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Rémi Segretain1, Sergiu Ivanov2, Laurent Trilling1 and Nicolas Glade1

1 University Grenoble Alpes, CNRS UMR5525, CHU Grenoble Alpes, Grenoble INP,
TIMC-IMAG, F-38000 Grenoble, France

{remi.segretain,laurent.trilling,nicolas.glade}@univ-grenoble-alpes.fr
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Abstract. Formal interaction networks are well suited for represent-
ing complex biological systems and have been used to model signalling
pathways, gene regulatory networks, interaction within ecosystems, etc.
In this paper, we introduce Sign Boolean Networks (SBNs), which are
a uniform variant of Threshold Boolean Networks (TBFs). We continue
the study of the complexity of SBNs and build a new framework for eval-
uating their ability to extend, i.e. the potential to gain new functions by
addition of nodes, while also maintaining the original functions. We de-
scribe our software implementation of this framework and show some
first results. These results seem to confirm the conjecture that networks
of moderate complexity are the most able to grow, because they are not
too simple, but also not too constrained, like the highly complex ones.

Keywords: Biological Regulation, Biological Networks, Sign Boolean
Networks, Complexity, Extensibility, Network Growth

1 Introduction

Numerous biological systems (gene systems, ecosystems, metabolic systems, etc.)
can be modeled by formal interaction networks, in which the nodes of the net-
work embody their constituting elements (genes, living species or individuals,
molecules, etc.) and the directed edges their interactions [3, 4]. In this paper
we introduce Sign Boolean Networks (SBNs), a particular class of Boolean Net-
works, which present the advantage of being a quite simple formalism that allows
performing numerous large computations of various types, and which easily ex-
press formal networks in a logical constraint-based programming language, while
also capturing the whole structure and functioning of real systems.
As SBNs are Boolean, the nodes’ states indicate the presence and absence or
activation and inhibition of biological species. Nevertheless, it is easy to replace
Boolean states by a multi-valued ones, or to simulate a multi-valued state by a
set of Boolean nodes, in order to represent biological amounts more realistically
(e.g. [5]). Moreover weighted edges reflect the relative strength of interactions
that biological elements exert onto each other. Then, the functioning of a biolog-
ical system is readable as a deterministic transition graph in which fixed points
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and cyclic attractors can be reached by the network’s nodes from one initial
state or another (e.g. [4]).
Biological networked systems evolve: genes that are subject to genetic changes
like mutation, duplication or deletion, or living species that suffer from invasive
species within their ecosystems, make such systems adapt to new configurations.
As long as biological systems are subject to natural selection under environmen-
tal constraints, all selected features give the living system they support an evo-
lutionary advantage. They evolve when new elements (new genes or duplicates,
invasive species), start interacting with the existing ones, when existing elements
are deleted, or when mutations modify existing elements or the manner in which
they interact by modulation of their strength or specificity. When new biological
elements start to interact with the existing ones, networks grow toward larger
structures. However, during evolution, the cards are rarely entirely reshuffled:
maintaining the functioning of the whole system, especially when it is complex,
seems essential to its survival. Some additions could indeed change the whole
functioning of a network, breaking the precious biological function it supports.
The question we are interested in and that motivates this methodological article
is: How can a network grow to a larger one while keeping both the original net-
work as an inner module, and its original function as a part or a sub-function
of the more complex one?
More formally, we are searching for all networks N of dimension d+1 (i.e. made
of d+ 1 nodes) that produce a repeating binary word S (that we associate to a
behavior [2]) on at least one node, from all networks N1 of dimension d that play
a repeating binary word S1 on at least one node, such that N1 ⊂ N (meaning
that N contains the structure of network N1) and S1 ⊂ S (the behavior S1 of
N1 becomes a sub-pattern of the extended behavior S).

Moreover, we ask how such constrained extension ability is related to both
network structure and function. We indeed expect certain couples {N1, S1} to
be more extensible than others, thus yielding more networks N than others.
Complexity is a manner to characterize network structure or behavior as pre-
viously proposed [2]. How this ability to grow relates to network and behavior
complexities is an open question that could give clues on how real-world net-
worked systems could evolve. Does the growth of a network entail an increase in
robustness of its functions (i.e. an increase of the size of the corresponding basins
of attraction, collection of states that converge to a given asymptotic behavior),
or does the number of functions it can perform (i.e. the number of asymptotic
behaviors, or attractors) augment instead?
Before being able to realize such studies and answer these questions, we need
powerful algorithms to explore the large sets of extended networks yielded by
the structural and dynamical constraints expressing the conservation of the orig-
inal structure and function of network N1. To help the reader asses the huge
amount of computations we are dealing with, the number of quadruplets (original
network, original behaviour, extended network, extended behaviour) approaches
770000 for networks N1 of dimension 2, and for one-node extensions only (i.e. ex-
tensions to the space of networks of dimension 3). We also need efficient methods
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to compute the properties of the obtained networks, including structural and be-
havioural network complexities, but also the characteristics of their dynamics like
the number of attractors of the original and the extended networks, or the size
of their basins of attraction. In this paper, we first present the formalism of Sign
Boolean Functions (SBFs) and Networks (SBNs), and the manner in which we
solve the extension problem and compute network and behavior complexities.

2 Definitions and Methodology

2.1 Sign Boolean Networks

A Boolean function is any function f : {0, 1}n → {0, 1}. A Boolean network is
typically defined as a tuple (V, F ), where V is the set of variables of the network
and F is a mapping associating a Boolean function to each variable in V . For
any given x ∈ V , the Boolean function associated to x, F (x), computes the
new value for x from the values of the variables in V . Depending on the types
of update functions F , one can distinguish between different kinds of Boolean
networks [1, 2, 9–13, 17].
Threshold Boolean Networks (TBNs) are a particular kind of Boolean networks
in which the updates of Boolean variables depend on the sum of weighted in-
teractions compared to a threshold that represents the level of activation of the
Threshold Boolean Function (TBF), as follows:

Definition 1. Given d weights w1, . . . , wd ∈ R and the threshold θ ∈ R, a TBF
f given by (w1, . . . , wd, θ) is defined as follows:

f(x1, . . . , xd) =

{

1, if
∑d

i=1
wixi > θ,

0, otherwise.

Compared to other types of Boolean Networks, TBNs capture the inhibiting and
promoting relationships in regulatory networks with far fewer parameters [13].
It turns out however that using two types of parameters for a TBF, the weights
and a threshold, creates a strong asymmetry for complexity analysis (see [2,
Section 2.2.2]). Indeed, to compute TBF complexities, we were evaluating the
volume of their equivalence classes in the unit ball in the space of parameters
{W, θ} which is not symmetrical in all directions due to the parameter θ, because
the nature of the threshold is quite different from that of the weights. Networks
of TBFs are thus heterogeneous, and dealing with their heterogeneity may be
rather challenging. Therefore, we settled to use the more uniform variant: Sign
Boolean Networks (SBNs), consisting of Sign Boolean Functions (SBFs):

Definition 2. Given d weights w1, . . . , wd ∈ R, a Sign Boolean Function f is
defined by its weights 〈w1, . . . , wd〉 as follows:

f(x1, . . . , xd) =

{

1, if
∑d

i=1
wixi > 0,

0, otherwise.
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(a) 2D weight space (b) 3D weight space

Fig. 1: SBF parameter space and equivalence classes. (a) The dashed lines
delimit different conic regions of the unit ball of SBF parameters within which all
SBFs share the same truth table. The rug lines indicate the equivalence class into
which a dashed line is included. Each equivalence class is designated by a value of
Ai(f) and can comprise multiple layouts Lij of SBFs represented by the different
cones in the unit ball [2]. In dimension 2, there are four different equivalence
classes with the abstract representations A(f) = 〈0, 0〉, 〈0, 1〉, 〈1, 1〉 or 〈2, 1〉 (see
Section 2.1). (b) In 3 dimensions, each line represents an intersection between
a 2D plane and the unit sphere. Each plane is defined by an equation over the
weights detailed in the legend. As in (a) equivalence classes are constituted by
one or several cones.

It is easy to show that any given TBFi (with threshold θi) can always be replaced
by a combination of two SBFs. Indeed, take SBFi (threshold 0) which has all
the inputs of TBFi with the same weights, plus an input with weight wij = −θi
connected to the self-activated SBFj (threshold 0) with a loop arc wjj = 1 and
initialized to 1. SBFj will be constantly activated, so for SBFi to produce 1,
the sum of all its other inputs (i.e. the original inputs of TBFi) plus −θi should
be greater than 0, meaning that the simple network consisting of SBFi and
SBFj simulates TBFi faithfully. So, the threshold of a TBF can be seen as
incorporating a particular kind of a sub-network into the TBF itself!

Remark 1. While any given TBF can be simulated by two SBFs, and therefore
any given TBN can be simulated by an SBN, the expressive power of individual
SBFs is inferior to that of individual TBFs: consider for example the single-input
TBF fσ given by the tuple (w1 = 1, θ = −1). fσ(x) = 1, for any x ∈ {0, 1}. There
exists no SBF with the same truth table, because any SBF is 0 when all of its
inputs are 0.
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Remark 2. We mainly use integer values for weight parameters because they
are easier to work with but real values can also be used. Only the relationship
between the weights and their signs is important. In particular, we use floating
point values comprised between −1 and 1 to compute SBF complexities (see
section 2.3). For example W (f) = 〈−0.1, 0.2〉 ≡ 〈−1, 2〉.

Equivalence classes and layouts of SBFs The d-dimensional parameter
space (weight space) can be divided into several regions that contain instances of
SBFs. These regions are delimited by (d−1)-dimensional planes that correspond
to conditions on the weights. For example, in the 2D parameter space shown in
Figure 1, the quadrant designated by A1(f) corresponds to all SBFs in which
w1 > 0 and w2 > 0.
All SBFs f that present the same truth table, up to a permutation of their
inputs, belong to the same equivalence class, denoted A(f). We use the same
notation to refer to the abstract representation of SBFs (see below). Within an
equivalence class Ai(f), a particular order of the inputs in the truth table is
called the layout Lij(f) of this equivalence class.

Minimal SBF and minimal SBN For integer weights, one can always define
a minimal SBF as the SBF for which the sum of absolute values of weights
is minimal. Such a minimal SBF is unique, up to the layout. All SBFs can be
reduced to such a minimal SBF, without impacting its truth table. For example,
a SBF having the weights 〈−1, 3〉 can be reduced to the minimal SBF 〈−1, 2〉.
The corollary is that any SBN can be reduced to a minimal SBN in which all
SBFs are minimal. For a given configuration of the connections between its SBFs,
the minimal SBN is unique.

Abstract representation of SBFs A Boolean vector X = 〈x1, ..., xd〉 ∈
{0, 1}d represents the activation state of the inputs of a SBF f of dimension
d. There are 2d possible configurations for X forming all the entries of the truth
table of f . It is possible to classify these configurations according to the number
of activated inputs (inputs set to 1). The resulting classes are called Naii, for
Number of activated inputs = i, i ∈ [0; d]. For d = 3 we have the four classes
Nai0, Nai1, Nai2 and Nai3.
Then, a SBF can be described by a vector of integers Y = 〈y0, ..., yd〉, where
the yi is the number of configurations of X in Naii in which the sum of weights
linked to the activated inputs is strictly positive:

yi =
∑

X∈Naii







1 if
∑

xj∈X

xjwj > 0

0 otherwise

Remark 3. By construction, Nai0 will always contain only the configuration
where all the inputs are deactivated, i.e. 0 = 〈0, 0, . . . , 0〉. Since no SBF f is
activated on 0 (f(0) = 0 for any SBF f), y0 will always be equal to 0. Therefore
we choose to discard y0 from the vectors Y in the following.
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The vectors Y allow us to define the following notion capturing the fundamental
equivalence of SBFs with respect to reordering of the inputs.

Definition 3. The abstract representation of a SBF f is the vector

A(f) = 〈y1, ..., yd〉

where yi is the number of Boolean input vectors with i activated inputs for which
the SBF is 1 (as above).

The abstract representations of any two SBFs f1 and f2, whose weight vectors
are permutations of one another, are the same: A(f1) = A(f2). We empirically
verified the converse statement for dimensions d ∈ {1, 2, 3}: any two minimal
SBFs f1 and f2 of dimension d ∈ {1, 2, 3} with the property A(f1) = A(f2) are
given by weight vectors which are permutations of one another. For example, as
shown in Table 1, f1(x1, x2) = f2(x2, x1) and A(f1) = A(f2).

X f1 f2
x1 x2 f1(X) inequalities Y f2(X) inequalities Y

Nai0 0 0 0 0 0 0

Nai1
1 0 1 w1 > 0

1
0 w1 ≤ 0

1
0 1 0 w2 ≤ 0 1 w2 > 0

Nai2 1 1 1 w1 + w2 > 0 1 1 w1 + w2 > 0 1

Table 1: Example of two equivalent SBFs of dimension 2 sharing a common
abstract representation.

Interaction Graph of a SBN The interaction graph of a SBN is the weighted
directed graph in which the nodes are the variables of the SBN, and which
contains the weighted edge EnAnB

: nA
w

−→ nB between nodes nA and nB if the
SBF updating nB receives the state of nA weighted by w.
Let us remark that:

– the output of a SBF only depends on the sign of the weighted sum of its
inputs,

– the interaction graph of a SBN completely describes the SBN,
– setting a weight to 0 models an absence of interaction and consequently an

absence of the corresponding edge,
– we require networks to have connected interaction graphs: disconnected

nodes are not allowed.

Transition Graph of a SBN A state of a SBN with d nodes {n1, ...nd} is a
vector s = 〈x1, . . . xd〉 ∈ {0, 1}d giving the value of each of the nodes of the SBN.
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A network updates all of its nodes at every step. In this article we only con-
sider updates under the parallel update mode (also called synchronous mode),
however, our method may be adapted to non-synchronous update modes. The
initial state of a SBN is given by the vector s0 ∈ {0, 1}n, which sets the initial
values of the nodes of the network. We will often refer to nodes by their update
functions (SBFs). While several nodes may have the same update function, we
assume that the labels of the SBFs are different and are in bijective correspon-
dence with nodes.
Given a SBN N , its transition graph is a graph whose vertices are the states of
N and which has an edge s1 → s2 iff updating all the nodes in s1 according to
their update functions yields s2. The dynamics of a SBN is deterministic: if the
transition graph contains the edges s1 → s2 and s1 → s3, then s2 = s3. Conse-
quently, the connected components of the state graph are cycles, possibly with
some pre-cycle (non-cyclic prefixes) attached. These cycles are generally posited
to correspond to particular behaviours (phenotypes) of biological networks.
The output of a SBN N is recovered first by designating an output node and
then listing the successive values it may have when N evolves from a particular
starting state. Since the dynamics of a SBN always ends up in a cycle, and since
SBN never stop updating their states, any node output sequence they generate
has the form uv∗, u, v ∈ {0, 1}∗ (that is, u is a prefix and v is a suffix which can
be repeated arbitrarily many times). Because we limit the definition of behavior
to the repeated suffix v∗, we will ignore the prefix u and associate the sequence
S played by a node of N with the repeating suffix v∗.

2.2 Extension of structures and behaviours

We will now define the central question addressed in this paper: the ability of
SBNs to extend by addition of new elements while maintaining existing structure
and function. To formulate the extension problem in a logical way we only need
to fix a given binary sequence S1, a suffix Sk (S1, Sk ∈ {0, 1}∗), the dimension
d, and the constraints over the quadruplet (N1, S1, N, S) as follows :

– N1 is a SBN composed of d nodes,

– N1 shows the behavior described by S1, on a node ni. Meaning that the
successive states of node ni along a cycle in the transition graph match the
binary sequence S1,

– S is a binary sequence defined as S = S1 · Sk, where · stands for sequence
concatenation,

– N is a SBN composed of d+ 1 nodes,

– N shows the behavior S on the same node ni as in N1,

– N contains a sub-network N ′

1 such that:

• N ′

1 is composed of d nodes.

• N ′

1 and N1 share the same structure of edges:

∀Edgeni→nj
∈ N1, ∃!Edge′ni→nj

∈ N ′

1. i, j ∈ [1; d],
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• N ′

1 and N1 share the same SBFs:

∀fi ∈ N1, ∃!f
′

i ∈ N ′

1, fi ≡ f ′

i . i ∈ [1; d],

where ≡ stands for equivalence as defined in Section 2.1.
• N ′

1 and N1 possibly differ regarding the weights of their edges with the
following restriction:

∀wni→nj
∈ N1, ∃!w

′

ni→nj
∈ N ′

1, wni→nj
≤ w′

ni→nj
. i, j ∈ [1; d].

Figure 2 gives two detailed examples of extensions of 2-dimensional SBNs.
In practice, due notably to the huge number of possible d-size networks and asso-
ciated binary sequences, it is not possible to directly calculate all the quadruplets
(N1, S1, N, S) in a reasonable CPU time and amount of memory. To avoid this
issue, we used a particular (N1, S1) instance-centered implementation of this
logical formulation of the network and behaviors extension problem: for a given
couple (N1, S1) and a given behavior extension Sk, we infer (in ASP) the set
of networks N that comply with those constraints. In order to avoid duplicates
of N1 networks, i.e. keep only one network instance per equivalence class, we
must exploit the abstract representation of their functions presented above (see
Section 2.1). Full details concerning the implementation of this computation
involving a Java processing pipeline orchestrating ASP modules are given in
appendices A and B.

2.3 Complexity of SBNs and SBFs

In a recent past, we described a manner to compute both the complexity of
binary sequences S played by network nodes (sequences that we associate to
behaviors) and the structural complexity of TBFs and TBNs [2]. In the present
paper, we present an improved version of the latter. As before for TBFs, to
compute the structural complexity of a SBF f , we consider the equivalence class
A(f) of f and evaluate the probability P of randomly picking an instance of
f in this equivalence class, under the uniform distribution over the unit ball of
parameter space (Figure 1 illustrates this for SBFs). The complexity of a given
TBF was defined as the inverse of this probability. To compute the complexity
of a TBN N in [2], we used to multiply the individual complexities of its con-
stituent TBFs.
This computation however presents an issue : it does not take into account the
way these TBFs are connected together i.e. the topology of the network and
the associated parameters (weights), in other terms its structure. In the present
paper, we now take network structure into account in the form of another prob-
ability measurement Cs. Furthermore, although the complexity of a TBF Cf

is related to a probability, it is not a probability anymore. Combining it with
the structural complexity Cs is therefore not easy. We decided to make it more
uniform: both SBFs complexities Cf and structural complexities Cs are now
probabilities. In order to do that we updated Cf to Cf = 1 − P(A(f)). Cf is
therefore the probability of not picking f . Thus, the complexity Cf of a function
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(a) N1 (b) NA (c) NB

(d) TG of N1 (e) TG of NA (f) TG of NB

Fig. 2: Two examples of SBN extension from a 2D SBN. In the networks
N1 (a), NA (b) and NB (c), the nodes are labelled A, B or C. The node for which
we follow the behavior is red and the additional node in the extended networks
is gray. The corresponding transition graphs (TG) are shown below in (d), (e)
and (f). In the TGs, the states and behavior of node A are shown in red while
the state of the additional node in extended networks is shown in gray. From
network N1 (a) and its asymptotic behavior S1 = (10)∗ (d) played on node A,
networks NA (b) and NB (c) are examples of extended networks that can be
found when asking for an extension of N1 by one node, and an extension of one
of its behaviors from S1 = (10)∗ to S = (101)∗. Within the potentially large
set of extended networks that satisfy the constraints given above, in this case 48
extended SBN from N1, S1 and S, some will partly preserve the initial transition
graph as shown in (e) for network NA, while it may be largely reconfigured for
other as shown in (f). In any case, the structure of network N1 is preserved in
the extended networks, and the initial behavior (10)∗ is encapsulated in a larger
one, here (101)∗.

f is high when P(A(f)) is low.
We choose the structural complexity Cs to be a centrality measure because cen-
trality naturally expresses the concept of influence of one node ni on another one.

We construct Cs
i as follows: for each directed edge of the network Eij : ni

wij
−→ nj ,



10 Rémi Segretain, Sergiu Ivanov, Laurent Trilling and Nicolas Glade

(i, j ∈ [1; d]), we define the influence probability P I(Eij) that node ni influences
node nj due to the weighted directed edge Eij , among all the incoming edges
Ekj that influence node nj :

P I(Eij) =
|wij |

d
∑

k=1

|wkj |

.

We can then define the P I of a longer path, going from a node a to a node b

(P I(Pathab)) as the geometric mean of the influence probabilities P I(Eij) of
the edges of this path, Eij ∈ Pathab:

P I(Pathab) = Lab

√

∏

E∈Pathab

P I(E).

where Lab it the length of the path.

Remark 4. In the former equation, we express the mean influence of a given path
as an average probability that can be compared to that of other paths. We used
the geometric mean because each SBF along the path receives a variable number
of input edges, so the influence |wij | at each step on one node (one edge Eij)
may be normalized by a different number of weights, from 1 (single edge) to d

(edges from all nodes including nj).

Since several different paths can exist from a to b, the general probability P I
ab

that a influences b must take into account all of them. We therefore calculate
P I
ab as follows:

P I
ab = P

(

⋃

Path∈Pathsab

Path

)

.

where Pathsab is the set of all paths from node a to node b, and we overload
Path to refer both to a path from a to b and the event that node a influences
node b over this path. The probability of this event is P I(Path).
We define the centrality Cs

i of a node ni as the probability that it influences at
least one node nk, including itself:

Cs
i = P

(

d
⋃

k=1

(

⋃

Path∈Pathsik

Path

))

.

Finally we use the centrality Cs
i of each node ni to modulate the corresponding

SBF complexity Cf
i , and define the complexity of a network N as follows:

C(N) =

d
∏

i=1

{

Cf
i × Cs

i if Cs
i > 0

1 otherwise,

Remark 5. Nodes with centrality equal to zero (i.e. the nodes that are pure
readers, their state is never read by any other node including themselves) are de
facto excluded from the network complexity calculation.
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3 Discussion

In this article we presented a scientific question that concerns various biologi-
cal networks including regulatory networks, ecosystems, neural networks, etc.:
how do networks and their associated behavior grow together in the case the
initial network structure and behavior must be preserved? We also wonder how
much such extensible character is related to the complexity of networks and
behaviors. Among the further research directions that emerge in this context,
we hypothesize that most of the highly complex d-dimensional networks play-
ing complex behaviors cannot extend into complex (d+1)-dimensional networks
easily because they are too constrained. Conversely, too simple networks cannot
play complex behaviors and cannot become larger complex networks, playing
complex extended behaviors. We however expect networks of moderate struc-
tural and behavioral complexity to be the most capable of generating complex
extended networks and behaviors when growing. In this case, the network struc-
ture and its asymptotic behavior are not too much linked, a large part of the
transition graph being occupied by transitory states or other basins of attrac-
tion, so additional nodes do not necessarily break the initial behavior.

Here, we focus on the exhaustive description of the method we developed,
from both the theoretical and the implementation point of views, to compute
both network extensions and network characteristics like complexities. Using
Sign Boolean Networks is well adapted to materialize our questions and test our
hypotheses. SBNs are simple enough to work with in logical constraint program-
ming and to limit the number of extensions obtained from any triplet (N1, S1, S).
The homogeneous description of their constituting SBFs, entirely determined by
their input weights, also allows expressing complexity scores for SBNs easier
than with ordinary Boolean Networks or even Threshold Boolean Networks.

We tested our method by computing the extension of 2-dimensional SBNs

d SBF SBN {N1, S1, S} N

2 7 101 96 103 777216
3 17 206 103 [180 106 – 32 109] [1.5 109 – 280 109]
4 47 76 109

Table 2: Number of SBFs, SBNs, triplet (N1, S1, S) and extended networks N

per dimension d. Ranged values are estimations based on SBN extension from
dimension 2 to 3.

towards 3-dimensional SBNs, i.e. 777216 quadruplets (Nd=2
1 , S1, N

d=3, S). For
each network (initial and extended), we also computed several characteristics
including network and behavioral complexities, but also the number of attrac-
tors and the size of basins of attraction. The volume of data to process is then
already huge when starting from dimension 2 for which only 7 SBFs and 101
SBNs exist. Our program running on a workstation with 32 CPU threads (2 x
Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz) and 64Go RAM (ECC DDR4



12 Rémi Segretain, Sergiu Ivanov, Laurent Trilling and Nicolas Glade

2400MHz) took 20 minutes to complete. This is quite efficient but computa-
tion times for extensions from larger dimensions may grow fast as shown in
Table 2. To be applicable to larger networks, in particular biological ones, our
method should be scalable. Looking for exhaustive results, i.e. infer all quadru-
plets (N1, S1, N, S) as we did for 2 to 3 dimensional extensions but for larger
dimensions, the computation as it is realized here may quickly reach its own
limits. The interest of exhaustive exploration is to embrace the entire diversity
of network structures and behaviors, and study their relationships in a systemat-
ical way. At the least, one would aim to yield comparable information for larger
dimensions or for larger extensions (i.e. extensions that involve more than one
additional node at a time). The get around is to downgrade the exploration of
quadruplets. There are several ways by which this can be done. In larger dimen-
sions, a manner to save computational time is to use Monte Carlo approaches.
Another manner to reduce the number of quadruplets to compute while allow-
ing us to explore larger extensions, is to make thin slices in initial and extended
behavior complexities (e.g. 3 slices along initial behavior complexities: small,
moderate and large complexities, and 3 slices in extended behaviors also lim-
ited to small, moderate and large complexities). Finally, even the extension of
very large specific networks (dozens of nodes) and for specific behaviors could
be computed in a reasonable time using the same ASP modules. All these down-
graded exploration methods will be evaluated on the benchmark that constitutes
our full 2 to 3 dimension exploration. In addition, from the technical point of
view, computation of larger extensions (e.g. dimension 3 to 4) will take advan-
tage of the optimization realized (modular structure, parallelism, etc.) in our
implementation. We are now only beginning to analyse and interpret the results
obtained for the 2D to 3D extension and will compute partial data for larger
extensions soon. As an example of what is obtained for the 2D to 3D extension,
the 3D histogram in Figure 3, shows notably that most 2D SBN behaviors are
not complex and most of them, when extended, show behaviors of limited com-
plexity played by extended networks of limited complexity too. It also shows
that complex extended behaviors and networks (red points) are mostly obtained
from networks of moderate complexity. Although such a result seems to go in
the good direction, this brief result overview must be refined with reinforced
statistic (e.g. min, max, standard deviation, in addition to average complexity
values) of network and behavior complexities. Increase in behavior complexity is
not the only way networks can evolve: extended networks can also develop new
behaviors (increase of the number of attractors) or the increase of complexity of
networks is used to reinforce the robustness of their behaviors, i.e. by increasing
the size of their basins of attraction. Finally, beyond the theoretical study, the
position of the complexity cursor in biological systems is an open question. We
expect our work to give clues on how networked systems can or cannot evolve
as they are constrained by the existing conditions and by the necessity to main-
tain vital functions. A specific article will be dedicated to this analysis and to
developing the biological question.
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Fig. 3: 3D histogram of network structure and behavior complexities.

Counts of all 777216 (N1, S1, N, S) quadruplets obtained by extension are di-
vided into 3D classes of complexities: network N1 complexity along the C(Initial
Network N1) axis, initial S1 and extended S behavior complexities along the
C(Initial Behavior) and C(Extended Behavior) axes respectively. Point size (in
logarithmic scale) denotes the number of networks in a class, while their color
corresponds to the average complexity of extended networks N in this class.
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A Implementation of the extension problem

In section 2.2 we formulated our network extension problem in a logical way. As
mentioned, such formulation is not effectively usable in its raw form. In practice,
we first enumerate exhaustively all networks N1, all their behaviours S1 and all
the extended behaviours S, then find all corresponding extended networks N

that satisfy the constraints enumerated in section 2.2.
In the following, we first give an overview of the software architecture and then
show how to solve the crucial issue of inferring efficiently only different networks
N .

A.1 Overall software architecture

We used a combination of two programming languages, Answer Set Programming
(ASP) [14], a non-monotonic logical based programming language, and Java, a
classical imperative language. The main software, written in Java, orchestrates
the execution and uses multiple ASP modules when needed.

Inference modules in ASP We first give here a very short introduction to
ASP. This logical language allows to express facts and rules, like Prolog, with
the help of logical literals. For example, the following rules p(1). p(2). and c

:- p(1), p(2). mean that the two facts p(1) and p(2) are true and that their
conjunction implies c.
An ASP program infers all logical models (sets of literals) that comply with the
facts and rules it specifies: they are called Answer Sets (AS). With the help of
integrity constraints, logically expressed as rules producing false, some AS can
be eliminated. For example, let us consider the two rules a :- not b. and b

:- not a. ; they accept the two different AS {a} and {b} (i.e. as b cannot be
inferred, b is considered to be false in ASP, then not b is true and a is also true).
If we add the fact c. and the integrity constraint :- c, not b. then only the
AS {b, c} is valid and not {a, c}: the integrity constraint discriminates the
ASs where the conjunction of c and not b is be false, then b should be true
(and a is rejected to be true).
The ASP solver that we use, namely clingcon [15], proceeds in two steps. First,
a grounder translates the rules to a propositional form (with only Boolean vari-
ables). Then a SAT-like algorithm is applied to this program. We greatly benefit
from a recent improvement based on [16] which uses a lazy approach for ground-
ing and then allows the use of numerical variables with a very large range.
In order to increase the flexibility and the re-usability of our ASP code, we cut
it into several inference modules dedicated to specific tasks and compatible be-
tween each others. Each one introduces a main literal that can be set to configure
its module :

– sbn(N, D) : implies literals describing a SBN N of dimension D.
– composedSbn(Na, Nb) : constrains two given SBNs Na and Nb so that one

SBN is an extension of the other as defined in 2.2.
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– sequencePlayedBySbn(N, S, I) : constrains a SBN N to play a given se-
quence S on his node of index I.

– orderedSbn(N) : from a given SBN N, generates the equivalent ordered one
by permutation of nodes (see section A.2).

Fig. 4: Overview of the processing pipeline, jobs division and ordering.

Initial jobs use inference modules to find the SBFs, which are used to generate the
SBNs. Then, all SBN behaviors are analysed. The complexity of individual SBFs,
SBNs and behaviors is determined and every reachable extended behaviors are
listed (the program generates sequence with S1 as sub-sequence). At this point
we have got all the triplets (N1, S1, S). For each of them, inference modules are
called another time to find all the extended networks N .

Processing Pipeline The main software is organized as a pipeline of processors
(called jobs): each job, programmed in Java, does its own part of the work, then
furnishes its results to the next job, etc. Using a custom Java library [8], the
workload is divided into tasks that we scatter across the different jobs, allowing
to make the execution parallel on any number of CPU cores, thus enhancing the
overall performances. An overview of this pipeline is given figure 4. The potential
of the combination of an imperative language and inference modules lay in the
facts that we can take advantages from both: efficiently find data sets by ASP
inference, filter and enrich them in the Java pipeline. Moreover, those enriched
data set can be used in return to configure other calls to inference modules. This
could not have been easily done using only ASP.
The jobs use inference modules by generating literals that link the modules they
need. In practice, such a job generates an ASP file that imports and configures
the needed modules. Here is a casual example: a job knows a SBF f and aims
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to find all SBNs that contain f and play the sequence s = (100)∗. This job
configures the necessary inference modules this way:

// imp l i e s the gene ra t i on o f a SBN n o f dimension 3
sbn (n , 3 ) .
// c on s t r a i n s n to conta in f
:− not sb f (n , f ) .
// con s t r a i n n to play the sequence s
:− not sequencePlayedBySbn (n , s ) .
// d e f i n e the b i t s o f s and t h e i r order
sequence ( s , 1 , 1 ) . // the f i r s t element o f s i s 1 .
sequence ( s , 2 , 0 ) .
sequence ( s , 3 , 0 ) .

Remark 6. To infer ASs different only on specified predicates, jobs that call
inference modules take advantage of an option of the solver: project, If several
AS are formed by the sames atoms belonging to a list of literals, this option will
force the program to keep only one of those AS. For example, let us consider the
two following AS AS1 : {p(a), q(b), r(c)} and AS2 :{ p(a), q(b), r(d)}.
The projection on p(X) and q(X) will only provide us either AS1 or AS2 as they
both contains the same literals for p(X) and q(X).

A.2 SBF and SBN generation issues

When generating SBF and SBN we encountered several issues that needed par-
ticular implementation solutions:

1. How to find all unique SBFs of dimension d ?
Within multiple sets of weights like {w1, w2, w3} to define several SBFs, their
truth table output may be equal or equivalent through inputs permutation,
so they belong to the same equivalence class A. To avoid duplicates, we must
use only one representative per equivalence class. The core problem is then
how can we found all those equivalence classes reliably ?

2. How to enumerate only unique SBNs from those SBFs ?
(a) Given a set of d SBFs, redundant SBNs can be enumerated by way of

permutation of the SBFs over the nodes, e.g. f1 associated to node 1
and f2 associated to node 2 or the alternative.

(b) There are also two others sources of variations that produce the same
sets of SBNs. Both correspond to layout variations, but they are obtained
in two different ways:
– Permutation of the source node for the inputs of the SBF, e.g. input

1 from node 1 and input 2 from node 2 or the alternative.
– Two SBFs can also be obtained from each other through permuta-

tion of their input weights. For example Weights(f1) = 〈−1, 2, 1〉
is equivalent to Weights(f2) = 〈2,−1, 1〉 by permutation of w1 and
w2.
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As we must avoid the exploration of duplicate SBNs, which would alter
the results and be very costly in computational power, we must take
into account only one of these variations in our SBN enumeration. For
performance issues detailed below, we choose to keep the layout variation
due to input’s source node permutations and neutralize the other.

Inference of SBFs Satisfiable answer sets of SBFs are generated using both
an inference module and job post-processing. During these operations, we must
generate only one SBF per equivalence class and neutralize the redundancy in-
duced by input weight permutations.
Within the inference module in ASP, a SBF is addressed by its abstract form
A(f). Thanks to the project option of clingcon (see remark 6 above) the SBFs
from different layouts Lij(f) but belonging to the same Ai(f) are regrouped in
only one equivalent class Ai(f). Since a A(f) is by definition a set of constraints
over the SBF weights, it is particularly easy to specify A(f) in ASP, particularly
when using integer linear constraints, a new ASP improvement. We can then in-
fer a set of SBFs classified by A(f) and by the sum of absolutes values of weights.
Once inference of SBFs is done, Java keeps only one minimal representative in
each equivalence class (see 2.1).
The generated set of SBFs solve the two issues 1 and 2b presented in A.2. By
dealing with the 2b issue from the beginning, we limit the number of processed
SBFs in the future jobs, saving both CPU time and RAM consumption.

Remark 7. In addition of the minimal representative, several others SBFs may be
kept from an equivalent class if they have weights set to zero. Edges with w = 0
are considered as non-existing edges. In consequence, even if two SBFs belong
to the same equivalence class, different directed graphs can be obtained when
some edges are absent. As the structural complexity is based on the topology of
the interaction graph, this lead to different and unique SBNs that we must also
explore.

Order over SBF Using A(f) makes it possible to determine an order over the
SBFs.
A(f) = 〈y1, y2, ...yd〉 is composed of a unique ordered set of numerical values
(yi), each value bounded between 0 and the number of configurations Card(Xi)
of X in Naii. Each digit of the vector A(f) is encoded using a different numerical
base Basei in such a way this vector could be converted into a number in decimal
base A(f)10. The numerical base corresponds to the number of configurations
Card(Xi) ofX inNaii, increased by 1 to include 0 (yi ∈ [0;Card(Xi)]) :Basei =
Card(Xi) + 1.
In A(f) = 〈y1, ..., yd−1, yd〉, yd code for the units, yd−1 for the decades, yd−2 for
the hundreds, etc, so it matches with the conventional order in which number
are read. To convert A(f) into a A(f)10 we have:

A(f)10 = yd +

1
∑

i=d−1

(yi ×

i+1
∏

j=d

Basej)
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Every different A(f) of the same dimension will be converted into a unique
A(f)10, as illustrated with 2 SBFs in table 3, that we can use to define a order
over SBFs such that :

f1 ≤ f2 if A(f1)10 ≤ A(f2)10

y1 y2 y3 A(f1)10
A(f1) 2 2 1

21Card(Xi) 3 3 1
Basei 4 4 2

y1 y2 y3 A(f2)10
A(f2) 1 2 0

12Card(Xi) 3 3 1
Basei 4 4 2

Table 3: Examples of conversion of A(f) into a A(f)10 with A(f1) = 〈2, 2, 1〉
and A(f2) = 〈1, 2, 0〉

SBN enumeration In order to avoid the generation of multiple SBN composed
of the same SBFs but assigned to different nodes (issue 2a in section A.2), we
use the order over SBFs and follow a simple rule to assign the SBFs to labelled
nodes, the one after the other: the unassigned SBF with the lower A(f)10 is
always linked to the unassigned node with the lower index, and so forth.
The last step is the construction of the network layout, i.e. the assignation of a
source node to each SBF input. For a given dimension, the number of different
layouts is fixed and equal to d!d. Figure 5 gives the 4 different layouts available
in dimension 2 and shows how nodes are assigned to SBF inputs.

L1 L2

x1 x2

f1 n1 n2

f2 n1 n2

x1 x2

f1 n1 n2

f2 n2 n1

L3 L4

x1 x2

f1 n2 n1

f2 n1 n2

x1 x2

f1 n2 n1

f2 n2 n1

Fig. 5: List of the 4 possible layouts for 2-dimension SBNs: L1 to L4. There is a
directed edge going from the node ni to the node associated to the SBF fi when
an input xi of fi reads the value of ni. The two diagrams below illustrate the
input assignments of SBFs f1 and f2 to nodes n1 and n2 according to layout L2.

The generation of layouts is independent to both the assignment of the SBFs fi



20 Rémi Segretain, Sergiu Ivanov, Laurent Trilling and Nicolas Glade

to the nodes ni, and that of the nodes ni to the inputs xi of SBFs. Consequently
we only need to generate these layouts once before SBF-node assignment. This
lead to a huge saving in CPU time and RAM consumption.
Once all layouts are obtained, we combine every composition SBFs/nodes to all
layouts to finally generate all possible SBNs. In the end we obtain the set of all
unique SBN such that they are built with minimal weights and that there is no
other SBN figuring the same set of SBFs with the same layout.

Remark 8. As zero-weighted edges are considered absent, we may obtain net-
works figuring disconnected nodes. Those ”networks” are not considered as func-
tional networks, so they are discarded.

B Inference modules in ASP

The following sections contain the ASP code of the modules listed in A.1.

B.1 SBN

%*

* Constructs all the possibilities for the network sbn(Name, Dimension)

* At least one predicate of this from must exist.

*%

% means that constraints operated by clingcon 2017 are involved.

#include <csp>.

%% LIMIT CONSTRAINTS

maxDim(4).

possibleDim(1..MaxDim) :- maxDim(MaxDim).

possibleIdx(1..MaxDim) :- maxDim(MaxDim).

:-

not sbn(_, _)

.

%% NETWORK GENERATION

% Generation of possible indices for a network based on the dimension

possibleNetworkIndex(NetworkName, Idx) :-

sbn(NetworkName, Dimension)

, possibleDim(Dimension)

, Idx > 0

, Idx <= Dimension

, possibleIdx(Idx)
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.

% Generation of network nodes

node(NetworkName, Idx) :-

sbn(NetworkName, Dimension)

, possibleNetworkIndex(NetworkName, Idx)

.

% Generation of node inputs

{

nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx) :

node(NetworkName, NodeIdx)

, node(NetworkName, SrcNodeIdx)

, possibleNetworkIndex(NetworkName, InputIdx)

}.

% A node only has a single input coming from any other given node

:-

nodeInput(NetworkName, NodeIdx, InputIdx1, SrcNodeIdx)

, nodeInput(NetworkName, NodeIdx, InputIdx2, SrcNodeIdx)

, InputIdx1 != InputIdx2

.

% A node receives any given input from a single other node

% (an input arc cannot originate at more than one source node)

:-

nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx1)

, nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx2)

, SrcNodeIdx1 != SrcNodeIdx2

.

% For every node, an input coming from every other node in the network must exist.

% Therefore, Dimension^2 nodeInputs must exist for each network.

:-

#count{ NodeIdx, InputIdx, SrcNodeIdx :

nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx)

} != Dimension**2

, sbn(NetworkName, Dimension)

.

% Generation of weights for every input of every node

&dom{-Dimension..Dimension} = weight(NetworkName, NodeIdx, InputIdx) :-



22 Rémi Segretain, Sergiu Ivanov, Laurent Trilling and Nicolas Glade

node(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, InputIdx)

, sbn(NetworkName, Dimension)

.

% Enumeration of the inequalities of the functions implemented by the nodes

{

ineq(NetworkName, I, Input1) :

node(NetworkName, I)

, possibleNetworkIndex(NetworkName, Input1)

;ineq(NetworkName, I, Input1, Input2) :

node(NetworkName, I)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, Input1 < Input2

;ineq(NetworkName, I, Input1, Input2, Input3) :

node(NetworkName, I)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, possibleNetworkIndex(NetworkName, Input3)

, Input1 < Input2

, Input2 < Input3

;ineq(NetworkName, I, Input1, Input2, Input3, Input4) :

node(NetworkName, I)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, possibleNetworkIndex(NetworkName, Input3)

, possibleNetworkIndex(NetworkName, Input4)

, Input1 < Input2

, Input2 < Input3

, Input3 < Input4

}.

% Constraints between the weights and the inequalities

&sum{weight(NetworkName, NodeIdx, Input1)} > 0 :-

ineq(NetworkName, NodeIdx, Input1)

.

&sum{weight(NetworkName, NodeIdx, Input1)} <= 0 :-

not ineq(NetworkName, NodeIdx, Input1)

, node(NetworkName, NodeIdx)
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, possibleNetworkIndex(NetworkName, Input1)

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2)} > 0 :-

ineq(NetworkName, NodeIdx, Input1, Input2)

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2)} <= 0 :-

not ineq(NetworkName, NodeIdx, Input1, Input2)

, node(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, Input1 < Input2

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2); weight(NetworkName, NodeIdx,
Input3)} > 0 :-ineq(NetworkName, NodeIdx, Input1, Input2, Input3)

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2); weight(NetworkName, NodeIdx,

Input3)} <= 0 :-not ineq(NetworkName, NodeIdx, Input1, Input2, Input3)

, node(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, possibleNetworkIndex(NetworkName, Input3)

, Input1 < Input2

, Input2 < Input3

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2); weight(NetworkName, NodeIdx,
Input3); weight(NetworkName, NodeIdx, Input4)} > 0 :-

ineq(NetworkName, NodeIdx, Input1, Input2, Input3, Input4)

.

&sum{weight(NetworkName, NodeIdx, Input1); weight(NetworkName, NodeIdx, Input2); weight(NetworkName, NodeIdx,

Input3); weight(NetworkName, NodeIdx, Input4)} <= 0 :-

not ineq(NetworkName, NodeIdx, Input1, Input2, Input3, Input4)

, node(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, Input1)

, possibleNetworkIndex(NetworkName, Input2)

, possibleNetworkIndex(NetworkName, Input3)

, possibleNetworkIndex(NetworkName, Input4)

, Input1 < Input2

, Input2 < Input3

, Input3 < Input4

.

% Determines the components of the abstract representations of the functions

% implemented by the nodes.
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% sbf(NetworkName, NodeIdx, IneqInputs, IneqCount)

sbf(NetworkName, NodeIdx, 1, X) :-

#count{

Input1 :

ineq(NetworkName, NodeIdx, Input1)

} = X

, node(NetworkName, NodeIdx)

, sbn(NetworkName, Dimension)

, Dimension >= 1

.

sbf(NetworkName, NodeIdx, 2, X) :-

#count{

Input1, Input2 :

ineq(NetworkName, NodeIdx, Input1, Input2)

} = X

, node(NetworkName, NodeIdx)

, sbn(NetworkName, Dimension)

, Dimension >= 2

.

sbf(NetworkName, NodeIdx, 3, X) :-

#count{

Input1, Input2, Input3 :

ineq(NetworkName, NodeIdx, Input1, Input2, Input3)

} = X

, node(NetworkName, NodeIdx)

, sbn(NetworkName, Dimension)

, Dimension >= 3

.

sbf(NetworkName, NodeIdx, 4, X) :-

#count{

Input1, Input2, Input3, Input4 :

ineq(NetworkName, NodeIdx, Input1, Input2, Input3, Input4)

} = X

, node(NetworkName, NodeIdx)

, sbn(NetworkName, Dimension)

, Dimension >= 4

.

% There must exist as many SBFs as there are nodes.

:-

#count{ NodeIdx, IneqInputs :

sbf(NetworkName, NodeIdx, IneqInputs, _)

} != Dimension**2

, sbn(NetworkName, Dimension)

.
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% Compute the factorial values needed for the SBF/Node assignation

factorial(0, 1).

factorial(1, 1).

maxFactorial(MaxFactorial) :- maxDim(MaxFactorial).

factorial(X, Value1) :-

Value1 = X * Value2

, factorial(X-1, Value2)

, maxFactorial(Max)

, X <= Max

.

% Compute the maximum number of configuration in each ineqInputs category (Nai)

maxIneq(NetworkName, IneqInputs, MaxValue) :-

sbn(NetworkName, Dimension)

, sbf(NetworkName, _, IneqInputs, _)

, factorial(Dimension, FactDim)

, factorial(IneqInputs, FactIneqInputs)

, factorial(Dimension - IneqInputs, FactDimMinusIneqInputs)

, MaxValue = (FactDim/(FactIneqInputs * FactDimMinusIneqInputs))

.

% compute the numerical base of each category if IneqInputs (Nai)

weightNbIneq(NetworkName, IneqInputs, Weight) :-

maxIneq(NetworkName, IneqInputs, MaxValue)

, sbn(NetworkName, Dimension)

, IneqInputs = Dimension

, Weight = (MaxValue+1)

.

weightNbIneq(NetworkName, IneqInputs, Weight) :-

maxIneq(NetworkName, IneqInputs, MaxValue)

, weightNbIneq(NetworkName, IneqInputs+1, WeightPrec)

, Weight = (MaxValue+1) * WeightPrec

.

% compute the SBF decimal "value"

nodeFunctionValue(NetworkName, NodeIdx, FunctionValue) :-

#sum{ NbIneq * Weight :

sbf(NetworkName, NodeIdx, IneqInputs, NbIneq)

, weightNbIneq(NetworkName, IneqInputs, Weight)

} = FunctionValue

, node(NetworkName, NodeIdx)

.
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% ensure that the attribution of the SBFs over the nodes follow the SBF order and the node index order.

:-

nodeFunctionValue(NetworkName, NodeIdx1, FunctionValue1)

, nodeFunctionValue(NetworkName, NodeIdx2, FunctionValue2)

, NodeIdx1 < NodeIdx2

, FunctionValue1 > FunctionValue2

, orderedNodeFunction(NetworkName)

.

B.2 SBN Composition

%%% Constraint a network to be composed by a other one.

%%% composedSbn(Sbn1, Sbn2) : Sbn1 is composed of Sbn2

%%% Can be use only once per call in this actual form

% means that constraints operated by clingcon 2017 are involved.

#include <csp>.

% force the presence of this predicates to use the module

:-

not composedSbn(_, _)

.

% there can be only one use of this module per call

:-

not #count{ Sbn1, Sbn2 : composedSbn(Sbn1,Sbn2) } = 1

.

% the given SBNs must exists

:-

composedSbn(Sbn1, Sbn2)

, not sbn(Sbn1, _)

.

:-

composedSbn(Sbn1, Sbn2)

, not sbn(Sbn2, _)

.

% The dimensions of the given SBNs must be compatible

:-

composedSbn(Sbn1, Sbn2)

, sbn(Sbn1, Dimension1)

, sbn(Sbn2, Dimension2)

, not Dimension1 >= Dimension2

.
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% creation of a subnetwork called "extrusion" include in Sbn1

sbn(extrusion, Dimension) :-

composedSbn(Sbn1, Sbn2)

, sbn(Sbn2, Dimension)

.

% constraint the extrusion weights to be the same as Sbn1

:-

sbn(extrusion, Dimension)

, &sum{weight(Sbn1, NodeIdx, InputIdx)} = W1

, &sum{weight(extrusion, NodeIdx, InputIdx)} = W2

, not W1 = W2

, limitWeights(Sbn1, W1)

, limitWeights(Sbn1, W2)

, possibleNetworkIndex(extrusion, NodeIdx)

, possibleNetworkIndex(extrusion, InputIdx)

.

% constraint the structure of the extrusion to be the same as Sbn1 and Sbn2

:-

sbn(extrusion, Dimension)

, composedSbn(Sbn1, Sbn2)

, sbn(Sbn2, Dimension)

, nodeInput(extrusion, NodeIdx, InputIdx, SrcNodeIdx1)

, nodeInput(Sbn2, NodeIdx, InputIdx, SrcNodeIdx2)

, not SrcNodeIdx1 = SrcNodeIdx2

.

% constraint the SBFs of the extrusion to be the same as Sbn2

:-

sbn(extrusion, Dimension)

, composedSbn(Sbn1, Sbn2)

, sbn(Sbn2, Dimension)

, sbf(extrusion, NodeIdx, NbIneqInputs, IneqCount1)

, sbf(Sbn2, NodeIdx, NbIneqInputs, IneqCount2)

, not IneqCount1 = IneqCount2

.

% specify the weight limit for a SBN according to his dimension

limitWeights(NetworkName, -Dimension..Dimension) :-

sbn(NetworkName, Dimension)

.
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B.3 Sequence played by SBN

%%% Check the network behavior to match a given music (sequence) on a given node.

% means that constraints operated by clingcon 2017 are involved.

#include <csp>.

% forbid the use of the module without the presence of this predicate

:-

not musicPlayBySbn(_, _, _)

.

% the given network and music must exists

:-

musicPlayBySbn(_, MusicName, _)

, not music(MusicName, _, _)

.

:-

musicPlayBySbn(NetworkName, _, _)

, not sbn(NetworkName, _)

.

% the given node must exist in the network

:-

musicPlayBySbn(NetworkName, _, NodeIdx)

, sbn(NetworkName, Dimension)

, not possibleNetworkIndex(NetworkName, NodeIdx)

.

% the music length must fit with the network dimension

:-

musicPlayBySbn(NetworkName, MusicName, _)

, sbn(NetworkName, Dimension)

, musicSize(MusicName, MusicSize)

, not MusicSize <= Dimension**2

.

% tell the music length

musicSize(MusicName, Size) :-

music(MusicName, _, _)

, Size = {music(MusicName, _, _)}

.

% give the possible index for the note of the music

musicStep(MusicName, StepIdx+1) :-

musicSize(MusicName, StepIdx)
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.

musicStep(MusicName, StepIdx) :-

StepIdx > 0

, musicStep(MusicName, StepIdx+1)

.

% give the State of node NodeIdx at the step StepIdx of a music MusicName : nodeState(NodeIdx, MusicName, StepIdx,

State

)% initialise the first state

1{nodeState(NetworkName, NodeIdx, MusicName, 1, 0);nodeState(NetworkName, NodeIdx, MusicName, 1, 1)}1 :-

possibleNetworkIndex(NetworkName, NodeIdx)

, musicStep(MusicName, 1)

.

% transfom the enumerated weight into predicates

limitWeights(NetworkName, -Dimension..Dimension) :-

sbn(NetworkName, Dimension)

.

inputWeightForStep(NetworkName, NodeIdx, MusicName, InputIdx, StepIdx, Value) :-

State = 1

, &sum{weight(NetworkName, NodeIdx, InputIdx)} = Value

, limitWeights(NetworkName, Value)

, nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx)

, nodeState(NetworkName, SrcNodeIdx, MusicName, StepIdx-1, State)

.

inputWeightForStep(NetworkName, NodeIdx, MusicName, InputIdx, StepIdx, 0) :-

State = 0

, nodeInput(NetworkName, NodeIdx, InputIdx, SrcNodeIdx)

, nodeState(NetworkName, SrcNodeIdx, MusicName, StepIdx-1, State)

.

% specify the state of a node at a given step

nodeState(NetworkName, NodeIdx, MusicName, StepIdx, 1) :-

musicStep(MusicName, StepIdx)

, musicStep(MusicName, StepIdx-1)

, #sum{Value, InputIdx : inputWeightForStep(NetworkName, NodeIdx, MusicName, InputIdx, StepIdx, Value)} > 0

, sbn(NetworkName, _)

, possibleNetworkIndex(NetworkName, NodeIdx)

.

nodeState(NetworkName, NodeIdx, MusicName, StepIdx, 0) :-

musicStep(MusicName, StepIdx)

, musicStep(MusicName, StepIdx-1)

, #sum{Value, InputIdx : inputWeightForStep(NetworkName, NodeIdx, MusicName, InputIdx, StepIdx, Value)} <= 0



30 Rémi Segretain, Sergiu Ivanov, Laurent Trilling and Nicolas Glade

, sbn(NetworkName, _)

, possibleNetworkIndex(NetworkName, NodeIdx)

.

% force the state of the playing node to match the music

:-

nodeState(NetworkName, NodeIdx, MusicName, StepIdx, NodeState)

, musicPlayBySbn(NetworkName, MusicName, NodeIdx)

, music(MusicName, StepIdx, MusicNote)

, musicSize(MusicName, MusicSize)

, StepIdx <= MusicSize

, NodeState != MusicNote

.

% specify the network state at a given step : networkState(MusicName, StepIdx, State)

possibleState(NetworkName, 0..(2**Dimension)) :-

sbn(NetworkName, Dimension)

.

networkState(NetworkName, MusicName, StepIdx, State) :-

State = #sum{(2**(NodeIdx-1))* NodeState :

nodeState(NetworkName, NodeIdx, MusicName, StepIdx, NodeState)

}

, possibleState(NetworkName, State)

, musicStep(MusicName, StepIdx)

.

% ensure different network state for each step of the music

:-

networkState(NetworkName, MusicName, StepIdx1, State)

, networkState(NetworkName, MusicName, StepIdx2, State)

, musicPlayBySbn(NetworkName, MusicName, _)

, musicSize(MusicName, MusicSize)

, StepIdx1 <= MusicSize

, StepIdx2 <= MusicSize

, StepIdx1 != StepIdx2

.

% ensure the path along the transition graph is a cycle

:-

networkState(NetworkName, MusicName, 1, State1)

, networkState(NetworkName, MusicName, MusicSize+1, State2)

, musicPlayBySbn(NetworkName, MusicName, _)

, musicSize(MusicName, MusicSize)

, State1 != State2

.
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B.4 Ordered version of SBN

% means that constraints operated by clingcon 2017 are involved.

#include <csp>.

% forbid the use of the module without this predicate

:-

not generateOrderedFunctionsVersionOfSbn(_)

.

% the concerned network must exist

:-

generateOrderedFunctionsVersionOfSbn(NetworkName)

, not sbn(NetworkName, _)

.

% map the function over the node

% save the index mapping

2{orderedNodeFunctionValue(NetworkName, NewNodeIdx+1, FunctionValue); mapIndex(NetworkName,

#count{ NodeIdx, ValueX :

nodeFunctionValue(NetworkName, NodeIdx, ValueX)

, ValueX < FunctionValue

, NodeIdx != OldNodeIdx

} = NewNodeIdx

, possibleNetworkIndex(NetworkName, NewNodeIdx+1)

, nodeFunctionValue(NetworkName, OldNodeIdx, FunctionValue)

, sbn(NetworkName, _)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

, not nodeFunctionValue(NetworkName, OldNodeIdxB, FunctionValue) :

OldNodeIdxB < OldNodeIdx

, possibleNetworkIndex(NetworkName, OldNodeIdxB)

.

2{orderedNodeFunctionValue(NetworkName, NewNodeIdx + Shift + 1, FunctionValue); mapIndex(NetworkName,
OldNodeIdx, NewNodeIdx + Shift + 1)}2 :-

#count{ NodeIdx, ValueX :

nodeFunctionValue(NetworkName, NodeIdx, ValueX)

, ValueX < FunctionValue

, NodeIdx != OldNodeIdx

} = NewNodeIdx

, possibleNetworkIndex(NetworkName, NewNodeIdx+Shift + 1)

, nodeFunctionValue(NetworkName, OldNodeIdx, FunctionValue)

, #count{OldNodeIdxB :

nodeFunctionValue(NetworkName, OldNodeIdxB, FunctionValue)

, OldNodeIdxB < OldNodeIdx

, possibleNetworkIndex(NetworkName, OldNodeIdxB)

OldNodeIdx, NewNodeIdx+1)}2 :-
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} = Shift

, sbn(NetworkName, _)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

% every and each function must be remapped

:-

#count{ OldNodeIdx, NewNodeIdx :

mapIndex(NetworkName, OldNodeIdx, NewNodeIdx)

} != Dimension

, sbn(NetworkName, Dimension)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

:-

#count{ NodeIdx, FunctionValue :

orderedNodeFunctionValue(NetworkName, NodeIdx, FunctionValue)

} != Dimension

, sbn(NetworkName, Dimension)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

% SBFs remapping

orderedSbf(NetworkName, NewNodeIdx, IneqInputs, IneqCount) :-

sbf(NetworkName, OldNodeIdx, IneqInputs, IneqCount)

, mapIndex(NetworkName, OldNodeIdx, NewNodeIdx)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

% network layout remapping

orderedNodeInput(NetworkName, NewNodeIdx, InputIdx, NewSrcNodeIdx) :-

nodeInput(NetworkName, OldNodeIdx, InputIdx, OldSrcNodeIdx)

, mapIndex(NetworkName, OldNodeIdx, NewNodeIdx)

, mapIndex(NetworkName, OldSrcNodeIdx, NewSrcNodeIdx)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.

% weight generation for every input of each node

&dom{-Dimension..Dimension} = orderedWeight(NetworkName, NodeIdx, InputIdx) :-

possibleNetworkIndex(NetworkName, NodeIdx)

, possibleNetworkIndex(NetworkName, InputIdx)

, sbn(NetworkName, Dimension)

, generateOrderedFunctionsVersionOfSbn(NetworkName)

.
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% networks weight’s remapping

:-

generateOrderedFunctionsVersionOfSbn(NetworkName)

, mapIndex(NetworkName, OldNodeIdx, NewNodeIdx)

, &sum{weight(NetworkName, OldNodeIdx, InputIdx)} = W1

, &sum{orderedWeight(NetworkName, NewNodeIdx, InputIdx)} = W2

, not W1 = W2

, limitWeights(NetworkName, W1)

, limitWeights(NetworkName, W2)

, possibleNetworkIndex(NetworkName, InputIdx)

.

limitWeights(NetworkName, -Dimension..Dimension) :-

sbn(NetworkName, Dimension)

.
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