

Numerical tools to study hydrogen flame acceleration

WCCM ECCOMAS Congress 2021

January 11-15, 2021

Luc Lecointre Sergey Kudriakov¹, Etienne Studer¹, Ronan Vicquelin², Christian Tenaud³

 ¹ Université Paris Saclay, CEA, Service de Thermo-hydraulique et de mécanique des fluides, 91191, Gif sur Yvette, France
 ² Université Paris Saclay, CNRS, CentraleSupélec, Laboratoire EM2C, 91190, Gif-sur-Yvette, France
 ³ Université Paris Saclay, CNRS, LIMSI, 91400, Orsay, France

Introduction

Introduction

Introduction

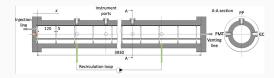
Inflammable gas dynamics in confined environment

- Storage of flammable gas
- Release of hydrogen in core reactor during nuclear accident

Dynamic behaviour of the flame

- Flame acceleration
- Transition to Detonation
- Influence of concentration gradients¹, geometrical configuration...

Experimental Setup 2



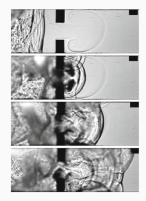
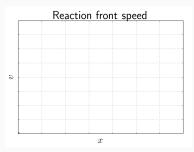


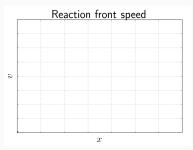
Figure 1 – Shadowgraph sequence of DDT inside obstacle with vertical concentration gradient¹

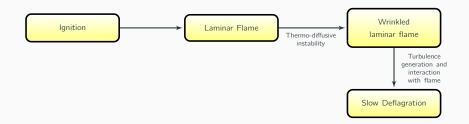
- 1. Boeck et al., Shock Waves (2016).
- 2. Scarpa et al., International Journal of Hydrogen Energy (2019).



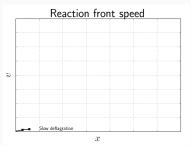
Flame acceleration phenomena

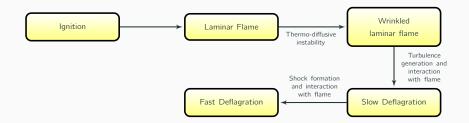
• Thermodiffusive instabilities (*Le* < 1 flame wrinkling)



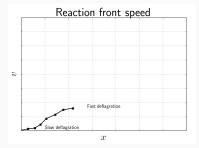


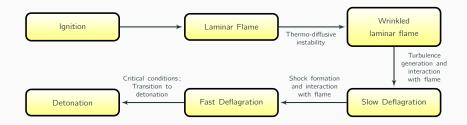
- Thermodiffusive instabilities (*Le* < 1 flame wrinkling)
- Turbulence generation



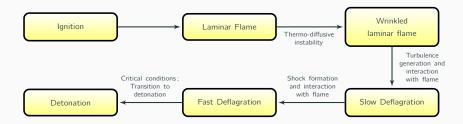


- Thermodiffusive instabilities (*Le* < 1 flame wrinkling)
- Turbulence generation
- Shock interaction : Richtmyer Meshkov instability

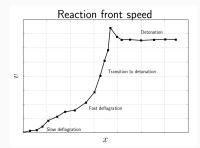




- Thermodiffusive instabilities (*Le* < 1 flame wrinkling)
- Turbulence generation
- Shock interaction : Richtmyer Meshkov instability



- Thermodiffusive instabilities (*Le* < 1 flame wrinkling)
- Turbulence generation
- Shock interaction : Richtmyer Meshkov instability
- Impact of geometrical configuration : turbulent vortex, local hot spots...



Numerical tools/MR_CHORUS solver

Navier-Stokes equation

$$\mathbf{w}_t + \nabla \cdot (\mathbf{F}^E(\mathbf{w}) - \mathbf{F}^V(\mathbf{w}, \nabla \mathbf{w})) = \mathbf{S}(\mathbf{w}), \text{ with } \mathbf{w} = (\rho Y_1, \dots, \rho Y_{ns}, \rho \mathbf{u}, \rho E)^T$$
(1)

Numerical challenges 3

- Multiscales in time and space
- Compressible effects
- Non callorically perfect gas

^{3.} Tenaud, Roussel et Bentaleb, Computers & Fluids (2015).

Numerical tools/MR_CHORUS solver

Navier-Stokes equation

$$\mathbf{w}_t + \nabla \cdot (\mathbf{F}^E(\mathbf{w}) - \mathbf{F}^V(\mathbf{w}, \nabla \mathbf{w})) = \mathbf{S}(\mathbf{w}), \text{ with } \mathbf{w} = (\rho Y_1, \dots, \rho Y_{ns}, \rho \mathbf{u}, \rho E)^T$$
(1)

Numerical challenges ³

- Multiscales in time and space \Rightarrow Splitting operators with adapted solver
- Compressible effects
- Non callorically perfect gas

^{3.} Tenaud, Roussel et Bentaleb, Computers & Fluids (2015).

Numerical tools/MR CHORUS solver

Navier-Stokes equation

$$\mathbf{w}_t + \nabla \cdot (\mathbf{F}^E(\mathbf{w}) - \mathbf{F}^V(\mathbf{w}, \nabla \mathbf{w})) = \mathbf{S}(\mathbf{w}), \text{ with } \mathbf{w} = (\rho Y_1, \dots, \rho Y_{ns}, \rho \mathbf{u}, \rho E)^T$$
(1)

Numerical challenges 3

- Multiscales in time and space \Rightarrow Splitting operators with adapted solver / Adaptive refinement
- Compressible effects
- Non callorically perfect gas

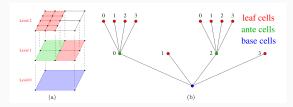


Figure 2 - Multiresolution approach with dynamic graded Tree

^{3.} Tenaud, Roussel et Bentaleb, Computers & Fluids (2015).

Numerical tools/MR_CHORUS solver

Navier-Stokes equation

$$\mathbf{w}_t + \nabla \cdot (\mathbf{F}^E(\mathbf{w}) - \mathbf{F}^V(\mathbf{w}, \nabla \mathbf{w})) = \mathbf{S}(\mathbf{w}), \text{ with } \mathbf{w} = (\rho Y_1, \dots, \rho Y_{ns}, \rho \mathbf{u}, \rho E)^T$$
(1)

Numerical challenges ³

- Multiscales in time and space \Rightarrow Splitting operators with adapted solver / Adaptive refinement
- Compressible effects \Rightarrow Riemann approximate solver with flux limiter (OSMP scheme)
- Non callorically perfect gas

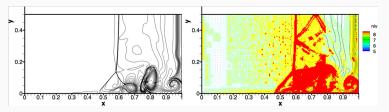


Figure 2 - Shock/boundary layer interaction. Isocontour of density and refined grid

^{3.} Tenaud, Roussel et Bentaleb, Computers & Fluids (2015).

Numerical tools/MR_CHORUS solver

Navier-Stokes equation

$$\mathbf{w}_t + \nabla \cdot (\mathbf{F}^E(\mathbf{w}) - \mathbf{F}^V(\mathbf{w}, \nabla \mathbf{w})) = \mathbf{S}(\mathbf{w}), \text{ with } \mathbf{w} = (\rho Y_1, \dots, \rho Y_{ns}, \rho \mathbf{u}, \rho E)^T$$
(1)

Numerical challenges 3

- Multiscales in time and space \Rightarrow Splitting operators with adapted solver / Adaptive refinement
- Compressible effects \Rightarrow
- Non callorically perfect gas
- Riemann approximate solver with flux limiter (OSMP scheme)
- ⇒ Extension of the Roe solver to realistic thermodynamic models

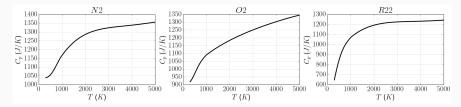


Figure 2 - Dependence of heat capacities on temperature with NASA polynomials

^{3.} Tenaud, Roussel et Bentaleb, Computers & Fluids (2015).

OSMP scheme

Roe Approximate Riemann Solver

Roe Solver⁴

Roe's approach replace the Jacobian matrix evaluated at the intersection $\underline{A}(w) = \partial F^{E}(w)/\partial w$ by a constant Jacobian matrix evaluated at the Roe average state \overline{w} combination of left w_{L} and right states w_{R}

$$\underline{\underline{\mathbf{A}}}(\overline{\mathbf{w}}) = \underline{\underline{\mathbf{A}}}(\mathbf{w}_L, \mathbf{w}_R) \tag{2}$$



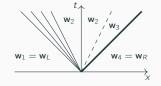
^{4.} Roe, Journal of Computational Physics (1981).

Roe Approximate Riemann Solver

Roe Solver⁴

Roe's approach replace the Jacobian matrix evaluated at the intersection $\underline{\underline{A}}(w) = \partial F^{E}(w)/\partial w$ by a constant Jacobian matrix evaluated at the Roe average state \overline{w} combination of left w_{L} and right states w_{R}

$$\underline{\underline{A}}(\overline{\mathbf{w}}) = \underline{\underline{A}}(\mathbf{w}_L, \mathbf{w}_R)$$
(2)



With non ideal gases

$$\underline{\underline{A}}(\overline{\mathbf{w}}) = \underline{\underline{A}}(\overline{\rho}, \overline{Y}_1, ..., \overline{Y}_{ns}, \overline{\mathbf{u}}, \overline{h}, \overline{\chi}_1, ..., \overline{\chi}_{ns}, \overline{\kappa})$$
(3)

with compressibility factors

$$\chi_{i} = \left(\frac{\partial p}{\partial \rho_{i}}\right)_{\tilde{\epsilon}, \rho_{k, k \neq i}} \quad \text{and} \quad \kappa = \left(\frac{\partial p}{\partial \tilde{\epsilon}}\right)_{\rho_{k}} \tag{4}$$

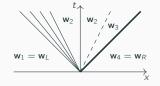
^{4.} Roe, Journal of Computational Physics (1981).

Roe Approximate Riemann Solver

Roe Solver⁴

Roe's approach replace the Jacobian matrix evaluated at the intersection $\underline{\underline{A}}(w) = \partial F^{E}(w)/\partial w$ by a constant Jacobian matrix evaluated at the Roe average state \overline{w} combination of left w_{L} and right states w_{R}

$$\underline{\underline{\mathbf{A}}}(\overline{\mathbf{w}}) = \underline{\underline{\mathbf{A}}}(\mathbf{w}_L, \mathbf{w}_R) \tag{2}$$



With non ideal gases

$$\underline{\underline{A}}(\overline{\mathbf{w}}) = \underline{\underline{A}}(\overline{\rho}, \overline{Y}_1, ..., \overline{Y}_{ns}, \overline{\mathbf{u}}, \overline{h}, \overline{\chi}_1, ..., \overline{\chi}_{ns}, \overline{\kappa})$$
(3)

with compressibility factors

$$\chi_{i} = \left(\frac{\partial p}{\partial \rho_{i}}\right)_{\tilde{\epsilon}, \rho_{k, k \neq i}} \quad \text{and} \quad \kappa = \left(\frac{\partial p}{\partial \tilde{\epsilon}}\right)_{\rho_{k}} \tag{4}$$

Flux expression

$$\mathbf{F}_{i+\frac{1}{2}}^{Roe} = \frac{1}{2}(\mathbf{F}_L + \mathbf{F}_R) - \frac{1}{2}\sum_{i=1}^m \delta\overline{\zeta}_i |\overline{\lambda}_i| \overline{\mathbf{r}}^{(i)}$$
(5)

with $\overline{\lambda_i}$, $\overline{\mathbf{r}}^{(i)}$ and $\overline{\zeta_i}$ eigenvalues, eigenvectors and Riemann invariants of $\underline{\underline{A}}(\overline{\mathbf{w}})$

^{4.} Roe, Journal of Computational Physics (1981).

$$\underline{\underline{\mathbf{A}}}(\overline{\mathbf{w}}) = \underline{\underline{\mathbf{A}}}(\overline{\rho}, \overline{Y}_1, ..., \overline{Y}_{ns}, \overline{\mathbf{u}}, \overline{h}, \overline{\chi}_1, ..., \overline{\chi}_{ns}, \overline{\kappa})$$

Rule for the construction of the Roe Average State

$$\underline{\underline{A}}(\overline{\mathbf{w}})(\mathbf{w}_L - \mathbf{w}_R) = \mathbf{F}(\mathbf{w}_L) - \mathbf{F}(\mathbf{w}_R)$$
(6)

^{5.} Vinokur et Montagné, Journal of Computational Physics (1990).

$$\underline{\underline{\mathbf{A}}}(\overline{\mathbf{w}}) = \underline{\underline{\mathbf{A}}}(\overline{\rho}, \overline{Y}_1, ..., \overline{Y}_{ns}, \overline{\mathbf{u}}, \overline{h}, \overline{\chi}_1, ..., \overline{\chi}_{ns}, \overline{\kappa})$$

Rule for the construction of the Roe Average State

$$\underline{\underline{A}}(\overline{\mathbf{w}})(\mathbf{w}_{L} - \mathbf{w}_{R}) = \mathbf{F}(\mathbf{w}_{L}) - \mathbf{F}(\mathbf{w}_{R})$$
(6)

Roe average operator for primitive/conservatives variables

$$[\rho, Y_k, \mathbf{u}, h\} \quad \Rightarrow \quad \overline{(\cdot)} = \theta(\cdot)_L + (1 - \theta)(\cdot)_R \quad \text{with} \quad \theta = \frac{\sqrt{\rho_L}}{\sqrt{\rho_L} + \sqrt{\rho_R}} \tag{7}$$

^{5.} Vinokur et Montagné, Journal of Computational Physics (1990).

$$\underline{\underline{\mathbf{A}}}(\overline{\mathbf{w}}) = \underline{\underline{\mathbf{A}}}(\overline{\rho}, \overline{Y}_1, ..., \overline{Y}_{ns}, \overline{\mathbf{u}}, \overline{h}, \overline{\chi}_1, ..., \overline{\chi}_{ns}, \overline{\kappa})$$

Rule for the construction of the Roe Average State

$$\underline{\underline{A}}(\overline{\mathbf{w}})(\mathbf{w}_{L} - \mathbf{w}_{R}) = \mathbf{F}(\mathbf{w}_{L}) - \mathbf{F}(\mathbf{w}_{R})$$
(6)

Roe average operator for primitive/conservatives variables

$$\{\rho, Y_k, \mathbf{u}, h\} \quad \Rightarrow \quad \overline{(\cdot)} = \theta(\cdot)_L + (1-\theta)(\cdot)_R \quad \text{with} \quad \theta = \frac{\sqrt{\rho_L}}{\sqrt{\rho_L} + \sqrt{\rho_R}} \tag{7}$$

Treatment of the compressibility factors χ_i and κ

$$\underbrace{\underline{\underline{A}}}_{[\overline{\mathbf{w}})(\mathbf{w}_{L} - \mathbf{w}_{R})} = \mathbf{F}(\mathbf{w}_{L}) - \mathbf{F}(\mathbf{w}_{R}) \\ + \\ \boxed{\text{Roe average operator}} \qquad \Rightarrow \quad \Delta \rho = \sum_{i=0}^{ns} \overline{\chi}_{i} \Delta \rho_{i} + \overline{\kappa} \Delta \tilde{\epsilon}$$
(8)

^{5.} Vinokur et Montagné, Journal of Computational Physics (1990).

$$\underline{\underline{\mathbf{A}}}(\overline{\mathbf{w}}) = \underline{\underline{\mathbf{A}}}(\overline{\rho}, \overline{Y}_1, ..., \overline{Y}_{ns}, \overline{\mathbf{u}}, \overline{h}, \overline{\chi}_1, ..., \overline{\chi}_{ns}, \overline{\kappa})$$

Rule for the construction of the Roe Average State

$$\underline{\underline{A}}(\overline{\mathbf{w}})(\mathbf{w}_{L} - \mathbf{w}_{R}) = \mathbf{F}(\mathbf{w}_{L}) - \mathbf{F}(\mathbf{w}_{R})$$
(6)

Roe average operator for primitive/conservatives variables

$$\{\rho, Y_k, \mathbf{u}, h\} \quad \Rightarrow \quad \overline{(\cdot)} = \theta(\cdot)_L + (1-\theta)(\cdot)_R \quad \text{with} \quad \theta = \frac{\sqrt{\rho_L}}{\sqrt{\rho_L} + \sqrt{\rho_R}} \tag{7}$$

Treatment of the compressibility factors χ_i and κ

$$\underbrace{\underline{\underline{A}}}_{[\overline{\mathbf{w}})(\mathbf{w}_{L} - \mathbf{w}_{R})} = \mathbf{F}(\mathbf{w}_{L}) - \mathbf{F}(\mathbf{w}_{R}) \\ + \\ \boxed{\text{Roe average operator}} \qquad \Rightarrow \quad \Delta \rho = \sum_{i=0}^{ns} \overline{\chi}_{i} \Delta \rho_{i} + \overline{\kappa} \Delta \tilde{\epsilon}$$
(8)

Approximation of the compressibility factors with method of Vinokur and Montagné⁵ :

$$\hat{\kappa} = \int_0^1 \kappa[\rho(t), \tilde{\epsilon}(t)] dt \qquad \hat{\chi}_i = \int_0^1 \chi_i[\rho(t), \tilde{\epsilon}(t)] dt \qquad (9)$$

^{5.} Vinokur et Montagné, Journal of Computational Physics (1990).

$$\underline{\underline{\underline{A}}}(\overline{\mathbf{w}}) = \underline{\underline{\underline{A}}}(\overline{\rho}, \overline{Y}_1, ..., \overline{Y}_{ns}, \overline{\mathbf{u}}, \overline{h}, \overline{\chi}_1, ..., \overline{\chi}_{ns}, \overline{\kappa})$$

Rule for the construction of the Roe Average State

$$\underline{\underline{A}}(\overline{\mathbf{w}})(\mathbf{w}_{L} - \mathbf{w}_{R}) = \mathbf{F}(\mathbf{w}_{L}) - \mathbf{F}(\mathbf{w}_{R})$$
(6)

Roe average operator for primitive/conservatives variables

$$\{\rho, Y_k, \mathbf{u}, h\} \quad \Rightarrow \quad \overline{(\cdot)} = \theta(\cdot)_L + (1-\theta)(\cdot)_R \quad \text{with} \quad \theta = \frac{\sqrt{\rho_L}}{\sqrt{\rho_L} + \sqrt{\rho_R}} \tag{7}$$

Treatment of the compressibility factors χ_i and κ

$$\frac{\underline{A}}{\underline{e}}(\overline{\mathbf{w}})(\mathbf{w}_{L} - \mathbf{w}_{R}) = \mathbf{F}(\mathbf{w}_{L}) - \mathbf{F}(\mathbf{w}_{R}) + \frac{1}{\mathbf{R} \circ \mathbf{e} \text{ average operator}} \qquad \Rightarrow \quad \Delta \rho = \sum_{i=0}^{n_{S}} \overline{\chi}_{i} \Delta \rho_{i} + \overline{\kappa} \Delta \tilde{\epsilon}$$
(8)

Approximation of the compressibility factors with method of Vinokur and Montagné $^{\rm 5}$:

$$\hat{\kappa} = \int_0^1 \kappa[\rho(t), \tilde{\epsilon}(t)] dt \qquad \hat{\chi}_i = \int_0^1 \chi_i[\rho(t), \tilde{\epsilon}(t)] dt \qquad (9)$$

Orthogonal projection on the ns - 1 dimension hyperplane defined by (8)

$$\overline{\kappa} = \mathcal{P}(\hat{\kappa}) \qquad \overline{\chi}_i = \mathcal{P}(\hat{\chi}_i)$$
(10)

^{5.} Vinokur et Montagné, Journal of Computational Physics (1990).

High order extension with OSMP scheme

One step monotonocity preserving (OSMP) scheme ⁶

New system of advection equations

$$\frac{\partial \overline{\zeta}_i}{\partial t} + \overline{\lambda}_i \frac{\partial \overline{\zeta}_i}{\partial x} = 0 \quad \text{with} \quad \Lambda = (u, ..., u, u - \overline{c}_s, u + \overline{c}_s)^T$$
(11)

^{6.} V.Daru et Tenaud, Journal of Computational Physics (2004).

High order extension with OSMP scheme

One step monotonocity preserving (OSMP) scheme⁶

New system of advection equations

$$\frac{\partial \overline{\zeta}_i}{\partial t} + \overline{\lambda}_i \frac{\partial \overline{\zeta}_i}{\partial x} = 0 \quad \text{with} \quad \Lambda = (u, ..., u, u - \overline{c}_s, u + \overline{c}_s)^T$$
(11)

Increase order in time and space with Lax-Wendroff procedure

$$\mathbf{F}_{j+1/2}^{o} = \mathbf{F}_{j+1/2}^{Roe} + \frac{1}{2} \sum_{k} (\mathbf{\Phi}^{\circ} \mathbf{r})_{k,j+1/2}$$
(12)

Flux limiter : Monotonicity preserving scheme (TVD scheme with improvement near extrema)

$$\Phi^{o-MP} = \max(\Phi^{\min}, \min(\Phi^{o}, \Phi^{\max}))$$
(13)

^{6.} V.Daru et Tenaud, Journal of Computational Physics (2004).

High order extension with OSMP scheme

One step monotonocity preserving (OSMP) scheme 6

New system of advection equations

$$\frac{\partial \overline{\zeta}_i}{\partial t} + \overline{\lambda}_i \frac{\partial \overline{\zeta}_i}{\partial x} = 0 \quad \text{with} \quad \Lambda = (u, ..., u, u - \overline{c}_s, u + \overline{c}_s)^T$$
(11)

Increase order in time and space with Lax-Wendroff procedure

$$\mathbf{F}_{j+1/2}^{o} = \mathbf{F}_{j+1/2}^{Roe} + \frac{1}{2} \sum_{k} (\mathbf{\Phi}^{o} \mathbf{r})_{k,j+1/2}$$
(12)

Flux limiter : Monotonicity preserving scheme (TVD scheme with improvement near extrema)

$$\Phi^{o-MP} = \max(\Phi^{\min}, \min(\Phi^{o}, \Phi^{\max}))$$
(13)

Riemann invariants recombination

Recomposition of the equations (11) with the same eigenvector u to improve flux limiter and keep relation between variation of mass fraction and variation of mass energy

$$\overline{\zeta}_{1}^{bis} = \sum_{i=1}^{ns} \overline{\zeta}_{i} \left(\overline{E}_{c} - \frac{\overline{\chi}_{i}}{\overline{\kappa}} \right) = \Delta(\rho E) + \overline{E}_{c} \Delta \rho - \overline{H} \frac{\Delta P}{\overline{c}^{2}}$$
(14)

WCCM ECCOMAS 2021

^{6.} V.Daru et Tenaud, Journal of Computational Physics (2004).

Numerical experiments

Properties		$0 \le x \le 25$	$25 < x \le 50$
Froperties	P (bar)	1	0.1
 Sod shock tube with R22 gas, 640 cells and 	$\rho(kg/m^3)$	1	0.125
OSMP scheme of 7 th order	N ₂ (%)	75.55	23.16
 Species data with thermodynamic NASA 	R ₂₂ (%)	23.16	75.55
• Species data with thermodynamic NASA	$O_{2}(\%)$	1 29	1 29

polynomials

γ	1.38	1.32
$O_2(70)$	1.20	1.20

Table 1 - initial conditions

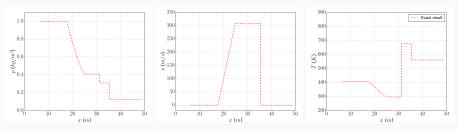


Figure 3 - Density, velocity and temperature profiles at t = 20ms

Properties	
 Sod shock tube with R22 gas, 640 cells and OSMP scheme of 7th order 	

 Species data with thermodynamic NASA polynomials

	$0 \le x \le 25$	$25 < x \le 50$
P (bar)	1	0.1
$\rho(kg/m^3)$	1	0.125
N ₂ (%)	75.55	23.16
R ₂₂ (%)	23.16	75.55
O ₂ (%)	1.29	1.29
γ	1.38	1.32

Table 1 - initial conditions

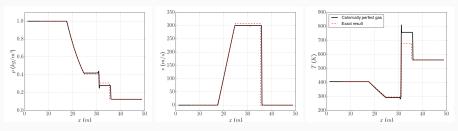


Figure 3 – Density, velocity and temperature profiles at t = 20ms

Р	ron	erties	
	, ob	Citico	

- Sod shock tube with R22 gas, 640 cells and OSMP scheme of 7^{th} order
- Species data with thermodynamic NASA polynomials

	$0 \le x \le 25$	$25 < x \le 50$
P (bar)	1	0.1
$\rho(kg/m^3)$	1	0.125
N ₂ (%)	75.55	23.16
R ₂₂ (%)	23.16	75.55
O ₂ (%)	1.29	1.29
γ	1.38	1.32

Table 1 - initial conditions

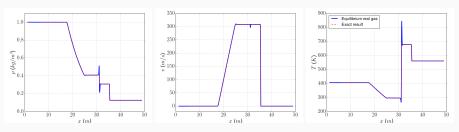


Figure 3 – Density, velocity and temperature profiles at t = 20ms

Properties

- Sod shock tube with R22 gas, 640 cells and OSMP scheme of 7th order
- Species data with thermodynamic NASA polynomials
- OSMP adapted with combination of Riemann invariants (14)

	$0 \le x \le 25$	$25 < x \le 50$
P (bar)	1	0.1
$\rho(kg/m^3)$	1	0.125
N ₂ (%)	75.55	23.16
R ₂₂ (%)	23.16	75.55
O ₂ (%)	1.29	1.29
γ	1.38	1.32

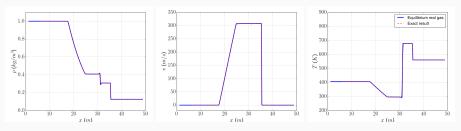
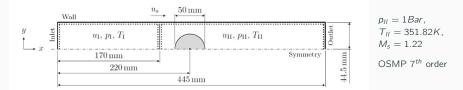


Figure 3 – Density, velocity and temperature profiles at t = 20ms

Hydrodynamic instability : shock/bubble interaction

Parameters



Results

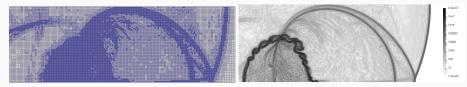
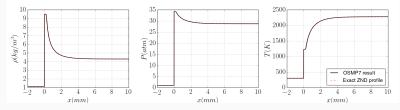


Figure 4 – Mesh and density gradient at $\tau = ta_{II,R22}/d_0 = 1.15$ for 256 cells in initial bubble diameter

Capture of Richtmyer-Meshkov instability with high order simulation

Reactive mixture : Detonation front

1D ZND structure



Respect stability criterion (heat release, induction length, overdriven velocity...)⁷

Unstable case

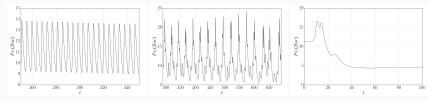


Figure 5 - Oscillation of post-shock pressure for increasing induction length until quenching

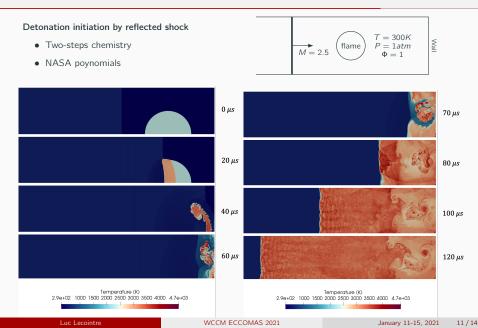
7. Ng et al., Combustion Theory and Modelling (2005).

Reactive mixture : Acceleration of flame

Detonation initiation by reflected shock

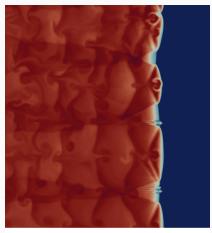
- Two-steps chemistry
- NASA poynomials

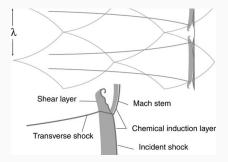
Reactive mixture : Acceleration of flame



Reactive mixture : 2D Detonation

Detonation structure



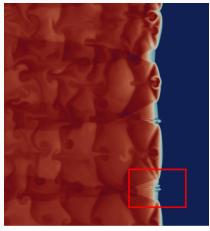


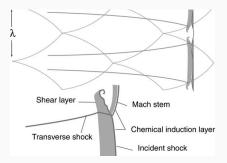
2D Detonation front

- Detonation cell
- Shear layer
- Chemical induction layer

Reactive mixture : 2D Detonation

Detonation structure





Carbuncle instability

- Insufficient cross-flow dissipation
- Specific to Complete Riemann solver
- Amplified phenomena with heat release

Cure the carbuncle instabilities

Rotated solver⁸

 $n = \sum_{k=1}^{2} \alpha_k n_k$ Rotational invariant property of Euler equation $(\hat{\mathbf{w}}_k)_t + (\mathbf{f}^E(\hat{\mathbf{w}}_k))_{\hat{\mathbf{x}}} = 0$ (15) \mathbf{n}_2 with $\hat{\mathbf{w}}_k = \mathbf{T}_k \mathbf{w}_k$ and \mathbf{T}_k rotation matrix

$$\mathsf{F}_{i+\frac{1}{2}}^{Roe} = \frac{1}{2}(\mathsf{F}_{L} + \mathsf{F}_{R}) - \frac{1}{2} \left[\sum_{m=1}^{2} |\alpha_{i+1/2}^{m}| \sum_{i=1}^{N} \delta \overline{\zeta}_{i} |\overline{\lambda}_{i}| \overline{\mathsf{r}}^{(i)} \right]$$
(16)

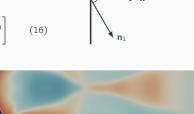


Figure 6 - Application of rotated solver

8. Ren, Computers & Fluids (2003).

Cure the carbuncle instabilities

Rotated solver⁸

 $\mathbf{n} = \sum_{k=1}^{n} \alpha_k \mathbf{n}_k$ Rotational invariant property of Euler equation $(\hat{\mathbf{w}}_k)_t + (\mathbf{f}^E(\hat{\mathbf{w}}_k))_{\hat{\mathbf{x}}} = 0$ (15) \mathbf{n}_2 with $\hat{\mathbf{w}}_k = \mathbf{T}_k \mathbf{w}_k$ and \mathbf{T}_k rotation matrix

$$\mathbf{F}_{i+\frac{1}{2}}^{Roe} = \frac{1}{2} (\mathbf{F}_{L} + \mathbf{F}_{R}) - \frac{1}{2} \left[\sum_{m=1}^{2} |\alpha_{i+1/2}^{m}| \sum_{i=1}^{N} \delta \overline{\zeta}_{i} |\overline{\lambda}_{i}| \overline{\mathbf{r}}^{(i)} \right]$$
(16)

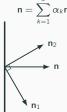


Figure 6 - Application of rotated solver

Not a high-order recomposition for now (diffusive solution)

8. Ren, Computers & Fluids (2003).

Luc Lecointre

WCCM ECCOMAS 2021

Conclusion

Objective : complete case study of hydrogen flame acceleration in 2D and 3D with geometrical configuration

High order compressible solver

- Extension of the approximate Riemann solver of Roe for multicomponent real gas flow
- OSMP scheme : new combination of Riemann invariants to capture correctly the contact wave

Validation tests

- Realistic Thermodynamic model for multispecies
- Capture hydrodynamic instabilities
- Flame acceleration/Detonation case without too strong shocks
- Carbuncle correction (only with low-order for now)

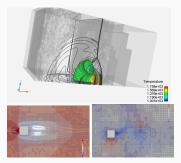
Objective : complete case study of hydrogen flame acceleration in 2D and 3D with geometrical configuration

High order compressible solver

- Extension of the approximate Riemann solver of Roe for multicomponent real gas flow
- OSMP scheme : new combination of Riemann invariants to capture correctly the contact wave

Validation tests

- Realistic Thermodynamic model for multispecies
- Capture hydrodynamic instabilities
- Flame acceleration/Detonation case without too strong shocks
- Carbuncle correction (only with low-order for now)
- 3D simulation
- Immersed boundary methods



Thank you for your attention

Bibliography i

Références

- L. R. Boeck et al. "Detonation propagation in hydrogen-air mixtures with transverse concentration gradients". In : *Shock Waves* 26 (2016), p. 181-192.
- H. D. Ng et al. "Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics". In : Combustion Theory and Modelling 9.3 (2005), p. 385-401.
- Yu-Xi
 - Yu-Xin Ren. "A robust shock-capturing scheme based on rotated Riemann solvers". In : Computers & Fluids 32.10 (2003), p. 1379 -1403.
 - P.L Roe. "Approximate Riemann solvers, parameter vectors, and difference schemes". In : *Journal of Computational Physics* 43.2 (1981), p. 357 -372.
 - R. Scarpa et al. "Influence of initial pressure on hydrogen/air flame acceleration during severe accident in NPP". In : *International Journal of Hydrogen Energy* 44.17 (2019). Special issue on The 7th International Conference on Hydrogen Safety (ICHS 2017), 11-13 September 2017, Hamburg, Germany, p. 9009 -9017.

Bibliography ii

Christian Tenaud, Olivier Roussel et Linda Bentaleb. "Unsteady compressible flow computations using an adaptive multiresolution technique coupled with a high-order one-step shock-capturing scheme". In : *Computers & Fluids* 120 (2015), p. 111 -125.

V.Daru et C. Tenaud. "High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations". In : *Journal of Computational Physics* 193 (2004), p. 563-594.

Marcel Vinokur et Jean-Louis Montagné. "Generalized flux-vector splitting and Roe average for an equilibrium real gas". In : *Journal of Computational Physics* 89.2 (1990), p. 276 -300.