
HAL Id: hal-03168617
https://hal.science/hal-03168617

Submitted on 14 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quality in use of domain-specific languages
Ankica Barisic, Vasco Amaral, Miguel Goulao, Bruno Barroca

To cite this version:
Ankica Barisic, Vasco Amaral, Miguel Goulao, Bruno Barroca. Quality in use of domain-specific
languages. the 3rd ACM SIGPLAN workshop on evaluation and usability of programming languages
and tools (plateau) at SPLASH, Oct 2011, Portland, United States. pp.65, �10.1145/2089155.2089170�.
�hal-03168617�

https://hal.science/hal-03168617
https://hal.archives-ouvertes.fr

Quality in Use of Domain Specific Languages: a Case Study

Ankica Barišić Vasco Amaral Miguel Goulão Bruno Barroca
CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
Campus de Caparica, 2829-516 Caparica, Portugal

a.barisic@campus.fct.unl.pt, vasco.amaral@di.fct.unl.pt, miguel.goulao@di.fct.unl.pt, bruno.barroca@di.fct.unl.pt

Abstract
Domain Specific Languages (DSLs) are claimed to increment pro-
ductivity, while reducing the required maintenance and program-
ming expertise. In this context, DSLs usability is a key factor for
its successful adoption.

In this paper, we propose a systematic approach based on User
Interfaces Experimental validation techniques to assess the impact
of the introduction of DSLs on the productivity of domain experts.
To illustrate this evaluation approach we present a case study of a
DSL for High Energy Physics (HEP).

The DSL on this case study, called Pheasant (PHysicist’s EAsy
Analysis Tool), is assessed in contrast with a pre-existing baseline,
using General Purpose Languages (GPLs) such as C++. The com-
parison combines quantitative and qualitative data, collected with
users from a real-world setting. Our assessment includes Physicists
with programming experience with two profiles; ones with no ex-
perience with the previous framework used in the project and other
experienced.

This work’s contribution highlights the problem of the absence
of systematic approaches for experimental validation of DSLs.
It also illustrates how an experimental approach can be used in
the context of a DSL evaluation during the Software Languages
Engineering activity, with respect to its impact on effectiveness and
efficiency.

Keywords Experimental Software Engineering, Domain Specific
Languages, Usability, Language Evaluation, Software Language
Engineering

1. Introduction
It is well accepted that Domain Specific Languages (DSLs) are
meant to close the gap between the Domain Experts and Solution
computation platforms. The general claim is that the closer we get
to fill this gap, the closer we are to increase the user’s productivity.
The shift of the developers’ focus to use abstractions that are part
of the real domain world, rather than general purpose abstractions
closer to the computation domain world, is said to bring important
productivity gains when compared to software development using
General Purpose Languages (GPLs) [11].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLATEAU 2011 October. 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM Copyright is held by the author/owner(s). This paper was
published in the Proceedings of the Workshop on Evaluation and Usability of Pro-
gramming Languages and Tools (PLATEAU) at the ACM Onward! and SPLASH Con-
ferences.. . . $10.00

Software Languages Engineering (SLE) is becoming a mature
and systematic activity, built upon the collective experience of a
growing community, and the increasing availability of supporting
tools [13]. A typical SLE process starts with the Domain Engineer-
ing phase, in order to elicit the domain concepts. The following step
is to design the language, by capturing the referred concepts and
their relationships. Then, the language is implemented, typically
by using workbench tools, followed by documentation. A develop-
ment process goes on to the testing, deployment, evolution, recov-
ery, and retirement of these languages. However streamlined the
process is becoming, it still presents a serious gap in what should
be a crucial phase: Evaluation.

If DSLs are meant to close that gap, between the Domain Ex-
perts and the Solution computation-platforms, then, from this per-
spective, they can be regarded as similar to Human/Computer
(H/C) Interaction. The interaction should favour an increase in the
efficiency of people performing their duties without this having to
cause extra organizational costs, inconveniences, dangers and dis-
satisfaction for the user, undesirable impacts on the context of use
and/or the environment, long periods of learning, assistance and
maintenance [5].

Most of the requirements concerning evaluation of User Inter-
face (UI) are actually associated with a qualitative software char-
acteristic called Usability; which is defined by quality standards in
terms of achieving the Quality in Use [8].

2. Background
The methods used to evaluate usability of GPLs are not always ad-
equate for DSLs because they are not systematic and are centred
only on computation domain concepts. The GPLs intended users
are expected to have high knowledge of technical and computa-
tional concepts, while the DSLs intended user group are domain
experts that are more familiar with the domain concepts. Therefore,
we need a different approach to perform evaluation of DSLs.

We conducted a systematic literature review to assess the extent
to which DSLs are evaluated and how they are evaluated [6]. The
level of DSL evaluation found in our survey can be considered
to be low, and the details on the few performed evaluations are
clearly insufficient. We observed that there was a predominance
of toy DSLs with unsubstantiated claims to their merits. Most
authors present reports of usability evaluations that are impossible
to replicate and to extract a precise rationale from, e.g., it is hard to
reason about the representativeness of their DSL’s users due to the
poor characterization of subjects involved in the evaluation.

We were not able to find compelling evidence supporting the
improvement claims on DSLs usage, with a few remarkable excep-
tions [14], [12]. Although this does not necessarily mean that no
usability evaluation is being performed, it sends the wrong mes-
sage to the practitioners who should also be concerned with the

usability evaluation of the DSLs they produce. This kind of evalu-
ation, comparing the impact of different languages in the software
development process has some tradition, in the context of GPLs,
e.g. [18]), and their impact on the software developer productivity.
Why should this be different with DSLs? Apparently, ”some tradi-
tion” is not enough. As noted by Markstrum [15], it is also often
the case where, even for GPLs, many claims on language proper-
ties (including their usability) are mostly unproven. While in this
paper we are mostly concerned with DSLs and their evaluation, we
regard this issue as a challenge to GPL developers, as well.

Among other possible explanations, this state of practice may
stem from a lack of enough software experts that completely un-
derstand the SLE process, or from a lack of experimental evidence
that clearly backs up the qualitative improvement claims that we
often find in the literature. Without such evidence, it may be the
case that decision makers consider proper language evaluation as a
waste of time and resources. If so, they may prefer to risk using or
selling inadequate DSLs rather than evaluating them properly.

The incremental nature of a typical DSL life cycle may also
give the erroneous feeling that the language is being implicitly val-
idated due to the intense interaction with the domain experts. The
problem there is that the domain experts involved in the language
development may not actually be the end users, and may therefore
introduce biases in the perception of the language design and its
usability.

Language engineers may perceive the investment in evaluation
as an unnecessary cost and prefer to risk providing a solution which
has not been validated, w.r.t. its usability, by end users. A good DSL
is hard to build because, as noted by Mernik et al. [16], it requires
both domain knowledge and language development expertise, and
few people have both. In that case we should ask what is a cost of
producing inadequate DSL for their intended users.

3. Domain Specific Languages as User Interfaces
Since we are focusing on the evaluation of usability aspects of
DSLs, we need to provide a suitable definition of DSL so that we
are able to evaluate them w.r.t. those usability aspects.

Intuitively, a language is a means for communication between
peers. For instance, two persons can communicate with each other
by exchanging sentences. These sentences are composed by signs
in a particular order. According to the context of a conversation,
these sentences can have different interpretations. If the context is
not clear, we call these different interpretations ambiguous.

In our particular research we are interested essentially in the
communication between humans and computers. Hence, we will
only consider languages that are used as communication interfaces
between humans and computers, i.e. User Interfaces (UIs). There-
fore human-human languages, e.g. natural languages, and machine-
machine languages, e.g. communication protocols, are not relevant
for the purposes of the work described in this paper. Examples of
UIs range from compilers to command-shell and graphical applica-
tions. In each of those examples we can deduce the H/C language
that is being used to perform that communication: in compilers we
may have a programming language; in a graphical application we
may have an application specific language, and so on. Moreover,
we argue that any UI is a realization of a language. A language is
a theoretical object, a.k.a. model, that describes the allowed terms
and how to compose them into the sentences involved in a partic-
ular human-computer communication. Languages can be deduced
in two directions, human-computer and computer-human, since the
feedback from the computer has to be given in such a way that it
can be correctly interpreted by the humans.

Semiotics, the study of the structure and meaning of languages,
is a part of linguistics that studies the dependencies and influences
among Pragmatics, Syntax, and Semantics. The Syntax of a lan-

guage defines what signs we can use in that language, and how we
can compose those signs to form sentences. The Semantics of a
language defines the conceptual meaning of the sentences in that
language by stating how they can be logically interpreted. Finally,
the Pragmatics of a language defines the context of use from which
the sentences of that language can have some logical meaning.

The Contexts of Use i.e. ’the users, tasks, equipment (hardware,
software and materials), and the physical and social environments
in which a product is used’ [8] is one of the characteristics that
we can use to evaluate DSLs usability, to pragmatically distinguish
between different products: in our case different languages may
have different Contexts of Use. Moreover, if they have different
Contexts of Use, then we can infer that the users of those languages
(the humans) most likely will have different knowledge sets, each
one with a minimum amount of ontological concepts [2] required
in order to actually be able to use each language.

If we say that Context of Use has some ontological purpose,
then we can see it as a problem to be solved in the language user’s
mind. One example of this is the set of GPL where each user has
to know about programming concepts (variables, cycles, clauses,
component, events), plus the domain concepts from a given Context
of Use. Moreover, languages that reduce the use of computation do-
main concepts and focus on the domain concepts of the contexts of
use’s problem are called Domain Specific Languages. Notice that,
in these pragmatic perspective languages that do not even share the
same base syntax may actually share the same domain concepts, i.e.
the intersection of their domain concepts is not empty for a given
non-empty intersection of contexts of use. If the intersection of their
contexts of use is empty then they actually do not share any of the
identified domain concepts.

For example: consider both the SQL and C languages. The
SQL language has a reserved word called table to represent a
database table from a DBMS. There is no table in the list of
reserved words of C language that the user of C can immediately
read as table with the same meaning as read in SQL (i.e. a database
table from a DBMS). However, one of the contexts of use of SQL
where table is applied: createtable can be emulated by means of
a high level C (Application Programmers Interface) API function
that have the same purpose of creating a table in the same DBMS.
Moreover, if there is no C API supported by the DBMS, then we
can even imagine how it would be to write it completely in C as part
of the implementation of the context of use stated in createtable.

If we perform an analysis of the names of reusable components
(in reusable infrastructures), and the reusable data structures and
methods from existing APIs, and figure out all the possible ways of
how they can be composed in a meaningful way then we can infer a
bottom-up DSL from that reusable infrastructure. This bottom-up
method of building languages by reusing existing reusable infras-
tructures may however generate languages that lack generality in
the capability of solving any class of problems of a given domain,
or if the domain of the problem is not yet fully bounded (catego-
rized), there may be irregular composition patterns that can be non-
sense w.r.t. the problem.

A top-down method would be to complete the domain analysis
phase that is behind the existing reusable infrastructure, by discard-
ing any existing implementation and focusing only on the complete
description and categorization of the class of problems from which
its users will use our new DSL to describe their solutions while
using the identified problem concepts w.r.t. its context of use. If we
find a mapping between all the possible expressible solutions which
might be very difficult in some cases in our new DSL and the exist-
ing concepts of a reusable infrastructure, then we have assembled a
top-down DSL.

DSLs that are built in a top down fashion are mostly called
horizontal DSLs, while DSLs that are built in bottom-up fashion

are called vertical DSLs ([13]). In practice, it is more common for a
DSL design for H/C communication to be built using a combination
of bottom-up and top-down approaches.

4. Usability Evaluation
Usability is a key characteristic for evaluating the Quality of UIs,
and, since we defined H/C languages as UIs, in our perspective,
we should also use it for evaluating the Quality of this kind of lan-
guages. The difference between usability and the other software
qualities is that to achieve it, one has to concentrate not only on
system features but especially on user-system interaction charac-
teristics. ISO 9241-11 [9] defines Usability as ’the extent to which
a product can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified context
of use’.

ISO 9126 [8] extends this definition with the notion of ’Goal
Quality’, which has to be evaluated through the already mentioned
Quality in Use that is perceived by the user during actual utilization
of a product in its real Context of Use. The definition of Quality
in Use provides a framework for a more comprehensive approach
to specifying usability requirements and measuring usability with
taking in account the stakeholder perspective.

Not all usability aspects can be given equal weight in a given
language, so it is not always possible to achieve optimal scores for
all usability attributes [3]. To evaluate the achieved Quality in Use
of DSLs we find it most relevant to evaluate
• Effectiveness that determine the accuracy with which a devel-

oper completes language sentences
• Efficiency which tells us what level of effectiveness is achieved

at the expense of various resources, such as mental and physical
effort, time or financial cost, commonly measured in the sense
of time spent to complete a sentence,

• Satisfaction that captures freedom from inconveniences and
positive attitude towards the use of the language and

• Accessibility with focus on learnability and memorability of the
language terms.

We need to define suitable quantitative measurements and quali-
tative indicators, to support a reliable assessment of the achieved
quality in use. When apparently conflicting usability requirements
are identified, a first approach is to look for a win-win solution that
can reconcile both requirements. If this is not feasible, we need
to define which usability characteristics are priority in the specific
context of the project under scrutiny and favour those. These prior-
ities can be defined based on users and tasks analysis.

To know the users we should identify the characteristics of tar-
get user population. For several kinds of end users we should anal-
yse all kinds of them using techniques like questionnaires, inter-
views and observation to capture [20]: Who are the users?; What
do users do?; Why do they do it?; How do they do it?; When do
they do it?; What tools do they use?; Understanding ’how’ and
’why’ should give us deeper knowledge about the tasks. Performing
task analysis by studying of the way the people perform tasks with
existing systems or through high level abstraction study of cogni-
tive processes we should identify the individual tasks the language
should perform. From this we can build the desired cognitive model
for language context based on user-task scenarios.

The cognitive activities involved in language are: (i)Learning
both syntax and semantics; (ii)Composition of the syntax required
to perform a function; (iii)Comprehension of the function syntax
composed by someone else; (iv)Debugging of syntax (semantics)
written by ourselves or others; (v)Modification of a function writ-
ten by ourselves or others. Experimenters in human factors have
developed a list of tasks to capture these particular aspects [19].

Figure 1. Experiment Activity Model Overview

Testing different tasks in the language usage is interesting, but
to perform an exhaustive evaluation of them would be very expen-
sive. Therefore, the evaluation should focus on the most critical
activities.. In the case of Pheasant’s evaluation, used as case study
in this paper, the main concern was the task of query writing where
users are given a question stated in natural language and have to
write a sentence in the given language.

This is justified by the fact that the main function of a language
is to provide is to provide users with an effective tool successfully
perform some task. The goal was to know how easy it is to learn
and use the language. Therefore, evaluation was restricted to three
tests;
• Immediate comprehension - helps to identify why particular

learning problems occur and they are given during teaching,
immediately after some function has been taught, to determine
whether the participants can use the function.

• Reviews - helps to identify why particular learning problems
occur and they are given during teaching and cover functions
taught up until that time. The participants are required to know
which function to use.

• Final exams - tests how easily a language can be learned. These
exams take place at the end of teaching the language under
evaluation.

Usability evaluation is found as an important and beneficial ac-
tivity in the UI development practice. It is recognized that usabil-
ity must be considered from beginning of the development cycle
using user centred methods. The objective of introducing user cen-
tred methods is to ensure that UI can be used by real people to
achieve their tasks in the real world. This requires not only easy-
to-use interfaces, but also the appropriate functionality and support
for real business activities and work flows. Developing easy-to-use
products makes business effective; makes business efficient; makes
business sense [4]. User centred design can increase sales,reduce
development, support costs and staff costs for employers.

5. Capturing achieved quality in use: a Pheasant
case study

To illustrate how to evaluate the achieved Quality in Use of a
DSL, we present an example of a visual query language for High
Energy Physics (HEP) called Pheasant [1]. The goal of Pheasant’s
development was to improve the efficiency, reduce the error rate
and have a less steep learning curve then the existing GPL.

The target users of the Pheasant language are specialists in HEP,
with varying experience in software development. The evaluation
was performed according to the mentioned ISO 9241-11 usability
definition, which is an essential part of the achieved Quality in Use.

5.1 The Evaluation process
Fig.1 outlines the activities needed to perform the Pheasant lan-
guage evaluation, following the scientific method. A detailed dis-
cussion on how this process can be followed in a software engi-
neering experimentation context can be found in [7]. During Re-
quirements definition problem statement (i.e. research questions),
experimental objectives and context are defined. The next step is
Design planning where context parameters and hypotheses are de-

Figure 2. The evaluation process steps

fined, subjects and the sequence of observations and treatments are
identified, and the data collection activities plan is set. This is fol-
lowed with Data collection, which includes a pilot session, to cor-
rect any remaining issues, and the evaluation itself, following the
designed plan. This step is followed with Data analysis where data
is described in the form of statistical tables and graphs, and, if nec-
essary, the data set is reduced. Hypotheses are then tested. During
Results packaging, the results are interpreted and possible validity
threats and lessons learned are identified.

The evaluation process followed in this case study is presented
in Fig.2. The process starts with the Participant Recruitment,
where the users are analyzed and grouped into clear categories.
This way, the variables concerning the user profile that lead to dif-
ferent results for different groups are controlled. This step is fol-
lowed by the Task Preparation. The aim here is to organize the
evaluation by determining which tasks have to be done and which
tests are elaborated in order to provide the proper results. This will
generate the information required to be analyzed afterwards. The
next step is the Pilot Session, which is meant to simulate the exam
and test that the material for the training and the evaluation pro-
cedures is well organized. The main advantage of this rehearsal
is to check that the time constraints and other possible external
variables like proper equipment are controlled, and do not inter-
fere with the results. Once everything is tested, we proceed to on
the assessment, which we call Evaluation Session, for each group
and language being compared. A Training Session is used to in-
troduce the language. At this stage, Immediate Comprehension and
Review tests are conducted with participants, while introducing the
language features. The final exams, in the Exam Session, involve
sentence writing activities. During the exam session, participants’
activities are observed and recorded, so that information such as
completion times and error rates can be collected. The goal is to
determine the ease of learning. After each group has been evaluated
in the different languages, the participants are asked for a debrief-
ing in the form of a Final Questionnaire Session. The goal is to
obtain the user’s qualitative perspective of the comparison between
the languages. In order to evaluate unbiasedly, the users should test
the same environment and as realistically as possible. Evaluation
process terminate with Analysis of Results.

5.2 Subject Recruitment
For this case study we identify two types of physicists involved,
according to the context of HEP experiments:

1. informed programmers (Inf) are regular users of programming
languages such as C, C++, Java or Fortran and they are used to
program with the present analysis framework,

2. uninformed programmers (non-Inf) are regular users of pro-
gramming languages such as C, C++, Java or Fortran and they
are not used to program with the present analysis framework.

We wanted to use a third group that would consist of non-programmers
but finding enough available physicist which were able to partic-
ipate in this assessment turned out to be a problem. We used two
different groups of programmers since the informed ones may in-
troduce a bias on the learning phase of the compared query method-
ologies. This assumption is taken into account even if uninformed
programmers are the majority of the population in the experiment.

At the end, fifteen graduate students were assigned to the proper
group with an interview and an analysis of the participant’s previ-
ous experience, to minimize the risks of biases that might otherwise
be introduced by participants in a self-evaluation.

5.3 Task Preparation
Johnson [10] suggests that six individuals per subset of the pop-
ulation is the minimum required for a controlled experiment. Of
course it is sensible to take a larger number, but the costs should be
kept to a minimum. The task of gathering groups of six persons in
a HEP research lab is already nontrivial. All the participants should
have a degree in physics or be near its completion at least, and they
should be skilled in experimental analysis. A basic knowledge of
programming concepts is mandatory, since this subject is taught in
the first years of the physics courses.

Introducing one query system to the whole group of participants
and only afterwards the other query system would bias the evalu-
ation, as the knowledge acquired while learning the first language
would be partially reused while using the second language. In order
to mitigate this threat to the validity of the results we have to split
the group in two. This way, we reduce the influence of the first lan-
guage while presenting the second. Mixing the two groups might
lead to new variables in the evaluation that are hard to track. There-
fore, we had to organize four sessions, with each group taking part
in two sessions (one for each language).

The features we wanted to have evaluated are:

• query steps in Phesant v.s. the object-oriented coding
• expressing a decay
• specification of filtering conditions
• vertexing and the usage of user-defined functions
• aggregation
• path expression (navigation queries)
• expressing the result set
• the expressiveness of user-defined functions

In this study, the independent variables are the subject’s back-
ground and the language being used. The dependent variables are
the time to finish the task, the error rate while doing it and the con-
fidence in the successful completion of the task.

5.4 Pilot Session
Our evaluation technique was tested with two individuals (two
physics experts) in order to verify it and to test the teaching mate-
rials and questionnaires. This also helped to avoid that the evalua-
tion had to be redone from scratch because of uncontrolled external
variables, like inadequate equipment or lab conditions, or time con-
straints that can interfere with the results. After pilot session there
was no need for significant change in experiment materials.

Figure 3. Query solution in Pheasant

5.5 The Evaluation Session
In the evaluation session, we try to answer the following:

RQ1:Is querying with Pheasant more effective than with C++/BEE?
RQ2:Is querying with Pheasant more efficient than with C++/BEE?
RQ3:Are participants querying with Pheasant more confident

on their performance than with C++/BEE?
Our goal is to

• analyze the performance of Pheasant programmers plug-ins
• for the purpose of comparing it with a baseline alternative

(C++/BEE)
• with respect to the efficiency, effectiveness and confidence of

defying queries in Pheasant
• from the point of view of a researcher trying to assess the

Pheasant DSL,
• in the context of a case study on selected queries.

We will test the following hypotheses:

• H1null Using Pheasant or C++/BEE has no impact on the effec-
tiveness of querying the analysis framework

• H1alt Using Pheasant or C++/BEE has a significant impact on
the effectiveness of querying the analysis framework

• H2null Using Pheasant or C++/BEE has no impact on the effi-
ciency of querying the analysis framework

• H2alt Using Pheasant or C++/BEE has a significant impact on
the efficiency of querying the analysis framework

• H3null Using Pheasant or C++/BEE has no impact on the confi-
dence of querying the analysis framework

• H3alt Using Pheasant or C++/BEE has a significant impact on
the confidence of querying the analysis framework

5.5.1 Training Session
Due to the complexity and the time constraints, we could not
teach the complete C++ query language plus the interface of the
analysis frameworks’ libraries. Therefore, we focus on presenting
six examples, each focusing in some of the features we chose to
evaluate. The last query should make use of all the features taught
in the session.

Figure 4. Query solution in C++/BEE (pseudocode based on a real
query)

Murray [17] suggests that the participants should give them-
selves a mark for their feeling of correctness of their trial. This
introduces them to the system of self-assessment. Besides, it helps
the trainer to infer if there are difficulties experienced and an extra
explanation is required. This session should take the time required
for each group to understand the six examples.

5.5.2 Exam
We have evaluated the participants’ performance in the query writ-
ing. Every participant has four queries, specified in English, to be
rewritten in the previously learned language. An example of a query
solution for the task ’Build the decay of a D0 particle to a Kaon
Pion’ is given in Fig.3 for Pheasant and Fig.4 for C++/BEE (pre-
sented here in pseudocode, for the sake of readability)..

At the end, the subject makes a self-assessment of his reply by
rating his feeling of the correctness of the answer. For each of the
queries, we measured the time taken by each participant to reply in
time slots of 15 minutes.

5.5.3 Questionnaire
After each session, the participants ware asked to judge the intu-
itiveness, suitability and effectiveness of the query language. The
goal was to evaluate:

• Overall reactions - to obtain an overall reaction to one of the
query languages through queries.

• Query language constructs - with the participants rating how
easily specific aspects of the query language are to use.

After the tests ware completed, the participants ware asked to
compare the two query languages. It is rated which query language
they prefered, and into what extent.

• Query language comparisons - the participants are asked to
compare specific aspects of both query languages and rate the
preferences they have.

• Participants’ comments - allows the participants to comment
freely on the query language.

Since with the evaluation questionnaire we can only identify
problems but not infer how to solve them, we ask the participants
to contribute creative comments. Sometimes improvements are ob-
vious and the comments can be fruitful. Therefore, after the eval-
uation session the participants are asked to write down informal
comments and suggestions for improving the language.

5.6 Results analysis
In this section, we summarize the most relevant results of our eval-
uation tests. First, we deal with effectiveness by having a look at
the test results with regard to the errors produced by the user while
interacting with both evaluated approaches. Then, we will describe
the results related to efficiency, which are mainly concerned with
time measurements. At the end we analyse results concerning the
confidence level of the participants that is measured in terms of
their self-assessment.

In order to assess whether the observed differences with respect
to the effectiveness and efficiency of using Pheasant, when com-
pared to C++/BEE are statistically meaningful, we performed a
Wilcoxon matched-pairs signed-rank test, as well as a sign test.
These are adequate for testing our sample, as our data is ordinal.
Answers ranked with 0 in correctness are used in correctness com-
parison (as they are meaningful to contrast the success with each
of the languages - 0 means developers were not able to produce
the query). However, with respect to the amount of time taken to
answer, and the confidence of developers in their answer, answers
ranked as 0 are considered missing answers. When they were un-
able to build a query, participants did not fill in the information
concerning the time spent trying to build the query, nor the infor-
mation concerning their confidence in their answer.

The results obtained with Pheasant were clearly better than
those with the existing alternative. In order to reduce the variables
that could influence the results, the queries were explained orally
by an expert. This reduces the required interpretation time (which
has a significant impact, especially in the group of uninformed pro-
grammers). Code re-usage was not allowed, although the subjects
could use all the necessary documentation and especially the notes
from the training session.

5.6.1 Effectiveness
Effectiveness and user accuracy can be assessed by observing re-
sults of the errors produced by the user while interacting with both
evaluated approaches. As it can be observed in the histograms of
Fig.5, or more detail in Table 1, while using C++ as a query lan-
guage, the error rate was tremendous for novice users. We must
state that the user did not have any sort of feedback from the sys-
tem execution in order to spot the mistake and correct it before it
came to the hands of the evaluator. In his daily life, the user tries to
execute the algorithm and watches the result data after the execu-
tion. Then, in a cyclic way, he corrects himself and runs the query
against the storage base. This is one of the main reasons why the
query generation in the physics analysis phase is so time consum-
ing. We can also observe that different groups of users get differ-

Figure 5. Effectiveness

ent results. As expected, their quality is directly proportional to the
user’s experience. Some of the most complex queries were not even
tried due to the fact that they were difficult for uninformed users.

As far as the Pheasant Query language is concerned, the results
are much more promising. As the query mechanisms are much sim-
pler and controlled, we do not observe invalid queries, and only a
few wrong answers (which can be explained by some inexperience
of the users in doing the analysis itself). Generally, the results show
that the user did not have to essentially change the way he thinks
about the query generation, which means that we have reached the
goal of introducing a query language closer to the physicist’s con-
ceptual level of analysis.

Table 1. Error analysis - percent values

C++ BEE Non-Inf Inf
Correct 2,78 54,17
Minor data error 33,33
Minor language error 16,67 12,5
Essentially correct 19,45 100
Wrong answer 30,55
Invalid 11,11
Not attempted 38,89
Totally incorrect 80,55 0
Pheasant Non-Inf Inf
Correct 80,5 95,83
Minor data error
Minor language error 5,5 4,17
Essentially correct 86 100
Wrong answer 11,11
Invalid
Not attempted 2,89
Totally incorrect 14 0

According to statistical analysis, presented in Table 2, the ob-
served differences are statistically significant according to both
tests. Also for both cases; when we analyse each query separately,
as well when we look at them all together. These tests lead us to
reject the null hypothesis that the obtained effectiveness is similar
when using Pheasant and BEE/C++, and accept the H1alt.

Table 2. Statistical analysis for effectiveness

Q1 Q2 Q3 Q4 all
Wilcoxon Signed Ranks Test

Z -3,097b -2,714b -2,949b -3,037b -5,833b

Exact Sig. ,002 ,007 ,003 ,002 ,000
Sign test

Exact Sig. ,000 ,004 ,001 ,003 ,000

5.6.2 Efficiency
From our time analysis in Fig.6 and Table 3, it becomes clear
that more time has to be spent learning and using C++/BEE than
with Pheasant. This can be justified by the complexity of C++
and the BEE library. At the same time, the test participants had
less confidence in the quality of his/her query. This subjective
impression is confirmed, as we have seen, by the huge error rate
when using BEE.

Table 3. Time analysis - percent values

Training Mean total Mean confi-
time exam time dence / query
(min) (min) (5-0)

Non-Inf C++ BEE 190 80 1,04
Pheasant 130 65 4,75

Inf C++ BEE 0 110 4,88
Pheasant 60 60 4,83

According to the results obtained in Table 4, the observed dif-
ferences are statistically significant according to both tests. These
tests lead us to reject the null hypothesis that the obtained efficiency
is similar when using Pheasant and BEE/C++, and accept the H2alt.

Table 4. Statistical analysis for efficiency

Q1 Q2 Q3 Q4 all
Wilcoxon Signed Ranks Test

Z -2,887a -3,000a -2,762a -2,392a -5,298a

Exact Sig. ,004 ,003 ,006 ,017 ,000
Sign test

Exact Sig. ,004 ,004 ,004 ,016 ,000

5.6.3 Confidence
The test participants were supposed to rate how they were satis-
fied with the realization of each feature in the corresponding frame-
work. Our goal was to identify potential weaknesses of each frame-
work. As we can see in Table 3, non-Informed participants were
much more confident while using Pheasant than C++/BEE. As for
the informed programmers, their confidence level is almost the
same with both languages. This can be regarded as a success for
Pheasant. With little experience in the new language, participants
felt as confident with it as with the one they were used to working
with, meaning that they found the new language easy to learn.

According to the analysis presented in Table 5, the observed
differences are statistically significant according to both test, with
exception of the confidence in answering questions 3 and 4. This
is likely due to a relatively higher difficulty in answering these
last two questions, particularly with BEE/C++. This eventually led
to the situation where uninformed programmers did not want to

Figure 6. Efficiency

record their confidence in their answers. Because they were not
able to come up with answers in BEE/C++. As we had no con-
fidence information to compare with, for several users in these
two questions and those who answered were, in general, the users
with BEE/C++ expertise, the difference of confidence for these two
questions follows the general trend, but is too small to be statisti-
cally meaningful. In contrast, when we aggregate the data for all
questions, the advantages of using Pheasant are statistically signif-
icant. In summary, these tests lead us to reject the null hypotheses
that the obtained confidence level is similar when using Pheasant
and BEE/C++, and accept the H3alt.

Table 5. Statistical analysis for confidence

Q1 Q2 Q3 Q4 all
Wilcoxon Signed Ranks Test

Z -2,232b -2,232b -,966b -,736b -3,594b

Exact Sig. ,026 ,026 ,334 ,461 ,000
Sign test

Exact Sig. ,031 ,031 1,000 ,625 ,001

The enthusiasm towards the language was significant. The sev-
eral comments focused more on implementation issues to improve
interactivity and did not criticize the language itself. This is a typ-
ical situation in UIs when dealing with prototypes. It is explained
by the fact that the prototype needs to evolve into the next engi-
neering life cycle phase to result in a properly engineered software
product. Only this way the product is able to provide a real analysis
environment and the user can compare it in his daily life with the
other alternative solutions. Although the system experts recognize
that the solution is a more comfortable approach for analysis, they
still worry that the query tool might be less expressive. In order to
confirm or reduce these fears, we propose to carry out further tests
on the feared limitations of the language, to capture if the subjects
are able to write queries with the existing language constructs.

From the comments given by participants we can infer, for
instance, that a query reuse mechanism should be provided in a final
implementation solution. Also, a query history mechanism where

the user can browse on past queries and respective solutions, is an
extra feature which might have a great impact on user satisfaction.

5.6.4 Interpretation
We have determined that, by using Pheasant, the users increase
effectiveness during their query specification. It was shown that
the DSL was less error-prone than the alternative, by observing
that it allowed non-programmers to correctly define their queries.
The evaluation also showed a considerable speedup in the query
definition by all the groups of users that were using Pheasant. In
general, the feed-back obtained from the users was that it is more
comfortable to use Pheasant than with the alternative.

We find that the preliminary pilot study was fundamental to
ensure that the subject’s time was well spent. The valuable feedback
of users concerning the tool support for the language, as well as
their fears concerning language expressiveness support the idea of
an iterative evaluation process where improvements to the language
and its tool support would be performed, and then assessed in a new
round of evaluation.

At this point, some legitimate questions might arise concerning
to a Full-blown experimental process to evaluate a DSL, as the
one we described here. Could it be that the overhead of organizing
all these complex tasks is exaggeratedly too heavy compared to
doing nothing? Are’nt there better, and similarly valid, lightweight
alternatives to this evaluation process? Further research should be
done in this direction.

6. Conclusions and Future Work
One of the main goals while producing a DSL should be to foster
a more productive usage of that language by the users who will
use it than the existing alternatives. The interaction should favor an
increase in the efficiency of people performing their duties without
this having to cause extra organizational costs, inconveniences,
dangers and dissatisfaction for the user, undesirable impacts on
the context of use and the environment, long periods of learning,
assistance and maintenance.

Usability evaluation is most effective when it is done directly
with users or in combination with expert evaluators, and the reli-
ability of that approach usually requires lots of preparation work
and a large number of people involved in it. Usability evaluation
is perceived as costly and is often minimized in real-life language
development processes. Nevertheless, the costs of poor usability
are likely to exceed those of usability testing, in the long run. For
GPLs, the user base is frequently potentially larger and more het-
erogeneous than the user base of a DSL so generalizing conclusions
for a diverse population is harder (although, on the other hand, find-
ing subjects for assessing a GPL is probably easier than for a DSL).
Finally, it should be stressed that usability is just one of the impor-
tant attributes in language evaluation. Since DSLs are built for a
specific domain of use in order to close the gap between domain
experts and software engineers, we find that it is essential to evalu-
ate its usability.

Usability is one of the main quality attributes while perform-
ing UI evaluation. If we consider DSLs as a UIs, then we find that
evaluating DSLs Usability can bring a positive influence on their
users productivity. Moreover, unlike other software products, DSLs
Usability evaluation can be an accurate activity, since precisely de-
fined DSLs can target specific Contexts of Use, inside a particular
set of user profiles.

As future work, we will propose a DSL evaluation process in
the construction of new DSLs which will take into account the
Usability aspect from the very beginning of their development.
From this instantiation, we expect to devise languages and tools that
can effectively and automatically measure the identified Usability
factors early and during DSLs development.

References
[1] V. Amaral. Increasing productivity in high energy physics data min-

ing with a domain specific visual query language. In Phd. The-
sis, University of Mannheim, 2005. URL http://madoc.bib.
uni-mannheim.de/madoc/volltexte/2005/870/.

[2] C. Atkinson and T. Kühne. Model-driven development: A metamodel-
ing foundation. IEEE Softw., 20:36–41, September 2003. ISSN 0740-
7459. doi: 10.1109/MS.2003.1231149. URL http://portal.acm.
org/citation.cfm?id=942589.942704.

[3] A. Barišić, V. Amaral, M. Goulão, and B. Barroca. Quality in use of
dsls: Current evaluation methods. In Proceedings of the 3rd INForum
- Simpsio de Informtica (INForum2011), 2011.

[4] N. Bevan. Cost benefits framework and case studies. Cost-Justifying
Usability: An Update for the Internet Age. Morgan Kaufmann, 2005.

[5] T. Catarci. What happened when database researchers met usability.
Information Systems, 25(3):177–212, 2000. ISSN 0306-4379.

[6] P. Gabriel, M. Goulão, and V. Amaral. Do Software Languages
Engineers Evaluate their Languages? In Proceedings of the XIII
Congreso Iberoamericano en” Software Engineering”(CIbSE’2010),
pages 149–162, 2010.

[7] M. Goulão and F. e Abreu. Modeling the experimental software en-
gineering process. In 6th International Conference on the Quality of
Information and Communications Technology (QUATIC 2007), Lis-
abon, Portugal, 2007. IEEE Computer Society.

[8] International Standard Organization. Iso/iec 9126-1 quality model,
June 2001. URL http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=22749.

[9] International Standard Organization. Iso/iec 9241-11 ergonomic re-
quirements for office work with visual display terminals (vdts) – part
11: Guidance on usability, June 2001. URL http://www.iso.org/
iso/catalogue_detail.htm?csnumber=16883.

[10] P. Johnson. Human computer interaction. McGraw-Hill, 1992. ISBN
0077072359 9780077072353.

[11] S. Kelly and J.-P. Tolvanen. Visual domain-specific modelling: ben-
efits and experiences of using metacase tools. In J. Bézivin and
J. Ernst, editors, International Workshop on Model Engineering, at
ECOOP’2000, 2000.

[12] R. Kieburtz, L. McKinney, J. Bell, J. Hook, A. Kotov, J. Lewis,
D. Oliva, T. Sheard, I. Smith, and L. Walton. A software engineering
experiment in software component generation. In Proceedings of
the 18th international conference on Software engineering, page 552.
IEEE Computer Society, 1996. ISBN 0818672463.

[13] A. Kleppe. Software language engineering: creating domain-
specific languages using metamodels. Addison-Wesley, 2009. ISBN
0321553454.

[14] T. Kosar, M. Mernik, and J. Carver. Program comprehension of
domain-specific and general-purpose languages: comparison using a
family of experiments. Empirical Software Engineering, pages 1–29,
2011.

[15] S. Markstrum. Staking claims: a history of programming language de-
sign claims and evidence: a positional work in progress. In Evaluation
and Usability of Programming Languages and Tools. ACM, 2010.

[16] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344,
2005.

[17] N. Murray, N. Paton, C. Goble, and J. Bryce. Kaleidoquery–a flow-
based visual language and its evaluation. Journal of Visual Languages
& Computing, 11(2):151–189, 2000. ISSN 1045-926X.

[18] L. Prechelt. An empirical comparison of seven programming lan-
guages. IEEE Computer, 33(10):23–29, 2000.

[19] P. Reisner. Query languages. Handbook of Human–Computer Inter-
action, North-Holland, Amsterdam, The Netherlands, pages 257–280,
1988.

[20] J. Rubin and D. Chisnell. Handbook of Usability Testing: How to plan,
design and conduct effective tests. Wiley-India, 2008.

