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Introduction

Inflammable gas dynamics in confined environment

• Storage of flammable gas

• Release of hydrogen in core reactor during nuclear accident

Dynamic behaviour of the flame

• Flame acceleration/transition to detonation

• Onset of Detonation

• Influence of concentration gradients 1, complex geometry,
turbulence, shock waves...

Experimental Setup 2

1. L. R. Boeck et al. “Detonation propagation in hydrogen–air mixtures with transverse concentration gradients”. In : Shock
Waves 26 (2016), p. 181-192.
2. R. Scarpa et al. “Influence of initial pressure on hydrogen/air flame acceleration during severe accident in NPP”. In :
International Journal of Hydrogen Energy 44.17 (2019). Special issue on The 7th International Conference on Hydrogen Safety
(ICHS 2017), 11-13 September 2017, Hamburg, Germany, p. 9009 -9017.
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Figure 1 – Shadowgraph sequence
of DDT inside obstacle with
vertical concentration gradient1



Introduction

Flame acceleration and transition to detonation

Numerical challenges

• Compressible effects ⇒ Numerical discontinuities

• Hydrodynamic instabilities
• Interaction with turbulence
• Chemical reaction
• Detonation structure...

• Large variation of temperature ⇒ Realistic Thermodynamic models

Figure 2 – Representation of the dependence of heat capacities on temperature with NASA polynomials

Construction of a solver to manage these problematics
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⇒ Multiscales in time and space



Introduction

Numerical tools : MR_CHORUS solver

Navier-Stokes equation

wt +∇ · (FE (w)− FV (w,∇w)) = S(w), with w = (ρ, ρu, ρE)T (1)

Multiresolution 3

• Splitting algorithm on operators and dimensions

wn+1
j = LS

δt/2L
E
δt/2L

V
δtL

E
δt/2L

S
δt/2w

n
j (2)

• Dynamic Refinement

Approximated Riemann Solver

• Classical Roe solver for single calorically perfect gas

• High order extension with limiters to avoid Gibbs
phenomenon (spurious oscillations) : OSMP scheme

Objective

Extent existing solver to reactive multicomponent real gas flows
with no assumption on the equation of state

3. Christian Tenaud, Olivier Roussel et Linda Bentaleb. “Unsteady compressible flow computations using an adaptive
multiresolution technique coupled with a high-order one-step shock-capturing scheme”. In : Computers & Fluids 120 (2015),
p. 111 -125.
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Figure 3 – Shock/boundary layer
interaction. Adapted grid and
contour of the density gradient2
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Numerical model

Roe Approximate Riemann Solver

Roe Solver 4

Roe’s approach replace the Jacobian matrix evaluated at the
intersection A(w) = ∂FE (w)/∂w by a constant Jacobian matrix
evaluated at the Roe average state w combination of left wL and
right states wR

A(w) = A(wL,wR ) (3)

With a general equation of state

A(w) = A(ρ,Y 1, ...,Y ns , u, h, χ1, ...χns , κ) (4)

with compressibility factors

χi =

(
∂p
∂ρi

)
ε̃,ρk,k 6=i

and κ =

(
∂p
∂ε̃

)
ρk

(5)

Flux expression

FRoe
i+ 1

2
=

1
2

(FL + FR )−
1
2

m∑
i=1

δαi |λi |r(i) (6)

with λi , r(i) and αi eigenvalues, eigenvectors and Riemann invariants of A(w)

4. P.L Roe. “Approximate Riemann solvers, parameter vectors, and difference schemes”. In : Journal of Computational Physics
43.2 (1981), p. 357 -372.
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Numerical model

Roe Average state A(w) = A(ρ,Y 1, ...,Y ns ,u, h, χ1, ...χns , κ)

Rule for the construction of the Roe Average State

A(w)(wL − wR ) = F(wL)− F(wR ) (7)

Roe average operator for primitive/conservatives variables

{ρ,Yk , u, h} ⇒ (·) = θ(·)L + (1− θ)(·)R with θ =

√
ρL√

ρL +
√
ρR

(8)

Treatment of the compressibility factors χi and κ

A(w)(wL − wR ) = F(wL)− F(wR )

+

Roe average operator

 ⇒ ∆p =

ns∑
i=0

χi ∆ρi + κ∆ε̃ (9)

Approximation of the compressibility factors with Vinokur and Montagné 5 (approximation of integrals) or
Liou 6 (thermodynamic properties) approximations :

κ̂ =

∫ 1

0
κ[ρ(t), ε̃(t)]dt χ̂i =

∫ 1

0
χi [ρ(t), ε̃(t)]dt (10)

Orthogonal projection on the ns − 1 dimension hyperplane defined by (9)

κ = P(κ̂) χi = P(χ̂i ) (11)

5. Marcel Vinokur et Jean-Louis Montagné. “Generalized flux-vector splitting and Roe average for an equilibrium real gas”. In :
Journal of Computational Physics 89.2 (1990), p. 276 -300.
6. Jian-Shun Shuen, Meng-Sing Liou et Bram Van Leer. “Inviscid flux-splitting algorithms for real gases with non-equilibrium
chemistry”. In : Journal of Computational Physics 90.2 (1990), p. 371 -395.Luc Lecointre APS DFD 2020 November 22, 2020 6 / 15
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Numerical model

High order extension with OSMP scheme

One step monotonocity preserving (OSMP) scheme 7

New system of advection equations

∂αi

∂t
+ λi

∂αi

∂x
= 0 with Λ = (u, ..., u, u − cs , u + cs )T (12)

Increase order in time and space with Lax-Wendroff procedure

Fo
j+1/2 = FRoe

j+1/2 +
1
2

∑
k

(Φo r)k,j+1/2 (13)

Flux limiter : Monotonicity preserving scheme (TVD scheme with improvement near extrema)

Φo−MP = max(Φmin,min(Φo ,Φmax)) (14)

Riemann invariants recombination

Possible recomposition of the equations (12) with the same eigenvector u to improve flux limiter

αbis
1 =

ns∑
i=1

αi

(
E c −

χi

κ

)
= ∆(ρE) + E c ∆ρ− H

∆P
c2

(15)

7. V.Daru et C. Tenaud. “High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations”. In :
Journal of Computational Physics 193 (2004), p. 563-594.
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Numerical experiments

Numerical results : Sod shock tube problem

Properties

• Sod shock tube with R22 gas, 640 cells and
OSMP scheme of 7th order

• Species data with thermodynamic NASA
polynomials

• OSMP adapted with combination of Riemann
invariants (15)

0 ≤ x ≤ 25 25 < x ≤ 50
P (bar) 1 0.1
ρ(kg/m3) 1 0.125
N2 (%) 75.55 23.16
R22 (%) 23.16 75.55
O2 (%) 1.29 1.29
γ 1.38 1.32

Table 1 – initial conditions

Figure 4 – Density, velocity and temperature profiles at t = 20ms
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Numerical experiments

Numerical results : Sod shock tube problem

Properties

• Sod shock tube with R22 gas, 640 cells and
OSMP scheme of 7th order

• Species data with thermodynamic NASA
polynomials

• OSMP adapted with combination of Riemann
invariants (15)

0 ≤ x ≤ 25 25 < x ≤ 50
P (bar) 1 0.1
ρ(kg/m3) 1 0.125
N2 (%) 75.55 23.16
R22 (%) 23.16 75.55
O2 (%) 1.29 1.29
γ 1.38 1.32

Table 1 – initial conditions

Figure 4 – Density, velocity and temperature profiles at t = 20ms with recombination
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Numerical experiments

Shock-bubble R22 interaction

Reproduction of the computation of Denner and Wachem, 2019 from the experimental test described in
Hass, 1984. The numerical results of the article are obtained with the Minmod scheme.

Figure 5 – Computational setup of the two-dimensional R22 bubble in air interacting with a shock wave with
Mach number Ms = 1.22

Parameters

• pII = 1.01325× 105Pa, TII = 351.82K , Ms = 1.22

• OSMP 7th order, adaptive refinement with maximum of 1280× 128 cells
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Numerical experiments

Shock-bubble R22 interaction

Figure 6 – Temperature without and with Riemann invariants combination

Figure 7 – Mesh and density gradient at τ = taII ,R22/d0 = 1.15 for 256 cells in initial bubble diameter

⇒ Capture of Richtmyer–Meshkov instabilities (possible onset of detonation)
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Numerical experiments

Shock/Bubble R22 interaction

Figure 8 – Profiles of the density gradient along the x-axis at different dimensionless time τ = taII ,R22/d0 8

Validation of the compressible scheme for non reactive real gas flows

8. Fabian Denner et Berend G. M. van Wachem. “Numerical modelling of shock-bubble interactions using a pressure-based
algorithm without Riemann solvers”. In : Experimental and Computational Multiphase Flow 1.4 (2019), p. 271-285.

Luc Lecointre APS DFD 2020 November 22, 2020 11 / 15



Reactive mixture



Reactive mixture

Reactive mixture : Detonation front

1D ZND structure

Respect stability criterion (heat release, induction length, overdriven velocity...) 9

2D detonation cells 10

9. H. D. Ng et al. “Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with
chain-branching kinetics”. In : Combustion Theory and Modelling 9.3 (2005), p. 385-401.

10. Anne Bourlioux et Andrew J. Majda. “Theoretical and numerical structure for unstable two-dimensional detonations”. In :
Combustion and Flame 90.3 (1992), p. 211 -229.
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Reactive mixture

Reactive mixture : 2D Detonation

Detonation initiation by reflected shock with
two-step chemistry flame

T = 300K
P = 1atm

Φ = 1M = 2.5

Luc Lecointre APS DFD 2020 November 22, 2020 13 / 15



Reactive mixture

Reactive mixture : 2D Detonation

Detonation structure

Carbuncle effect

• Appears when strong shock aligned with the
grid : Probably due to insufficient cross-flow
dissipation

• Specific to Complete Riemann solver

• Amplified phenomena with heat release

Figure 9 – Detonation front with hydrogen chemistry
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Conclusion

Conclusion

High order compressible solver

• Extension of the approximate Riemann solver of Roe for multicomponent real gas flow (with no
assumption on the equation of state)

• Aproximation of compressibility factor χi and κ at Roe average state
• Orthogonal projection on the consistency hyperplane

• OSMP scheme : apply to a particular combination of Riemann invariants to capture correctly the
contact wave

Realisation

• Validation for non-reactive flows/1D-2D detonation cases

• Carbuncle instabilities with strong detonation case

Objective : Realized a complete case of flame acceleration in 3D
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Thank you for your attention



Bibliography i

Références

L. R. Boeck et al. “Detonation propagation in hydrogen–air mixtures with transverse
concentration gradients”. In : Shock Waves 26 (2016), p. 181-192.

Anne Bourlioux et Andrew J. Majda. “Theoretical and numerical structure for unstable
two-dimensional detonations”. In : Combustion and Flame 90.3 (1992), p. 211 -229.

Fabian Denner et Berend G. M. van Wachem. “Numerical modelling of shock-bubble
interactions using a pressure-based algorithm without Riemann solvers”. In : Experimental
and Computational Multiphase Flow 1.4 (2019), p. 271-285.

H. D. Ng et al. “Numerical investigation of the instability for one-dimensional
Chapman–Jouguet detonations with chain-branching kinetics”. In : Combustion Theory
and Modelling 9.3 (2005), p. 385-401.

P.L Roe. “Approximate Riemann solvers, parameter vectors, and difference schemes”. In :
Journal of Computational Physics 43.2 (1981), p. 357 -372.



Bibliography ii

R. Scarpa et al. “Influence of initial pressure on hydrogen/air flame acceleration during
severe accident in NPP”. In : International Journal of Hydrogen Energy 44.17 (2019).
Special issue on The 7th International Conference on Hydrogen Safety (ICHS 2017),
11-13 September 2017, Hamburg, Germany, p. 9009 -9017.

Jian-Shun Shuen, Meng-Sing Liou et Bram Van Leer. “Inviscid flux-splitting algorithms for
real gases with non-equilibrium chemistry”. In : Journal of Computational Physics 90.2
(1990), p. 371 -395.

Christian Tenaud, Olivier Roussel et Linda Bentaleb. “Unsteady compressible flow
computations using an adaptive multiresolution technique coupled with a high-order
one-step shock-capturing scheme”. In : Computers & Fluids 120 (2015), p. 111 -125.

V.Daru et C. Tenaud. “High order one-step monotonicity-preserving schemes for unsteady
compressible flow calculations”. In : Journal of Computational Physics 193 (2004),
p. 563-594.

Marcel Vinokur et Jean-Louis Montagné. “Generalized flux-vector splitting and Roe
average for an equilibrium real gas”. In : Journal of Computational Physics 89.2 (1990),
p. 276 -300.


	Introduction
	Numerical model
	Numerical experiments
	Reactive mixture
	Conclusion
	Thank you for your attention
	Annexe
	Références


