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Introduction

Inflammable gas dynamics in confined environment
e Storage of flammable gas

e Release of hydrogen in core reactor during nuclear accident

Dynamic behaviour of the flame
e Flame acceleration
e Transition to Detonation

e Influence of concentration gradients !, geometrical
configuration...

Experimental Setup 2

Instrument

Adsection oy

Recirculation loop
>

1. Boeck et al., Shock Waves (2016).
2. Scarpa et al., International Journal of Hydrogen Energy (2019).
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Figure 1 — Shadowgraph sequence
of DDT inside obstacle with
vertical concentration gradient!
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Flame acceleration and transition to detonation

Reaction front speed

Flame acceleration phenomena
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Flame acceleration and transition to detonation
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Reaction front speed

Flame acceleration phenomena
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Introduction

Flame acceleration and transition to detonation
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Critical conditions;
Transition to

detonation
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Turbulence
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Slow Deflagration

Reaction front speed

Flame acceleration phenomena

e Thermodiffusive instabilities (Le < 1 flame
wrinkling)

Turbulence generation

e Shock interaction :
instability

Richtmyer Meshkov

e Impact of geometrical configuration : turbulent

vortex, local hot spots...

Detonation

Transition to detonation

Fast deflagration

low deflagtation
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Numerical tools/MR _CHORUS solver

Navier-Stokes equation
we + V- (FE(w) — FV(w, Vw)) = S(w), with w= (oY1, ..., 0Yns, pu, pE) " (1)

Numerical challenges 3
e Multiscales in time and space
e Compressible effects

e Non callorically perfect gas

3. Tenaud, Roussel et Bentaleb, Computers & Fluids (2015).
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Numerical tools/MR _CHORUS solver

Navier-Stokes equation

we + V- (FE(w) — FV(w, Vw)) = S(w), with w=(pY1, ..., 0Yss, pu, pE)"

Numerical challenges 3
e Multiscales in time and space =
e Compressible effects

e Non callorically perfect gas

Splitting operators with adapted solver / Adaptive refinement

leaf cells

ante cells
base cells

3e
2

(b)

Figure 2 — Multiresolution approach with dynamic graded Tree

3. Tenaud, Roussel et Bentaleb, Computers & Fluids (2015).
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Numerical tools/MR _CHORUS solver

Navier-Stokes equation
we + V- (FE(w) — FV(w, Vw)) = S(w), with w = (pYi, ..., 0Yss, pu, pE)" (1)

Numerical challenges 3
e Multiscales in time and space = Splitting operators with adapted solver / Adaptive refinement
e Compressible effects = Riemann approximate solver with flux limiter (OSMP scheme)

e Non callorically perfect gas

Figure 2 — Shock/boundary layer interaction. Isocontour of density and refined grid

3. Tenaud, Roussel et Bentaleb, Computers & Fluids (2015).
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Introduction

Numerical tools/MR _CHORUS solver

Navier-Stokes equation

we + V- (FE(w) — FV(w, Vw)) = S(w), with w=(pYi, ..., 0Yss, pu, pE)"

Numerical challenges 3

e Multiscales in time and space = Splitting operators with adapted solver / Adaptive refinement
o Compressible effects = Riemann approximate solver with flux limiter (OSMP scheme)
e Non callorically perfect gas = Extension of the Roe solver to realistic thermodynamic models
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Figure 2 — Dependence of heat capacities on temperature with NASA polynomials

3. Tenaud, Roussel et Bentaleb, Computers & Fluids (2015).
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OSMP scheme

Roe Approximate Riemann Solver

Roe Solver *

Roe's approach replace the Jacobian matrix evaluated at the
intersection A(w) = OFF (w)/0w by a constant Jacobian matrix
evaluated at the Roe average state w combination of left w; and
right states wg

A(W) = A(we, wr) (@)

4. Roe, Journal of Computational Physics (1981).
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Roe's approach replace the Jacobian matrix evaluated at the
intersection A(w) = OFF (w)/0w by a constant Jacobian matrix
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OSMP scheme

Roe Approximate Riemann Solver

Roe Solver *

Roe's approach replace the Jacobian matrix evaluated at the
intersection A(w) = OFF (w)/0w by a constant Jacobian matrix
evaluated at the Roe average state w combination of left w; and
right states wg

A(W) = A(w,, wr) (2)

With non ideal gases

AW) =A®B, Y1, .., Yos, U, 1 X1, - Xns) B)

op op
Xi = e and K= 2
Pi / &py iti €/ ok

with compressibility factors

Flux expression
1 LN = 5 0
Roe __ = P Ay
Firj = 3(Fe+FR) = 5 2SI
=

with X, ) and ¢, eigenvalues, eigenvectors and Riemann invariants of A(w)

4. Roe, Journal of Computational Physics (1981).
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Roe Average state AW) =AD, Y1, ..., Yos, U, 1, X1, .. Xps, K)

Rule for the construction of the Roe Average State

A(W)(wL —wg) = F(w,) — F(wg) (6)

5. Vinokur et Montagné, Journal of Computational Physics (1990).



OSMP scheme

Roe Average state Aw)=A(p Y, ...

Rule for the construction of the Roe Average State

A(W)(wL —wg) = F(w,) — F(wg)

Roe average operator for primitive/conservatives variables

{o.Yiouhy = (=60 +(1-6()r with

5. Vinokur et Montagné, Journal of Computational Physics (1990).

i YnSYﬁl E, Ylv Ynsvz)

(6)

g _VPL @)
VL + VPR
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OSMP scheme

Roe Average state AW) =A@ Y1, ... Yos, U, 0, X1, .. Xns, )

Rule for the construction of the Roe Average State

A(W)(wL —wg) = F(w,) — F(wg)

Roe average operator for primitive/conservatives variables

= (. _ o). i /T
{0, Yiouhy = ()=0()+(1-6)()r  with 9_\/PT+W

Treatment of the compressibility factors x; and

A(W)(w, —wg) = F(w.) — F(wg) s

T = Ap= X,Ap; +RAE
Roe average operator i=0

5. Vinokur et Montagné, Journal of Computational Physics (1990).
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Roe Average state AW) =AD, Y1, ..., Yos, U, 1, X1, .. Xps, K)

Rule for the construction of the Roe Average State

A(W)(wL —wg) = F(w,) — F(wg) (6)
Roe average operator for primitive/conservatives variables
~ : VPL
{o.Yieu i} = ()=00)+(1-6)()r with 6=———— (7
VPL +v/Pr
Treatment of the compressibility factors x; and
A(w)(wr —wg) = F(w.) — F(wg) 5
+ = Ap= Zy,Ap, + RAE (8)
’ Roe average operator i=0
Approximation of the compressibility factors with method of Vinokur and Montagné® :
"1 n1
&= [ wloe). eoar %= [ alee) &0 (©)

5. Vinokur et Montagné, Journal of Computational Physics (1990).



Roe Average state AW) =A@ Y1, ... Yos, U, 0, X1, .. Xns, )

Rule for the construction of the Roe Average State

A(W)(wL —wg) = F(w,) — F(wg) (6)
Roe average operator for primitive/conservatives variables
Y : PL
(o Yeuht = (O=60)+1-0)()r with =YL _ )
VPL +v/Pr
Treatment of the compressibility factors x; and
A(W)(w, —wg) = F(w.) — F(wg) s
+ = Ap= Zy,Ap, +RAE (8)
’ Roe average operator i=0
Approximation of the compressibility factors with method of Vinokur and Montagné® :
"1 n1
&= [ wloe). eoar %= [ alee) &0 (©)
Orthogonal projection on the ns — 1 dimension hyperplane defined by (8)
K ="P(R) X = P(Xi) (10)

5. Vinokur et Montagné, Journal of Computational Physics (1990).



OSMP scheme

High order extension with OSMP scheme

One step monotonocity preserving (OSMP) scheme ©

New system of advection equations

o¢; Iy o¢;

pr 6x:O with A= (u,....u,u—Cs,u+73s) (11)

6. V.Daru et Tenaud, Journal of Computational Physics (2004).



High order extension with OSMP scheme

One step monotonocity preserving (OSMP) scheme ©

New system of advection equations

a¢; < o
Ai
ot + Ox

=0 with A=(u, ...uu—Cs u+7Cs)" (11)
Increase order in time and space with Lax-Wendroff procedure
1
Fopp = FR%, + > D (@) i1y (12)
k

Flux limiter : Monotonicity preserving scheme (TVD scheme with improvement near extrema)
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High order extension with OSMP scheme

One step monotonocity preserving (OSMP) scheme ©

New system of advection equations

a¢; < o
Ai
ot + Ox

=0 with A=(u, ...uu—Cs u+7Cs)" (11)
Increase order in time and space with Lax-Wendroff procedure
1
Fopp = FR%, + > D (@) i1y (12)
k

Flux limiter : Monotonicity preserving scheme (TVD scheme with improvement near extrema)

®°MP = max(®™", min($°, ™)) (13)

Riemann invariants recombination

Recomposition of the equations (11) with the same eigenvector u to improve flux limiter and keep relation
between variation of mass fraction and variation of mass energy

b = X, AP

. _ = _ _

4 =>3 (EC = f) = A(pE) + EcAp— H— (14)
i=1

6. V.Daru et Tenaud, Journal of Computational Physics (2004).
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Numerical experiments

Realistic Thermodynamic model : Sod shock tube problem

0<x<25 25<x<50

Properties

P (bar) 1 0.1
e Sod shock tube with R22 gas, 640 cells and o(kg/m®) 1 0.125
OSMP scheme of 7t order N, (%) 75.55 23.16
0,
e Species data with thermodynamic NASA Ro2 (0/0) 23.16 B
polynomials Oz (%) 1A e
v 1.38 1.32
Table 1 — initial conditions
350 - 900 -
10 S SN N S S A A R [ Bactrent]
300 ; 800 1
08 250 ’:‘ 700 L
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L e
100 7] .
02 " 300 :
------------ 0 - -
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Figure 3 — Density, velocity and temperature profiles at t = 20ms
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Numerical experiments

Realistic Thermodynamic model : Sod shock tube problem

0<x<25 25<x<50

P ti
FpEE P (bar) 1 0.1
e Sod shock tube with R22 gas, 640 cells and p(kg/m®) 1 0.125
OSMP scheme of 7t order N, (%) 75.55 23.16
0,
e Species data with thermodynamic NASA Ro2 (0/0) 23.16 1853
polynomials 0, (%) A2 S
v 1.38 1.32
e OSMP adapted with combination of Riemann
invariants (14) Table 1 — initial conditions
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periments

Hydrodynamic instability : shock/bubble interaction

Parameters
. Us 50 mm
L — pi = 1Bar,
Y = ur, pr, Ty wyr. prr. Tin :: T, = 351.82K,
S SR T S M = 1.22
: 170 mm | Symmetry =
220 mm = OSMP 7" order
445 mm 3

Results

93007

Figure 4 — Mesh and density gradient at T = taj; roo/do = 1.15 for 256 cells in initial bubble diameter

Capture of Richtmyer—Meshkov instability with high order simulation
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Numerical experiments

Reactive mixture : Detonation front

1D ZND structure
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Respect stability criterion (heat release, induction length, overdriven velocity...) "

Unstable case

15 2

"J. i
| »be ] Ml P ‘g r “’\

20 20 300 320 310 300 30 400 40 500 550 G0 0 20 0 Y 0 100
t t t

1 vyvva‘ 1

h‘\\ I
1 ‘ AT

Pa U?uv)
Pa (Bar)

“H\ HHT
‘ | HHHH“
‘
me‘mmumm

Figure 5 — Oscillation of post-shock pressure for increasing induction length until quenching

7. Ng et al., Combustion Theory and Modelling (2005).



Numerical experiments

Reactive mixture : Acceleration of flame

Detonation initiation by reflected shock

e Two-steps chemistry

e NASA poynomials

T = 300K
P =1latm §
b=1 -
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Numerical eriments

Reactive mixture : Acceleration of flame

Detonation initiation by reflected shock

) T = 300K
e Two-steps chemistry 7 25 P = latm
= 2. =1

1em

e NASA poynomials

70 us

80 us

100 us

120 us

Temperature (K) Temperature (K)
2.9e+02 1000 1500 2000 2500 3000 3500 4000 4.7e+03 2.9e+02 1000 1500 2000 2500 3000 3500 4000 4.7e+03
| | . " | B



Numerica perimer

Reactive mixture : 2D Detonation

Detonation structure

Shear layer | Mach stem

Chemical induction layer
Transverse shock

—— Incident shock

2D Detonation front

e Detonation cell

e Shear layer

Temperature

P 3 5 A
3.0e+02 1000 1500 2000 2500 3000 4.1e+03 e Chemical induction layer
|
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Num: ment

Reactive mixture : 2D Detonation

Detonation structure

Shear layer | Mach stem

Chemical induction layer
Transverse shock

—— Incident shock

% Carbuncle instability
e Insufficient cross-flow dissipation

e Specific to Complete Riemann solver

Temperature S H
5.00402 1000 1500 2000 2500 3000 4.1403 e Amplified phenomena with heat release

- b
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Numerical experiments

Cure the carbuncle instabilities

Rotated solver ®

Rotational invariant property of Euler equation n= Z Qg

(Wi)e + (F5 (Wi))z = 0 (15)

nz
with Wy = T,wy and Ty rotation matrix

m=1 R

Figure 6 — Application of rotated solver

Flr‘fe (FL +Fgr) Z ol Z5C DY :| (16)

8. Ren, Computers & Fluids (2003).
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Numerical experiments

Cure the carbuncle instabilities

Rotated solver ®

Rotational invariant property of Euler equation n= Z Qg

(Wi)e + (F5 (Wi))z = 0 (15)

nz
with Wy = T,wy and Ty rotation matrix

m=1 R

Figure 6 — Application of rotated solver

Flr‘fe (FL +Fgr) Z ol Z5C DY :| (16)

’ Not a high-order recomposition for now (diffusive solution) ‘

8. Ren, Computers & Fluids (2003).
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Conclusion

Objective : complete case study of hydrogen flame acceleration in 2D and 3D with geometrical configuration

High order compressible solver
e Extension of the approximate Riemann solver of Roe for multicomponent real gas flow

e OSMP scheme : new combination of Riemann invariants to capture correctly the contact wave

Validation tests
e Realistic Thermodynamic model for multispecies
e Capture hydrodynamic instabilities

e Flame acceleration/Detonation case without too strong
shocks

e Carbuncle correction (only with low-order for now)
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Conclusion

Objective : complete case study of hydrogen flame acceleration in 2D and 3D with geometrical configuration

High order compressible solver
e Extension of the approximate Riemann solver of Roe for multicomponent real gas flow

o OSMP scheme : new combination of Riemann invariants to capture correctly the contact wave

Validation tests
e Realistic Thermodynamic model for multispecies
e Capture hydrodynamic instabilities

e Flame acceleration/Detonation case without too strong
shocks

e Carbuncle correction (only with low-order for now)

10016403

e 3D simulation

o |Immersed boundary methods
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