
HAL Id: hal-03168616
https://hal.science/hal-03168616

Submitted on 14 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The RPG DSL: a case study of language engineering
using MDD for Generating RPG Games for Mobile

Phones
Eduardo Marques, Valter Balegas, Ankica Barisic, Bruno Barroca, Vasco

Amaral

To cite this version:
Eduardo Marques, Valter Balegas, Ankica Barisic, Bruno Barroca, Vasco Amaral. The RPG DSL:
a case study of language engineering using MDD for Generating RPG Games for Mobile Phones.
Proceedings of the 12th workshop on Domain-specific modeling, Oct 2012, Tucson, Arizona, United
States. pp.13, �10.1145/2420918.2420923�. �hal-03168616�

https://hal.science/hal-03168616
https://hal.archives-ouvertes.fr

The RPG DSL: A Case Study of Language Engineering
using MDD for Generating RPG Games for Mobile Phones

Eduardo Marques Valter Balegas Bruno F. Barroca Ankica Barišić Vasco Amaral
Departamento de Informatica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Portugal

e.marques@campus.fct.unl.pt / balegas@live.com / mailbrunob@gmail.com / a.barisic@campus.fct.unl.pt /
vasco.amaral@di.fct.unl.pt

Abstract
It is typical in the domain of digital games to have many devel-
opment problems due to its increasing complexity. Those difficul-
ties include: i) little code reuse in order to develop a cross-platform
game; and ii) performing game’s verification through extensive and
expensive tests. This of course results in low productivity in the de-
velopment (evolution and maintenance) of game solutions.

In this paper, we present a domain-specific language (DSL) for
a Role-Playing Game (RPG) product lines, which was completely
built using a software development technique driven by high level
abstractions—called Model-Driven Development (MDD). Also,
we discuss and demonstrate the several benefits of applying MDD
in terms of rapid prototyping of cross-platform games, and their
evaluation by means of static and dynamic verification of the
game’s logic properties.

Categories and Subject Descriptors H.1.0 [Information Systems
Applications]: Models and Principles; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques

General Terms Model-Driven Development, Domain Specific
Language, Model transformation, Algebraic Petri-net

Keywords Model-Driven Development, Domain-Specific Lan-
guage, Model transformation, Algebraic Petri-net, Role Playing
Games, Game Analysis

1. Introduction
The increasing complexity of software development– mostly due
to the increasing complexity of the Functional and Non-Functional
requirements involved (problem domain), and the supporting plat-
forms and technology (solution domain)– has been the main chal-
lenge of software engineering as research topic since its origins.
The lack of reuse for the new solutions [3, 6] and the lack of infras-
tructures that allow rapid development to improve the development
life-cycle in what concerns to requirements’ validation, have been
some of the main reasons and consequences of the poor quality
of Software Projects. Software game development is no exception:
the process of game development is usually associated with low
productivity—it may take years to see the final product. This is due

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DSM Workshop’12 22nd October 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM [to be supplied]. . . $15.00

the fact that the developed games have complex graphics, logic,
artificial intelligence and input devices [2]. Their validation is per-
formed through extensive and costly tests, and most of them are
cross-platform. This last characteristic means however that there is
a potential gain in reusing the produced software game not only
to reduce development costs, but also to reduce verification’s and
validation’s costs.

In the Game Domain, we observed that games can be organized
into a wide range of categories each one sharing common game
logic. For instance, in the category of Role-Playing Games (RPGs),
all games tend to share the same concepts (e.g., characters, dia-
logues, maps and quests), regardless of the underlying implemen-
tation technology. Again, this characteristic is a potential target for
code reuse at the game logic level. Therefore it makes sense to build
a Domain Specific Modeling Language (DSML) to design, and de-
ploy RPG games.

The work of software language engineers [10] is to develop lan-
guages that are able to provide those abstractions to the Experts in
a given Application Domain — or in our case a Game Designer.
These languages must be simple, focus on the domain of the prob-
lem, and use a vocabulary that is natural to the domain expert.
As such, software language engineers can use MDD techniques to
develop languages by having models of both the language’s syn-
tax (by means of Meta-models), and the language’s semantics (by
means of transformation models).

In this paper, we present an example of SLE (Software Lan-
guage Engineering) while applying MDD techniques, where we en-
gineer a visual DSML for a Role-Playing Game (RPG) product line
(we can create different RPG games using the same DSML). The
end products (each individual game) is deployed in a smartphone
platform. With this language, the Game Designer is able to model
a game in terms of rules, challenges, characters, etc., and generate
the code for a given target platform. It is possible to build a series
of RPG games with diverse features, creating this way different
types of games: one may have only mazes to solve; another may
have agents to interact; etc. In addition, we can perform analysis
by using Model Checkers[1], verifying properties on the designed
games such as: it is possible to finish the specified game; or that it
is possible for a player to get the maximum score (in w.r.t. the score
definition in the specified RPG game).

2. The Approach
In this section we discuss the tools used to implement our solution
1 and show a complete workflow to generate RPG games and ver-
ify them. This methodology is reusable and can be applied to any

1 For more details, our solution is available online at
http://solar.di.fct.unl.pt/twiki5/pub/Projects/BATIC3S/
ReleaseFiles/RPGCaseStudy.zip

type of MDD project. The process is divided in three stages: Do-
main Analysis, Design, and Implementation. Briefly, in the Domain
Analysis phase we define the domain of the application being de-
veloped and the domain for the target platform, on which we want
to deploy the solution. In this phase, it is also important to develop
a vocabulary that is easy for the domain experts to use. In the De-
sign phase, we precisely describe the previously analysed domains.
These descriptions (or models) are the input for the Implementation
phase. Finally, in the Implementation phase, we realize (by means
of transformation models) the models resulting from the Design
phase into concrete artifacts in a target platform—let it be an exe-
cution or an analysis platform, or in our particular case: both.

2.1 Domain Analysis
In the Domain Analysis phase we worked in two different levels, at
the level of the problem (i.e., expressing the concepts and logics of
RPG Games), and at the level of the solution (i.e., how those con-
cepts can be realized in a computational platform). In the level of
the problem of RPGs’ design, we tried to express and define what
would be the common characteristics of all RPG games, regardless
of what are the requirements of their implementation on an under-
lying computation infrastructure. In the following subsections, we
describe the domain that we analysed for the RPGs. From this anal-
ysis, we define our DSML’s syntax by means of a Meta-model.

2.1.1 Concept Agents
Agents are the characters of an RPG that occupy some cell in
a scene, and with whom the hero may interact. The agents have
attributes, inventory, resources and a set of actions. There is a broad
variety of attributes such as strength, agility, intelligence, health
points (these are mandatory on every game) or magic points. The
health points may be recovered using items, or recovered with time,
but if they reach 0, the agent dies. Also, an agent has an inventory
where all the items, resources and equipment, gathered by him/her,
are kept. Finally, the agents’ actions can be specified using our
RPG language. For instance, in dialogues, the phrases said by the
agent are determined with a decision tree, but, during a combat,
the selected movement is randomly selected in a set of possible
fighting movements. The possible actions of agent are to walk, to
fight, to talk and to give, buy or sell items. When an agent dies it
automatically disappears from the map, and it may leave behind
some items in its place, or give some resources to the hero.

2.1.2 Concept Hero
The hero is the controllable character of any RPG — i.e., it is
the agent that the human player controls with a broader set of
actions. When the hero dies, the game ends. The possible set of
actions available to a hero, in our RPG game language, are: to move
between cells, to interact with other agents by talking or fighting
them, to interact with items and objects by picking them up, giving,
buying or even selling them. Resources, such as gold, may be used
to buy other items, these are gained throughout the scenes or by
fighting hostile agents. All of the specified RPG benefit from an
experience system, where a hero’s abilities improve through the
accomplishment of objectives and interaction with other agents or
object. A hero can gather a small amount of experience points by
accomplishing those tasks and experience points can be spent to
improve the hero’s attributes. Also, it is possible to equip some
items of the inventory, that can improve some of the attributes of the
hero, as long as they are equipped. The inventory can be checked
or modified at any time. The hero attributes can also be modified
by state conditions (e.g., poisoned, burned or sleepy).

RPG

Cell

Scene

WorldMap

Legend:

Mandatory

Hero

Friendly

Hostile

Agent

Kind

Actions

Talk

Move

Attack

Optional

Figure 1. Excerpt of the RPG Games feature model.

2.1.3 Concept Space
Every game has a world map, which is the environment where the
game takes place. The world map is composed by many different
scenes, which are connected, and the agents can move across. A
scene contains a two-dimensional map of cells. The agents can
move between cells if they are unoccupied. In the map there exist
objects or artifacts to be picked up, traps that cause the agents
to lose health points, switches that, when activated, let the hero
progress to another scene, and doors that allow the passage of
agents to other scenes.

2.1.4 Concept Objectives
Each game has a main objective, that once finished ends the game,
and there may also be other objectives, which are considered sec-
ondary objectives. There are different kinds of objectives: interac-
tion with agents (e.g., talk with a specific agent), get to a specific
scene (e.g., arrive at castle), or get artifact (e.g., get golden cup).
The number of objectives completed determines the final score of
the game. In Figure 1, we show a piece of the feature model for
the RPG language. The feature model expresses the features that
are mandatory or optional and also the relations between them. We
used the feature model notation to represent the variability of RPG
games schematically. Here we can see how we modelled the space
elements defined in the Domain Analysis phase.

With this complete feature model for RPG games we derived
our RPG DSL’s syntax (by means of an Ecore Meta-model) based
on the relations discussed above.

2.1.5 Execution Platform
In the Domain Analysis of the solution (computational) level, we
had to choose platforms to both deploy the generated games and to
analyse them. Since we did not have any kind of experience in this
area, nor any base prototype to work on, we had to choose a game
developing platform and build our own framework on top of it. So
we analysed some of the existing game engines that could be useful
to implement our RPG Games. The criteria to choose the target
framework were: fast development; abstraction level relatively to
system calls and hardware dependencies (e.g., graphical primitives,
input modalities, etc.); need of previous knowledge in the area of
game engines.

We analysed three frameworks and identified some of its charac-
teristics that we considered advantageous in the use of each frame-
work. In the table 1 we describe these.

Table 1. Comparative table between frameworks
Framework characteristics
Slick Java based;

Uses LWJGL
Sphere Scripting language;

Level of abstraction that allows some of
the typical features of RPGs

Corona Scripting language;
Allows cross-platform compilation for
Android and iOS

Between these three frameworks we chose Corona SDK 2 be-
cause it seemed interesting to allow compiling the game for differ-
ent mobile platforms. The game development is done in the Lua
language: a scripting language, which is preferred for rapid devel-
opment [18].

2.1.6 Analysis Platform
With regard to the choice of the analysis platform, we had first
to analyse what are the analysis requirements for our RPG game
specifications. As in every game development it is possible to
create games that are impossible to finish, so it is expected that
the games automatically generated in our approach have models
in the DSL that comply to some desired properties. We used OCL
[8] to perform static analysis over our RPG models. This kind of
verification assures that models are well formed and therefore can
be used through the MDD cycle. However, they cannot guarantee
that dynamic properties are valid over all possible computation
steps (also known as symbolic states) of the game. In particular,
in our RPG Game Language, we want to assure that all developed
games have the possibility of i) finishing a game, and ii) finish a
game with the maximum score.

To check this kind of properties we integrated a model checker[1]
in our DSML. There are various model checkers in the literature[9,
12, 13], but we choose ALPiNA [4], an Algebraic Petri-net (APN) [11]
analyser. Although this tool suffers (as other model checkers) from
the exponential nature of the model checking problem, where the
analysis space tends to explode with the size of the problem [5],
this tool actually presents good performance while checking invari-
ants in Petri net models. Also its APN models are expressed with
the same ECore format as the models we use to define new RPG
games, therefore, we could integrate the code verification in the
MDD cycle seamlessly using this tool, by performing the transfor-
mation from our RPG model’s to APN model’s and by analyzing
the latter ones with ALPiNA.

2.2 Design
After making an overview of the requirements of our language
we defined the required Meta-models to implement it. We used
Ecore-based Meta-models used by the Eclipse Modeling Frame-
work (EMF) [16] 3. The Meta-models describe the RPG Language
and the abstractions of the target platforms. This is the base of
the whole process of deploying the RPGs. A bad design of Meta-
models may lead to severe changes in its implementation, execu-
tion, analysis and graphical editors. In our project we created three
Meta-models, one for the main language from which we are able to

2 http://www.anscamobile.com/corona/
3 http://eclipse.org/modeling/emf/

RPG Model
µRPG
Model

APN

µFramework
Model

Corona
Framework

M2M

M2M M2M

M2C

Model Verification

Product

Figure 2. Transforming a source model to a target framework with
model verification.

Figure 3. Excerpt of the RPG Meta-model.

design RPG games, and two other intermediate languages to sim-
plify the process of transforming these instances to both the execu-
tion and analysis platforms.

In Figure 2, we can see the automated transformation specifica-
tions that are used to translate RPG game specifications into APNs,
and to the code that is used in the Corona Framework. Instead of
performing direct Model-to-Model(M2M) either from RPG models
to APN, or Model-to-Code(M2C) from RPG models to the frame-
work code, we decided to add intermediate steps to this process.
The main reasons to introduce these intermediate steps are: i) to
enable further reuse of the model transformation when approach-
ing other target platforms (for both execution and analysis); ii) to
enhance debugging capabilities by inspection on the results of the
intermediate transformations; and iii) to ease and structure the im-
plementation of the RPG language, and ease future language evo-
lutions.

2.2.1 RPG Language Meta-model
The RPG Language Meta-model describes every possible feature
of the defined RPG Domain. We used the feature model, created in
the previous section, to design this Meta-model. It was annotated
with OCL rules to guarantee that every produced RPG model is
consistent by verifying rules such as ”there can be only one hero
in the world”. This is crucial since both the execution and analy-
sis transformations are assuming that the source RPG models are
always correct.

In Figure 3, we show the part of the Meta-model that describes
the Space entities. In this example, a RPG Game has only one
World Map, that has a set of Scenes, which are composed by Cells.
Cells are identified by x and y coordinates, a Scene is identified
by its name, has an image for the background and its number of
Cells is delimited by width and height. With this model of our
RPG language, we generated a graphical editor to allow the Game

Figure 4. Excerpt of the µFramework Meta-model.

Designers to create RPG instances with it, as described in section
2.3.1. The created instances are then transformed into the other two
languages: the Corona’s Framework code, and the APNs used in
ALPiNA.

2.2.2 µFramework Meta-model
The application domain of the chosen target framework (Corona)
is very broad and general—thus it had only low-level primitives
to draw and create graphical objects. Therefore, we built an API
over it, in order to create the entities we needed to our RPG
games and created a Meta-model for this API. This was called
the µFramework API, which simplifies the M2C transformation
to generate the code of the game. This way, we restricted the tar-
get framework to the RPG game context. The created Meta-model
simply describes the functionality implemented in the µFramework
API, mapping the entities to the functionality of the API.

In Figure 4, we can see that similarly to the RPG meta-model,
this µFramework Meta-model has only one WorldMap, but now
also uses a OrientedGraph that relates and store all the Scenes that
the specified game may have. Each Scene has one MapXY, which
holds all of the Cells of that Scene, and one ObjectManager that is
responsible for managing the objects in the scene (e.g., placing an
object, remove an object, etc.).

2.2.3 µRPG Meta-model
Given the analysis limitations of the ALPiNA model checker,
we built another intermediate language (µRPG Language) which
works as a filter that will only contains the entities we considered
essential to check the properties related to the termination and score
of a game. In this process we made several assumptions to reduce
the number of entities to a minimum. As for example of one of
these assumptions is that a hero can always beat an enemy, this has
a huge impact since all enemies will be discarted from the process
of model checking, which can lead to false positives where there
may exist overpowered enemies that will block our way to the final
goal.

The µRPG Meta-model one of modifications that occured in
this meta-model is the concept of Partition which represents sets of
adjacent cells that can be directly accessed by a hero: a given Parti-
tion holds the relevant information of that area w.r.t. the property of
game termination—i.e., the objectives, the keys that can be picked
up, the doors, and the hero position.

2.3 Implementation
In this section, we describe how we can create RPG models and use
those models to automatically generate both the game source code
and the models for verification.

Figure 5. Screenshot of the graphical editor.

2.3.1 Graphical Language
We developed a graphical language based on GMF/EuGENia4 that
allows the creation of RPG models. The original RPG Language
Meta-model was annotated with rules that describe how the entities
and relations are represented in the GMF Editor.

In the Figure 5, we show an example of an RPG game created in
this language. In the main window, the entities of the RPG model
and the relations between them. In the properties window bellow,
we can assign values to the RPG entities’ attributes: in this case, we
selected the Hero entity named ’Zelda’.

2.3.2 Generating the source code
The generation of source code for the RPG Game is divided in
two transformation phases: First, we take a RPG Game instance
and transform it to the µFramework Meta-model instance, using a
M2M transformation. Then, we take the µFramework Meta-model
instance and apply a M2C transformation, as can be seen in Figure
2.

All of the M2M transformations were done by means of the
Atlas Transformation Language (ATL) 5, which is a textual model
transformation language that is able to perform M2M transforma-
tions. The M2C transformation was specified using XPand6, which
is a template based tool to generate the source code of programs.
Template based tools generate the source by reusing snippets of
code. Those snippets are filled with values from the model in-
stances. The information from the Meta-model is read in a visitor-
pattern style, and it is used to generate the appropriate textual code.
This technique is appropriate for cases where we already have a
considerable amount of code from the target platform, and we want
to reuse it in the MDD cycle.

2.3.3 Generating µRPG
To generate the µRPG Language, we made a simple M2M transfor-
mation that just propagates the relevant the entities from the RPG
model to the model expressed in the µRPG Language. We imple-
mented a breadth search algorithm to translate reachable adjacent
cells in a scene into a Partition.

We then take the generated RPG model expressed in the µRPG
language, and translate it again into an APN model to be analyzed

4 http://www.eclipse.org/gmt/epsilon/doc/eugenia/
5 www.eclipse.org/atl/
6 http://wiki.eclipse.org/Xpand

in ALPiNA. This M2M transformation generates an APN from
an µRPG model, where: i) each partition is mapped into a place;
ii) Keys, objectives and the hero are mapped to tokens; iii) doors
are mapped to transitions. In the translated APN there will always
be two extra places: the KeySet that holds the keys picked up by
the hero; and the Conquests that holds finished objectives. The
transition associated with the door, allows the token associated with
the hero to move from place to place, and will be enabled if and
only if there is a token associated with the respective key in the
KeySet place. We can put this token in the KeySet whenever the
token associated with the hero is in the place that has that token.
This also is applied to objectives.

Finally, to check if the game ends, we use AlPiNa to verify
that there is a state which has the token associated with the final
objective in the place Conquests. For the maximum score property,
where we check if the cardinality of place Conquests can eventually
be equal to the total number of objectives defined in the game.

3. Related Work
MDD is often applied to deliver a good separation of the concepts
of the application from the concepts of the system. This separa-
tion improves productivity and communication because teams con-
cerned with the domain of the application can easily talk with sys-
tem developers without concerning the algorithmic requirements.

Besides the BATIC3S [15] project, there exists not so many
evidence of successful application of MDD solutions in the SLE
of a DSML. Nevertheless, related MDD approaches already have
been introduced to the Game Industry before. In [14] it is pro-
posed to adopt MDD in the Game Industry by proposing a mod-
elling semi-automatic approach based on UML (that can be seen
as a General Purpose Modelling language for Software Engineer-
ing) at several abstraction layers: Platform-Independent Models
(PIM), Platform-Specific Models (PSM) and code level. However
not demonstrated, the authors claim increasing productivity and
higher code re-utilization, not mentioning how it might affect the
error proneness caused by the fact the game developer must model
and code, and keep track of consistency, in all the three layers. Code
generation, in this case is not complete and can be seen more like a
code skeleton generator.

There are several DSMLs built for game development. For in-
stance, in [7] and [17] it was presented DSMLs for Adventure
Games, with automatic code generation for a specific adventure
game. However, our solution provides model checking capabilities
(reducing costs with exhaustive game testing) and an abstract rep-
resentation of the deployment platforms (tackling the problem of
platform heterogeneity).

4. Conclusions and Future Work
In this work, we developed a DSML to create RPG Games with a
complete MDD approach. This includes the M2M transformations
and intermediate languages to tackle the complexity of building
a DSML and the use of a model checker to verify some game
properties.

The creation of an API over the framework allowed an M2M
transformation that was easily produced between RPG and µFramework
meta-models, which consists mostly of 1 to 1 relationships. This
strategy of bottom-up modelling in the framework allowed the fo-
cusing on the RPG entities and the restriction of the power of the
framework which was very low-level. The mapping of the RPG
meta-model to APN is too much complex to simply perform it
in just one step, therefore we created an intermediate meta-model
µRPG that allowed a simpler mapping between both. We believe
that the use of intermediate languages really help in this process,
since we do not have to map complex entities directly to an APN.

To complete the MDD cycle, the use of ALPiNA demonstrates
that we can use a model checker to analyse and validate properties
on RPG games, giving us a certain level of confidence about its
implementation, since it passed verification phase.

Regarding the RPG metamodel evolution, the addition of a new
feature should not affect the existing ones if its concept does not
interfere with existing features. However if it does interfere, we
have to analyze the impact of that interference in the µRPG Meta-
model, which may lead to a partial redefinition of these model.

The choose of the DSL format (textual or graphical) has impact
in the process of game development. A textual DSL may lead to a
more readable solution than a graphical one in the development of
big games, since a visual one will have problems displaying all the
information about the game. However a graphical DSL allows the
developer to get a preview how the things will be mapped, allowing
the game developer detect errors faster.

As future work we are interested in collecting some metrics and
conducting a complete assessment to gather the opinions from both
game engine developers and game designers about their experience
with this, or similar MDD approach. We are interested in compar-
ing the productivity of game designers using this methodology and
others. In a different survey, we will investigate the difficulty of de-
veloping a game language to generate games, in a MDD fashion,
against the development of a generalist game engine, as the ones
broadly used in the industry. Either for small game devices, such
as the ones used in smartphones, or other more complex environ-
ments.

Acknowledgments
The presented work has been developed in the context of the fol-
lowing research institution: CITI fund PEst-OE/EEI/UI0527/2011
Centro de Informática e Tecnologias da Informação (CITI/FCT/UNL)
- 2011-2012, and the doctoral grant ref. SFRH/BD/38123/2007.

References
[1] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,

and P. Schnoebelen. Systems and Software Verification: Model-Checking
Techniques and Tools. Springer Verlag, 1st edition, 1999.

[2] J. Blow. Game development: Harder than you think. Queue, 1:28–37,
February 2004.

[3] B. Boehm. Managing software productivity and reuse. Computer,
32(9):111 –113, sep 1999.

[4] D. Buchs, S. Hostettler, A. Marechal, and M. Risoldi. Alpina: A
symbolic model checker. In Petri Nets, pages 287–296, 2010.

[5] D. Buchs, S. Hostettler, A. Marechal, and M. Risoldi. Alpina: An
algebraic petri net analyzer. In J. Esparza and R. Majumdar, editors,
TACAS, volume 6015 of Lecture Notes in Computer Science, pages 349–
352. Springer, 2010.

[6] G. Caldiera and V. Basili. Identifying and qualifying reusable software
components. Computer, 24(2):61 –70, feb 1991.

[7] A. W. B. Furtado and A. L. M. Santos. Using domain-specific modeling
towards computer games development industrialization. In Domain-
Specific Modeling workshop at OOPSLA 2006, 2006.

[8] O. M. Group. Object Constraint Language OMG Available Specifica-
tion Version 2.0, 2006.

[9] G. Holzmann. Spin model checker, the: primer and reference manual.
Addison-Wesley Professional, first edition, 2003.

[10] A. Kleppe. The field of software language engineering. In SLE, pages
1–7, 2008.

[11] C. Lakos. From coloured petri nets to object petri nets proceedings of
15th international conference on the application and theory of petri nets.
1995.

[12] M. Leuschel and T. Massart. Infinite state model checking by abstract
interpretation and program specialisation. In A. Bossi, editor, Logic-

Based Program Synthesis and Transformation. Proceedings of LOP-
STR’99, LNCS 1817, LNCS 1817, pages 63–82. Springer-Verlag, Berlin,
September 1999.

[13] M. Leuschel and T. Massart. Logic programming and partial deduction
for the verification of reactive systems: An experimental evaluation.
Technical report, University of Birmingham, 2002.

[14] E. M. Reyno and J. . C. Cubel. Automatic prototyping in model-driven
game development. Computers in Entertainment, 7(2), 2009.

[15] M. Risoldi, V. Amaral, B. Barroca, K. Bazargan, D. Buchs, F. Cretton,
G. Falquet, A. L. Calvé, S. Malandain, and P. Zoss. A language and

a methodology for prototyping user interfaces for control systems. In
Human Machine Interaction, pages 221–248. 2009.

[16] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF:
Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd
edition, 2009.

[17] R. Walter and M. Masuch. How to integrate domain-specific languages
into the game development process. In Proceedings of the 8th Interna-
tional Conference on Advances in Computer Entertainment Technology,
ACE ’11, pages 42:1–42:8, New York, NY, USA, 2011. ACM.

[18] W. White, C. Koch, J. Gehrke, and A. Demers. Better scripts, better
games. Queue, 6:18–25, November 2008.

