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Abstract 

We focus on the role of dynamical heterogeneities on the weak mechanical nonlinearities of 

amorphous polymers near and above the glass transition temperature Tg by combining 

experiments and numerical coarse-grained simulations. The acceleration of the macroscopic 

nonlinear modulus relaxation resulting from the applied stress is measured below yielding. As 

a result of dynamic disorder, the macroscopic acceleration differs from the local acceleration. 

We obtain a good agreement of experimental measurements with simulations computed by 

using an exponential function of the square stress for the local acceleration. Further, the 

length scale of dynamical heterogeneities is deduced.  

Introduction 

Many studies have focused on upscaling the mechanical response of disordered materials as it 

is encountered in many different systems (granular media [1], foams [2], networks [3], and 

polymers [4,5]) and situations (elasticity fracture [6] and yield stress [7]). Many nonintuitive 

behaviours have been reported, particularly in the nonlinear regime. However, change of scale 

in the nonlinear viscoelasticity of amorphous polymers has not yet been completely 

understood, particularly near the glass transition, where the dynamical heterogeneities are 

completely at stake. 

Glassy polymers can be represented as tiled by domains of few tens of monomers whose 

collective configuration can be reorganised under thermal agitation [8-10]. Each domain has 

an intrinsic relaxation time that is temperature-dependent. Experiments have shown that the 

intrinsic relaxation times are randomly distributed over an entire system with a very wide 

distribution function (more than four decades) [9]. In this frame, numerical simulations 
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showed that mechanical coupling between domains modifies the intrinsic local response of 

heterogeneities resulting in a complex macroscopic average of the local viscoelastic responses 

[11-15]. 

For a polymer glass near its glass transition temperature Tg, relaxation times vary with 

temperature in the linear regime and with macroscopic stress in the nonlinear regime. In the 

linear regime, an increase in temperature results in a decrease in the local intrinsic times: the 

conformational changes are favoured by the thermal energy kBT. At the macroscopic scale, 

the time-dependent mechanical response of glassy polymers is accelerated. For instance, after 

a step strain, the macroscopic stress relaxes from its glassy value to its rubber value at shorter 

times for increasing temperature. However, the form of the macroscopic response does not 

significantly vary with temperature, i.e., in a good approximation, all intrinsic relaxation times 

are shifted by the same factor as temperature increases. This feature is known as the time–

temperature superposition law. Thus, in the linear regime, the macroscopic stress relaxation 

measured at two different temperatures T and Tref can be superimposed by applying a shift 

factor to the time scale which is equal to the factor applied to the local relaxation times. Thus, 

after an increase in temperature, the macroscopic and local mechanical responses are 

accelerated similarly. 

Experiments have shown that the application of a nonlinear mechanical solicitation (strain or 

stress) results in an acceleration of the macroscopic response. For instance, after a step strain, 

the nonlinear stress relaxation of a glassy polymer is faster than that measured in the linear 

regime [16-22]. Therefore, nonlinear acceleration might be addressed with certain shift 

factors, as this approach is generally employed for the temperature effect. However, 

O’Connell et al. [21-22] have shown that nonlinear effects do not correspond to a simple shift 

factor applied to the time scale, as is the case for time–temperature superposition. Hence, the 

nonlinear acceleration of relaxation is challenging. 

At the nanometric scale, plastic deformation is attributed to stress-induced molecular 

rearrangements [23-26] that occur by crossing energy barriers. Employing photobleaching 

methods, Lee et al. [27] measured the rotational correlation time as a function of the true 

stress for N,N0-dipentyl-3,4,9,10-perylenedicarboximide (DPPC) molecules in 

Polymethylmethacrylate (PMMA) samples near Tg during uniaxial creep deformation. 

According to Long et al. [28], these effects can be described by multiplying the intrinsic local 

relaxation times with a function f of the local stress σ which is exp[-(σ/Y)²], where Y is the 
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critical stress given by     
      

  
, where ξ is the size of the dynamical heterogeneities, kB 

is Boltzmann constant, T is the temperature, and GG is the glassy shear modulus. 

In this study, we measure the macroscopic stress relaxation of cross-linked PMMA samples in 

the linear and weak nonlinear regimes. The experimental responses are analysed using a finite 

element approach that was developed in a previous study which mimics dynamical 

heterogeneities. In the nonlinear regime, intrinsic relaxation times characterising each 

heterogeneity are assumed to be proportional to the same function of the local stress 

according to the law proposed by Long et al. [28] To compare the local nonlinear response 

with the macroscopic response, we define a macroscopic acceleration function F which, is 

equal to the local function f if all domains have the same intrinsic relaxation time. Numerical 

simulations show that nonlinear responses of heterogeneous systems are different at the local 

and macroscopic scales, revealing the strong effect of disorder. Using Long’s law as a local 

acceleration function, the shape of the experimental macroscopic acceleration function is in 

good agreement with that predicted by simulations. Finally, by comparing experimental and 

simulation results, we estimate the value of the critical stress Y involved in the local stress 

acceleration function of our PMMA sample, i.e., the only parameter we adjust to describe the 

macroscopic nonlinear response measured on PMMA samples. Thus, we estimate the size of 

dynamical heterogeneities using Long’s model. 

1. Materials and methods 

We measured the macroscopic relaxation modulus of cross-linked PMMA chains at various 

temperatures in the glass transition domain. 

1.1. PMMA samples preparation 

PMMA samples were prepared according to the method described by Casas et al. [29]. A 1 

mm sheet polymer was obtained using radical polymerisation and reticulation of 

methylmethacrylate monomers by applying UV irradiation for 8 h. We chose diacrylate 

butanediol as the cross-linker. To initialise the polymerisation and reticulation, we added a 

photoinitiator (Irgacure (Ciba, France)) (0.1 wt% monomer). The concentration of the cross-

linker was chosen equal to 0.6% per mol of methylmethacrylate monomers such that the 

average weight between the cross-links Mc was similar to the entanglement distance Me. (Me 

≈ 8000 g/mol, corresponding to an entanglement length of approximately 6 nm). Cross-
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linking allowed us to successively perform step-strain linear and nonlinear tensile relaxation 

tests on the same sample.  

1.2. Procedure for stress relaxation measurements 

It is very difficult to precisely measure weak deviations to linearity below the yield point. 

Hence, the measurements of the linear and nonlinear responses should be conducted on the 

same sample in the same setup without displacing the sample. In practice, the macroscopic 

stress relaxations of PMMA samples are measured in the linear and weak nonlinear regimes at 

different temperatures. We verified that for strain amplitudes below 0.3%, the mechanical 

responses are linear near Tg. Thus, we apply a step strain of 0.3% for linear measurements. 

The nonlinear stress relaxations are measured in the weak nonlinear regime, i.e., below the 

yield point. Thus, we applied a strain with an amplitude smaller than 2%. To accurately 

observe the deviation of the nonlinear response with respect to the linear response, we applied 

a nonlinear condition strain ranging between 0.75% and 2%. 

Linear and nonlinear stress relaxations were successively measured on the same sample to 

compare them with sufficient accuracy. Between each measurement, thermal annealing was 

achieved by heating the sample at 32 °C above the glass transition temperature. The sample 

was then cooled to the temperature of the experiment while applying zero stress control. After 

attaining thermal equilibrium, the relaxation of the modulus was measured. We verified that 

the results obtained do not vary when an ageing step is added before the measurement. 

2. Modelling the mechanical response of a polymer near its glass transition temperature 

Amorphous polymers near their glass transition temperature are heterogeneous at the 

nanometric scale. To model nonlinear effects at the macroscopic scale on such a 

heterogeneous system, we use the 3D version of the model developed by Masurel et al. [30-

32]. The space is tiled by mechanically coupled domains. The resolution is performed in 3D 

using the finite element method [30]. 

The mechanical response of each domain is given by a Zener system made of two parallel 

branches. One branch consists of a Maxwell branch that represents the glassy contribution to 

the stress with an elastic modulus EG and a relaxation time of i. The second branch has an 

elastic spring of modulus ER that represents the stress contribution due to the chain entropy.  
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The glassy and rubber moduli are assumed to be equal for all domains. The compression 

modulus K is assumed to be independent of time and is set to 2 GPa for the domains. We 

verified that for values of K larger than 1 GPa, the results of this study are same. Each domain 

has its own relaxation time τi which is randomly drawn following a log-normal probability 

distribution,              
 

    
         

  

  
 
 

     , where τ0 is the centre of the log-

normal distribution and s is its width. τ0 is the only time scale in the model. The value of 0 

thus defines the position of the glass transition, whereas the width s of the distribution 

controls the width of the glass transition.  

In this study, nonlinear effects are modelled in the framework of the theory proposed by Long 

et al. For nonlinear simulations, the intrinsic relaxation time of domains is multiplied by the 

stress acceleration function predicted by Long et al. at the scale of heterogeneity and is equal 

to             
 

 
 
 

 .  In the Long et al. theory, the stress is scalar. In this study, we 

extended the relation proposed by Long et al. to 3D tensor stress. According to the expression 

of     , intrinsic times are significantly accelerated for  > Y. The 3D criteria for polymer 

yielding follows an extended von Mises criterion [33]. Hence, we use the equivalent stress 

    as: 

     
    

 

 
             (1) 

with     the local deviatoric part of the stress and p its local pressure [30, 31]. The coefficient 

α is set to 0.3 in agreement with experiments [34].  

In this study, numerical simulations were performed in 3D with systems containing 16 × 16 × 

16 cubic domains which are mechanically coupled according to the finite element method. 

The resolution is performed using the finite element method with the finite element code 

Zebulon [35, 36]. Each domain was divided into eight quadratic c3d20 cubic elements. To 

avoid edge effects, periodic boundary conditions were applied. The local stress used in the 

acceleration function in the nonlinear case is the mean over the domain. The macroscopic 

stress and strain are the means over the entire system. 

We computed the relaxation of the system undergoing uniaxial elongation and applying either 

linear or nonlinear conditions. 
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3. Experimental results 

The modulus relaxation is measured in the linear regime at different temperatures by applying 

a step strain. The linear relaxation function of the modulus, called EL, is determined by 

applying the time–temperature superposition principle. The data measured at temperature T 

are superimposed with the data measured at the reference temperature Tref by multiplying the 

time scale by a factor aT/Tref. Figure 1 presents the master curve we obtained which 

corresponds to the linear relaxation function EL. Here, the reference temperature was chosen 

to be 108 °C. 

 

 

Figure 1: Linear relaxation master curve (empty markers) and nonlinear relaxation measured at 108 

°C (filled circles). The black line corresponds to simulation predicted by our model for linear 

condition by applying the following values: K = 2 GPa, ER = 1.5 MPa,  EG = 1.200 GPa, and ln(0) = 

4.1 s = 4.83 

On the same sample, we measured with the same setup the nonlinear response at different 

temperatures for a given strain amplitude. In figure 1, the nonlinear modulus ENL, measured 

by applying a step strain of 1% at the reference temperature Tref = 108 °C, is compared with 
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the linear relaxation function EL at the same temperature. At 1% deformation, the 

macroscopic modulus relaxes faster than the modulus measured under linear conditions for 

the same sample. 

Figure 2 presents the modulus relaxation measured in the nonlinear regime at different 

temperatures as a function of the variable        
 , where        

are the time–temperature 

shift factors determined in the linear regime. As shown in figure 2, data measured in the 

nonlinear regime at different temperatures do not collapse into a master curve. 

 

Figure 2: Nonlinear relaxation measured at different temperatures by applying a deformation of 1% 

are plotted as a function of the shifted time aT/Tref t where aT/Tref are the time –temperature equivalence 

shift factors measured in the linear regime at the reference temperature of 108°C.  The master curve 

measured in the linear regime is added. Experimental data are compared to numerical simulation 

predicted by our model in the linear and nonlinear regimes by applying: ER = 1.5 MPa, EG = 1.200 

GPa, s = 4.83, ln(0) = 4.1. In the nonlinear regime, a good description of experiments is obtained 

adjusting the value of the critical stress Y involved in the local acceleration function f (see equation 2). 

For T = 96 °C, Y= 4 MPa, for T = 108 °C, Y = 5.75 MPa, and for T = 112 °C, Y = 7 MPa. 
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Consequently, we analyse the nonlinear response with respect to the linear response by 

comparing the nonlinear modulus relaxation to the master curve built in the linear regime at 

the same temperature. A comparison is thus performed for each temperature. The time scale 

accessible through the direct measurement of stress relaxation is significantly shorter than that 

related to the linear relaxation function EL which shows the complete relaxation of the 

modulus from its glassy value to its rubber value. Thus, the comparison of nonlinear and 

linear experimental data can be performed only on a limited (restricted) time range, and thus, 

a limited range of modulus values for each measurement temperature.  

4. Experiments via numerical approach  

We employ our numerical model to describe the linear and nonlinear responses measured at 

different temperatures on our PMMA samples. 

4.1. Linear regime 

First, we consider the experimental master curve EL built in the linear regime. The values of 

the glassy and rubber moduli, EG and ER, of each heterogeneity are equal to the macroscopic 

moduli measured on our samples, i.e., EG = 1.2 GPa and ER = 1.5 MPa. Further, for these 

simulations, K = 2 GPa. Consequently, the  value of the Poisson coefficient  is equal to  

0.4999 in the rubber state and to 0.40 in the glassy state; these values are in agreement with 

the experimental values of   reported  for PMMA, that are ranged between 0.34 and 0.4 [37]. 

The fitting of the master curve using the numerical model is performed by adjusting the 

values of the width s and centre 0 of the intrinsic relaxation time distribution. At the 

reference temperature of 108 °C, we obtained a good agreement between the simulations and 

experiment when s = 4,83 and 0 = 60 s with EG = 1.2 GPa, ER= 1.5 MPa, and K = 2 GPa. 

By employing the values of the five parameters determined from data measured in the linear 

regime, we now model the nonlinear response measured on the same PMMA samples.  

4.2. Nonlinear regime 

We now compare the predictions of our model by applying nonlinear conditions to 

experimental results measured on the PMMA samples. We recall that according to our 

numerical approach, the intrinsic relaxation time of each heterogeneity is multiplied in the 
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nonlinear regime by a local stress acceleration function that we assume to be equal to the 

function that was theoretically predicted by Long et al., i.e.: 

       
          

    
  

 
 
 

     (2) 

where the local equivalent stress     
  

 is given by equation 1. 

Computations were performed using the values of ER, EG, s, and 0 obtained from the fitting 

of the linear response measured on our PMMA samples. The critical stress Y is thus a 

parameter that must be adjusted.  

Using Y = 5.75 MPa, we obtained a good agreement between the simulations and nonlinear 

response measured at the reference temperature of 108 °C and for a strain step of 1% 

amplitude. The simulation and experimental data are compared in figure 2. 

If Y is assumed to be independent of temperature, the model predicts a time−temperature 

superposition for the nonlinear response for a given strain amplitude. Because no time–

temperature superposition in the nonlinear regime is experimentally observed, the value of Y 

must be varied with temperature. 

Figure 2 compares the experiments performed for 1% strain at different temperatures to the 

numerical curves predicted by our model in the nonlinear regime assuming a temperature 

dependence of Y. We adjust the value of Y to obtain the best description of the experimental 

result. We found values for Y varying from 4 to 7 MPa for temperatures ranging between 96 

°C and 112 °C, as shown in figure 3.  
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Figure 3: Parameter Y as a function of temperature inferred from the fitting by our model of 

the nonlinear responses measured at different temperatures applying 1% step strain on 

PMMA samples (see figure 2). The corresponding values of the size of heterogeneities 

computed following the relation suggested by Long et al. [28] are presented in the inset. 

We analysed the distribution of local strain during nonlinear relaxation.  In such 

heterogeneous systems, the strain is locally distributed with domains undergoing a larger local 

strain than the other. However, we observed that the local strain is always smaller than 4% for 

a 1% macroscopic strain applied. In the strain range studied in this study, the local stress is 

not modified by the limit extensibility of polymer chains; an extension of 4% at the length 

scale of heterogeneity (i.e., a few nanometres) is significantly smaller than the maximal 

extension at this scale, which is given by        
    

    
  

 
 

    
  

   
   

   whereRmax = bN is the contour length of a polymer chain,     
       is its  mean-

square end-to-end distance, b is the Kühn length, and  N is the number of Kühn segments of a 

chain segment included in heterogeneity [38 ]. For a size of heterogeneity of 3 nm, applying b 

= 1.7 nm for PMMA chains, the approximate value of N = (3/1.7)
2 

= 3.5, leading to a 

maximum value of approximately 
  
max = 76% for PMMA chains. The extension undergone 
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by the chain segment is thus negligible at the scale of heterogeneities. The local response we 

assume in our model is thus valid in the weak nonlinear regime.  

Our model provides a satisfactory description of macroscopic response in the linear and weak 

nonlinear regimes. The model provides also information on the local stress field and the local 

relaxation times distribution during the nonlinear macroscopic stress relaxation. 

We analyse the distribution of local relaxation times that are defined as        
            

     

during the stress relaxation for nonlinear conditions. Figure 4 presents the distribution 

functions of the napierian logarithm of the relaxation times              
      at different steps 

of the nonlinear relaxation, computed with Y = 6 MPa and = 0.01. The corresponding 

macroscopic stress relaxation is shown in figure 5-a. We can identify several regimes. 

 

Figure 4: distribution function of the napierian logarithm of local relaxation times 

           
     at different steps of the macroscopic stress relaxation. Computation were 

performed applying Y= 6 MPa, =0.01. The width and the center time of the intrinsic 
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relaxation time distribution were equal to s=4.23 and 0=60s. The value of the macroscopic 

stress relaxation  are reported for each time. The corresponding whole macroscopic stress 

relaxation curve  is presented in figure 5-a. Each curve is arbitrarily shifted by a constant.  

At short macroscopic times, (t < 1e
-6

 s in figures 4 and 5-a), the shape of the distribution 

function does not change compared to the shape of the intrinsic relaxation time distribution, 

but the distribution is shifted towards lower times. The shift results from the homogenous 

stress just after application of step strain when all the domains are in their glassy state.  

In a second stage and at the beginning of the nonlinear stress relaxation (t =5e
-5

 s and t= 2e
-3 

s 

in figures 4 and 5-a), the domains having the shortest intrinsic relaxation times relax their 

local stresses. Consequently,     
  

 relaxes towards zero, and their relaxation times         
    

increase up to the intrinsic relaxation time of the domain. In the same time, the slowest 

domains still undergo a large local stress. The values of their local relaxation times stay 

shifted towards low values. As a result, the fastest domains are shifted towards larger times, 

while the slowest ones remain unchanged and sustain most of the stress [12]. A growing peak 

appears on the fast side of the distribution function that corresponds to the accumulation of 

the relaxation times of fast relaxing and relaxed domains. Consequently, the width of the 

distribution decreases.  

For macroscopic stress value of the order of /e ( i.e. t= 3 s and  = 5 MPa in figures 4 and 

5-a), the network constituted by the slowest domains vanishes :  the local stresses of the latter 

domains relax and their local relaxation times        
    tend towards their values at rest. As a 

result, the width of the distribution function increases again up to its initial value.  At long 

macroscopic times (t > 4e
3
 s), all domains have relaxed their stress and the local relaxation 

time distribution converges towards the distribution of the intrinsic relaxation times.  

The inverse of the width of the time distribution 1/s is plotted in Figure 5-a as function of time 

for varying values of Y. The width s is determined applying the relation : 

   
             

  
              

  
    

 
             

  
               

  
  

              
  

               
  

  
. Figure 5-b presents the variation of 

the geometric mean value of the relaxation times modified by the local stress          
     

divided by the geometric mean of the intrinsic time distribution 0 as a function of the 

macroscopic stress. The width of the local relaxation time distribution reaches a minimum 
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value for a macroscopic stress value of the order of 0/e corresponding to the end of the 

percolation of slow domains.  

The evolution of the local relaxation times predicted by our numerical model for nonlinear 

stress relaxation agrees with observations reported by Lee et al [19] for nonlinear creep 

experiments on PMMA samples: they not only observed a decrease of the local mean 

relaxation time under stress, previously discussed by Long et al [28], but also a narrowing of 

the local time distribution followed by its broadening after the flow onset.   

Our numerical approach shows that mechanical percolation drives the nonlinear macroscopic 

stress relaxation in our PMMA samples. We emphasize the main difference between step-

strain and creep experiments is that, in the first case, the mechanical percolation threshold is 

crossed keeping a small macroscopic strain i.e. smaller than the yield strain. In contrast in 

creep experiments, the strain continuously increases. Having this effect in mind, we only 

performed and discussed step strain experiments, in order to remain in the small strain regime, 

and to avoid effects due to limit extensibility.  

 

Figure 5: a) macroscopic stress relaxation as a function of macroscopic time. Computation 

were performed for =0.01 and for varying Y values. The inverse of the width of the 

corresponding local relaxation time distributions 1/s is shown as a function of macroscopic 

time. b) the geometric mean time of the corresponding local relaxation time distributions 

         
      divided by the geometric mean time value of the intrinsic time distribution 0 is 

plotted as a function of the macroscopic stress  
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Now that we have shown that our model is able to describe the feature observed by Lee et al 

[19] at a microscopic scale, we turn to the comparison of behaviours of the macroscopic 

stress.  

5. Comparison of macroscopic and local stress relaxations 

As shown in figure 2, the nonlinear relaxation is accelerated when compared with the linear 

relaxation. To analyse the effect of disorder on the nonlinear response, we first define a 

macroscopic acceleration function F which we will compare with the local function f that is 

applied at the scale of heterogeneities. 

 

5.1. Definition of the macroscopic acceleration function  

We use the macroscopic linear and nonlinear response of a system to define a macroscopic 

acceleration function F such that, for a single Zener system, it is equal to the local stress 

acceleration function f. 

First, we consider a single Zener system with a Maxwell branch representing the glassy 

contribution to the stress with an elastic modulus EG
z
 and relaxation time 0 that is in parallel 

with an elastic spring of modulus ER
z
, which represents the stress contribution owing to the 

chain entropy. In our approach, we model the nonlinear behaviour of the polymer by 

multiplying the relaxation time 0 with an acceleration function f of the stress σ. According to 

Long et al., we assume an acceleration function of the form exp[-(σ/Y)
2
].  

For a step strain, the relaxation of the modulus in the linear regime is given in 1D by 

   
 

  
  

  
       

 

  
   (3) 

and in the nonlinear regime by:  

    
 

  
  

   
       

 

           
    (4) 

In equations 3 and 4,   
  and    

 are the relaxation moduli (i.e., the ratio of stress over strain), 

for linear and nonlinear behaviours, respectively, and ε0 is the deformation. Further, the 

equations driving the modulus relaxation are written in 1D. They can also be written in 3D as 
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shown in Annex 1. The 1D and 3D relaxation equations result in the same equations regarding 

the direction of the deformation (uniaxial elongation in this study).  

From equations 3 and 4, we deduce that 

 
   

 

  
    

 

  

          (5) 

where the two time derivatives of the L.H.S. of equation 3 are considered not at the same time 

but for the same values of EL
z
 and ENL

z
 that are equal to E. 

We extend equation 5 to the macroscopic system, and thus, define the macroscopic 

acceleration function F as the ratio of the derivatives of linear (EL) and nonlinear relaxations 

(ENL) measured at the same state of relaxation: 

         
   

  
 

    

  
  (6) 

with         . The function F depends on the relaxation state which is characterised by 

the value of the modulus and strain that has been applied.  

According to the definition we choose for F, for a single Zener system, the macroscopic 

function F depends only on the stress undergone by the Zener system that is equal to ENL0. 

In the next section, we show that because of disorder, the macroscopic acceleration function F 

deviates from the local function f. Further, we analyse the shape of the macroscopic 

acceleration function F resulting from measurements performed on our PMMA samples.  

5.2. Shape of the macroscopic acceleration function F 

5.2.1. Experimental results 

Applying equation 5, the experimental macroscopic acceleration function of our PMMA 

samples is determined from the linear master curve and nonlinear response measured at the 

same temperature T. Figure 6 presents the macroscopic acceleration functions obtained at 

each temperature for a step strain of 1% amplitude. We observed that the macroscopic 

function of our samples, F, depends on temperature. We represent the macroscopic function F 

by plotting -ln[F(E,ε0)] as a function of the macroscopic stress E0 with log scales. Here, we 
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obtained a linear curve with a slope of approximately 0.9 +/- 0.1. The value of the slope does 

not significantly vary with temperature in the range probed by experiments. 

 

 

Figure 6: The quantity –ln[F(E,0)] deduced from experiments performed at different 

temperatures applying a deformation 0 of 1% vs. macroscopic stress E0 in log−log scale 

Thus, on the modulus range accessible by experiments, the form of F can be described by the 

relation F(E, ε0)= exp[-( E/Z)
m

] with Z that depends on temperature. To understand the 

temperature and modulus dependence of F observed experimentally, we compare the 

experimental results with numerical responses predicted by our model. 

5.2.2. Numerical predictions 

We compute the macroscopic acceleration function F for a disordered system and compare it 

with the acceleration function f of a Zener system. Figure 7 presents the curves obtained by 
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plotting -ln(F) and –ln(f) as a function of E/E0 on a log scale for Y= 5 MPa with E0 = EG + ER. 

Here, F and f exhibit very different behaviours. 

First, we consider the case of a single Zener system. Here, -ln(f)=(E0/Y)
2
 results in a straight 

line with a slope of 2 on a log scale. 

In the heterogeneous case, we identify a range of modulus values over which the quantity 

ln(F(E,0)) varies linearly with E/E0 in log scale. In this modulus range, the slope is equal to 

0.83. This means that owing to dynamical heterogeneities, the macroscopic and local 

acceleration functions are different.  

However, the local and macroscopic acceleration would have been equal if the local 

acceleration function was assumed to depend on the mean stress rather than the local stress.  

The difference between the macroscopic and local acceleration functions occurs because the 

stress field is disordered. However, at short times, immediately after the strain step where 

E/E0 is close to 1, the stress field is homogeneous and f and F collapse. With increasing time, 

a disordered stress field occurs owing to the distribution of intrinsic times.  This stress field 

results in heterogeneous acceleration. The macroscopic acceleration deviates from the local 

acceleration. 

In practice, the range of modulus values over which the quantity ln(F(E,0)) varies linearly 

with E/E0 in log scale corresponds to the experimental windows for which mechanical 

measurements are sufficiently accurate to experimentally determine the acceleration function. 

Thus, we focus on this modulus range, where the form of the macroscopic acceleration 

function is given by    
 

 
 
 

. 
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Figure 7: The quantity -ln[F(E, ] as a function of the modulus normalised by E0, the 

modulus at t = 0 in log−log scale. Data in filled blue squares are computed assuming a 3D 

heterogeneous system applying a local acceleration function f given by equation 2 with 

Y=5MPa 

5.2.3. Dependence of F on strain amplitude 

First, we compare the macroscopic acceleration functions resulting from simulations 

performed by applying different strain amplitudes ε0. The curves obtained for different 0 

values have similar shapes as shown in figure 8-a. The value of the slope of the linear part of 

the curve m is not significantly dependent on the strain amplitude over the deformation range 

probed in this study. As a result, the curves can be overlaid by applying a vertical shift factor 

1/g(ε0), as presented in figure 8-b. Therefore, although the amplitude of the macroscopic 

acceleration function varies with strain amplitude, the value of the slope m does not depend 

on 0 at zero order. 
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Figure 8: (a) -ln(F(E,ε0)) as a function of E for different strains in log scales. (b) vertical shift 

factors 1/g(ε0) are applied to the data. The inset presents the variation of g(ε0) as a function of 

the strain amplitude in log scales 

5.2.4. Dependence on Y 

Variations in the parameter Y of the local acceleration function lead to vertical shifts of the 

curves, as illustrated in figure 9. The vertical shift factor b, which should be applied to overlay 

the curves in the modulus range we consider, is proportional to Y
1.87±0.1

, as shown in the inset 

of figure 9-b. According to the Long model, the parameter Y depends on the temperature and 

size of dynamical heterogeneities. 
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Figure 9: a) The quantity -ln(F(E,ε0)) predicted by our model for varying values of the critical 

stress Y are plotted as a function of the modulus value E divided by the modulus value in the 

glassy state E0 in log−log scale. Computations were performed by applying: ER = 1.5 MPa, 

EG = 1.2 GPa, s = 4.83, ln(0) = 4.1 and  = 1%. Y value was varied from 3 MPa to 12 MPa. 

b) numerical curves collapse if a shift factor b is applied to the quantity -ln(F(E,ε0)). The inset 

presents the variation of b as a function of Y in log−log scale. The line corresponds of a 

power law function with an exponent equal to 1.87. 

As shown in figure 2, we obtain a very good fitting of experimental data employing at the 

local scale the acceleration function predicted by Long et al. However, we studied the 

variation in the shape of the macroscopic acceleration function F of disordered systems for 

more general local acceleration functions of the form of exp[-(σ/Y)
n
]. Computations were 

performed for values of exponent n varying from 1 to 3. The results are presented in detail in 

Annex 2. The effect of the width of the relaxation time distribution is also studied. Despite the 

value of n assumed for the local acceleration function, we observed that there is always a 

modulus range over which the quantity –ln[F(E,0)] scales as (E/E0 )
m

, where m depends on n. 

The experimental value of m = 0.9 corresponds to the values of n   . 

5.3. Origin of the temperature dependence of the experimental macroscopic acceleration 

function 

The experimental curves obtained by plotting -ln[F(E,ε0)] as a function of E are linear and 

depend on the temperature of the experiment. The temperature dependence of F observed for 

our PMMA samples could result from the temperature dependence of the critical stress Y. The 

macroscopic acceleration functions measured at different temperatures should thus be 

overlaid by applying a vertical shift factor resulting from the temperature dependence of Y. 

Figure 10 presents the experimental master curves similarly obtained for 1% and 1.5% 

deformation. Similar slopes were observed for the two deformation amplitudes, as was the 

case in our simulations. As shown in figure 10, the macroscopic acceleration functions 

measured for a reference temperature of 108 °C and 1% and 1.5% strain can be described 

using Y = 5.75 MPa. 
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Figure 10: The quantity -ln[F(E,0)] deduced from experiments vs. macroscopic stress E0 in 

log−log scale. The master curves are obtained at Tref = 108 °C for strains of 1% and 1.5% 

applying a multiplicative shift factor T/Tref. to -ln[F(E,0)]. Continuous lines are simulation 

results computed using Y = 5.75 MPa and f() = exp[-(σ/Y)
2
] with K = 2 GPA,  ER = 1.5 

MPa, EG = 1.200 GPa, s = 4.83, and ln(0) = 4.1. 

In the frame of our model, the vertical shift observed between the F functions measured at 

different temperatures can be attributed to the temperature dependence of the critical stress Y. 

According to Long et al. [28], the parameter Y of the local acceleration function depends on 

the temperature and size of dynamical heterogeneities. According to the relation proposed by 

Long et al., we estimate the size of dynamical heterogeneities. 

5.4. Size of dynamical heterogeneities 

In the previous sections, we identified the values of Y to fit with the model nonlinear 

responses measured at different temperatures for a given deformation amplitude. Applying the 

relation suggested by Long et al. [28] that gives  
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    and considering GG = 427 MPa and K = 2 GPa, we found that the size of 

heterogeneity (T) decreases from 6.5 nm to 4.5 nm for a temperature increase of 

approximately 15 K in the temperature range probed by our experiments, as shown in the 

inset of figure 3. 

6. Conclusion 

In conclusion, by combining experiments and a numerical approach accounting for dynamical 

heterogeneities, we show that experimental relaxation measurements preformed in the weak 

nonlinear regime before yielding can be described in our model by applying the same local 

acceleration law for all the dynamical heterogeneities. The microscopic time distribution 

under strain are in agreement with experimental observations of Lee et al [19]. The 

macroscopic responses predicted by our model using the expression of Long et al. [28] for the 

local acceleration function are in good agreement with the mechanical data. These results lead 

us to estimate the characteristic length scale of dynamical heterogeneities, which decreases 

with temperature and is close to 5 nm. Finally, we show that - under nonlinear solicitation – 

stress-induced accelerations of the mechanical relaxation are strikingly different at the local 

and macroscopic scales. 

 

Annex 1: 

In 3D, the differential equation of a Zener element for a linear case is 

                                                          

  

where          and          are the time dependent deviatoric stress and strain tensors, respectively, 

    and     are the fourth-order glassy and rubber isotropic elasticity tensors, respectively, 

and τ0 is the relaxation time. 

In the case of a relaxation test, this leads to the following equation: 
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where      is the fourth-order isotropic modulus tensor such that                        

In the nonlinear case, this is  

    

  
  

 

         
            

where     is fourth-order isotropic nonlinear modulus tensor and         is an acceleration 

function that depends on an equivalent stress. 

Regarding the term corresponding to uniaxial elongation direction, this leads to the 1D 

equations: 

   
 

  
  

  
       

 

  
  for linear condition and  

    
 

  
  

   
       

 

          
  for nonlinear condition, 

where   
  and    

 are the Young’s moduli in the traction direction and   
  is the rubber 

modulus. 

 

Annex 2 

Using a general local acceleration function f(σ)=exp[- (σ/Y)
n
] with values of n different from 

2, the curves -ln[F(E,ε0)] as a function of E with log scales, exhibit a scaling regime in a 

limited range of relaxation modulus, i.e.,         . The exponent m depends on the 

power n of the local acceleration function. It further depends on the width s of the relaxation 

time distribution. In the limit case s = 0 which corresponds to a homogeneous case, f = F and 

thus, m = n. The variations of m with n in the local acceleration function are plotted in figure 

11 for various widths of the relaxation time distribution s. For the width of relaxation time 

distribution s > 2.3, the slope m does not significantly depend on s. 
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Figure 11: (a) The modulus relaxation E(t,0) as a function of time computed assuming s = 

4.83, ln(0) = 4.1, EG = 1.2 GPa, ER = 1.5 MPa, and a local stress dependence of the local 

acceleration function that follows f() = 1 and f(eq) = exp[-(σeq/Y)
n
] with Y = 5 MPa  for 

linear and nonlinear conditions, respectively. Computation were performed for n = 2 and n = 

1. (b) The quantity –ln[F(E,0] as a function of the modulus normalised by E0 in log−log 

scale. The function F computed assuming a local stress field disorder is compared to the local 

acceleration function f for different values of n and 0 = 0.01. (c) The variation of the 
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macroscopic exponent m as a function of the local exponent n for different time distribution 

widths s 
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