
HAL Id: hal-03168615
https://hal.science/hal-03168615

Submitted on 14 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Usability Evaluation of Domain-Specific Languages
Ankica Barisic, Vasco Amaral, Miguel Goulao

To cite this version:
Ankica Barisic, Vasco Amaral, Miguel Goulao. Usability Evaluation of Domain-Specific Languages.
2012 Eighth International Conference on the Quality of Information and Communications Technology
(QUATIC), Sep 2012, Lisbon, Portugal. pp.342-347, �10.1109/QUATIC.2012.63�. �hal-03168615�

https://hal.science/hal-03168615
https://hal.archives-ouvertes.fr

Usability Evaluation of Domain-Specific Languages

Ankica Barišić, Vasco Amaral, Miguel Goulão
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

CITI

Caparica, Portugal

a.barisic@campus.fct.unl.pt, vma@fct.unl.pt, mgoul@fct.unl.pt

Domain-Specific Languages (DSLs) are claimed to bring

important productivity improvements to developers, when

compared to General-Purpose Languages (GPLs). The

increased Usability is regarded as one of the key benefits of

DSLs when compared to GPLs, and has an important impact

on the achieved productivity of the DSL users. So, it is essential

to build in good usability while developing the DSL. The

purpose of this proposal is to contribute to the systematic

activity of Software Language Engineering by focusing at the

issue of the Usability evaluation of DSLs. Usability evaluation

is often skipped, relaxed, or at least omitted from papers

reporting development of DSLs. We argue that a systematic

approach based on User Interface experimental validation

techniques should be used to assess the impact of new DSLs.

For that purpose, we propose to merge common Usability

evaluation processes with the DSL development process. In

order to provide reliable metrics and tools we should reuse and

identify good practices that exist in Human-Computer

Interaction community.

Keywords: Domain-Specific Languages, Usability

Evaluation, Software Language Engineering

I. INTRODUCTION

An increasing number of people rely on software systems
to perform their daily routines and responsibilities. As such,
systems need to be developed rapidly. Domain-Specific
Languages (DSLs) are claimed to contribute to a
productivity increase in software systems development,
while reducing the required maintenance and programming
expertise. The main purpose of DSLs is to bridge the gap
between the Problem Domain (crucial concepts, domain
knowledge, techniques, and paradigms) and the Solution
Domain (technical space, middleware, platforms and
programming languages). The sooner we fill in this gap, the
sooner we shall increase users’ productivity. However
intuitive this idea may be, we need to have means to assess
the Quality and success of the developed languages. The
alternative is to accept the risk of building inappropriate
languages that could even decrease productivity or increase
maintenance costs.

Software Language Engineering (SLE) is the application
of a systematic, disciplined and quantifiable approach to the
development, usage, and maintenance of software languages.
One of the crucial steps in the construction of DSLs is their
validation. However, this step is frequently neglected. The
lack of systematic approaches to evaluation, and the lack of
guidelines and a comprehensive set of tools may explain this
shortcoming in the current state of practice. To assess the
impact of new DSLs we could reuse experimental validation

techniques based on User Interfaces (UIs) evaluation. The
focus of this research proposal is to build up a conceptual
framework that supports the development process of DSLs
concerning the Usability evaluation. This will include
concepts, methods, languages, processes, implementation of
tools, and metrics proposal as well.

DSLs can be regarded as communication interfaces
between humans and computers. In that sense, using a DSL
is a form of Human-Computer Interaction (HCI). As such,
evaluating DSLs could benefit from techniques used for
evaluating regular UIs. We reviewed current methodologies
and tools for the evaluation of UIs and General Purpose
Languages (GPLs), in order to identify their current
shortcomings as opportunities for improving the current state
of practice. That brought us closer to providing adequate
techniques for supporting the evaluation process which, we
argue, should be based on methods for assessing user
experience and customer satisfaction, applied to DSL users.
By promoting DSL Usability to a priority in the DSL
development, Usability must be considered from the
beginning of the development cycle. One way of doing this
is through user-centered methods. In order to tailor such
methods to DSL development, we need to establish formal
correspondences for all stages of the DSL development
process and the Usability evaluation process.

This paper is organized as follows. In section II we
discuss the current state of the art in DSL development and
potential contributions from HCI to improve it. In section III
we detail our research objectives and methodology. In
section IV we report on the preliminary results in this
research project, while in section V we outline our plans for
future work and expected results. In section VI we present
the conclusions for this paper.

II. STATE-OF-THE-ART

The immersion of computer technology in a wide range of

domains, leads to a situation where the users’ needs become

increasingly demanding and complex. The Quality of the

users’ interaction with this kind of technology is becoming

of the utmost importance. Consequently, the development of

successful software systems becomes increasingly more

complex.

Software engineers need to cope with the growing of both

essential and accidental complexity [1]. They have to

provide solutions that solve a class of crucial problems in a

given domain, which are sometimes very complex to learn,

such as the rules and technical jargon found in domains like

the Physics, Finance, Medicine, etc. Also, they need to deal

with the accidental complexity of the used technology, e.g.,

the use of low level abstraction programming languages,

while integrating a wide plethora of different tools and

libraries.

The use of the Model Driven Development (MDD)

techniques and tools is seen as a viable approach for dealing

with this accidental complexity[2]. MDD is grounded on the

notion of providing explicit Models, commonly called “first

class artifacts”, that are further translated into other lower

level, more detailed, Models. These translations are also

considered as development artifacts and can be explicitly

modeled by means of transformation models. This approach

has special impact in dealing with the complexity of large

scale problems, while enabling rapid prototyping,

simulation, validation and verification techniques [3], [4].

In direct relation with MDD approach, we have modeling

languages that are able to express the models with adequate

notations. DSLs provide a notation tailored towards an

application domain as they are based on models of relevant

concepts and features of the domain [5]. As DSLs are used

to describe and generate members of a family of systems in

the application domain, they give the expressive power to

generate the required family members more easily. As such

they separate domain experts’ work from

analysis/transformation experts’ work. DSLs are claimed to

match users' mental model of the problem domain by

constraining the user to the given problem [6].

In general, the software industry does not report

investment on the evaluation of DSLs, as shown in a recent

systematic literature review [7]. This conveys a perception

that there is an insufficient understanding of the SLE

process which, in our opinion, must include the evaluation

of the produced DSLs. This apparent state of practice

contrasts with the return of investment attributed to usability

improvements reported for other software products [8]. In

general, these benefits span from a reduction of

development and maintenance costs, to increased revenues

brought by an improved productivity by the end users [9].

End user of the DSL can be a domain expert, a

programmer that works on specific domain or a regular

domain user. Each of these users can have different

background profile and its own role in problem solution. We

need comparable validation procedure that will assess user

experience with DSLs and previous problem solving

approach.

Comparing the impact of different languages in the

software development process has some tradition, in the

context of General Purpose Languages (GPLs) (e.g., [10]).

Typically, the popularity of a language is used as a surrogate

for its usability. Other sorts of evaluations on GPLs include

benchmarks, feature-based comparisons and heuristic-based

evaluations [10],[11]. Since the end users of GPLs are

usually close to computation concepts, and the end users of

DLs to domain concepts of the context of use, these

methods cannot be directly applied for DSLs.

In the case when usability problems are identified too late

in the language development process, a common approach

to mitigate them is to build a tool support that minimizes

their effect on users’ productivity [12], [13]. Better

Usability is a competitive advantage, although evaluating it

remains challenging, because it is hard to interpret existing

metrics in a fair and unbiased way.

When compared to using GPLs, the increased

productivity achieved by using DSLs is the one of the

strongest claims of the DSL community[3],[4],[14]. The

problem is that this claim is mostly based on anecdotal

reports on improvements that lack external validity. Other

reports, such as [15], present maintainability and

extensibility improvements brought by a combination of

DSLs and Software Product Lines (SPLs). The usage of

DSLs has been favorably compared to the usage of

templates in code generation, with respect to flexibility,

reliability and usability [16]. In a recent survey DSL users

reported that they achieved noticeable improvements in

terms of reliability, development costs, and time-to-market

[6]. Comparisons can also be made among competing

DSLs: for instance, [17] compares a visual DSL against the

textual language for which it is a front-end.

DSLs define a way for human to communicate with

machines. Therefore, DSL evaluation should not be much

different from evaluating a regular UI. We can argue that

any UI is a realization of a language, where a language is

considered as a theoretical object (a.k.a. model) that

describes the allowed terms and how to compose them into

the sentences involved in a particular human-computer

communication. Examples of UIs range from compilers to

command-shell and graphical applications, and in each of

those examples we can deduce the human-computer (H/C)

language that is being used to perform that communication

[29]. The general goal for HCI is that “it should increase

efficiency of humans performing their duties within a

computation infrastructure, without extra organizational

costs, inconveniences, dangers and dissatisfaction, as well

as undesirable impacts on the environment during long

periods of learning, or maintenance, among others” [18].

Usually, there is a broad spectrum of issues to evaluate

Software’s Quality. Looking at the quality standards, and to

the current Software Evaluation techniques we can fit them

to the particular case of DSLs. In the literature, most of the

requirements are actually associated with a qualitative

software characteristic called Usability. The need for

development of Usability definition is discussed in several

articles such as [19], [20]. The standards ISO/IEC 9241-11

(2001), ISO/IEC 9126 (2001) and ISO IEC CD 25010.3

[19] provide several definitions. The ISO IEC 9241-11

(2001) standard defines Usability as the “extent to which a

product can be used by specified users to achieve specified

goals with effectiveness, efficiency and satisfaction in a

specified context of use”. ISO IEC 9126 (2001) gives us a

quality model for achieving ‘Goal Quality’, i.e., Quality in

Use. ISO IEC CD 250100.3 estimated that model into

complete Quality Model [21], where Usability is considered

part of Quality in Use. In the context of DSL’s evaluation

[22], important notions such as Quality in Use, internal and

external Quality were considered strongly dependent on the

DSLs’ intended context of use [27].

DSLs are built for a more confined context of use, and

they capture one particular set of domain concepts. When

we evaluate these languages, the population of users is

smaller, and the external validity of the result is expected to

be much higher than we would have for a UIs. In the context

of potential language’s optimization procedure, we expect to

find more relevant and accurate interpretations for these

results.

III. RESEARCH OBJECTIVES AND

METHODOLOGICAL APPROACH

Despite the advantages that DSLs might bring to
Software Engineering (i.e., while leveraging the accidental
complexity of software), in order to be widely adopted by the
Software Engineering professionals, we need to provide the
means to assess their Quality in Use and success of
implemented problem solution when compared to the other
solutions. The alternative is to accept the risk of developing
inappropriate DSLs that can decrease the domain developers’
productivity or even increase maintenance costs.

We need a rigorous collaborative procedure in order to
evaluate DSLs (both during and after their development), as
well as evaluate their sentences (called instance models). For
that it is necessary to:

a) Define the quality criteria to evaluate DSLs;

b) Integrate in an existing IDE support for
development of DSLs with high Quality in Use;
and

c) Define a methodological approach to support
the evolution of a DSL’s design based on user
experience and infer its impact on quality
improvement during its lifecycle (e.g.
traceability of design decisions).

We propose to build a comprehensive methodology that
involves Usability concern in all phases of existing DSLs’
development process. We should research the most suitable
means to provide both, reliable DSL evaluation metrics and
iterative suggestions during DSL's development and
evolution. This methodology will be based on user-centric
techniques and cope with the DSL’s evolution by assessing
the impact of the changes in the DSL’s design and
implementation on user experience. In order to be able to
build this methodology it is necessary to answer the
following questions:

• What are the relevant quality concerns for
DSL’s evaluation, and associated metrics? How
can we take advantage of these metrics to
actually measure the quality in use of a DSL?
Which existing standard DSLs can we take as a
reference for performing DSLs comparison (or
comparison of software languages in general)?

• How to plan an effective experimental
evaluation of a DSL (i.e., giving statistically
significant results with the minimum effort)?

• How to guide the software language engineer in
order to build a DSL with high level of Quality
in Use? What are the good language design
patterns? How can we foresee the Usability of a
DSL while in an iterative evolution step?

The methodology will be validated by compilations
based on recommendations that emerge from it in the
development of the DSLs and experimental assessment of
their impact trough few case studies on the different DSLs.

We foresee the following main research activities that
need to be applied in each development step of DSL in order
to introduce Usability evaluation into development process:

A. Domain Analysis

The Domain analysis phase is needed in order to
understand the domain in consideration, by collecting
information about it. The output of these phase is a domain
model [23], that represents the common and varying
properties of systems within the domain, the vocabulary used
in the domain and defines concepts, ideas and phenomena,
within the system. Existing systems, their artifacts (such as
design documents, requirement documents and user
manuals), standards, and customers are all potential sources
of domain analysis input.

In this activity, we find it essential to define and model
DSLs target users and intended context of use. Also, we
propose new models, e.g. scenario-based modeling and goal-
oriented modeling, which are based on assessment of users’
previous experience. They should be included into the
existing domain analysis models in order to define the
usability requirements and crucial tasks that should be
supported by the DSL under evaluation. Also, we find it
crucial to relate these requirements to dependent user and
context models. These models should be considered from the
beginning of the DSL’s development process as quality
criteria for the newly designed language. During the
development process these models should be refined
according to results of validation recommendations.

B. Language Design

Designing DSLs remains a difficult and under-explored
problem [31]. Recent work has focused mainly on the
implementation of DSLs and supporting tools. Also, Volter
presents a collection of design patterns for describing the
process of MDD. However, there still lacks detail for
language design, development and implementation. We
expect to contribute here with design patterns of Usability
evaluation of DSLs.

In the Language Design activity, we propose to perform
corpus evaluation of DSLs. Here, the main objective is to
identify the means to evaluate the internal quality of a
language, i.e., in the perspective of language’s evolution and
validation. We expect to trace the impact of metamodel
design changes, and collected statistic on the DSLs Usability.

C. Testing – Controlled experiment

The main objective of the testing activity is to identify
the means to evaluate the Quality in Use of a language
according to the requirement models described in the domain
analysis phase. This involves the definition of experimental
procedures/processes, heuristics and questionnaires. In order
to be able to provide proper instrumentation for experimental
evaluation, it is necessary to design support that will log
Quality indicators, and present quantitative metrics result, so
that developer is able to reason about the Quality in Use of
implemented solution.

Designed instrumental support should be integrated into
experimental model, so it can be validated trough controlled
experiments. The quality in use of a language may be
evaluated distinctly according to either its abstract syntax or
concrete syntax which also implies the adoption of a
(arguably) good interaction model. However, that is another
aspect of usability evaluation of DSLs that is not part of this
work. In scope of this work we find it necessary to evaluate
only functional quality of concrete syntax, and not
concentrate on evaluating concrete syntax by itself. Also, we
will distinguish between evaluating a DSL from evaluating
its implementing tool.

D. Deployment and Maintenance - Collect and evaluate

the Quality the Instance Models (sentences)

The objective of this activity is to identify the appropriate
means to qualify the instance models based on the users’
feedback in the production environment. To be able to
compare the (semantically equivalent) instance models
expressed on the same language in a cognitive perspective
we should revisit and improve corpus evaluation
tools/techniques from testing activity. Also we should
monitor the language’s ability to support the evolution of the
instance models without having negative impact of the
languages usability.

E. Validation - Iterative life-cycle

The main objective of this activity is to build a

conceptual framework to reason about the pertinence of the

results of the language’s Quality in Use in the overall

language’s life-cycle. It is important to identify what quality

attributes (and corresponding metrics) have the most

relevant impact on overall Quality in Use. We should

evaluate impact of those quality metrics during following

the language development step, as well as to validate

suggestions for further improvements on the following

steps. The framework should enable us to trace the impact

of design changes on user experience with language and be

interactively connected to the usability models proposed for

another development activity.

By using existing language evaluation case studies we

can compare the decisions from the reasoning framework,

with the conclusions (considered sound by the community)

taken from other language evaluation approaches. The

expected output is a report containing a proof of correctness

(completeness and soundness) of the conclusions taken by

the reasoning framework on the observed case studies.

IV. PAST WORK AND PRELIMINARY RESULTS

There are already many publications about UI Usability
evaluation. However, we find that the Usability evaluation of
a UI is typically superficial when compared to the required
usability evaluation of a DSLs. Existing methodologies do
not cover all the relevant aspects and dimensions of usability
evaluation, e.g. learnability, efficiency, effectiveness for all
intended users and features of product. |As it is hard to
capture all intended contexts of use for UIs at once,
supporting tools are developed to support some parts of
methodologies, usually built to provide questionnaires or
collect some quantitative data, and are in most cases too
general. Existing practices have very a low level of external
validity, and sometimes it is hard to interpret what collected
information means, probably because of the wide spectrum
of context of uses that they target.

DSLs can have a precise definition of the end user’s
profile and task models, as well as syntactic models, that our
method uses in order to achieve better results from its
Usability evaluation. Moreover, we can rely on these results
in order to validate the claim that DSLs can effectively
narrow the gap between humans and computers, when
compared to regular GPLs.

A. Iterative user-centered design

According to Mernik et al., the Language life cycle
consists of a set of phases [5]: Decision; Domain Analysis;
Design; and Implementation. Visser adds Deployment; and
Maintenance to this process [23]. Besides adding Testing (as
in any typical Software Product), we propose to introduce
Language Evaluation just before Deployment [24]. This
Language Evaluation phase is done with language quality
concerns in an incremental and iterative user-centric
approach, with the DSL end users, while crosscutting all of
the involving phases as suggested in [25].

By allowing significant changes to correct deficiencies
along the development process instead of just evaluating at
its end, when it might be too late, user-centered design can
reduce the cost of development and support. The critical
activities required to implement user-centered design are
described in ISO 13407 [20]. Once the system is released to
the users, an user experience assessment of DSLs and
associated IDE may be highly beneficial [19]. Iterative
Usability evaluation approach should be merged with DSL
development cycle as described in [22]. This approach
support reasoning about implemented and wished problem
concepts of DSLs users. First by defining them for user and
context models in domain engineering phase, designing and
implementing them in the language, and finally validating
them in tasting phase in development.

B. Evaluation dependend on the context

Empirical evaluation with user, is recommended at all
stages of development, or at least in the final stage of
development [26]. To do so, we can use several methods,
with different kinds of measures, where each type of

measure is usually regarded as a separate factor with a
relative importance that depends on the DSL’s context of use
[27]. However, these evaluations can be design to target just
restricted scope of DSL users in order to be replicable.

For several predefined groups of DSL users we should

use techniques like questionnaires, and observations to

analyze the tasks involved while using a given DSL.

Observations should include capturing quantitative indicators

related to users’ interaction with system (e.g. mouse

movements, keystrokes, heartbeats, eye tracking).

Experimenters in human factors have developed a list of

tasks that can capture these particular aspects [28]. These

tasks should be designed to capture relevant Usability

concerns, e.g., effectiveness, efficiency or satisfaction. We

propose a systematic approach based on UIs experimental

validation techniques to assess the impact of the introduction

of DSLs on the productivity of its end users. To illustrate this

evaluation approach we have presented a case study of a

DSL for High Energy Physics [29].

C. Experimental Language Evaluation

We argue that the Quality in Use of a DSL should be
assessed experimentally. In Software Engineering, a
controlled experiment can be defined as “a randomized
experiment or quasi-experiment in which individuals or
teams (the experimental units) conduct one or more Software
Engineering tasks for the sake of comparing different
populations, processes, methods, techniques, languages or
tools (the treatments)” [30]. In the case of DSLs, this can be
instantiated in early phases of development with domain
experts that typically have to conduct with software
construction, or evolution tasks. For the sake of comparing
different languages, including the DSL under evaluation and
any existing baseline alternatives to that DSL, representative
user groups should be modeled and involved.

We proposed in [24] a general experimental evaluation
model, tailored for DSLs’ experimental evaluation, and its
instantiation with several DSL evaluation examples. This
instantiation served as a set of proof of concept instantiations
of the proposed experimental evaluation process. It enables
us to track and control the impact and scope of DSLs
evolutions. We are able to reason which Usability levels are
achieved for each user population, and that lead us in making
the decision when the desired level is achieved (e.g. when
additional changes do not have any more significant impact
in the Usability of DSL). Also, it facilitates the comparison
of our solution against its alternative, as well as the
replication of previous approaches and decision models.

V. FUTURE WORK AND EXPECTED RESULTS

Our research will follow by proposing metrics and
methodologies for Usability evaluation of DSLs, whose
validity should be supported by real life experiments with
users of existing DSLs. In order to do that, we find it
necessary to define conceptual distance as the distance
between concepts in the users’ mind and the conceptual
domain of a language. If we are able to measure that

distance, and have methods that will minimize it, we can
support the claim that DSLs are able to close the gap
between domain experts and solution domain.

An additional step is to conceptualize models for
performing DSL’s evaluation i.e. quality model, instruments
model, metrics and traceability model of design changes and
their impact. This support should be tailored to internal and
external quality attributes (such as syntactic and semantic
models of the DSL under evaluation) and user’s experience
while using a DSL along several iterative evolution steps.

By providing that kind of support, we could effectively
perform evaluation, increase users’ productivity and
explicitly model all the process. This evaluation procedure
will give us faster convergence of language development as
we are able to monitor the impact of language evolution in
the efficiency and effectiveness of practitioners using it.
Also, it will contribute to the validation of the claim that
DSLs are more usable then GPLs. The impact of an
evaluation process for DSLs is expected to be interesting
from an industry point of view. With many organizations
developing their own languages, or hiring companies to
develop such languages for them, this framework will aid
them in reaching more usable languages.

VI. CONCLUSION

Building DSLs is becoming very popular and by that
there are increasing needs of some pointers in topic of their
cognitive congeniality to end user. Although pragmatic,
reactive approaches would not be necessary if domain
experts could develop applications easily. It is necessary to
explore more proactive approaches to improving DSLs
Usability. We need to build a comprehensive methodology
that support all phases of the Usability evaluation process
and indicate ways to provide reliable metrics for supporting
this evaluation. This is expected to enhance the community’s
awareness and recognition of the relevance of this topic in
the process of SLE.

REFERENCES

1 Brooks, F.P.: ‘The Mythical Man-Month: Essays

on Software Engineering’ (Addison-Wesley Publishing

Company, 1995, 3ª - 20º (1ª /1975, 2ª/1982) edn. 1995)

2 Volter, M., and Stahl, T.: ‘Model-Driven Software

Development’ (Wiley, 2006. 2006)

3 Kelly, S., and Tolvanen, J.-P.: ‘Visual domain-

specific modelling: benefits and experiences of using

metaCASE tools’. Proc. International Workshop on Model

Engineering, at ECOOP'20002000 pp. Pages

4 Weiss, D.M., and Lai, C.T.R.: ‘Software Product-

Line Engineering: A Family-Based Software Development

Process’ (Addison Wesley Longman, Inc., 1999. 1999)

5 Mernik, M., Heering, J., and Sloane, A.M.: ‘When

and How to Develop Domain-Specific Languages’, ACM

Computing Surveys, 2005, 37, (4), pp. 316-344

6 Hermans, F., Pinzger, M., and Deursen, A.V.:

‘Domain-Specific Languages in Practice: A User Study on

the Success Factors’. Proc. 12th International Conference on

Model Driven Engineering Languages and Systems,

Denver, Colorado, USA, October 2009 pp. Pages

7 Gabriel, P., Goulão, M., and Amaral, V.: ‘Do

Software Languages Engineers Evaluate their Languages?’.

Proc. XIII Congreso Iberoamericano en "Software

Engineering" (CIbSE'2010), ISBN: 978-9978-325-10-0,

Cuenca, Ecuador, April 2010 pp. Pages

8 Nielsen, J., and Gilutz, S.: ‘Usability Return on

Investment’, in Editor (Ed.)^(Eds.): ‘Book Usability Return

on Investment’ (Nielsen Norman Group, 2003, 4th edn.),

pp.

9 Marcus, A.: ‘The ROI of Usability’, in Bias, and

Mayhew (Eds.): ‘Cost-Justifying Usability’ (North-

Holland: Elsevier, 2004)

10 Prechelt, L.: ‘An Empirical Comparison of Seven

Programming Languages’, IEEE Computer, 2000, 33, (10),

pp. 23-29

11 Moody, D.L.: ‘The “physics” of notations: Toward

a scientific basis for constructing visual notations in

software engineering’, IEEE Transactions on Software

Engineering, 2009, pp. 756-779

12 Phang, K.Y., Foster, J.S., Hicks, M., and Sazawal,

V.: ‘Triaging Checklists: a Substitute for a PhD in Static

Analysis’. Proc. Evaluation and Usability of Programming

Languages and Tools (PLATEAU 2009)2009 pp. Pages

13 Bellamy, R., John, B., Richards, J., and Thomas, J.:

‘Using CogTool to model programming tasks’. Proc.

Evaluation and Usability of Programming Languages and

Tools (PLATEAU 2010)2010 pp. Pages

14 MetaCase: ‘EADS Case Study,

http://www.metacase.com/papers/MetaEditinEADS.pdf’, in

Editor (Ed.)^(Eds.): ‘Book EADS Case Study,

http://www.metacase.com/papers/MetaEditinEADS.pdf’

(2007, edn.), pp.

15 Batory, D., Johnson, C., MacDonald, B., and Von

Heeder, D.: ‘Achieving extensibility through product-lines

and domain-specific languages: A case study’, ACM

Transactions on Software Engineering and Methodology

(TOSEM), 2002, 11, (2), pp. 191-214

16 Kieburtz, R.B., McKinney, L., Bell, J.M., Hook, J.,

Kotov, A., Lewis, J., Oliva, D.P., Sheard, T., Smith, I., and

Walton, L.: ‘A Software Engineering Experiment in

Software Component Generation’. Proc. 18th International

Conference on Software Engineering (ICSE'1996), Berlin,

Germany, March 1996 pp. Pages

17 Murray, N.S., Paton, N.W., Goble, C.A., and

Bryce, J.: ‘Kaleidoquery--a flow-based visual language and

its evaluation’, Journal of Visual Languages & Computing,

2000, 11, (2), pp. 151-189

18 Catarci, T.: ‘What happened when database

researchers met usability’, Information Systems, 2000, 25,

(3), pp. 177-212

19 Petrie, H., and Bevan, N.: ‘The evaluation of

accessibility, usability and user experience’, in Stephanidis,

C. (Ed.): ‘The Universal Access Handbook’ (CRC Press,

2009)

20 Bevan, N.: ‘Cost benefits framework and case

studies’, Cost-Justifying Usability: An Update for the

Internet Age. Morgan Kaufmann, 2005

21 Bevan, N.: ‘Extending quality in use to provide a

framework for usability measurement’, Human Centered

Design, 2009, pp. 13-22

22 Barišić, A., Amaral, V., Goulão, M., and Barroca,

B.: ‘How to reach a usable DSL? Moving toward a

Systematic Evaluation’, Electronic Communications of the

EASST (MPM), 2011

23 Visser, E.: ‘WebDSL: A Case Study in Domain-

Specific Language Engineering’, in Editor (Ed.)^(Eds.):

‘Book WebDSL: A Case Study in Domain-Specific

Language Engineering’ (Springer, 2007, edn.), pp. 291-373

24 Barišić, A., Amaral, V., Goulão, M., and Barroca,

B.: ‘Evaluating the Usability of Domain-Specific

Languages’, in Mernik, M. (Ed.): ‘Formal and Practical

Aspects of Domain-Specific Languages: Recent

Developments’ (IGI Global, 2012)

25 Atkinson, C., and Kühne, T.: ‘Model-Driven

Development: A Metamodeling Foundation’, IEEE Softw.,

2003, 20, pp. 36-41

26 Nielsen, J., and Molich, R.: ‘Heuristic evaluation

of user interfaces’. Proc. SIGCHI conference on Human

factors in computing systems: Empowering people

(CHI'90), Seattle, Washington, United States1990 pp. Pages

27 Barišić, A., Amaral, V., Goulão, M., and Barroca,

B.: ‘Quality in Use of DSLs: Current Evaluation Methods’.

Proc. 3rd INForum - Simpósio de Informática

(INForum2011), Coimbra, Portugal, September 2011 pp.

Pages

28 Reisner, P.: ‘Query languages’: ‘Handbook of

Human-Computer Interaction’ (North-Holland, 1988), pp.

257-280

29 Barišić, A., Amaral, V., Goulão, M., and Barroca,

B.: ‘Quality in Use of Domain Specific Languages: a Case

Study’. Proc. Evaluation and Usability of Programming

Languages and Tools (PLATEAU) Portland, USA, October

2011 pp. Pages

30 Sjøberg, D.I.K., Hannay, J.E., Hansen, O.,

Kampenes, V.B., Karahasanovic, A., Liborg, N.-K., and

Rekdal, A.: ‘A survey of controlled experiments in software

engineering’, IEEE Transactions on Software Engineering,

2005, 31, (9), pp. 733-753

31 Pfeiffer, M., and Pichler, J.: ‘A comparison of tool

support for textual domain-specific languages’, in Editor

(Ed.)^(Eds.): ‘Book A comparison of tool support for

textual domain-specific languages’ (UAP Printing

Solutions, 2008, edn.), pp. 1-7

32 Gamma, E., Helm, R., Johnson, R., and Vlissides,

J.: ‘Design Patterns: Elements of Reusable Object-Oriented

Software’ (Addison-Wesley Publishing Company, 1995.

1995)

