer it e 55
2.4.69.1 Supported Languages 55
2.4.69.2 References 55
2470 UMLMAST . . . o 55
2.4.70.1 Supported Languages 56
24.70.2 References 56
2471 UPPAAL e e e 56
2.4.71.1 Supported Languages e 56
24712 References e e 56

2.4.72 UppaalSMC (Statistical Model Checking Extension for the UPPAAL Toolset.) 56

CONTENTS

2.4.72.1 Supported Languageso e 56

24722 References e 56

2473 VIATRA . . . e e e 56
2.4.73.1 Supported Languages e e 56

24732 References 57

2474 73 . . e e e e 57
2.4.74.1 Supported Languageso 57

24742 References 57

2475 Zen-RUCM e 57
2.4.75.1 Supported Languages 57

24752 References e 57

2.4.76 eC3M (Embedded Component Container Connector Middleware) 57

2.4.76.1 Supported Languageso e 57

2.4.76.2 References 57

2477 JDEECO . . o o oot e 57
2.4.77.1 Supported Languages e 57

24772 References 57

3 Glossary of Terms for Cyber Physical Systems 58
4 Summary and Future Work 60
Bibliography 61

1 Introduction

This report on the State-of-the-art on Current Formalisms used in Cyber-Physical Systems De-
velopment of Working Groupl (WG1) on Foundations of the ICT COST Action 1C1404 Multi-
Paradigm Modelling for Cyber-Physical Systems (MPMA4CPS) first presents a catalog of model-
ing languages and tools in chapter 2. Then a Glossary of Terms for Cyber Physical Systems is
presented in chapter 3.

The work of WG1 revealed that the dependencies between the framework targeted in deliver-
able D1.2 Giese and Blouin (2016) and this report was much more tight than initially expected.
To avoid capturing some content of this report in a redundant form in the ontologies of the
framework, it was decided instead to include relevant information in the ontologies and ex-
tract it automatically from the ontologies for this report .

Framework (classes and properties) Catalog (individuals) Megamodels (individuals)

Catalog

Examples from
Broman et al.

HPI CPSLab

Ensemble
Based CPS

-

—S——————

Figure 1.1: Overview of the structure of the MPM4CPS ontology

In figure 2.1 the structure of the framework and its elements in form of the different ontolo-
gies and their dependencies are presented. The figure also includes the data for the next two
chapters of this report.

The first column depicts the framework and its ontologies as presented in the report on the
Framework to Relate / Combine Modeling Languages and Techniques covered by deliverable
D1.2 Giese and Blouin (2016). The Glossary of Terms for Cyber Physical Systems presented
in chapter 3 of this report is extracted automatically from these ontologies and its contained
concepts defining the framework.

In the second column the catalog of modeling languages and tools that consists of indiciduals
of the MPMA4CPS ontology as covered later in chapter 2 is presented. It is automatically derived
from these individuals such that the ontology and its instances can be kept consistent with
minimal coordination efforts.

In the third column, some examples for CPS development employing MPM in form of mega
models are depicted. Those are presented in details in the report on the Framework to Relate
/ Combine Modeling Languages and Techniques covered by deliverable D1.2 Giese and Blouin

1. Introduction

(2016). As depicted, these examples employ individuals of the catalog of languages and tools
listed in this report in chapter 2 and instantiate the classes of the MPM4CPS ontology.

e o]
=T

2 Structured Catalog of Modeling Languages and Tools

2.1 Introduction

Anumber of different tools is available that support multiparadigm modeling and/or CPS mod-
eling, at different maturity level, designed by academia or industry. This richness is quite natu-
ral, for different reasons.

As first, CPS is a recent field, with no established standards and with different actors, each of
which adopts a slightly different definition and a different approach for the topic: while multi-
paradigm modeling embraces a very wide spectrum of different topics, and actually has a very
elastic and generic (informal) definition: the result is that tools were generated under differ-
ent needs and from different directions, as the field spans from very theoretical, foundational
approaches to very practical, application oriented approaches.

As second, this chaotic richness of tools is easily explained by the heterogeneity of users and
backgrounds that are involved in the processes that are in the scope of interest of MPM4CPS
that mirrors the intrinsic complexity of the systems that are in the scope of interest of
MPMA4CPS. They come from and work in different domains, each bringing the specialistic point
of view, heritage and methods of their domain, they belong to different phases of the design,
development and assessment cycle, or from different research fields, with different perspec-
tives on the same problems and different views on the same systems. As a result, specifications
of tools are often divergent, even if not contrasting, as they are driven by different purposes,
towards different goals, and on different methodological foundations.

In this chapter a catalogue of tools is presented, with a classification that is derived from the
ontology. Some of the tools are released as commercial software in support of different applica-
tions, others are pure experimental tools devoted to support research in language engineering
or model engineering. For each tool the main points have been resumed and classified, in or-
der to provide a comprehensive support for candidate users and to guide them in exploring the
offer to find the best match to their needs.

The structure of the catalog is inspired from the framework proposed by Broman et al. (2012)
(see figure 1) where modeling languages and tools may be based on / support a set of for-
malisms and conversely, formalisms may be implemented by languages and tools. Therefore,
the catalog proposed three top level lists for languages, tools and formalisms with subsections
for referencing the related elements via the aforementioned relations. In addition, for each
element of the catalog a set of references is provided.

supported by implemented by

w Formalisms Languages and Tools

based on

Figure 2.1: Framework for Viewpoints, Formalisms, Languages and Tools (from Broman et al. (2012))

.' 2. Structured Catalog of Modeling Languages and Tools

2.2 Formalisms

The following subsections present the most commonly used formalisms for CPS development.

2.2.1 AbstractStateMachines

Reviewer(s): Soumy The method built around the notion of Abstract State Machine (ASM)
has been proved to be a scientifically well founded and an industrially viable method for the
design and analysis of complex systems, which has been applied successfully to program-
ming languages, protocols, embedded systems, architectures, requirements engineering, etc.
The analysis covers both verification and validation, using mathematical reasoning (possibly
theorem-prover-verified or model-checked) or experimental simulation (by running the exe-
cutable models).

2.2.1.1 Implementing Languages

AbstractStateMachines is a formalism for the following languages:

¢ AsmL (see section 2.3.8)

2.2.1.2 References
http://web.eecs.umich.edu/gasm/intro.html
Borger (2005)

2.2.2 BayesianNetworks
Reviewer(s): Florin Leon

Bayesian networks (BNs), also known as belief networks (or Bayes nets for short), belong to the
family of probabilistic graphical models (GMs). These graphical structures are used to repre-
sent knowledge about an uncertain domain. In particular, each node in the graph represents
a random variable, while the edges between the nodes represent probabilistic dependencies
among the corresponding random variables. These conditional dependencies in the graph are
often estimated by using known statistical and computational methods. Hence, BNs combine
principles from graph theory, probability theory, computer science, and statistics.

2.2.2.1 Implementing Languages

None

2.2.2.2 References

Fuzzy Bayesian Networks: http://perso.telecom-paristech.fr/~chollet/
Biblio/Articles/Domaines/BayesianNet/fuzzy-bayesian-networks—a.
pdf

http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

2.2.3 CTLSpecification
Reviewer(s): Didier Buchs, Soumy

e.g. A CTL specification is given as a formula in the temporal logic CTL.

2.2.3.1 Implementing Languages
CTLSpecification is a formalism for the following languages:

e CTL (see section 2.3.16)

http://web.eecs.umich.edu/gasm/intro.html
http://perso.telecom-paristech.fr/~chollet/Biblio/Articles/Domaines/BayesianNet/fuzzy-bayesian-networks-a.pdf
http://perso.telecom-paristech.fr/~chollet/Biblio/Articles/Domaines/BayesianNet/fuzzy-bayesian-networks-a.pdf
http://perso.telecom-paristech.fr/~chollet/Biblio/Articles/Domaines/BayesianNet/fuzzy-bayesian-networks-a.pdf
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.2.3.2 References
2.2.4 CausalBlockDiagrams
Reviewer(s): Hans?

A Causal Block Diagram model is a graph made up of connected operation blocks. The con-
nections stand for signals. Blocks can be purely algebraic such as Adder and Product, or may
involve some notion of time such as Delay , Integrator and Derivative. Furthermore, Input and
Output blocks are often used to model the system’s connection to its environment.

2.2.4.1 Implementing Languages

None

2.2.4.2 References

2.2.,5 CellularAutomata

Reviewer(s): Florin Leon

Cellular automata (CA) are an idealization of physical system in which space and time are dis-
crete, and the physical quantities take into a finite set of values.

2.2.5.1 Implementing Languages

None

2.2.5.2 References

http://plato.stanford.edu/entries/cellular—automata/

2.2.6 DEECo

Reviewer(s): Rima? In scope of the ASCENS project have developed the DEECo component
model (stands for Dependable Emergent Ensembles of Components) targeting design of sys-
tems consisting of autonomous, self-aware, and adaptable components. The components, im-
plicitly organized in groups called ensembles, live in a very dynamic environment where a com-
ponent can enter/exit an ensemble at any time. The goal of DEECo is to support development
of applications in such a dynamic environment.

2.2.6.1 Implementing Languages

DEECo is a formalism for the following languages:

e DEECoDSL (see section 2.3.19)

2.2.6.2 References
2.2.7 DEECoSpecification

The main concepts of DEECo are heavily inspired by the concepts of the SCEL specification
language. The main idea is to manage all the dynamism of the environment by externalizing
the distributed communication between components to a component framework. The com-
ponents access only local information and the distributed communication is performed im-
plicitly by the framework. This way, the components have to be programmed as autonomous
units, without relying on whether/how the distributed communication is performed, which
makes them very robust and suitable for rapidly-changing environments.

2.2.7.1 Implementing Languages

None

http://plato.stanford.edu/entries/cellular-automata/

2. Structured Catalog of Modeling Languages and Tools

2.2.7.2 References
2.2.8 DataFlow

Reviewer(s): Stefan, Etienne? Synchronous Dataflow: Synchronous Dataflow (SDF) is a model
of computation first proposed by Edward A. Lee in 1986. It describes an application as a graph
where a node represents a function (usually called actor) and an arc represents a communica-
tion channel between two functions. All the inputs of a function must be present to start its
execution, and the synchronous hypothesis states that the computation of each function and
the communication between two functions is infinitely fast (or instantaneous).

Given this hypothesis, SDF provides a sound model of computation with predictable perfor-
mance, properties verification methods (liveness, deadlock freedom), and predictable buffer-
ing.

The practical approach relies on the fact that the computation of a node starts only when the
execution of all its predecessors is finished. This requires that the graph topology is loop-free.
Since SDF are usually executed in periodic tasks, the synchronous hypothesis is usually con-
sidered to be verified as the worst case response time of the graph is smaller than the task’s
period.

This type of model is well-suited to digital signal processing and communications systems
which often process an endless supply of data. It has been successfully applied in the domain
of safety critical embedded systems. It has also been characterized or extended into homoge-
neous data flow graphs, cyclo-static data flow graphs, scenario-aware data flow graphs, affine
data flow graphs.

2.2.8.1 Implementing Languages

Lustre, Esterel and their integration in the SCADE tool suite 2.4.55. SIGNAL, and its Polychrony
environment. Ptolemy. ZAl'lus, bridging the GAP between SDF and ODEs (such as those im-
plemented wit Mathlab/Simulink).

2.2.8.2 References

http://users.ece.utexas.edu/~bevans/courses/ee382c/lectures/08_
sdf/

Kahn Process Networks: http://liacs.leidenuniv.nl/assets/Bachelorscripties/
2011-20RoyKensmil.pdf

http://ptolemy.eecs.berkeley.edu/papers/02/synchronous/MurthyLee_
MultidimensionalSDF .pdf

2.2.9 DataFlowTimed

Reviewer(s): Stefan

The Timed Data Flow (TDF) model of computation defined in the SystemC AMS 1.0 standard
has already shown its value for signal-processing-oriented applications, such as RF communi-
cation and digital signal processing (DSP) systems, where the complex envelope of the modu-
lated RF signal can be described as an equivalent baseband signal and where baseband algo-
rithms are described naturally using data flow semantics. Because TDF is derived from the well-
known Synchronous Data Flow (SDF) model of computation, high simulation performance can
be obtained due to the calculation of a static schedule prior to simulation.

http://users.ece.utexas.edu/~bevans/courses/ee382c/lectures/08_sdf/
http://users.ece.utexas.edu/~bevans/courses/ee382c/lectures/08_sdf/
http://liacs.leidenuniv.nl/assets/Bachelorscripties/2011-20RoyKensmil.pdf
http://liacs.leidenuniv.nl/assets/Bachelorscripties/2011-20RoyKensmil.pdf
http://ptolemy.eecs.berkeley.edu/papers/02/synchronous/MurthyLee_MultidimensionalSDF.pdf
http://ptolemy.eecs.berkeley.edu/papers/02/synchronous/MurthyLee_MultidimensionalSDF.pdf

one (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.2.9.1 Implementing Languages
SystemC-AMS

2.2.9.2 References

http://www.accellera.org/images/downloads/standards/systemc/
SystemC_AMS_2_0_LRM.pdf

http://www.accellera.org/resources/articles/amsspeed

http://leat.unice.fr/ECoFaC2012/presentations/Pecheux_part5.pdf

2.2.10 DifferentialEquations
Reviewer(s): Florin Leon, Eva

A differential equation is a mathematical equation containing functions and derivatives. Dif-
ferential equations are in particular used for modeling the physical plant of a CPS. Differential
equations can be broadly classified into ordinary differential equations (ODEs), differential-
algebraic equations (DAEs), and partial differential equations (PDEs).

2.2.10.1 Implementing Languages

None

2.2.10.2 References
http://os.inf.tu-dresden.de/Studium/CPS/SS2015/02-Math.pdf

http://users.math.msu.edu/users/gnagy/teaching/ode.pdf

2.2.11 DiscreteEvent

Reviewer(s): Fernando Barros based on concurrent actors manipulating streams of timed
events, such as DEVS, real-time process networks, or actor theories. The DE paradigm is preva-
lent in simulation frameworks in di erent application domains, from queueing systems and
networks to circuits.

2.2.11.1 Implementing Languages

None

2.2.11.2 References
http://www.andrew.cmu.edu/user/dionisio/avicps2010-proceedings/
an—adaptive—-discrete-event-model-for-cyber—-physical-systems.pdf
2.2.12 ElectricalLinearNetworks

Reviewer(s): Eva Navarro

The ELN formalism allows one to analyze/design electrical networks consisting of linear ele-
ments only (capacitor, inductor, resistor, current/voltage source, gyator, nullor, controlled cur-
rent.voltage sources, etc.).

2.2.12.1 Implementing Languages

None

2.2.12.2 References
http://leat.unice.fr/ECoFaC2012/presentations/Pecheux_part5.pdf

http://www.accellera.org/images/downloads/standards/systemc/SystemC_AMS_2_0_LRM.pdf
http://www.accellera.org/images/downloads/standards/systemc/SystemC_AMS_2_0_LRM.pdf
http://www.accellera.org/resources/articles/amsspeed
http://leat.unice.fr/ECoFaC2012/presentations/Pecheux_part5.pdf
http://os.inf.tu-dresden.de/Studium/CPS/SS2015/02-Math.pdf
http://users.math.msu.edu/users/gnagy/teaching/ode.pdf
http://www.andrew.cmu.edu/user/dionisio/avicps2010-proceedings/an-adaptive-discrete-event-model-for-cyber-physical-systems.pdf
http://www.andrew.cmu.edu/user/dionisio/avicps2010-proceedings/an-adaptive-discrete-event-model-for-cyber-physical-systems.pdf
http://leat.unice.fr/ECoFaC2012/presentations/Pecheux_part5.pdf

.' 2. Structured Catalog of Modeling Languages and Tools

http://www.accellera.org/resources/articles/amsspeed

2.2.13 EntityRelationship

Reviewer(s): Dominique «TODO: Provide rdfs:comment annotation assertion»

2.2.13.1 Implementing Languages

None

2.2.13.2 References
2.2.14 Fault Trees

Author(s): Mauro Iacono Fault Trees is a formal model designed to analyze and evaluate the
origin and the effects of faults in the components of an architecture at its subsystem or system
level. Many variants have been proposed that extend the basic combinatorial nature of this
formalism to include time, repairable components or repairing actions.

2.2.14.1 Implementing Languages

None

2.2.14.2 References
Ruijters and Stoelinga (2015)

2.2.15 FiniteStateProcess
Reviewer(s): Rima

«TODO: Provide rdfs:comment annotation assertion»

2.2.15.1 Implementing Languages

None

2.2.15.2 References
2.2.16 First Order Logic
Author(s): Moussa Amrani Reviewer(s): Florin Leon

First-Order Logic (abbreviated as FOL, and often referred to as First-Order Predicate Calculus)
is a logical formalism constituted of terms and formulas. A term is either a variable, a function
symbol or a predicate symbol. A formula is constituted of formulas built over terms combined
with the usual Boolean operators (negation, conjunction and so on) and both existential and
universal quantifiers. First-Order Logic formulas are interpreted on a (finite) domain, and pos-
sess a sound and complete calculus, making it automatable for reasoning Kleene (2002).
2.2.16.1 Implementing Languages

FoL serves as the core formalisms for many tools, including:

¢ Theorem Provers like SMT_LIB (see section 2.3.59), Z3,

2.2.16.2 References
2.2.17 HyFlow (Hybrid Flow System Specification)
Reviewer(s): Fernando Barros, Eva Navaro

The Hybrid Flow Systems Specification (HyFlow) provides a formal description of dynamic
topology hybrid systems Barros (2003). This formalism can model systems that exhibit both

http://www.accellera.org/resources/articles/amsspeed

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

continuous and discrete behaviors while relying on a digital computer representation. HyFlow
supports multisampling as a first order operator, enabling both time and component varying
sampling, making it suitable for representing sampled-based systems, like digital controllers
and filters. HyFlow provides also an extrapolation operator that enables an error free repre-
sentation of continuous signals. Multisampling can be used for achieving an explicit repre-
sentation of asynchronous adaptive stepsize differential equations solvers. HyFlow provides
an integrative framework for combing models expressed in different modeling paradigms. In
particular, fluid stochastic Petri-nets and geometric solvers, for example, can be represented in
the HyFlow formalism, enabling its seamless integration with other HyFlow models. HyFlow
sampling provides an expressive operator for making the connection of computer-based sys-
tems with real-time systems, since sampling is, in many cases, the most convenient operator to
interact with continuous signals. HyFlow supports modular and hierarchical models providing
deterministic semantics for model composition and co-simulation Barros (2008).

2.2.17.1 Implementing Languages

None

2.2.17.2 References
Barros (2003)

2.2.18 DiscontinuousSystems
Author(s): Eva Navarro

Discontinuous or non-smooth systems are a subclass of hybrid systems. They are several types
depending on the type of discontinuity in the model representing the system. We have two
main classes: switching or variable structure systems, and jump or reset systems. Switching
or variable structure systems are typically studied through the formalism of sliding motions
(dynamics on the discontinuity surface) or sliding-mode-based control systems.

2.2.18.1 Implementing Languages

None

2.2.18.2 References
2.2.19 HybridAutomata
Reviewer(s): Eva Navarro

A finite state automaton is a computational abstraction of the transitions of a system between
discrete states or locations (on and off, for instance). A hybrid automaton, additionally, consid-
ers dynamical evolution over time in each location. This dynamical evolution is represented by
a dynamical system. Depending on the nature of the dynamics of this system, different types of
hybrid automata are defined; the main ones are explained as follows. Hybrid automata is one
of the many existing representations of hybrid systems.

2.2.19.1 LinearHybridAutomata

Reviewer(s): Eva Navarro

Implementing Languages

None.

References

.' 2. Structured Catalog of Modeling Languages and Tools

2.2.19.2 NonLinearHybridAutomata
Reviewer(s): Eva Navarro
Implementing Languages

None.

References

2.2.19.3 StochasticHybridAutomata
Reviewer(s): Eva Navarro
Implementing Languages

None.

References

2.2.19.4 TimedAutomata
Reviewer(s): Eva Navaro, Moussa Amrani

In automata theory, a timed automaton is a finite automaton extended with a finite set of real-
valued clocks. During a run of a timed automaton, clock values increase all with the same
speed. Along the transitions of the automaton, clock values can be compared to integers. These
comparisons form guards that may enable or disable transitions and by doing so constrain the
possible behaviors of the automaton. Further, clocks can be reset. Timed automata are a sub-
class of a type hybrid automata.

Implementing Languages
TimedAutomata is a formalism for the following languages:
¢ UPPAALRequirementSpecificationLanguage (see section 2.3.75)

References

2.2.19.5 TimeAutomataPriced (Priced/Probabilistic Timed Automata (PTAs))
Reviewer(s): Eva Navaro, Moussa Amrani

A priced timed automaton over X is an annotated directed graph with a distinguished vertex
called the initial location. In the tradition of timed automata, we call vertices locations. An
edge is decorated with a guard, an action and a reset set. We say that an edge is enabled if
the guard evaluates to true and the source location is active. A reset set is a set of clocks. The
intuition is that the clocks in the reset set are set to zero whenever the edge is taken.

Implementing Languages
TimeAutomataPriced is a formalism for the following languages:
¢ PRISMLanguage (see section 2.3.51)

References

2.2.19.6 TimedAutomataStochastic
Reviewer(s): Eva Navaro, Moussa Amrani

A stochastic timed automaton is a purely stochastic process defined on a timed automaton, in
which both delays and discrete choices a are made randomly.

Implementing Languages

TimedAutomataStochastic is a formalism for the following languages:

10

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

* UPPAALSMCSpecificationLanguage (see section 2.3.76)

References

2.2.19.7 1/0_Automata
Reviewer(s): Paulo Careira

I/0 automata provide an appropriate model for discrete event systems consisting of concur-
rently operating components.

Implementing Languages
None
References

Hybrid [/O Automata: http://groups.csail.mit.edu/tds/papers/Lynch/
DIMACS95.pdf

Timed I/0 Automata: http://people.cs.aau.dk/~adavid/ecdar/hsccl0.pdf

2.2.19.8 Implementing Languages
HybridAutomata is a formalism for the following languages:
¢ StateFlow

* NuSMVLanguage (see section 2.3.47)

2.2.19.9 References
2.2.20 LabelledTransitionSystem
Reviewer(s): Didier Buchs To be removed

Labelled Transition Systems (LTS), are operational models of system behaviours that can be
analysed in various ways with respect to given safety properties of the system. However, they
often give a holistic view of the system, thereby also covering behaviour that is undesirable
according to the system specification. It is therefore in the interest of requirements engineers
to re ne these LTS models so that they can provide a more synthesised view of the system using
scenarios and knowledge about the system domain.

2.2.20.1 Implementing Languages

None

2.2.20.2 References
TODO: LTSA developed in JAVA

2.2.21 LinearSignalFlow

Reviewer(s): Moussa Amrani «TODO: Provide rdfs:comment annotation assertion»

2.2.21.1 Implementing Languages

None

2.2.21.2 References
2.2.22 MarkovChains

A Markov process with finite or countable state space. The theory of Markov chains was created
by A.A. Markov who, in 1907, initiated the study of sequences of dependent trials and related
sums of random variables.

11

http://groups.csail.mit.edu/tds/papers/Lynch/DIMACS95.pdf
http://groups.csail.mit.edu/tds/papers/Lynch/DIMACS95.pdf
http://people.cs.aau.dk/~adavid/ecdar/hscc10.pdf

.' 2. Structured Catalog of Modeling Languages and Tools

2.2.22.1 Implementing Languages
MarkovChains is a formalism for the following languages:

¢ PRISMLanguage (see section 2.3.51)

2.2.22.2 References

Continuous Markov Chains: http://www.columbia.edu/~ks20/stochastic-1/
stochastic—-I-CTMC.pdf

Markov Decision Process : https://www.cs.ubc.ca/~kevinlb/teaching/cs322%
20-%202009-10/Lectures/DT3.pdf

Discrete Markov Chains: http://www.columbia.edu/~ks20/stochastic-1I/
stochastic—-I-MCI.pdf

2.2.23 MessageDescriptionSpecification

Reviewer(s): Dominique Blouin The format of this language is simple: a message description is
alist of data field descriptions and constant definitions on separate lines.

2.2.23.1 Implementing Languages

None

2.2.23.2 References
2.2.24 PetriNet
Didier Buchs, Mauro lacono, Soumy

A Petri net (also known as a place/transition net or P/T net) is one of several mathematical
modeling languages for the description of distributed systems. Systems that are considered as
discrete dynamic systems. A Petri net is a directed bipartite graph, in which the nodes represent
transitions (i.e. events that may occur, represented by bars or black rectangles) and places (i.e.
conditions, represented by circles). The directed arcs describe which places are pre- and/or
postconditions for which transitions (signified by arrows). Some sources state that Petri nets
were invented in August 1939 by Carl Adam Petri at the age of 13 for the purpose of describing
chemical processes.

Like industry standards such as UML activity diagrams, Business Process Model and Notation
and EPCs, Petri nets offer a graphical notation for stepwise processes that include choice, itera-
tion, and concurrent execution. There are attempts for all these formalisms to have semantics
in term of translation into Petri nets. Petri nets have an exact mathematical definition of their
execution semantics, with a well-developed mathematical theory for process analysis.

It has been observed that in practice Petri Nets lack of modeling power for some modeling
dimensions such as: timing aspects, data structures, stochastic processes and event priority.
In general the formal analysis tool need different techniques if new modeling dimensions are
introduced. So tools are generally different and adapted to the specific extensions.

2.2.24.1 Supported Extended Formalisms

Petri Nets have several extensions which are concretised in the following formalisms, it must
be noted that the computing power can change according to these notations and then the
analysability of the models:

» PetriNetPrioritised (Petri Net with priority) This simple extension bring new semantics to
the transition firing in order to solve conflict. Depending on the variant it can lead to more
powerful models which are Turing complete. (see section 2.2.27)

12

http://www.columbia.edu/~ks20/stochastic-I/stochastic-I-CTMC.pdf
http://www.columbia.edu/~ks20/stochastic-I/stochastic-I-CTMC.pdf
https://www.cs.ubc.ca/~kevinlb/teaching/cs322%20-%202009-10/Lectures/DT3.pdf
https://www.cs.ubc.ca/~kevinlb/teaching/cs322%20-%202009-10/Lectures/DT3.pdf
http://www.columbia.edu/~ks20/stochastic-I/stochastic-I-MCI.pdf
http://www.columbia.edu/~ks20/stochastic-I/stochastic-I-MCI.pdf

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

¢ PetriNetStochastic (Stochastic Petri Nets)(see section 2.2.28)

* PetriNetColoured (High level Petri nets) This large class rely on another modeling frame-
work devoted to the description of the data attached to the tokens, and the expression
that must be assigned to arcs describing the computation that must be done for satisfying
the pre and post conditions. Among several dialect of these class we can cite algebraic
Petri Nets and coloured Petri Nets (see section 2.2.25)

* PetriNetTimed (Time Petri Net or Timed Petri Net)(see section 2.2.29) These formalisms
introduce time as a modeling dimension as transition duration or possible interval for
firing transitions , generally these classes bring new problems for analysing them in par-
ticular the time line which has no limit in the future and the density of the time.

¢ PetriNetDualistic (see section 2.2.26)

2.2.24.2 Supporting Tools

PetriNetLanguage and its variants is implemented by various tools, we can cite among the the
following tools:

* Lola,

e TAPALL,

e GreatSPN,

e ORIS,

 Alpina, StrataGEM (see section 2.4.62)

TINA_SEIT (see section 2.4.65)

In order to evaluate the power of these tools benchmarks have been proposed and are anually
evaluated in a competition called the modeling contest. ?

2.2.24.3 References

A Petri net (also known as a place/transition net or P/T net) is one of several mathematical
modeling languages for the description of distributed systems.

2.2.24.4 Implementing Languages

None

2.2.24.5 References

CPN preserve useful properties of Petri nets and at the same time extend initial formalism to
allow the distinction between tokens. Coloured Petri Nets allow tokens to have a data value
attached to them. This attached data value is called token color.

https://en.wikipedia.org/wiki/Coloured_Petri_net

2.2.25 PetriNetColoured
Reviewer(s): Didier Buchs, Soumy

CPN preserve useful properties of Petri nets and at the same time extend initial formalism to
allow the distinction between tokens. Coloured Petri Nets allow tokens to have a data value
attached to them. This attached data value is called token color.

2.2.25.1 Implementing Languages

None

13

https://en.wikipedia.org/wiki/Coloured_Petri_net

2. Structured Catalog of Modeling Languages and Tools

2.2.25.2 References

2.2.26 PetriNetDualistic

Reviewer(s): Didier Buchs, Soumy

Dualistic Petri nets (dPNs) are a process-class variant of Petri nets. Like Petri nets in general
and many related formalisms and notations, they are used to describe and analyze process
architecture.

2.2.26.1 Implementing Languages

None

2.2.26.2 References

2.2.27 PetriNetPrioritised

Reviewer(s): Didier Buchs, Soumy

A Prioritised Petri Net is a structure (PN, PF), where PN is a Petri Net and PF is a priority func-
tion that maps transitions into non-negative natural numbers representing their priority level.
2.2.27.1 Implementing Languages

None

2.2.27.2 References

2.2.28 PetriNetStochastic

Stochastic Petri nets are a form of Petri net where the transitions fire after a probabilistic delay
determined by a random variable.

2.2.28.1 Implementing Languages

None

2.2.28.2 References
2.2.29 PetriNetTimed
Reviewer(s): Didier Buchs, Soumy

«TODO: Provide rdfs:comment annotation assertion»

2.2.29.1 Implementing Languages
PetriNetTimed is a formalism for the following languages:

¢ FIACRE (see section 2.3.32)

2.2.29.2 References
2.2.30 ProcessAlgebras
Reviewer(s): Florin Leon, Didier Buchs

An algebraic approach to the study of concurrent processes. Its tools are algebraical languages
for the specification of processes and the formulation of statements about them, together with
calculi for the verification of these statements.

2.2.30.1 Implementing Languages

None

14

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.2.30.2 References
2.2.31 TFPG (Timed Failure Propagation Graph)
Reviewer(s): Etienne Borde, Dominique Blouin, Rima Al Ali

A Timed Failure Propagation Graph (TFPG) model is a relatively simple directed graph struc-
ture which identifies the paths along which failures are expected to propagate in the system.
Nodes of a TFPG represent failure modes or discrepancies, and arcs represent failure propa-
gation paths with a time interval representing the lower and upper bound of the failure prop-
agation time. Logical operators AND and OR are used to represent logical combinations of
failures to reach a mode and/or a discrepancy. TFPG can be used at design time to analyze
faults propagation and their consequences. It can also be used at runtime to provide potential
explanations to a fault signature that is observed during the system execution since consistency
checking can be used to eliminate path on which timing constraints are not verified.

2.2.31.1 Implementing Languages

None

2.2.31.2 References
http://www.mikand.net/data/smt_based_validation_of_timed_failure_
propagation_graphs.pdf

2.2.31.3 Implementing Languages

TimedTransitionSystems is a formalism for the following languages:

¢ FIACRE (see section 2.3.32)

2.2.31.4 References
2.2.32 Complex Networks

A complex network is a large number of interdependent systems connected in a nontrivial and
non-regular manner. The interconnection of these systems produces emergent properties or
behaviours which are not present in the isolated systems: this is called self-organisation, col-
lective behaviour. There are different representations for complex networks. These models are
typically based on graph theory (noded connected with links). The main models for complex
networks are: random-graph networks, small-world networks, scale-free networks. Each of
these models have different topological (structural) features, analysed with tools from statisti-
cal physics.

2.2.32.1 Implementing Languages

None

2.2.32.2 References
2.3 Languages

The following subsections present the most commonly used languages for CPS development.

2.3.1 AADL (Architecture Analysis and Design Language)

The AADL is designed for the specification, analysis, automated integration and code gener-
ation of real-time performance-critical (timing, safety, schedulability, fault tolerant, security,
etc.) distributed computer systems. It provides a new vehicle to allow analysis of system de-
signs (and system of systems) prior to development and supports a model-based, model-driven
development approach throughout the system life cycle.

15

http://www.mikand.net/data/smt_based_validation_of_timed_failure_propagation_graphs.pdf
http://www.mikand.net/data/smt_based_validation_of_timed_failure_propagation_graphs.pdf

2. Structured Catalog of Modeling Languages and Tools

2.3.1.1 Supported Formalisms

None

2.3.1.2 Supporting Tools

AADL is implemented by the following tools:
¢ AADLInspector (see section 2.4.2)
¢ OSATE (see section 2.4.41)

e (QOcarina (see section 2.4.42)

2.3.1.3 References
2.3.2 ACME (Architecture Description Interchange Language)
Reviewer(s): Miguel Gouldo

There are several examples of Architectural Description Languages (ADLs), such as Aesop,
Adage, C2, Darwin, Rapide, SADL, Unicon, MetaH, or Wright. While such ADLs considerably
overlap on the core, each ADL focuses on different aspects of the software architecture and
solving different categories of problems. This diversity raises difficulties in interchanging infor-
mation among different ADLs. Providing an ADL which would support the features of all those
ADLs would be impractical, and developing mappings among each pair of languages would
require an excessive amount of effort. Acme was proposed as a generic language which can
be used for expressing architectural concepts which are core to ADLs. The rationale was that
rather than providing transformations between the different pairs of languages, Acme could
be used as a common representation of architectural concepts to support the interchange of
information reducing the number of required transformations to those to and from Acme.

Language Features:
* an architectural ontology consisting of seven basic architectural design elements;

* a flexible annotation mechanism supporting association of non-structural information
using externally defined sublanguages;

¢ atype mechanism for abstracting common, reusable architectural idioms and styles; and

* an open semantic framework for reasoning about architectural descriptions.

2.3.2.1 Supported Formalisms

Acme’s elements are formally defined in a relational representation in a constraint logic lan-
guage (see Wile (1996)).

2.3.2.2 Supporting Tools

ACME is implemented by the following tools:

¢ AcmeStudio (see section 2.4.9)

2.3.2.3 References
Garlan et al. (1997) Garlan et al. (2000) Wile (1996)

2.3.3 AML

ARC Macro Language: AML is a robust programming language that allows you access to a
range of functionality, from automating common tasks in ARC/INFO, to creating complete
GUI-based, multithreaded applications.

16

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.3.1 Supported Formalisms

None

2.3.3.2 Supporting Tools
AML is implemented by the following tools:
¢ ArcGIS (see section 2.4.12)

2.3.3.3 References
2.3.4 ATL

«TODO: Provide rdfs:comment annotation assertion»

2.3.4.1 Supported Formalisms

None

2.3.4.2 Supporting Tools

None

2.3.4.3 References
2.3.5 AUTOSARLanguage (AUTomotive Open System ARchitecture)

«TODO: Provide rdfs:comment annotation assertion»

2.3.5.1 Supported Formalisms

None

2.3.5.2 Supporting Tools

None

2.3.5.3 References
2.3.6 Alloy

Alloy is a language for describing structures and a tool for exploring them. It has been used in a
wide range of applications from finding holes in security mechanisms to designing telephone
switching networks.

2.3.6.1 Supported Formalisms

None

2.3.6.2 Supporting Tools
Alloy is implemented by the following tools:

* AlloyTool (see section 2.4.10)

2.3.6.3 References
2.3.7 Artisan

Support probabilities on the transitions and interruptible area

2.3.7.1 Supported Formalisms

None

17

2. Structured Catalog of Modeling Languages and Tools

2.3.7.2 Supporting Tools

None

2.3.7.3 References
2.3.8 AsmlL (Abstract State Machine Language)

AsmlL is an industrial-strength executable specification language. It can be used at any stage
of the programming process: design, coding, or testing. It is fully integrated into the Microsoft
.NET environment: AsmL models can interoperate with any other .NET assembly, no matter
what source language it is written in. AsmL uses XML and Word for literate specifications.

2.3.8.1 Supported Formalisms

None

2.3.8.2 Supporting Tools

None

2.3.8.3 References
2.3.9 Asmetal
Asmetal is the language used for the ASMs.

2.3.9.1 Supported Formalisms
Asmetal. is based on the following formalisms:

¢ AbstractStateMachines (see section 2.2.1)

2.3.9.2 Supporting Tools
Asmetal is implemented by the following tools:

¢ Asmeta (see section 2.4.13)

2.3.9.3 References
2.3.10 BlockDiagram

Block diagrams allow you to graphically represent the mathematical relationships between sig-
nals in a system. They are especially suited to model control systems. In 20-sim a large library
of block diagram elements is available. The elements are displayed in the Editor by icons. You
can create block diagram models by dragging the elements to the Editor and making the proper
connections between the elements. 20-sim allows you to create user defined block diagram el-
ements with an arbitrary number of input and output signals.

2.3.10.1 Supported Formalisms

None

2.3.10.2 Supporting Tools
BlockDiagram is implemented by the following tools:

¢ 20Sim (see section 2.4.1)

18

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.10.3 References
2.3.11 BondGraph

Bond graphs are a network-like description of physical systems in terms of ideal physical pro-
cesses. With the bond graph method, the system characteristics are split-up into an (imaginary)
set of separate elements. Each element describes an idealized physical process. To facilitate
drawing of bond graphs, the common elements are denoted by special symbols.

2.3.11.1 Supported Formalisms

None

2.3.11.2 Supporting Tools
BondGraph is implemented by the following tools:

¢ 20Sim (see section 2.4.1)

2.3.11.3 References
2.3.12 C

«TODO: Provide rdfs:comment annotation assertion»

2.3.12.1 Supported Formalisms

None

2.3.12.2 Supporting Tools

None

2.3.12.3 References
2.3.13 C++

«TODO: Provide rdfs:comment annotation assertion»

2.3.13.1 Supported Formalisms

None

2.3.13.2 Supporting Tools

None

2.3.13.3 References
2.3.14 CCSL (Clock Constraint Specification Language)

CCSLusages: - A syntax to specify time semantics explicitly and formally - A language to express
timed requirements

2.3.14.1 Supported Formalisms

None

2.3.14.2 Supporting Tools

None

19

2. Structured Catalog of Modeling Languages and Tools

2.3.14.3 References
2.3.15 CDL (Context Description Language)

CDL aims at formalizing the context with scenarios and temporal properties using property
patterns. This DSML is based on UML 2. A CDL model describes, on the one hand, the context
using activity and sequence diagrams and, on the other hand, the properties to be checked
using property patterns. The originality of CDL is its ability to link each expressed property to
a context diagram, i.e. a limited scope of the system behavior. allows contexts with scenarios
and temporal properties using property patterns to be specified.

2.3.15.1 Supported Formalisms

None

2.3.15.2 Supporting Tools

CDL is implemented by the following tools:
* OBPExplorer (see section 2.4.39)
e TINA_SEIT (see section 2.4.65)

2.3.15.3 References
2.3.16 CTL (Computation Tree Logic)

Computation tree logic (CTL) is a branching-time logic, meaning that its model of time is a
tree-like structure in which the future is not determined; there are different paths in the fu-
ture, any one of which might be an actual path that is realized. It is used in formal verification
of software or hardware artifacts, typically by software applications known as model checkers
which determine if a given artifact possesses safety or liveness properties. For example, CTL
can specify that when some initial condition is satisfied (e.g., all program variables are positive
or no cars on a highway straddle two lanes), then all possible executions of a program avoid
some undesirable condition (e.g., dividing a number by zero or two cars colliding on a high-
way).

2.3.16.1 Supported Formalisms

CTL is based on the following formalisms:

* CTLSpecification (see section 2.2.3)

2.3.16.2 Supporting Tools

None

2.3.16.3 References
2.3.17 Clafer

Atlas Model Management Architecture

2.3.17.1 Supported Formalisms

None

2.3.17.2 Supporting Tools

None

20

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.17.3 References
2.3.18 CoCoME

The Common Component Modelling Example" Component-based software development
(CBSD) has changed the current paradigm of software development. As systems become more
and more complex, CBSD is to a greater extend applied in industry and plays a more and
more important role in research. In order to leverage CBSD to build correct and dependable
component-based systems, research has developed various formal and semi-formal compo-
nent models. However, many of these component models like DisCComp, Fractal, Focus, or
UML Extensions concentrate on different yet related aspects of component modelling. These
are for instance communication issues or performance aspects. This hinders their validation
for practical usage. Therefore, the main goal of the research seminar is to evaluate and com-
pare the practical appliance of existing component models using a common component-based
system as modelling example.

2.3.18.1 Supported Formalisms

None

2.3.18.2 Supporting Tools

None

2.3.18.3 References

2.3.19 DEECoDSL (Dependable Emergent Ensembles of Component-Domain Specific Lan-
guage)

«TODO: Provide rdfs:comment annotation assertion»

2.3.19.1 Supported Formalisms

None

2.3.19.2 Supporting Tools

None

2.3.19.3 References
2.3.20 DSLTrans

«TODO: Provide rdfs:comment annotation assertion»

2.3.20.1 Supported Formalisms

None

2.3.20.2 Supporting Tools
DSLTIrans is implemented by the following tools:
¢ SyVoLT (see section 2.4.63)

2.3.20.3 References
2.3.21 EAST-ADL

Itis an Architecture Description Language (ADL) for automotive embedded systems, developed
in several European research projects.

21

2. Structured Catalog of Modeling Languages and Tools

2.3.21.1 Supported Formalisms

None

2.3.21.2 Supporting Tools

None

2.3.21.3 References
2.3.22 ECL (Epsilon Comparison Language)

Arule-based language for discovering correspondences (matches) between elements of models
of diverse metamodels.

2.3.22.1 Supported Formalisms

None

2.3.22.2 Supporting Tools
ECL is implemented by the following tools:

* EclipseEpsilon (see section 2.4.26)

2.3.22.3 References
2.3.23 EGL (Epsilon Generation Language)

A template-based model-to-text language for generating code, documentation and other tex-
tual artefacts from models.

2.3.23.1 Supported Formalisms

None

2.3.23.2 Supporting Tools
EGL is implemented by the following tools:

¢ EclipseEpsilon (see section 2.4.26)

2.3.23.3 References
2.3.24 EML (Epsilon Merging Language)

EML is a hybrid, rule-based language for merging homogeneous or heterogeneous models. As
a merging language requires all the features of a transformation language (merging model A
with an empty model into model B is equivalent to transforming A->B), EML reuses the syntax
and semantics of ETL and extends it with concepts specific to model merging.

2.3.24.1 Supported Formalisms

None

2.3.24.2 Supporting Tools
EML is implemented by the following tools:

* EclipseEpsilon (see section 2.4.26)

22

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.24.3 References

2.3.25 EOL (Epsilon Object Language)

An imperative model-oriented scripting language that combines the procedural style of
Javascript with the powerful model querying capabilities of OCL.

2.3.25.1 Supported Formalisms

None

2.3.25.2 Supporting Tools
EOL is implemented by the following tools:

¢ EclipseEpsilon (see section 2.4.26)

2.3.25.3 References
2.3.26 ERD (Entity Relationship Diagram)

An entity relationship diagram (ERD) shows the relationships of entity sets stored in a database.
An entity in this context is a component of data. In other words, ER diagrams illustrate the
logical structure of databases.

2.3.26.1 Supported Formalisms

None

2.3.26.2 Supporting Tools
ERD is implemented by the following tools:
* EclipseERD (see section 2.4.25)

2.3.26.3 References
2.3.27 ETL (Epsilon Transformation Language)

Arule-based model-to-model transformation language that supports transforming many input
to many output models, rule inheritance,lazy and greedy rules.

2.3.27.1 Supported Formalisms

None

2.3.27.2 Supporting Tools

ETL is implemented by the following tools:
¢ EclipseEpsilon (see section 2.4.26)

2.3.27.3 References

2.3.28 EVL (Epsilon Validation Language)

A model validation language that supports both intra and inter-model consistency checking,
and provides out-of-the-box integration with EMF & GMF editors.

2.3.28.1 Supported Formalisms

None

2.3.28.2 Supporting Tools
EVL is implemented by the following tools:

23

2. Structured Catalog of Modeling Languages and Tools

¢ EclipseEpsilon (see section 2.4.26)

2.3.28.3 References

2.3.29 EWL (Epsilon Wizard Language)

Alanguage tailored for interactive in-place transformations on model elements selected by the
user. EWL provides out-of-the-box integration with EMF & GMF editors

2.3.29.1 Supported Formalisms

None

2.3.29.2 Supporting Tools
EWL is implemented by the following tools:

¢ EclipseEpsilon (see section 2.4.26)

2.3.29.3 References
2.3.30 EclipseEGL

EGL is a programming language conceptually similar to many common languages that have
come before it. The language borrows concepts familiar to anyone using statically typed lan-
guages like Java, COBOL, C, etc. However, it borrows a concept from UML (Universal Model-
ing Language) that is not typically found in statically typed programming language ? the con-
cept of Stereotype. In UML, stereotypes are used to tag UML elements with metadata (in this
case, metadata refers to information about the UML element, for example, information about a
UML element called a "class"). Constraints can be defined by stereotype definitions such that
elements stereotyped by the given stereotype must adhere to the defined constraints of that
stereotype. Stereotypes in UML are used as a lightweight mechanism to extend the standard
modeling concepts. Stereotypes in EGL are essentially the same idea and are used to extend
the basic EGL core language concepts.

2.3.30.1 Supported Formalisms

None

2.3.30.2 Supporting Tools

None

2.3.30.3 References
2.3.31 EpsilonFlock

Epsilon Flock is a model migration language built atop EOL, for updating models in response
to metamodel changes. Flock provides a rule-based transformation language for specifying
model migration strategies. A conservative copying algorithm automatically migrates model
values and elements that are not affected by the metamodel changes.

2.3.31.1 Supported Formalisms

None

2.3.31.2 Supporting Tools
EpsilonFlock is implemented by the following tools:

* EclipseEpsilon (see section 2.4.26)

24

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.31.3 References
2.3.32 FIACRE

Fiacre stands for "Format Intermif;diaire pour les Architectures de Composants Rif;partis Em-
barquigis", french for "Intermediate Format for the Embedded Distributed Component Archi-
tectures". Fiacre is a formally defined language for representing compositionaly both the be-
havioural and timing aspects of embedded and distributed systems for formal verification and
simulation purposes.
2.3.32.1 Supported Formalisms
FIACRE is based on the following formalisms:

¢ PetriNet (see section 2.2.24)

¢ PetriNetTimed (see section 2.2.29)

¢ TimedTransitionSystems (see section 2?)

2.3.32.2 Supporting Tools

FIACRE is implemented by the following tools:
* OBPExplorer (see section 2.4.39)
e TINA_SEILT (see section 2.4.65)

2.3.32.3 References
2.3.33 FUML (Foundational Subset for Executable UML Models)

This specification defines a subset of UML 2 and specifies foundational execution semantics
for it. This subset will be referred to as Foundational UML or f{UML. Conformance to this spec-
ification has two aspects: - Syntactic Conformance: A conforming model must be restricted to
the abstract syntax subset defined for f{UML. - Semantic Conformance: A conforming execution
tool must provide execution semantics for a conforming model consistent with the semantics
specified for f{UML.

2.3.33.1 Supported Formalisms

FUML is based on the following formalisms:

* EntityRelationship (see section 2.2.13)

2.3.33.2 Supporting Tools

None

2.3.33.3 References
2.3.34 IRM

IRM is a method and a corresponding model that allows for designing software-intensive
Cyber-Physical Systems (siCPS) with a focus on dependability aspects. IRM is tailored for sys-
tems consisting of ensembles of components (e.g. DEECo-based systems), and provides a way
to refine high-level system invariants into low-level system obligations, or equivalently to trace
low-level system obligations to their rationale at the requirements space.

2.3.34.1 Supported Formalisms

None

25

2. Structured Catalog of Modeling Languages and Tools

2.3.34.2 Supporting Tools

None

2.3.34.3 References
2.3.35 IRM-SA

IRM-SA is an extension to IRM that allows for introducing alternative decompositions in the
design. Each branch in an alternative decomposition corresponds to a different situation in the
environment (captured by one or more assumptions) that dictates a different design in order
for the parent invariant to be preserved.

2.3.35.1 Supported Formalisms

None

2.3.35.2 Supporting Tools
IRM-SA is implemented by the following tools:
e IRM-SATool (see section 2.4.30)

2.3.35.3 References
2.3.36 IconicDiagrams

Iconic diagrams or components are the building blocks of physical systems. They allow you
to enter models of physical systems graphically, similar to drawing an engineering scheme. In
20-sim a large library of iconic diagram elements is available. The elements are displayed in
the Editor by icons which look like the corresponding parts of the ideal physical model. You
can create models by dragging the elements to the Editor and making the proper connections
between the elements.

2.3.36.1 Supported Formalisms

None

2.3.36.2 Supporting Tools
IconicDiagrams is implemented by the following tools:

e 20Sim (see section 2.4.1)

2.3.36.3 References
2.3.37 Java

«TODO: Provide rdfs:comment annotation assertion»

2.3.37.1 Supported Formalisms

None

2.3.37.2 Supporting Tools

None

2.3.37.3 References
2.3.38 LTL (Linear Temporal Logic)

In logic, linear temporal logic or linear-time temporal logic (LTL) is a modal temporal logic with
modalities referring to time. In LTL, one can encode formulae about the future of paths, e.g.,
a condition will eventually be true, a condition will be true until another fact becomes true,

26

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

etc. It is a fragment of the more complex CTL*, which additionally allows branching time and
quantifiers. Subsequently LTL is sometimes called propositional temporal logic, abbreviated
PTL. Linear temporal logic (LTL) is a fragment of S1S.

2.3.38.1 Supported Formalisms

None

2.3.38.2 Supporting Tools

None

2.3.38.3 References
2.3.39 MARTE (Modeling and Analysis of Real-Time and Embedded systems)

This specification of a UML profile adds capabilities to UML for model-driven development
of Real Time and Embedded Systems (RTES). This extension, called the UML profile for
MARTE (in short MARTE for Modeling and Analysis of Real-Time and Embedded systems),
provides support for specification, design, and verification/validation stages. This new pro-
file is intended to replace the existing UML Profile for Schedulability, Performance and Time
(formal/03-09-01).

2.3.39.1 Supported Formalisms

MARTE is based on the following formalisms:

* EntityRelationship (see section 2.2.13)

2.3.39.2 Supporting Tools

None

2.3.39.3 References
2.3.40 MTL (Model to Text Language)

«TODO: Provide rdfs:comment annotation assertion»

2.3.40.1 Supported Formalisms

None

2.3.40.2 Supporting Tools
MTL is implemented by the following tools:

e Acceleo (see section 2.4.8)

2.3.40.3 References
2.3.41 MessagesDescriptionLanguage

ROS uses a simplified messages description language for describing the data values (aka mes-
sages) that ROS nodes publish. This description makes it easy for ROS tools to automatically
generate source code for the message type in several target languages. Message descriptions
are stored in .msg files in the msg/ subdirectory of a ROS package.

2.3.41.1 Supported Formalisms
MessagesDescriptionLanguage is based on the following formalisms:

* MessageDescriptionSpecification (see section 2.2.23)

27

2. Structured Catalog of Modeling Languages and Tools

2.3.41.2 Supporting Tools
MessagesDescriptionLanguage is implemented by the following tools:

¢ ROS (see section 2.4.51)

2.3.41.3 References
2.3.42 MetaH

Model tasks, subprograms, processes, and non-functional properties

2.3.42.1 Supported Formalisms

None

2.3.42.2 Supporting Tools

None

2.3.42.3 References
2.3.43 MoTiF

The Modular Timed Graph Transformation language (MoTif) allows to model and execute
model transformations. On the one hand, it provides a graphical user interface for the descrip-
tion of the graph transformation rules in a declarative way and on the other hand, a modelling
environment to define the control structure of the transformation.

2.3.43.1 Supported Formalisms

None

2.3.43.2 Supporting Tools
MoTiF is implemented by the following tools:
* AToM3 (see section 2.4.5)

2.3.43.3 References
2.3.44 Modelica

Modelica is an object-oriented, declarative, multi-domain modeling language for component-
oriented modeling of complex systems, e.g., systems containing mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power or process-oriented subcomponents.

2.3.44.1 Supported Formalisms

None

2.3.44.2 Supporting Tools

Modelica is implemented by the following tools:
* Dymola (see section 2.4.20)
e AMESim (see section 2.4.4)

¢ OpenModelica (see section 2.4.43)

28

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.44.3 References

2.3.45 ModelicaML

A UML Profile for Modelica Modelica Modeling Language (ModelicaML) is a graphical mod-
eling language for the description of time-continuous and time-discrete/event-based system
dynamics.

2.3.45.1 Supported Formalisms

None

2.3.45.2 Supporting Tools

None

2.3.45.3 References
2.3.46 NaturalLanguage

Such as plain text as we can see in use cases for example.

2.3.46.1 Supported Formalisms

None

2.3.46.2 Supporting Tools

None

2.3.46.3 References
2.3.47 NuSMVLanguage

«TODO: Provide rdfs:comment annotation assertion»

2.3.47.1 Supported Formalisms

None

2.3.47.2 Supporting Tools

None

2.3.47.3 References
2.3.48 OCL
Miguel Gouldo

The Object Constraint Language (OCL) is a declarative language for describing rules that apply
to Unified Modeling Language (UML) models developed at IBM and now part of the UML stan-
dard. Initially, OCL was only a formal specification language extension to UML. OCL may now
be used with any Meta-Object Facility (MOF) Object Management Group (OMG) meta-model,
including UML. The Object Constraint Language is a precise text language that provides con-
straint and object query expressions on any MOF model or meta-model that cannot otherwise
be expressed by diagrammatic notation. OCL is a key component of the new OMG standard
recommendation for transforming models, the Queries/Views/Transformations (QVT) specifi-
cation.

2.3.48.1 Supported Formalisms

None

29

2. Structured Catalog of Modeling Languages and Tools

2.3.48.2 Supporting Tools

The following tools support OCL:
* Eclipse OCL https://projects.eclipse.org/projects/modeling.mdt.ocl
* Papyrus http://www.eclipse.org/papyrus/

None

2.3.48.3 References
https://www.omg.org/spec/OCL/2.4/PDF

2.3.49 OMEGA2
Extension of UML

2.3.49.1 Supported Formalisms

None

2.3.49.2 Supporting Tools

None

2.3.49.3 References
2.3.50 OSATE2

«TODO: Provide rdfs:comment annotation assertion»

2.3.50.1 Supported Formalisms

None

2.3.50.2 Supporting Tools

None

2.3.50.3 References
2.3.51 PRISMLanguage

In order to construct and analyse a model with PRISM, it must be specified in the PRISM
language, a simple, state-based language, based on the Reactive Modules formalism of Alur
and Henzinger. This is used for all of the types of model that PRISM supports: discrete-time
Markov chains (DTMCs), continuous-time Markov chains (CTMCs), Markov decision processes
(MDPs) and probabilistic timed automata (PTAs). For background material on these models,
look at the pointers to resources on the PRISM web site.

2.3.51.1 Supported Formalisms

PRISMLanguage is based on the following formalisms:

e MarkovChains (see section 2.2.22)

¢ TimeAutomataPriced (see section 22)

2.3.51.2 Supporting Tools
PRISMLanguage is implemented by the following tools:
¢ PRISM (see section 2.4.46)

30

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.51.3 References
2.3.52 ParallelAssignmentLanguage

The input language of NuSMV is designed to allow the description of finite state systems that
range from completely synchronous to completely asynchronous. The NuSMV language (like
the language of SMV) provides for modular hierarchical descriptions and for the definition of
reusable components. The basic purpose of the NuSMV language is to describe (using expres-
sions in propositional calculus) the transition relation of a finite Kripke structure. This provides
a great deal of flexibility, but at the same time it can introduce danger of inconsistency.
2.3.52.1 Supported Formalisms

None

2.3.52.2 Supporting Tools
ParallelAssignmentLanguage is implemented by the following tools:

e NuSMYV (see section 2.4.38)

2.3.52.3 References
2.3.53 PetriNetLanguage

A Petri net (also known as a place/transition net or P/T net) is one of several mathematical
modeling languages for the description of distributed systems. A Petri net is a directed bipartite
graph, in which the nodes represent transitions (i.e. events that may occur, represented by bars)
and places (i.e. conditions, represented by circles). The directed arcs describe which places are
pre- and/or postconditions for which transitions (signified by arrows). Some sources state that
Petri nets were invented in August 1939 by Carl Adam Petri at the age of 13 for the purpose of
describing chemical processes.

Like industry standards such as UML activity diagrams, Business Process Model and Notation
and EPCs, Petri nets offer a graphical notation for stepwise processes that include choice, itera-
tion, and concurrent execution. Unlike these standards, Petri nets have an exact mathematical
definition of their execution semantics, with a well-developed mathematical theory for process
analysis.

2.3.53.1 Supported Formalisms
PetriNetLanguage is based on the following formalisms:
* PetriNetPrioritised (see section 2.2.27)
¢ PetriNet (see section 2.2.24)
¢ PetriNetStochastic (see section 2.2.28)
* PetriNetColoured (see section 2.2.25)
* PetriNetTimed (see section 2.2.29)

¢ PetriNetDualistic (see section 2.2.26)

2.3.53.2 Supporting Tools
PetriNetLanguage is implemented by the following tools:

¢ StrataGEM (see section 2.4.62)

31

2. Structured Catalog of Modeling Languages and Tools

2.3.53.3 References
2.3.54 ProMoBox

«TODO: Provide rdfs:comment annotation assertion»

2.3.54.1 Supported Formalisms

None

2.3.54.2 Supporting Tools

None

2.3.54.3 References
2.3.55 Promela

PROMELA (Process or Protocol Meta Language) is a verification modeling language introduced
by Gerard J. Holzmann. The language allows for the dynamic creation of concurrent processes
to model, for example, distributed systems. In PROMELA models, communication via message
channels can be defined to be synchronous (i.e., rendezvous), or asynchronous (i.e., buffered).
PROMELA models can be analyzed with the SPIN model checker, to verify that the modeled
system produces the desired behavior.

2.3.55.1 Supported Formalisms

None

2.3.55.2 Supporting Tools

Promela is implemented by the following tools:
¢ Spin (see section 2.4.60)

2.3.55.3 References

2.3.56 PtidyOS

«TODO: Provide rdfs:comment annotation assertion»

2.3.56.1 Supported Formalisms

None

2.3.56.2 Supporting Tools

None

2.3.56.3 References
2.3.57 QVT

«TODO: Provide rdfs:comment annotation assertion»

2.3.57.1 Supported Formalisms

None

2.3.57.2 Supporting Tools

None

32

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.57.3 References

2.3.58 Reo_Coordination_Language

a domain-specific language for programming and analyzing coordination protocols that com-
pose individual processes into full systems

2.3.58.1 Supported Formalisms

None

2.3.58.2 Supporting Tools

None

2.3.58.3 References
2.3.59 SMT_LIB

This website provides access to the following main artifacts of the initiative. - Documents de-
scribing the SMT-LIB input/output language for SMT solvers and its semantics; - Specifications
of background theories and logics; - A large library of input problems, or benchmarks, written
in the SMT-LIB language. - Links to SMT solvers and related tools and utilities

2.3.59.1 Supported Formalisms

SMT_LIB is based on the following formalisms:

* FirstOrderLogic (see section 2.2.16)

2.3.59.2 Supporting Tools
SMT_LIB is implemented by the following tools:
* 73 (see section 2.4.74)

2.3.59.3 References
2.3.60 STUML (Spatio-Temporal UML Statechart)

STUML statechart is an extension of MARTE statechart based on hybrid automata. Hybrid
automata bring a set of differential equations into MARTE to represent the continuous dynamic
behavior of the system.

2.3.60.1 Supported Formalisms

None

2.3.60.2 Supporting Tools

None

2.3.60.3 References
2.3.61 SimPL

Simpl is a tool for quickly and efficiently implementing domain-specific languages.

2.3.61.1 Supported Formalisms

None

2.3.61.2 Supporting Tools

None

33

add to
glossary

add nice
style for
the ++ in

C++

2. Structured Catalog of Modeling Languages and Tools

2.3.61.3 References
2.3.62 SimulinkLanguage

«TODO: Provide rdfs:comment annotation assertion»

2.3.62.1 Supported Formalisms
SimulinkLanguage is based on the following formalisms:

* DifferentialEquations (see section 2.2.10)

2.3.62.2 Supporting Tools
SimulinkLanguage is implemented by the following tools:

¢ Simulink (see section 2.4.59)

2.3.62.3 References
2.3.63 Stitch

alanguage for expressing adaptation strategies

2.3.63.1 Supported Formalisms

None

2.3.63.2 Supporting Tools
Stitch is implemented by the following tools:

¢ Rainbow (see section 2.4.53)

2.3.63.3 References
2.3.64 SysML (Systems Modeling Language)

The Systems Modeling Language (SysML) is general purpose visual modeling language for sys-
tems engineering applications. SysML is defined as a dialect of the Unified Modeling Language
(UML) standard, and supports the specification, analysis, design, verification and validation
of a broad range of systems and systems-of-systems. These systems may include hardware,
software, information, processes, personnel, and facilities.

2.3.64.1 Supported Formalisms

None

2.3.64.2 Supporting Tools
SysML is implemented by the following tools:

¢ TTool (see section 2.4.66)

2.3.64.3 References
2.3.65 SystemCSpecification
Reviewer(s): Stefan Klikovits, Dominique Blouin

SystemC, an IEEE standardised Hardware Description Language (HDL)language Contrary to
other HDLs (e.g. VHDL, Verilog), SystemC is not a complete language by itself, but rather a set
of C++classes and macros, that allow the representation of HDL-concepts. SystemC includes
built-in support for embedded concepts (e.g. mutex, semaphores, four-valued logic) and mea-
sures time in sub-second granularity (e.g. picosecond).

34

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

The use of as a basis provides SystemC with flexibility and adaptability and models are written
just as any other C++ code, specifying ports, signals and channels. Functionality is modelled
using methods, which execute at predefined events and threads, which run continuously un-
til they finish or temporarily seize execution (SystemC provides a simulation kernel that pre-
scribes cooperative multi-threading).

Most functional tooling and verification support focuses on the generation and verification
of Transaction-Level Modelling and Register-Transfer Level designs, which is too low-level for
large CPS purposes that focus on the combination of many components.

SystemC’s pragmatic approach as internal dsl is reflected in the absence of a formal semantics.
However, several proposals have been made such as 2 and ?, and there exist several approaches
to formally verify SystemC, as discussed in 2.

2.3.65.1 Implementing Languages
SystemCSpecification is a formalism for the following languages:

¢ SystemC (see section 2.3.66)

2.3.65.2 References

@bookBlack:2005:SGU:1197604, address = Secaucus, NJ, USA, title = SystemC: From the
Ground Up, isbn = 0-387-29240-3, publisher = Springer-Verlag New York, Inc., author = Black,
David C. and Donovan, Jack and Bunton, Bill and Keist, Anna, year = 2010

@bookzhang2002microelectrofluidic, series = Nano- and Microscience, Engineering, Technol-
ogy and Medicine, title = Microelectrofluidic Systems: Modeling and Simulation, isbn = 978-1-
4200-4049-4, publisher = CRC Press, author = Zhang, T. and Chakrabarty, K. and Fair, R.B., year
= 2002, Iccn = 2002019344

@inproceedingsRuf2001TheSS, title=The simulation semantics of systemC, author=Jiirgen Ruf
and Dirk W. Hoffmann and Joachim Gerlach and Thomas Kropf and Wolfgang Rosenstiel and
Wolfgang Miiller, booktitle=DATE, year=2001

@inproceedingsSalemFormalsemanticssynchronous2003, title = Formal Semantics of Syn-
chronous SystemC, doi = 10.1109/DATE.2003.1253637, booktitle = Automation and Test in Eu-
rope Conference and Exhibition 2003 Design, author = Salem, A., year = 2003, pages = 376-381

@inproceedingsDBLP:conf/syde/HerberG15, author = Paula Herber and Sabine Glesner, title
= Verification of Embedded Real-time Systems, booktitle = Formal Modeling and Verification
of Cyber-Physical Systems, 1st International Summer School on Methods and Tools for the
Design of Digital Systems, Bremen, Germany, September 2015, pages = 1-25, year = 2015,
crossref = DBLP:conf/syde/2015, url = https://doi.org/10.1007/978-3-658-09994-71,doi =
10.1007/978 —3 - 658 — 09994 — 71, timestamp = Thu,15Jun201721:34:07 4+ 0200, biburl =
https:/ldblp.orglrec/bibl/conf/sydel HerberG15,bibsource = dblpcomputersciencebibliography, ht

2.3.66 SystemC

SystemC is a set of C++ classes and macros which provide an event-driven simulation interface
(see also discrete event simulation). These facilities enable a designer to simulate concurrent
processes, each described using plain C++ syntax. SystemC processes can communicate in a
simulated real-time environment, using signals of all the datatypes offered by C++, some addi-
tional ones offered by the SystemC library, as well as user defined. In certain respects, SystemC
deliberately mimics the hardware description languages VHDL and Verilog, but is more aptly
described as a system-level modeling language.

35

2. Structured Catalog of Modeling Languages and Tools

2.3.66.1 Supported Formalisms

SystemC is based on the following formalisms:
¢ ElectricalLinearNetworks (see section 2.2.12)
* LinearSignalFlow (see section 2.2.21)
e DataFlowTimed (see section 2.2.9)

» SystemCSpecification (see section 2.3.65)

2.3.66.2 Supporting Tools
SystemC is implemented by the following tools:

e DIPLODOCUS (see section 2.4.19)

2.3.66.3 References
2.3.67 TCTL (Timed Computation Tree Logic)

Tt has Timed-constrained until

2.3.67.1 Supported Formalisms

None

2.3.67.2 Supporting Tools

None

2.3.67.3 References
2.3.68 TEPE (Temporal Property Expression Language)

TEPE is a graphical TEmporal Property Expression language based on SysML parametric dia-
grams. TEPE enriches the expressiveness of other common property languages in particular
with the notion of physical time and unordered signal reception.

2.3.68.1 Supported Formalisms

None

2.3.68.2 Supporting Tools
TEPE is implemented by the following tools:
¢ AVATAR (see section 2.4.7)

2.3.68.3 References
2.3.69 TimedTransitionSystemLanguage

«TODO: Provide rdfs:comment annotation assertion»

2.3.69.1 Supported Formalisms
TimedTransitionSystemLanguage is based on the following formalisms:

* TimedTransitionSystems (see section 2?)

2.3.69.2 Supporting Tools

None

36

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.3.69.3 References
2.3.70 UML (Unified Modeling Language)

The OMG’s Unified Modeling Language (UML) helps you specify, visualize, and document
models of software systems, including their structure and design, in a way that meets all of
these requirements.

2.3.70.1 Supported Formalisms
UML is based on the following formalisms:

* EntityRelationship (see section 2.2.13)

2.3.70.2 Supporting Tools
UML is implemented by the following tools:
¢ AVATAR (see section 2.4.7)

UMLMAST (see section 2.4.70)

* Papyrus (see section 2.4.48)

DIPLODOCUS (see section 2.4.19)
e TTool (see section 2.4.66)

2.3.70.3 References

2.3.71 UML-RT

«TODO: Provide rdfs:comment annotation assertion»

2.3.71.1 Supported Formalisms

None

2.3.71.2 Supporting Tools

None

2.3.71.3 References
2.3.72 UMLMARTE

«TODO: Provide rdfs:comment annotation assertion»

2.3.72.1 Supported Formalisms

None

2.3.72.2 Supporting Tools

None

2.3.72.3 References
2.3.73 UMLProfile

«TODO: Provide rdfs:comment annotation assertion»

2.3.73.1 Supported Formalisms

None

37

2. Structured Catalog of Modeling Languages and Tools

2.3.73.2 Supporting Tools
UMLProfile is implemented by the following tools:

¢ TTool (see section 2.4.66)

2.3.73.3 References
2.3.74 UMLSysML

«TODO: Provide rdfs:comment annotation assertion»

2.3.74.1 Supported Formalisms

None

2.3.74.2 Supporting Tools

None

2.3.74.3 References
2.3.75 UPPAALRequirementSpecificationLanguage

It describes the languages used when defining UPPAAL system models, and requirement speci-
fications. -The System Description section describes the language used when defining a system
model. -The Requirements Specification section describes the language used when specifying
requirements on the system model. -The Expressions section describes the syntax for expres-
sions in the two languages.

2.3.75.1 Supported Formalisms

UPPAALRequirementSpecificationLanguage is based on the following formalisms:

e TCTL (see section 2?)

2.3.75.2 Supporting Tools
UPPAALRequirementSpecificationLanguage is implemented by the following tools:
* UPPAAL (see section 2.4.71)

2.3.75.3 References
2.3.76 UPPAALSMCSpecificationLanguage
Defines the query formula with probability

2.3.76.1 Supported Formalisms
UPPAALSMCSpecificationLanguage is based on the following formalisms:

¢ TimedAutomataStochastic (see section 22)

2.3.76.2 Supporting Tools
UPPAALSMCSpecificationLanguage is implemented by the following tools:
¢ UppaalSMC (see section 2.4.72)

2.3.76.3 References
2.3.77 VDM-SL

VDM models are expressed in a specification language (VDM-SL) that supports the description
of data and functionality. Data are defined by means of types built using constructors that

38

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

define structured data and collections such as sets, sequences and mappings from basic values
such as Booleans and numbers. These types are very abstract, allowing the user to add any
relevant constraints as data type invariants. Functionality is defined in terms of operations over
these data types. Operations can be defined implicitly by preconditions and postconditions
that characterize their behavior, or explicitly by means of specific algorithms. An extension
of VDM-SL, called VDM++, supports object-oriented structuring of models and permits direct
modeling of concurrency.

2.3.77.1 Supported Formalisms

None

2.3.77.2 Supporting Tools
VDMS-SL is implemented by the following tools:
¢ Overture (see section 2.4.44)

¢ Crescendo (see section 2.4.17)

2.3.77.3 References
2.3.78 Xtend

«TODO: Provide rdfs:comment annotation assertion»

2.3.78.1 Supported Formalisms

None

2.3.78.2 Supporting Tools

None

2.3.78.3 References
2.3.79 xtext

«TODO: Provide rdfs:comment annotation assertion»

2.3.79.1 Supported Formalisms

None

2.3.79.2 Supporting Tools

None

2.3.79.3 References
2.4 Tools

The following subsections present the most commonly used tools for CPS development.

2.4.1 20Sim

20-sim is a modeling and simulation program for mechatronic systems. With 20-sim you can
enter model graphically, similar to drawing an engineering scheme. With these models you
can simulate and analyze the behavior of multi-domain dynamic systems and create control
systems. You can even generate C-code and run this code on hardware for rapid prototyping
and HIL-simulation.

39

2. Structured Catalog of Modeling Languages and Tools

2.4.1.1 Supported Languages

None

2.4.1.2 References
2.4.2 AADLInspector

AADL Inspector is a model processing framework for AADL. Its aim is to provide an easy to use
and extensible tool to perform static and dynamic analysis of AADL architectures, and to easily
connect any AADL compliant verification tool or code generator.

2.4.2.1 Supported Languages

None

2.4.2.2 References
2.4.3 AF3

AF3is a powerful open-source (Apache License) tool to develop embedded systems using mod-
els from the requirements to the hardware architecture, passing by the design of the logical ar-
chitecture, the deployment and the scheduling. AF3 provides advanced features to support the
user ensuring the quality of his/her system:formal analyses, synthesis methods, space explo-
ration visualization...

2.4.3.1 Supported Languages

None

2.4.3.2 References
2.4.4 AMESim (AMESim (Advanced Modeling Environment for Simulations))

AMESim stands for Advanced Modeling Environment for performing Simulations of engineer-
ing systems. It is based on an intuitive graphical interface in which the system is displayed
throughout the simulation process.

2.4.4.1 Supported Languages

None

2.4.4.2 References
2.4.5 AToM3

AToMs3 is a tool for multi-paradigm modelling under development at the Modelling, Simulation
and Design Lab (MSDL) in the School of Computer Science of McGill University. It is developed
in close collaboration with Prof. Juan de Lara of the School of Computer Science, Universidad
Auti€;noma de Madrid (UAM), Spain. AToM3 stands for “A Tool for Multi-formalism and Meta-
Modelling”.

2.4.5.1 Supported Languages

None

2.4.5.2 References
2.4.6 AToMPM

AToMPM stands for "A Tool for Multi-Paradigm Modeling". It is a research framework from
which you can generate domain-specific modeling web-based tools that run on the cloud.
AToMPM is an open-source framework for designing DSML environements, performing model

40

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

transformations, and manipulating and managing models. It runs completely over the web,
making it independent from any operating system, platform, or device it may execute on.
AToMPM follows the philosophy of modeling everything explicitly, at the right level of abstrac-
tion(s), using the most appropriate formalism(s) and process(es), being completely modeled
by itself.

2.4.6.1 Supported Languages

None

2.4.6.2 References

2.4.7 AVATAR (AVATAR stands for Automated Verification of reAl Time softwARe.)
AVATAR stands for Automated Verification of reAl Time softwARe.

AVATAR targets the modeling and formal verification of real-time embedded systems.

The AVATAR profile reuses eight of the SysML diagrams (Package diagrams are not supported).
AVATAR supports the following methodological phases:

Requirement capture. Requirements and properties are structured using AVATAR Requirement
Diagrams. At this step, properties are just defined with a specific label.

Assumption modeling. Assumptions of system may be captured with an assumption modeling
diagram, based on a SysML requirement diagram.

System analysis. A system may be analyzed using usual UML diagrams, such as Use Case Di-
agrams, Interaction Overview Diagrams (Supported by UML2, not by SysML) and Sequence
Diagrams.

System design. The system is designed in terms of communicating SysML blocks described in
an AVATAR Block Diagram, and in terms of behaviors described with AVATAR State Machines.

Property modeling. The formal semantics of properties is defined within TEPE Parametric Di-
agrams (PDs). Since TEPE PDs involve elements defined in system design (e.g, a given integer
attribute of a block), TEPE PDs may be defined only after a first system design has been per-
formed.

Formal verification can be conducted over the system design, and for each testcase defined in
the Requirement Diagram.

Code generation can finally be used to generate a fully executable code. The latter can be com-
piled and executed on the SoCLib prototyping platform directly from TTool, or executed on
your local host if the latter supports gcc and POSIX.

2.4.7.1 Supported Languages

None

2.4.7.2 References
2.4.8 Acceleo

Acceleo is a pragmatic implementation of the Object Management Group (OMG) MOF Model
to Text Language (MTL) standard.

2.4.8.1 Supported Languages

None

41

.' 2. Structured Catalog of Modeling Languages and Tools

2.4.8.2 References
2.4.9 AcmeStudio
Reviewer(s): Miguel GoulAco

AcmeStudio is a customizable editing environment and visualization tool for software architec-
tural designs based on the Acme architectural description language (ADL). With AcmeStudio,
you can define new Acme families and customize the environment to work with those families
by defining diagram styles. AcmeStudio is an adaptable front-end that may be used in a vari-
ety of modeling and analysis applications. AcmeStudio is implemented as a plugin for Eclipse
environment, an open source Java Integrated Development Environment. Eclipse provides a
plugin-environment allowing easy extensions of AcmeStudio with new analyses and function-
ality, and customization of new architectural environments tailored to a particular organiza-
tion.

2.4.9.1 Supported Languages

AcmeStudio supports the following languages:
* Acme (see section 2.3.2)

2.4.9.2 References

http://acme.able.cs.cmu.edu/AcmeStudio/

2.4.10 AlloyTool

Alloyig;s tool, the Alloy Analyzer, is a solver that takes the constraints of a model and finds
structures that satisfy them. It can be used both to explore the model by generating sample
structures, and to check properties of the model by generating counterexamples. Structures
are displayed graphically, and their appearance can be customized for the domain at hand.

2.4.10.1 Supported Languages

None

2.4.10.2 References
2.4.11 AnylLogic

AnyLogic is the only simulation tool that supports all the most common simulation methodolo-
gies in place today: System Dynamics, Process-centric (AKA Discrete Event), and Agent Based
modeling. The unique flexibility of the modeling language enables the user to capture the
complexity and heterogeneity of business, economic and social systems to any desired level
of detail. AnyLogicig;s graphical interface, tools, and library objects allow you to quickly model
diverse areas such as manufacturing and logistics, business processes, human resources, con-
sumer and patient behavior. The object-oriented model design paradigm supported by Any-
Logic provides for modular, hierarchical, and incremental construction of large models. Any-
Logic is a simulation software for the entire business lifecycle.

2.4.11.1 Supported Languages

None

42

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.4.11.2 References
2.4.12 ArcGIS

ArcGIS for Desktop is the key to realizing the advantage of location awareness. Collect and
manage data, create professional maps, perform traditional and advanced spatial analysis, and
solve real problems.

2.4.12.1 Supported Languages

None

2.4.12.2 References
2.4.13 Asmeta

This site is dedicated to the Abstract State Machine Metamodel (AsmM, in brief), a metamodel
for the Abstract State Machines (ASMs) formal method developed by following the guidelines
of the Model-Driven Engineering (MDE).

2.4.13.1 Supported Languages

None

2.4.13.2 References
2.4.14 CHESS

Distributed dependable real-time embedded software systems, like Satellite on board software,
are becoming increasingly complex due to the demand for extended functionalities or the reuse
of legacy code and components. Model-Driven Engineering (MDE) approaches are good solu-
tions to help build such complex systems. Addressing domain specific modeling (like com-
ponent description and interaction, real-time constraints, ...) while keeping the flexibility and
generality offered by languages like UML is a challenge in a context where software must be
qualified according to safety and reliability standards.

2.4.14.1 Supported Languages

None

2.4.14.2 References
2.4.15 COMSOL

Simulation Tool for Electrical, Mechanical, Fluid Flow, and Chemical Applications

2.4.15.1 Supported Languages

None

2.4.15.2 References
2.4.16 Capella

Much more than just yet another modelling tool, Capella is a model-based engineering solu-
tion that has been successfully deployed in a wide variety of industrial contexts. Based on a
graphical modelling workbench, it provides systems, software and hardware architects with
rich methodological guidance relying on Arcadia, a comprehensive model-based engineering
method.

2.4.16.1 Supported Languages

None

43

2. Structured Catalog of Modeling Languages and Tools

2.4.16.2 References
2.4.17 Crescendo
The Crescendo Tool is an open-source tool originally developed in the EU DESTECS (Design

Support and Tooling for Embedded Control Software) research project. The focus is on using
co-simulation to design and modelling cyber-physical systems. The tool is based on the Over-
ture platform and Controllab’s 20-sim.

2.4.17.1 Supported Languages

None

2.4.17.2 References
2.4.18 CyPhySim
CyPhySim is a Cyber-Physical Simulator based on Ptolemy II.

2.4.18.1 Supported Languages

None

2.4.18.2 References
2.4.19 DIPLODOCUS

DIPLODOCUS stands for Deslgn sPace exLoration based on fOrmal Description teChniques,
Uml and SystemC.

Basically, DIPLODOCUS targets the partitioning of Systems-on-Chip. Partitioning a system
means finding the best candidate software and hardware architecture for executing a set of
functions. This selection of architecture is thus made according to given criteria, e.g., cost,
power consumption, performance, etc..

DIPLODOCUS supports the Y-Chart approach, i.e., the partitioning is done as follows:

Application modeling: functions of the system are first modeled. Functions might later be soft-
ware or hardware implemented.

Architecture modeling: candidate hardware architectures are modeled in terms of
parametrized nodes: execution nodes (CPU, hardware accelerators), communication nodes
(buses, bridges) and storage nodes (memories).

Mapping modeling: functions are mapped onto a given candidate architecture, i.e. functions
are allocate dto either CPUs or hardware accelerators, and communication between functions
are allocated to communication and storage nodes.

Moreover, DIPLODOCUS works at a high level of abstraction, and offers non-deterministic op-
erators: this is thus very fast to model a first system, and evaluate different mappings for these
functions. Moreover, all is graphical (UML). Last but not least, formal proofs and performance
evaluation by simulation can be done at the push of a button, directly from UML diagrams.
2.4.19.1 Supported Languages

None

2.4.19.2 References
2.4.20 Dymola

Dymola is a physical modelling and simulation tool, used for model based design of complex
engineering systems.

44

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.4.20.1 Supported Languages

None

2.4.20.2 References
2.4.21 EBTresos

«TODO: Provide rdfs:comment annotation assertion»

2.4.21.1 Supported Languages

None

2.4.21.2 References
2.4.22 ESMoL

Is a design language that includes the discrete-time subset of Simulink and Stateflow as sub-
modeling languages, but it extends those with modeling constructs for componentization, plat-
form modeling, and deployment modeling.

2.4.22.1 Supported Languages

None

2.4.22.2 References
2.4.23 EclipseEDT

It is tool for EGL EGL, originally developed by IBM, is a programming technology designed to
meet the challenges of modern, multi-platform application development by providing a com-
mon language and programming model across languages, frameworks, and runtime platforms.
The language borrows concepts familiar to anyone using statically typed languages like Java,
COBOL, C, etc. However, it borrows the concept of Stereotype from UML (Universal Modeling
Language) that is not typically found in statically typed programming languages.

In a nutshell, EGL is a higher-level, universal application development language.

2.4.23.1 Supported Languages

None

2.4.23.2 References
2.4.24 EclipseEMF

The EMF project is a modeling framework and code generation facility for building tools and
other applications based on a structured data model. From a model specification described in
XMI, EMF provides tools and runtime support to produce a set of Java classes for the model,
along with a set of adapter classes that enable viewing and command-based editing of the
model, and a basic editor.

2.4.24.1 Supported Languages

None

2.4.24.2 References
2.4.25 EclipseERD

a database design tool that provides graphical representation of database tables, their columns
and inter-relationships.

45

2. Structured Catalog of Modeling Languages and Tools

2.4.25.1 Supported Languages

None

2.4.25.2 References
2.4.26 EclipseEpsilon

Epsilon is a family of languages and tools for code generation, model-to-model transformation,
model validation, comparison, migration and refactoring that work out of the box with EMF
and other types of models.

2.4.26.1 Supported Languages

None

2.4.26.2 References
2.4.27 FCM

Flexible Component Model : profile to annotate port, connectors, and components

2.4.27.1 Supported Languages

None

2.4.27.2 References

2.4.28 FOMA

The FOAM tool allows users to capture behaviour in use-cases using annotations and to verify
various temporal constraints.

2.4.28.1 Supported Languages

None

2.4.28.2 References
TODO: add natural language

2.4.29 GEMOCStudio
The GEMOC Studio is an eclipse package that contains components supporting the GEMOC

methodology for building and composing executable Domain-Specific Modeling Languages
(DSMLs).
2.4.29.1 Supported Languages

None

2.4.29.2 References
2.4.30 IRM-SATool

The IRM-SA design tool is part of the IRM-SA toolchain and can be used to create IRM-SA mod-
els. It relies on Eclipse’s EMF and GMF technologies and on Epsilon modeling languages for the
tasks of model manipulation and model tranformation.

2.4.30.1 Supported Languages

None

46

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.4.30.2 References
2.4.31 Kronos

Kronos is a model-checker for timed automata, that can minimize the region graph of a timed
automaton as described in. - KRONOS is a tool developed with the aim to verify complex real-
time systems. - In KRONOS, components of real-time systems are modeled by timed automata
and the correctness requirements are expressed in the real-time temporal logic TCTL. - KRO-
NOS checks whether a timed automaton satisfies a TCTL-formula. - KRONOS is freely dis-
tributed to academic institutions for non-profit use.

2.4.31.1 Supported Languages

None

2.4.31.2 References
2.4.32 LTSA

Labelled Transition System Analyser: LTSA is a verification tool for concurrent systems. It me-
chanically checks that the specification of a concurrent system satisfies the properties required
of its behaviour. In addition, LTSA supports specification animation to facilitate interactive
exploration of system behaviour.
2.4.32.1 Supported Languages

None

2.4.32.2 References
2.4.33 MASSIF

Massif is Matlab Simulink Integration Framework for Eclipse. Its purpose is to convert Simulink
models to Eclipse-EMF models, and vice versa. This guide introduces the main features of the
software for end-users. It also contains illustrative screenshots in order to ease the learning
process and to show configuration settings.

2.4.33.1 Supported Languages

None

2.4.33.2 References
2.4.34 MAST

MAST is an open-source suite of tools to perform schedulability analysis of real-time dis-
tributed systems that assesses a rich variety of timing requirements. Via sensitivity analysis,
you will know how far or close the system is from meeting those requirements. MAST uses a
versatile and composable input model for the real-time behavior of the modules and platforms
that form your system.

2.4.34.1 Supported Languages

None

2.4.34.2 References
2.4.35 MATSIim

MATSim is an open-source framework to implement large-scale agent-based transport simu-
lations.

47

2. Structured Catalog of Modeling Languages and Tools

2.4.35.1 Supported Languages

None

2.4.35.2 References
2.4.36 MoDeS

«TODO: Provide rdfs:comment annotation assertion»

2.4.36.1 Supported Languages

None

2.4.36.2 References
2.4.37 MyCCM-Hi

«TODO: Provide rdfs:comment annotation assertion»

2.4.37.1 Supported Languages

None

2.4.37.2 References
2.4.38 NuSMV

NuSMV is a symbolic model checker developed as a joint project between: -The Embedded Sys-
tems Unit in the Center for Information Technology at FBK-IRST -The Model Checking group
at Carnegie Mellon University , the Mechanized Reasoning Group at University of Genova -The
Mechanized Reasoning Group at University of Trento. NuSMV is a reimplementation and ex-
tension of SMV, the first model checker based on BDDs. NuSMV has been designed to be an
open architecture for model checking, which can be reliably used for the verification of indus-
trial designs, as a core for custom verification tools, as a testbed for formal verification tech-
niques, and applied to other research areas. NuSMV2, combines BDD-based model checking
component that exploits the CUDD library developed by Fabio Somenzi at Colorado Univer-
sity and SAT-based model checking component that includes an RBC-based Bounded Model
Checker, which can be connected to the Minisat SAT Solver and/or to the ZChaff SAT Solver.
The University of Genova has contributed SIM, a state-of-the-art SAT solver used until version
2.5.0, and the RBC package use in the Bounded Model Checking algorithms.

2.4.38.1 Supported Languages

None

2.4.38.2 References
2.4.39 OBPExplorer

OBP is an implementation of a CDL language translation in terms of formal languages. It takes
as input a CDL model and generates a set of FIACRE programs after contexts splitting. OBP
leverages existing academic simulators and model checkers, as TINA [LAAS] or OBP-Explorer
[ENSTA-Bretagne].

2.4.39.1 Supported Languages

None

48

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.4.39.2 References

2.4.40 OMNet++

OMNeT++ is an extensible, modular, component-based C++ simulation library and framework,
primarily for building network simulators.

2.4.40.1 Supported Languages

None

2.4.40.2 References

2.4.41 OSATE

Osate 2 is an open-source tool platform to support AADL v2. In January 2012 correction to a
number of errata to AADL v2 have been approved.

2.4.41.1 Supported Languages

None

2.4.41.2 References

2.4.42 Ocarina

Ocarina is a stand-alone AADL model processor, written in Ada. It is distributed under the
GPLv3 plus runtime exception.

2.4.42.1 Supported Languages

None

2.4.42.2 References
2.4.43 OpenModelica

OPENMODELICA is an open-source Modelica-based modeling and simulation environment
intended for industrial and academic usage. Its long-term development is supported by a non-
profit organization ifj the Open Source Modelica Consortium (OSMC).

2.4.43.1 Supported Languages

None

2.4.43.2 References
2.4.44 Overture

The Overture tool (www.overturetool.org) represents the opening of these tools. This tool is
build on top of the Eclipse platform and it support all the VDM dialects: VDM-SL, VDM++and
VDM Real-Time (VDM-RT). Many different features are included but the emphasis is on vali-
dation of VDM models by interpretation of executable subsets. This also includes support for
DE notation VDM-RT used inside the Crescendo tool. Users who are only interested in Discrete
Event (DE) modelling using one or more of the VDM dialects should use this Overture tool.

2.4.44.1 Supported Languages

None

49

2. Structured Catalog of Modeling Languages and Tools

2.4.44.2 References
2.4.45 PHAVer

Polyhedral Hybrid Automaton Verifyer: PHAVer is a tool for verifying safety properies of hybrid
systems. It stands out from other tools with the following features: -exact and robust arith-
metic with unlimited precision, -on-the-fly over-approximation of piecewise affine dynam-
ics -improved algorithms and termination heuristics -support for compositional and assume-
guarantee reasoning.

2.4.45.1 Supported Languages

None

2.4.45.2 References
2.4.46 PRISM

PRISM is a probabilistic model checker, a tool for formal modelling and analysis of systems that
exhibit random or probabilistic behaviour. It has been used to analyse systems from many dif-
ferent application domains, including communication and multimedia protocols, randomised
distributed algorithms, security protocols, biological systems and many others.

2.4.46.1 Supported Languages

None

2.4.46.2 References
2.4.47 Palladio

Palladio is a software architecture simulation approach which analyses your software at the
model level for performance bottlenecks, scalability issues, reliability threats, and allows for a
subsequent optimisation. Palladio requires neither buying expensive executions environments
(servers, networks, or storage) nor fully implementing a software product. Construction rules
are automatically checked by Palladio and thus allow optimal software architectures without
costly trial-and-error-cycles. Like in other engineering disciplines, Palladio enables software
engineers to construct software straight and in the right way.

2.4.47.1 Supported Languages

None

2.4.47.2 References
2.4.48 Papyrus

To address any specific domain, every part of Papyrus may be customized: UML profile, model
explorer, diagram notation and style, properties views, palette and creation menus, and much
more...

2.4.48.1 Supported Languages

None

2.4.48.2 References
2.4.49 ProCom

Progress Component Model

50

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.4.49.1 Supported Languages

None

2.4.49.2 References
2.4.50 Ptolemy

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time, em-
bedded systems. The focus is on assembly of concurrent components. The key underlying
principle in the project is the use of well-defined models of computation that govern the in-
teraction between components. A major problem area being addressed is the use of hetero-
geneous mixtures of models of computation. A software system called Ptolemy II is being
constructed in Java. The work is conducted in the Center for Hybrid and Embedded Software
Systems (CHESS) in the Department of Electrical Engineering and Computer Sciences of the
University of California at Berkeley. The project is directed by Prof. Edward Lee. The project is
named after Claudius Ptolemaeus, the second century Greek astronomer, mathematician, and
geographer.

2.4.50.1 Supported Languages

None

2.4.50.2 References
2.4.51 ROS

ROS (Robot Operating System) provides libraries and tools to help software developers cre-
ate robot applications. It provides hardware abstraction, device drivers, libraries, visualizers,
message-passing, package management, and more. ROS is licensed under an open source,
BSD license.

2.4.51.1 Supported Languages

None

2.4.51.2 References
2.4.52 RSA

IBM Rational Software Architect is an advanced and comprehensive application design, mod-
eling and development tool for end-to-end software delivery. The latest version is updated with
the latest in design and modeling technologies, comprehensive support for emerging technolo-
gies around BPMN2, SOA and Java Enterprise Edition 5, and delivers the best of breed tooling
that integrates with IBM’s application lifecycle management solutions.

2.4.52.1 Supported Languages

None

2.4.52.2 References
2.4.53 Rainbow

To reduce the cost and improve the reliability of making changes to complex systems, we are
developing new technology supporting automated, dynamic system adaptation via architec-
tural models, explicit representation of user tasks, and performance-oriented run-time gauges.

2.4.53.1 Supported Languages

None

51

.' 2. Structured Catalog of Modeling Languages and Tools

2.4.53.2 References
2.4.54 Remes

Remes is a tool for formal modeling of embedded resources such as storage, energy, communi-
cation, and computation. The model is a state-machine based behavioral language with sup-
port for hierarchical modeling, resource annotations, continuous time, and notions of explicit
entry and exit points that make it suitable for component-based modeling of embedded sys-
tems. The analysis of RE ME S-based systems is centered around a weighted sum in which the
variables represent the amounts of consumed resources.

2.4.54.1 Supported Languages

None

2.4.54.2 References

Moussa Amrani

2.4.55 SCADE

SCADE Suite is a product line of the ANSYS Embedded software family of products and solu-
tions that empowers users with a Model-Based Development Environment for critical embed-
ded software. With native integration of the formally-defined Scade language, SCADE Suite is
the integrated design environment for critical applications spanning requirements manage-
ment, model-based design, simulation, verification, qualifiable/certified code generation, and
interoperability with other development tools and platforms.

2.4.55.1 Supported Languages

None

2.4.55.2 References
2.4.56 SOFA-HI

SOFA HI is an extension of the SOFA 2 component model, targeted at high-integrity real-time
embedded systems.

The key additions and differences of SOFA HI comparing to SOFA 2 include various restrictions
of the component model in order to make it more predictable and lightweight. For instance,
SOFA HI restricts dynamic architecture reconfigurations to dynamic component updates at
runtime only, while SOFA 2 supports more types of dynamic architecture reconfigurations). In
addition, while SOFA 2 does not consider any restricted computational model, SOFA HI con-
siders the Ravenscar Computational Model for local deployments, with an extension for dis-
tributed deployments.

2.4.56.1 Supported Languages

None

2.4.56.2 References
2.4.57 SPL

Stochastic Performance Logic Compared to functional unit testing, performance unit testing
is more difficult, partially because correctness criteria are more difficult to express for perfor-
mance than for functionality. Using the Stochastic Performance Logic (SPL), we aim to express
assertions on code performance in relative, hardware-independent terms. Using the perfor-
mance unit testing tools, these assertions can be automatically validated. Besides performance

52

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

unit testing, we experiment with using the performance unit tests to generate data for software
documentation extended with performance information. Other research includes incorporat-
ing performance awareness into adaptive applications.

2.4.57.1 Supported Languages

None

2.4.57.2 References
2.4.58 STOOD
STOOD is a Software design tool that complies to both AADL and HOOD standards. AADL

models can be defined to specify the complete host system of the applicative Software. Each
identified AADL Process can then be refined down to target source code thanks to the HOOD
detailed design process.

2.4.58.1 Supported Languages

None

2.4.58.2 References
2.4.59 Simulink

Simulink is a block diagram environment for multidomain simulation and Model-Based De-
sign. It supports simulation, automatic code generation, and continuous test and verification
of embedded systems.

Simulink provides a graphical editor, customizable block libraries, and solvers for modeling
and simulating dynamic systems. It is integrated with MATLAB, enabling you to incorporate
MATLAB algorithms into models and export simulation results to MATLAB for further analysis.
2.4.59.1 Supported Languages

None

2.4.59.2 References

2.4.60 Spin

Spin is a popular open-source software verification tool, used by thousands of people world-
wide. The tool can be used for the formal verification of multi-threaded software applications.
2.4.60.1 Supported Languages

None

2.4.60.2 References
2.4.61 Stage

Stage (ver 3.0.0 and above) is equipped to work as standalone, wherein controllers integrated
into stage enables motion, behaviour and processes for the robot(s). This tutorial discusses two
such stage controllers.

2.4.61.1 Supported Languages

None

53

2. Structured Catalog of Modeling Languages and Tools

2.4.61.2 References
2.4.62 StrataGEM (Strategy Generic Extensible Modelchecker)

Strategy Generic Extensible Modelchecker (StrataGEM), a tool aimed at the analysis of Petri
nets and other models of concurrency by means of symbolic model-checking techniques.
StrataGEM marries the well know concepts of Term Rewriting (TR) to the efficiency of Deci-
sion Diagrams (DDs). TR systems are a great way to describe the semantics of a system, being
readable and compact, but their direct implementation tends to be rather slow on large sets
of terms. On the other hand, DDs have demonstrated their efficiency for model-checking, but
translating a system semantics into efficient DDs operations is an expert’s matter. StrataGEM
describes the semantics of a system in terms of strategies over a TR system, and automatically
translates these rules into operations on DD to handle the model-checking. The ultimate goal
of StrataGEM is to become a verification framework for the different variants of Petri nets by
separating the semantics of the model from the computation that performs model-checking.

2.4.62.1 Supported Languages

None

2.4.62.2 References
2.4.63 SyVolLT

SyVOLT ((Symbolic Verifier of mOdeL Transformations), a plugin for the Eclipse development
environment for the verification of structural pre-/post-condition contracts on model transfor-
mations. The plugin allows the user to build transformations in our transformation language
DSLTrans using a visual editor. The pre-/post-condition contracts to be proved on the transfor-
mation can also be built in a similar interface.

2.4.63.1 Supported Languages

None

2.4.63.2 References
2.4.64 SystemDesk

System Architecture Software SystemDesk is a system architecture tool that provides sophis-
ticated and extensive support for modeling AUTOSAR architectures and systems for applica-
tion software. Additionally, SystemDesk generates virtual ECUs (V-ECUs) out of the application
software. The V-ECUs can be used as units under test with the dSPACE simulation platforms,
such as the PC-based simulation platform VEOS for validating the ECU software.

2.4.64.1 Supported Languages

None

2.4.64.2 References
2.4.65 TINA SELT (TIme petri Net Analyzer - State/Event LTL model checker)

Tina (TIme Petri Net Analyser)1 is a software environment for the editing and analysis of Petri
net and Time Petri net (Merlin and Farber 1976). In addition to the usual editing and analysis
facilities of such environments (computation of marking reachability sets, coverability trees,
semi-flows), Tina offers various abstract state space constructions that preserve specific classes
of properties of the concrete state spaces of the nets. These classes of properties may be gen-
eral properties (reachability properties, deadlock freeness, liveness), specific properties relying
on the linear structure of the concrete space state (linear time temporal logic properties, test

54

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

equivalence), or properties relying on its branching structure (branching time temporal logic
properties, bisimulation).
2.4.65.1 Supported Languages

None

2.4.65.2 References
2.4.66 TTool (tea-tool)

TTool (pronounced "tea-tool") is a toolkit dedicated to the edition of UML and SysML dia-
grams, and to the simulation and formal validation of those diagrams. TTool supports sev-
eral UML profiles, including: - DIPLODOCUS: UML profile dedicated to the partitioning of
Systems-on-Chip or embedded systems. - AVATAR: SysML-based environment for the model-
ing and formal verification of real-time embedded software.. - SysML-Sec: SysML-based envi-
ronment for the modeling and formal verification of real-time embedded systems with security
and safety issues

2.4.66.1 Supported Languages

None

2.4.66.2 References
2.4.67 TURTLE
Verification and Simulation of TURTLE (Real-Time UML) Diagrams

2.4.67.1 Supported Languages

None

2.4.67.2 References
2.4.68 TargetLink

Automatic production code generator TargetLink is a software system that generates produc-
tion code (C code) straight from the MATLAB/Simulink/Stateflow graphical development en-
vironment.

2.4.68.1 Supported Languages

None

2.4.68.2 References
2.4.69 UMLAnalyzer

«TODO: Provide rdfs:comment annotation assertion»

2.4.69.1 Supported Languages

None

2.4.69.2 References
2.4.70 UMLMAST

UML-MAST is a metodology and a set of tools for modeling and analizing object oriented real-
time systems expressed in UML. It is based on the concept of the "Mast RT View" of the system,
which describes in a qualitative and quantitative way the timing behavior, the real-time perfor-
mance constraints and relevant implementation parameters from the real-time perspective.

55

2. Structured Catalog of Modeling Languages and Tools

The use of a real-time view allows the designer building the real-time system model gradually
according to the evolution of the development process, feeding the analysis tools, and bringing
back into the model the relevant timing responses. Therefore UML-MAST follows the model
processing paradigm.

2.4.70.1 Supported Languages

None

2.4.70.2 References
2.4.71 UPPAAL

UPPAAL is an integrated tool environment for modeling, simulation and, verification of real-
time embedded systems. Typical application areas of UPPAAL includes real-time controllers
and communication protocols in particular, those where timing aspects are critical. Key fea-
tures of UPPAAL v.4 : - A graphical system editor allowing graphical descriptions of systems.
- A graphical simulator which provides graphical visualization. - A requirement specification
editor. - A model-checker for automatic verification. - Generation of diagnostic trace

2.4.71.1 Supported Languages

None

2.4.71.2 References
2.4.72 UppaalSMC (Statistical Model Checking Extension for the UPPAAL Toolset.)

Statistical Model Checking (SMC) refers to a series of techniques that monitor several runs of
the system with respect to some property, and then use results from the statistics to get an over-
all estimate of the correctness of the design. The approach has been applied to problems that
are far beyond the scope of existing model checkers. In fact, SMC gets widely accepted in vari-
ous research areas such as systems biology or software engineering, in particular for industrial
applications. There are several reasons for this success. First, it is very simple to implement,
understand and use (especially by industry, software engineers, and generally all people that
are not pure researchers but customers for our results and tools). Second, it requires little or no
extra modeling or specification effort, but simply an operational model of the system that can
be simulated and checked against properties. Third, the use of Statistics allows to approximate
undecidable problems. Finally, it is possible to easily distribute SMC.

2.4.72.1 Supported Languages

None

2.4.72.2 References
2.4.73 VIATRA

VIATRA: An Event-driven and Reactive Model Transformation Platform The VIATRA framework
supports the development of model transformations with specific focus on event-driven, re-
active transformations and offers a language to define transformations and a reactive trans-
formation engine to execute certain transformations upon changes in the underlying model.
Furthermore, the underlying incremental query engine, originating from the EMF-IncQuery
project is reusable in different scenarios not related to model transformations.

2.4.73.1 Supported Languages

None

56

e (o

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

2.4.73.2 References

2.4.74 73

73 is a low level tool. It is best used as a component in the context of other tools that require
solving logical formulas.

2.4.74.1 Supported Languages

None

2.4.74.2 References
2.4.75 Zen-RUCM
Zen-RUCM, built on top of RUCM, aims to tackle the challenges of requirement specifica-

tion and analysis in different application domains (e.g., real-time systems, distributed systems,
communication systems) and from various requirement specification concerns (e.g., variabil-
ity, Non-Functional Requirements (NFR), crosscutting concerns).

2.4.75.1 Supported Languages

None

2.4.75.2 References
2.4.76 eC3M (Embedded Component Container Connector Middleware)

eC3M (pronounce: e triple-C M) is a component based modeling / middleware approach that
is suitable for embedded and real-time applications. The application modeling is based on the
Flex-eWare component model (FCM). This component model is aligned with the OMG stan-
dard (D&QC), click here for more information on the component model.

2.4.76.1 Supported Languages

None

2.4.76.2 References
2.4.77 JDEECo

JDEECo framework is a prototype in java that illustrates basic DEECo concepts.

2.4.77.1 Supported Languages

None

2.4.77.2 References

57

3 Glossary of Terms for Cyber Physical Systems

For the glossary we were able to identify a list of terms presented in the two following Tables
3.1 and 3.2 that are important for MPM4CPS. As many terms are related or even included in
the ontology already, we plan to integrate them into the ontology model in the long run rather
the maintaining a separate source/representation, and generate this part of the document au-

tomatically.

term subterm

Heterogeneous systems

Multi-modal systems

Multi-controller systems

Logic-based switching systems

Discrete-event systems

Transition systems

Variable structure systems
Discontinuous/switched/non-smooth systems
Complementarity systems

Reset systems

Jump systems

Piecewise-affine systems

Mixed logical dynamical systems

Impulsive systems

Cyber-physical systems of systems
Cyber-physical networked embedded systems
Large-scale smart systems

Hybrid automata

Bond graphs

Petri nets
Complementarity models
Event-flow formulae
Bisimulations

Symbolic dynamics

Sliding motions

abstraction of energy in the system:
passivity
dissipativity

Stability

State space

State partition

Safety properties
Liveness properties
Deadnesss properties
Reachability
Correctness/consistency

Model checking

Theorem proving (deductive approach)
Falsification

Constraint satisfaction

Boolean satisfiability

Satisfiability modulo theories
Symbolic methods

Dynamically-aware verification
automated reasoning

Testing
Debugging

Controllability
Observability
Robustness
Practical stability

Operation modes

Adaptive control
Decentralized/hierarchical control
Optimal control

Feedback/feedforward
Closed loops

Environment
Sensors/actuators

Set points/control goals
Disturbances/perturbations
Parameter identification
Signal processing
Contingency/risk analysis

class

types of systems

modelling

analysis

verification properties

verification techniques

Validation

control properties

control strategies

control concepts

area of origion
dynamical systems theory

Verification

Control

Table 3.1: Terms for the glossary (1/2)

58

one

s

State-of-the-art on Current Formalisms used in Cyber-Physical Systems Development

term subterm

Chattering
Zeno behaviour
Sliding behaviour

Oscillations/limit cycles

Robustness

Resilience

Stability (different types)

Emergent behaviour

Phase transitions

Collective/group behaviour

Self-organization

Adaptive networks

Collaboration:
Cooperation
Competition
Swarming
Flocking
Consensus
Synchronization
Pinning control
Coupling

Agent-based systems
Swarm intelligence

Graph theory
Statistical physics

systems biology
financial markets
social systems
etc.

Syntax vs. Semantics

Cognitive gap to the domain
Suitability

Intent (general): ilities
Intent (of building models):
Intent -> Objectives
Validation vs. verification
Tolerance

Domain

Abstraction levels

Heterogeneity of ...
Megamodel
Autonomy

Emerging Properties
Unification
Non-functior usability)
Userin a CPS
Consistency
Composability
Semantic adaptation
System of Systems
Inductive

planning process of modeling
Variability

Sensitivity
Architecture
Deployment
X-in-the-loop

System of Systems
Smart objects

Planning at system level
governance

technical control
choreography
orchestration

Discontinuous/sliding bifurcations (border collision, corner bifurcations)

Strange/complex behaviours (chaos)

Observability/Visibility (black/grey/white box)

Visual vs. textual (or mixture) syntax
System vs. Environment (vs. controller)

Generality (general / domain-specific)

Properties that can be modeled (~ requirements)
requirements vs. design languages

Abstraction: available info vs. questions

Ontological vs. Linguistic (and consistency between them)
Consistency (wrt. set of properties)

class

dynamical behaviours

Other behaviors

Communication:

Topology:

application domains

Else

area of origion
Behavior

Table 3.2: Terms for the glossary (2/2)

59

4 Summary and Future Work

In this report on the State-of-the-art on Current Formalisms used in Cyber-Physical Systems
Development of Working Group1 (WG1) on Foundations of the ICT COST Action IC1404 Multi-
Paradigm Modelling for Cyber-Physical Systems (MPM4CPS), we first presented a catalog of
languages, formalisms, and tools in chapter 2. Then a glossary of terms for Cyber Physical
Systems has been presented in chapter 3.

Both the catalog and glossary still need to be improved as future work. For the catalog, the
documentation of each entry and the completeness of the catalog still have to be improved.
In addition, the three main categories of languages, formalisms and tools of the catalog better
populated, reviewed, and updated to reflect the finer classification provided by the ontology
from which they are generated. Finally, the presented glossary of terms for Cyber-Physical Sys-
tems is currently still incomplete and has to be reworked to cover all relevant terms and be
better linked to the ontologies.

60

Bibliography

Barros, E J. (2003), Dynamic Structure Multiparadigm Modeling and Simulation, ACM Trans.
Model. Comput. Simul., 13, 3, pp. 259-275, ISSN 1049-3301, doi:10.1145/937332.937335.
http://doi.acm.org/10.1145/937332.937335

Barros, E J. (2008), Semantics of Dynamic Structure Event-based Systems, in Proceedings of the
Second International Conference on Distributed Event-based Systems, ACM, New York, NY,
USA, DEBS ’08, pp. 245-252, ISBN 978-1-60558-090-6, d0i:10.1145/1385989.1386020.
http://doi.acm.org/10.1145/1385989.1386020

Borger, E. (2005), Abstract state machines and high-level system design and analysis,
Theoretical Computer Science, 336, 2, pp. 205 — 207, ISSN 0304-3975.

Broman, D., E. A. Lee, S. Tripakis and M. Térngren (2012), Viewpoints, Formalisms, Languages,
and Tools for Cyber-physical Systems, in Proceedings of the 6th International Workshop on
Multi-Paradigm Modeling, ACM, New York, NY, USA, MPM ’12, pp. 49-54, ISBN
978-1-4503-1805-1, doi:10.1145/2508443.2508452.
http://doi.acm.org/10.1145/2508443.2508452

Garlan, D., R. Monroe and D. Wile (1997), Acme: An architecture description interchange
language, in Proceedings of the 1997 conference of the Centre for Advanced Studies on
Collaborative research, IBM Press, p. 7.

Garlan, D., R. T. Monroe and D. Wile (2000), Acme: Architectural description of
component-based systems, in Foundations of component-based systems, Eds. G. T. Leavens
and M. Sitaraman, pp. 47-68.

Giese, H. and D. Blouin (2016), Framework to Relate / Combine Modeling Languages and
Techniques, Technical Report D1.2 (Version 1), ICT COST Action IC1404 Multi-Paradigm
Modelling for Cyber-Physical Systems (MPM4CPS).

Kleene, S. C. (2002), Mathematical Logic, Wiley.

Ruijters, E. and M. Stoelinga (2015), Fault tree analysis: A survey of the state-of-the-art in
modeling, analysis and tools, Computer Science Review, 15-16, pp. 29 — 62, ISSN 1574-0137,
doi:https://doi.org/10.1016/j.cosrev.2015.03.001.
http:
//www.sciencedirect.com/science/article/pii/S1574013715000027

Wile, D. (1996), Semantics for the Architecture Interchange Language, ACME, in Joint
Proceedings of the Second International Software Architecture Workshop (ISAW-2) and
International Workshop on Multiple Perspectives in Software Development (Viewpoints '96)
on SIGSOFT "96 Workshops, ACM, New York, NY, USA, ISAW '96, pp. 28-30, ISBN
0-89791-867-3, doi:10.1145/243327.243341.
http://doi.acm.org/10.1145/243327.243341

61

http://doi.acm.org/10.1145/937332.937335
http://doi.acm.org/10.1145/1385989.1386020
http://doi.acm.org/10.1145/2508443.2508452
http://www.sciencedirect.com/science/article/pii/S1574013715000027
http://www.sciencedirect.com/science/article/pii/S1574013715000027
http://doi.acm.org/10.1145/243327.243341

	Contents
	1 Introduction
	2 Structured Catalog of Modeling Languages and Tools
	2.1 Introduction
	2.2 Formalisms
	2.2.1 AbstractStateMachines
	2.2.1.1 Implementing Languages
	2.2.1.2 References

	2.2.2 BayesianNetworks
	2.2.2.1 Implementing Languages
	2.2.2.2 References

	2.2.3 CTLSpecification
	2.2.3.1 Implementing Languages
	2.2.3.2 References

	2.2.4 CausalBlockDiagrams
	2.2.4.1 Implementing Languages
	2.2.4.2 References

	2.2.5 CellularAutomata
	2.2.5.1 Implementing Languages
	2.2.5.2 References

	2.2.6 DEECo
	2.2.6.1 Implementing Languages
	2.2.6.2 References

	2.2.7 DEECoSpecification
	2.2.7.1 Implementing Languages
	2.2.7.2 References

	2.2.8 DataFlow
	2.2.8.1 Implementing Languages
	2.2.8.2 References

	2.2.9 DataFlowTimed
	2.2.9.1 Implementing Languages
	2.2.9.2 References

	2.2.10 DifferentialEquations
	2.2.10.1 Implementing Languages
	2.2.10.2 References

	2.2.11 DiscreteEvent
	2.2.11.1 Implementing Languages
	2.2.11.2 References

	2.2.12 ElectricalLinearNetworks
	2.2.12.1 Implementing Languages
	2.2.12.2 References

	2.2.13 EntityRelationship
	2.2.13.1 Implementing Languages
	2.2.13.2 References

	2.2.14 Fault Trees
	2.2.14.1 Implementing Languages
	2.2.14.2 References

	2.2.15 FiniteStateProcess
	2.2.15.1 Implementing Languages
	2.2.15.2 References

	2.2.16 First Order Logic
	2.2.16.1 Implementing Languages
	2.2.16.2 References

	2.2.17 HyFlow (Hybrid Flow System Specification)
	2.2.17.1 Implementing Languages
	2.2.17.2 References

	2.2.18 DiscontinuousSystems
	2.2.18.1 Implementing Languages
	2.2.18.2 References

	2.2.19 HybridAutomata
	2.2.19.1 LinearHybridAutomata
	2.2.19.2 NonLinearHybridAutomata
	2.2.19.3 StochasticHybridAutomata
	2.2.19.4 TimedAutomata
	2.2.19.5 TimeAutomataPriced (Priced/Probabilistic Timed Automata (PTAs))
	2.2.19.6 TimedAutomataStochastic
	2.2.19.7 I/O_Automata
	2.2.19.8 Implementing Languages
	2.2.19.9 References

	2.2.20 LabelledTransitionSystem
	2.2.20.1 Implementing Languages
	2.2.20.2 References

	2.2.21 LinearSignalFlow
	2.2.21.1 Implementing Languages
	2.2.21.2 References

	2.2.22 MarkovChains
	2.2.22.1 Implementing Languages
	2.2.22.2 References

	2.2.23 MessageDescriptionSpecification
	2.2.23.1 Implementing Languages
	2.2.23.2 References

	2.2.24 PetriNet
	2.2.24.1 Supported Extended Formalisms
	2.2.24.2 Supporting Tools
	2.2.24.3 References
	2.2.24.4 Implementing Languages
	2.2.24.5 References

	2.2.25 PetriNetColoured
	2.2.25.1 Implementing Languages
	2.2.25.2 References

	2.2.26 PetriNetDualistic
	2.2.26.1 Implementing Languages
	2.2.26.2 References

	2.2.27 PetriNetPrioritised
	2.2.27.1 Implementing Languages
	2.2.27.2 References

	2.2.28 PetriNetStochastic
	2.2.28.1 Implementing Languages
	2.2.28.2 References

	2.2.29 PetriNetTimed
	2.2.29.1 Implementing Languages
	2.2.29.2 References

	2.2.30 ProcessAlgebras
	2.2.30.1 Implementing Languages
	2.2.30.2 References

	2.2.31 TFPG (Timed Failure Propagation Graph)
	2.2.31.1 Implementing Languages
	2.2.31.2 References
	2.2.31.3 Implementing Languages
	2.2.31.4 References

	2.2.32 Complex Networks
	2.2.32.1 Implementing Languages
	2.2.32.2 References

	2.3 Languages
	2.3.1 AADL (Architecture Analysis and Design Language)
	2.3.1.1 Supported Formalisms
	2.3.1.2 Supporting Tools
	2.3.1.3 References

	2.3.2 ACME (Architecture Description Interchange Language)
	2.3.2.1 Supported Formalisms
	2.3.2.2 Supporting Tools
	2.3.2.3 References

	2.3.3 AML
	2.3.3.1 Supported Formalisms
	2.3.3.2 Supporting Tools
	2.3.3.3 References

	2.3.4 ATL
	2.3.4.1 Supported Formalisms
	2.3.4.2 Supporting Tools
	2.3.4.3 References

	2.3.5 AUTOSARLanguage (AUTomotive Open System ARchitecture)
	2.3.5.1 Supported Formalisms
	2.3.5.2 Supporting Tools
	2.3.5.3 References

	2.3.6 Alloy
	2.3.6.1 Supported Formalisms
	2.3.6.2 Supporting Tools
	2.3.6.3 References

	2.3.7 Artisan
	2.3.7.1 Supported Formalisms
	2.3.7.2 Supporting Tools
	2.3.7.3 References

	2.3.8 AsmL (Abstract State Machine Language)
	2.3.8.1 Supported Formalisms
	2.3.8.2 Supporting Tools
	2.3.8.3 References

	2.3.9 AsmetaL
	2.3.9.1 Supported Formalisms
	2.3.9.2 Supporting Tools
	2.3.9.3 References

	2.3.10 BlockDiagram
	2.3.10.1 Supported Formalisms
	2.3.10.2 Supporting Tools
	2.3.10.3 References

	2.3.11 BondGraph
	2.3.11.1 Supported Formalisms
	2.3.11.2 Supporting Tools
	2.3.11.3 References

	2.3.12 C
	2.3.12.1 Supported Formalisms
	2.3.12.2 Supporting Tools
	2.3.12.3 References

	2.3.13 C++
	2.3.13.1 Supported Formalisms
	2.3.13.2 Supporting Tools
	2.3.13.3 References

	2.3.14 CCSL (Clock Constraint Specification Language)
	2.3.14.1 Supported Formalisms
	2.3.14.2 Supporting Tools
	2.3.14.3 References

	2.3.15 CDL (Context Description Language)
	2.3.15.1 Supported Formalisms
	2.3.15.2 Supporting Tools
	2.3.15.3 References

	2.3.16 CTL (Computation Tree Logic)
	2.3.16.1 Supported Formalisms
	2.3.16.2 Supporting Tools
	2.3.16.3 References

	2.3.17 Clafer
	2.3.17.1 Supported Formalisms
	2.3.17.2 Supporting Tools
	2.3.17.3 References

	2.3.18 CoCoME
	2.3.18.1 Supported Formalisms
	2.3.18.2 Supporting Tools
	2.3.18.3 References

	2.3.19 DEECoDSL (Dependable Emergent Ensembles of Component-Domain Specific Language)
	2.3.19.1 Supported Formalisms
	2.3.19.2 Supporting Tools
	2.3.19.3 References

	2.3.20 DSLTrans
	2.3.20.1 Supported Formalisms
	2.3.20.2 Supporting Tools
	2.3.20.3 References

	2.3.21 EAST-ADL
	2.3.21.1 Supported Formalisms
	2.3.21.2 Supporting Tools
	2.3.21.3 References

	2.3.22 ECL (Epsilon Comparison Language)
	2.3.22.1 Supported Formalisms
	2.3.22.2 Supporting Tools
	2.3.22.3 References

	2.3.23 EGL (Epsilon Generation Language)
	2.3.23.1 Supported Formalisms
	2.3.23.2 Supporting Tools
	2.3.23.3 References

	2.3.24 EML (Epsilon Merging Language)
	2.3.24.1 Supported Formalisms
	2.3.24.2 Supporting Tools
	2.3.24.3 References

	2.3.25 EOL (Epsilon Object Language)
	2.3.25.1 Supported Formalisms
	2.3.25.2 Supporting Tools
	2.3.25.3 References

	2.3.26 ERD (Entity Relationship Diagram)
	2.3.26.1 Supported Formalisms
	2.3.26.2 Supporting Tools
	2.3.26.3 References

	2.3.27 ETL (Epsilon Transformation Language)
	2.3.27.1 Supported Formalisms
	2.3.27.2 Supporting Tools
	2.3.27.3 References

	2.3.28 EVL (Epsilon Validation Language)
	2.3.28.1 Supported Formalisms
	2.3.28.2 Supporting Tools
	2.3.28.3 References

	2.3.29 EWL (Epsilon Wizard Language)
	2.3.29.1 Supported Formalisms
	2.3.29.2 Supporting Tools
	2.3.29.3 References

	2.3.30 EclipseEGL
	2.3.30.1 Supported Formalisms
	2.3.30.2 Supporting Tools
	2.3.30.3 References

	2.3.31 EpsilonFlock
	2.3.31.1 Supported Formalisms
	2.3.31.2 Supporting Tools
	2.3.31.3 References

	2.3.32 FIACRE
	2.3.32.1 Supported Formalisms
	2.3.32.2 Supporting Tools
	2.3.32.3 References

	2.3.33 FUML (Foundational Subset for Executable UML Models)
	2.3.33.1 Supported Formalisms
	2.3.33.2 Supporting Tools
	2.3.33.3 References

	2.3.34 IRM
	2.3.34.1 Supported Formalisms
	2.3.34.2 Supporting Tools
	2.3.34.3 References

	2.3.35 IRM-SA
	2.3.35.1 Supported Formalisms
	2.3.35.2 Supporting Tools
	2.3.35.3 References

	2.3.36 IconicDiagrams
	2.3.36.1 Supported Formalisms
	2.3.36.2 Supporting Tools
	2.3.36.3 References

	2.3.37 Java
	2.3.37.1 Supported Formalisms
	2.3.37.2 Supporting Tools
	2.3.37.3 References

	2.3.38 LTL (Linear Temporal Logic)
	2.3.38.1 Supported Formalisms
	2.3.38.2 Supporting Tools
	2.3.38.3 References

	2.3.39 MARTE (Modeling and Analysis of Real-Time and Embedded systems)
	2.3.39.1 Supported Formalisms
	2.3.39.2 Supporting Tools
	2.3.39.3 References

	2.3.40 MTL (Model to Text Language)
	2.3.40.1 Supported Formalisms
	2.3.40.2 Supporting Tools
	2.3.40.3 References

	2.3.41 MessagesDescriptionLanguage
	2.3.41.1 Supported Formalisms
	2.3.41.2 Supporting Tools
	2.3.41.3 References

	2.3.42 MetaH
	2.3.42.1 Supported Formalisms
	2.3.42.2 Supporting Tools
	2.3.42.3 References

	2.3.43 MoTiF
	2.3.43.1 Supported Formalisms
	2.3.43.2 Supporting Tools
	2.3.43.3 References

	2.3.44 Modelica
	2.3.44.1 Supported Formalisms
	2.3.44.2 Supporting Tools
	2.3.44.3 References

	2.3.45 ModelicaML
	2.3.45.1 Supported Formalisms
	2.3.45.2 Supporting Tools
	2.3.45.3 References

	2.3.46 NaturalLanguage
	2.3.46.1 Supported Formalisms
	2.3.46.2 Supporting Tools
	2.3.46.3 References

	2.3.47 NuSMVLanguage
	2.3.47.1 Supported Formalisms
	2.3.47.2 Supporting Tools
	2.3.47.3 References

	2.3.48 OCL
	2.3.48.1 Supported Formalisms
	2.3.48.2 Supporting Tools
	2.3.48.3 References

	2.3.49 OMEGA2
	2.3.49.1 Supported Formalisms
	2.3.49.2 Supporting Tools
	2.3.49.3 References

	2.3.50 OSATE2
	2.3.50.1 Supported Formalisms
	2.3.50.2 Supporting Tools
	2.3.50.3 References

	2.3.51 PRISMLanguage
	2.3.51.1 Supported Formalisms
	2.3.51.2 Supporting Tools
	2.3.51.3 References

	2.3.52 ParallelAssignmentLanguage
	2.3.52.1 Supported Formalisms
	2.3.52.2 Supporting Tools
	2.3.52.3 References

	2.3.53 PetriNetLanguage
	2.3.53.1 Supported Formalisms
	2.3.53.2 Supporting Tools
	2.3.53.3 References

	2.3.54 ProMoBox
	2.3.54.1 Supported Formalisms
	2.3.54.2 Supporting Tools
	2.3.54.3 References

	2.3.55 Promela
	2.3.55.1 Supported Formalisms
	2.3.55.2 Supporting Tools
	2.3.55.3 References

	2.3.56 PtidyOS
	2.3.56.1 Supported Formalisms
	2.3.56.2 Supporting Tools
	2.3.56.3 References

	2.3.57 QVT
	2.3.57.1 Supported Formalisms
	2.3.57.2 Supporting Tools
	2.3.57.3 References

	2.3.58 Reo_Coordination_Language
	2.3.58.1 Supported Formalisms
	2.3.58.2 Supporting Tools
	2.3.58.3 References

	2.3.59 SMT_LIB
	2.3.59.1 Supported Formalisms
	2.3.59.2 Supporting Tools
	2.3.59.3 References

	2.3.60 STUML (Spatio-Temporal UML Statechart)
	2.3.60.1 Supported Formalisms
	2.3.60.2 Supporting Tools
	2.3.60.3 References

	2.3.61 SimPL
	2.3.61.1 Supported Formalisms
	2.3.61.2 Supporting Tools
	2.3.61.3 References

	2.3.62 SimulinkLanguage
	2.3.62.1 Supported Formalisms
	2.3.62.2 Supporting Tools
	2.3.62.3 References

	2.3.63 Stitch
	2.3.63.1 Supported Formalisms
	2.3.63.2 Supporting Tools
	2.3.63.3 References

	2.3.64 SysML (Systems Modeling Language)
	2.3.64.1 Supported Formalisms
	2.3.64.2 Supporting Tools
	2.3.64.3 References

	2.3.65 SystemCSpecification
	2.3.65.1 Implementing Languages
	2.3.65.2 References

	2.3.66 SystemC
	2.3.66.1 Supported Formalisms
	2.3.66.2 Supporting Tools
	2.3.66.3 References

	2.3.67 TCTL (Timed Computation Tree Logic)
	2.3.67.1 Supported Formalisms
	2.3.67.2 Supporting Tools
	2.3.67.3 References

	2.3.68 TEPE (Temporal Property Expression Language)
	2.3.68.1 Supported Formalisms
	2.3.68.2 Supporting Tools
	2.3.68.3 References

	2.3.69 TimedTransitionSystemLanguage
	2.3.69.1 Supported Formalisms
	2.3.69.2 Supporting Tools
	2.3.69.3 References

	2.3.70 UML (Unified Modeling Language)
	2.3.70.1 Supported Formalisms
	2.3.70.2 Supporting Tools
	2.3.70.3 References

	2.3.71 UML-RT
	2.3.71.1 Supported Formalisms
	2.3.71.2 Supporting Tools
	2.3.71.3 References

	2.3.72 UMLMARTE
	2.3.72.1 Supported Formalisms
	2.3.72.2 Supporting Tools
	2.3.72.3 References

	2.3.73 UMLProfile
	2.3.73.1 Supported Formalisms
	2.3.73.2 Supporting Tools
	2.3.73.3 References

	2.3.74 UMLSysML
	2.3.74.1 Supported Formalisms
	2.3.74.2 Supporting Tools
	2.3.74.3 References

	2.3.75 UPPAALRequirementSpecificationLanguage
	2.3.75.1 Supported Formalisms
	2.3.75.2 Supporting Tools
	2.3.75.3 References

	2.3.76 UPPAALSMCSpecificationLanguage
	2.3.76.1 Supported Formalisms
	2.3.76.2 Supporting Tools
	2.3.76.3 References

	2.3.77 VDM-SL
	2.3.77.1 Supported Formalisms
	2.3.77.2 Supporting Tools
	2.3.77.3 References

	2.3.78 Xtend
	2.3.78.1 Supported Formalisms
	2.3.78.2 Supporting Tools
	2.3.78.3 References

	2.3.79 xtext
	2.3.79.1 Supported Formalisms
	2.3.79.2 Supporting Tools
	2.3.79.3 References

	2.4 Tools
	2.4.1 20Sim
	2.4.1.1 Supported Languages
	2.4.1.2 References

	2.4.2 AADLInspector
	2.4.2.1 Supported Languages
	2.4.2.2 References

	2.4.3 AF3
	2.4.3.1 Supported Languages
	2.4.3.2 References

	2.4.4 AMESim (AMESim (Advanced Modeling Environment for Simulations))
	2.4.4.1 Supported Languages
	2.4.4.2 References

	2.4.5 AToM3
	2.4.5.1 Supported Languages
	2.4.5.2 References

	2.4.6 AToMPM
	2.4.6.1 Supported Languages
	2.4.6.2 References

	2.4.7 AVATAR (AVATAR stands for Automated Verification of reAl Time softwARe.)
	2.4.7.1 Supported Languages
	2.4.7.2 References

	2.4.8 Acceleo
	2.4.8.1 Supported Languages
	2.4.8.2 References

	2.4.9 AcmeStudio
	2.4.9.1 Supported Languages
	2.4.9.2 References

	2.4.10 AlloyTool
	2.4.10.1 Supported Languages
	2.4.10.2 References

	2.4.11 AnyLogic
	2.4.11.1 Supported Languages
	2.4.11.2 References

	2.4.12 ArcGIS
	2.4.12.1 Supported Languages
	2.4.12.2 References

	2.4.13 Asmeta
	2.4.13.1 Supported Languages
	2.4.13.2 References

	2.4.14 CHESS
	2.4.14.1 Supported Languages
	2.4.14.2 References

	2.4.15 COMSOL
	2.4.15.1 Supported Languages
	2.4.15.2 References

	2.4.16 Capella
	2.4.16.1 Supported Languages
	2.4.16.2 References

	2.4.17 Crescendo
	2.4.17.1 Supported Languages
	2.4.17.2 References

	2.4.18 CyPhySim
	2.4.18.1 Supported Languages
	2.4.18.2 References

	2.4.19 DIPLODOCUS
	2.4.19.1 Supported Languages
	2.4.19.2 References

	2.4.20 Dymola
	2.4.20.1 Supported Languages
	2.4.20.2 References

	2.4.21 EBTresos
	2.4.21.1 Supported Languages
	2.4.21.2 References

	2.4.22 ESMoL
	2.4.22.1 Supported Languages
	2.4.22.2 References

	2.4.23 EclipseEDT
	2.4.23.1 Supported Languages
	2.4.23.2 References

	2.4.24 EclipseEMF
	2.4.24.1 Supported Languages
	2.4.24.2 References

	2.4.25 EclipseERD
	2.4.25.1 Supported Languages
	2.4.25.2 References

	2.4.26 EclipseEpsilon
	2.4.26.1 Supported Languages
	2.4.26.2 References

	2.4.27 FCM
	2.4.27.1 Supported Languages
	2.4.27.2 References

	2.4.28 FOMA
	2.4.28.1 Supported Languages
	2.4.28.2 References

	2.4.29 GEMOCStudio
	2.4.29.1 Supported Languages
	2.4.29.2 References

	2.4.30 IRM-SATool
	2.4.30.1 Supported Languages
	2.4.30.2 References

	2.4.31 Kronos
	2.4.31.1 Supported Languages
	2.4.31.2 References

	2.4.32 LTSA
	2.4.32.1 Supported Languages
	2.4.32.2 References

	2.4.33 MASSIF
	2.4.33.1 Supported Languages
	2.4.33.2 References

	2.4.34 MAST
	2.4.34.1 Supported Languages
	2.4.34.2 References

	2.4.35 MATSim
	2.4.35.1 Supported Languages
	2.4.35.2 References

	2.4.36 MoDeS
	2.4.36.1 Supported Languages
	2.4.36.2 References

	2.4.37 MyCCM-Hi
	2.4.37.1 Supported Languages
	2.4.37.2 References

	2.4.38 NuSMV
	2.4.38.1 Supported Languages
	2.4.38.2 References

	2.4.39 OBPExplorer
	2.4.39.1 Supported Languages
	2.4.39.2 References

	2.4.40 OMNet++
	2.4.40.1 Supported Languages
	2.4.40.2 References

	2.4.41 OSATE
	2.4.41.1 Supported Languages
	2.4.41.2 References

	2.4.42 Ocarina
	2.4.42.1 Supported Languages
	2.4.42.2 References

	2.4.43 OpenModelica
	2.4.43.1 Supported Languages
	2.4.43.2 References

	2.4.44 Overture
	2.4.44.1 Supported Languages
	2.4.44.2 References

	2.4.45 PHAVer
	2.4.45.1 Supported Languages
	2.4.45.2 References

	2.4.46 PRISM
	2.4.46.1 Supported Languages
	2.4.46.2 References

	2.4.47 Palladio
	2.4.47.1 Supported Languages
	2.4.47.2 References

	2.4.48 Papyrus
	2.4.48.1 Supported Languages
	2.4.48.2 References

	2.4.49 ProCom
	2.4.49.1 Supported Languages
	2.4.49.2 References

	2.4.50 Ptolemy
	2.4.50.1 Supported Languages
	2.4.50.2 References

	2.4.51 ROS
	2.4.51.1 Supported Languages
	2.4.51.2 References

	2.4.52 RSA
	2.4.52.1 Supported Languages
	2.4.52.2 References

	2.4.53 Rainbow
	2.4.53.1 Supported Languages
	2.4.53.2 References

	2.4.54 Remes
	2.4.54.1 Supported Languages
	2.4.54.2 References

	2.4.55 SCADE
	2.4.55.1 Supported Languages
	2.4.55.2 References

	2.4.56 SOFA-HI
	2.4.56.1 Supported Languages
	2.4.56.2 References

	2.4.57 SPL
	2.4.57.1 Supported Languages
	2.4.57.2 References

	2.4.58 STOOD
	2.4.58.1 Supported Languages
	2.4.58.2 References

	2.4.59 Simulink
	2.4.59.1 Supported Languages
	2.4.59.2 References

	2.4.60 Spin
	2.4.60.1 Supported Languages
	2.4.60.2 References

	2.4.61 Stage
	2.4.61.1 Supported Languages
	2.4.61.2 References

	2.4.62 StrataGEM (Strategy Generic Extensible Modelchecker)
	2.4.62.1 Supported Languages
	2.4.62.2 References

	2.4.63 SyVoLT
	2.4.63.1 Supported Languages
	2.4.63.2 References

	2.4.64 SystemDesk
	2.4.64.1 Supported Languages
	2.4.64.2 References

	2.4.65 TINA_SELT (TIme petri Net Analyzer - State/Event LTL model checker)
	2.4.65.1 Supported Languages
	2.4.65.2 References

	2.4.66 TTool (tea-tool)
	2.4.66.1 Supported Languages
	2.4.66.2 References

	2.4.67 TURTLE
	2.4.67.1 Supported Languages
	2.4.67.2 References

	2.4.68 TargetLink
	2.4.68.1 Supported Languages
	2.4.68.2 References

	2.4.69 UMLAnalyzer
	2.4.69.1 Supported Languages
	2.4.69.2 References

	2.4.70 UMLMAST
	2.4.70.1 Supported Languages
	2.4.70.2 References

	2.4.71 UPPAAL
	2.4.71.1 Supported Languages
	2.4.71.2 References

	2.4.72 UppaalSMC (Statistical Model Checking Extension for the UPPAAL Toolset.)
	2.4.72.1 Supported Languages
	2.4.72.2 References

	2.4.73 VIATRA
	2.4.73.1 Supported Languages
	2.4.73.2 References

	2.4.74 Z3
	2.4.74.1 Supported Languages
	2.4.74.2 References

	2.4.75 Zen-RUCM
	2.4.75.1 Supported Languages
	2.4.75.2 References

	2.4.76 eC3M (Embedded Component Container Connector Middleware)
	2.4.76.1 Supported Languages
	2.4.76.2 References

	2.4.77 jDEECo
	2.4.77.1 Supported Languages
	2.4.77.2 References

	3 Glossary of Terms for Cyber Physical Systems
	4 Summary and Future Work
	Bibliography

