
HAL Id: hal-03168613
https://hal.science/hal-03168613

Submitted on 14 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative Evaluation of Domain-Specific Languages
Ankica Barisic

To cite this version:
Ankica Barisic. Iterative Evaluation of Domain-Specific Languages. ACM Student Research Com-
petition at the 16th International Conference on Model Driven Engineering Languages and Systems
(MoDELS), 2013, Miami, Florida, United States. �hal-03168613�

https://hal.science/hal-03168613
https://hal.archives-ouvertes.fr

Iterative evaluation of Domain-Specific
Languages

Ankica Barǐsić

CITI, Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa

Campus de Caparica, 2829-516 Caparica, Portugal
a.barisic@campus.fct.unl.pt

Abstract. As software moves to the daily routines and responsibilities
of people, there is a need for developing tools and languages rapidly.
Domain-Specific Languages (DSLs) are claimed to contribute to this
productivity increase, while reducing the required maintenance and pro-
gramming expertise. DSLs are designed to bridge the gap between the
problem domain (essential concepts, domain knowledge, techniques, and
paradigms) and the solution domain (technical space, middleware, plat-
forms and programming languages). The sooner we fill in this gap, the
sooner we shall increase users productivity. However intuitive this idea
may be, we need to have means to assert the quality and success of the
developed languages. The alternative is to accept the risk of deriving in-
appropriate products that bring more harm by decreasing productivity
or even increasing maintenance costs.

Keywords: Experimental Software Engineering, Domain-Specific Languages,
Software Language Engineering

1 Should language engineers evaluate their languages?

Domain-driven development is becoming increasingly popular, as it raise the
abstraction level. The language engineer need to deal with the accidental com-
plexity of the used computer technology e.g., the use of low level abstraction
programming languages, while integrating a wide plethora of different tools and
libraries. On other hand, the DSL development requires domain and language
development expertise, and few people have both. This lead language engineers
to cope with the growing of both essential and accidental complexity [8].

Software language engineering is the application of a systematic, disciplined
and quantifiable approach to the development, usage, and maintenance of soft-
ware languages. Although, the phases of DSL life cycle are systematically defined
[17], [23], it seam that process lack one crucial step [5], namely language eval-
uation just before the deployment. This phase can be done with quality in use
concerns in an incremental and iterative user-centric approach, while crosscut-
ting all of the involving phases as suggested in [1].

2 Ankica Barǐsić

The software industry does not seem to report investment on the evaluation
of DSLs, as shown in a recent systematic literature review [11]. The lack of sys-
tematic approaches to evaluation, and the lack of guidelines and comprehensive
set of tools may explain this shortcoming in the current state of practice. This
is supported by the evidence of an interesting return of investment on usability
evaluation for other software products [21]. Moreover, the benefits of usability
evaluation span from a reduction of development and maintenance costs, to in-
creased revenues brought by an improved effectiveness and efficiency by the end
users [16].

It is arguable that the main reason for the perceived high costs of DSL evalu-
ation, is the lack of a consistent and computer-aided integration of two different
and demanding complementary processes: SLE process, and software language
evaluation process. On the one hand, software language engineers should become
aware of quality concerns during language development, and identify and apply
best practices into their development plan. On the other hand, evaluation ex-
perts should get better understanding of all the models involved in the software
language development in order to be able to give appropriate and reliable sug-
gestions towards the improvement of the DSL under development. The focus of
this research is to propose systematic evaluation process for DSLs with usability
concern [4].

2 A language is a means of communication

A programming language is a model that describes the allowed terms and how
to compose them into valid sentences. DSLs that are interest of this research are
generally conceived as communication interfaces between human and computers
[5]. User Interfaces (UIs) are also seen as a realization of language. Therefore,
from one perspective evaluating DSLs is not much different from evaluating
regular User Interfaces (UIs).

Empirical, or experimental, evaluation studies of UI with real users is a cru-
cial phase of its validation [10]. A relevant set of quantitative and qualitative
measurements must be inferred and combined together to lead to a useful as-
sessment of the several dimensions that define software Quality in Use (such as
Efficiency, Effectiveness and Satisfaction), often referred as Usability [12]. These
complex experimental evaluation studies are typically implemented by software
evaluation experts. Their expertise is essential to properly design the evaluation
sessions, gather, interpret, and synthesize significant results. However desirable
it can be to have such software evaluation experts in the teams, it is not always
possible to have them available due to, among several reasons, the cost and time
involved. This situation calls for the need of automatic tools that support these
experts, as well as language developers. One way to obtain qualitative measure-
ments is by means of observations and direct questionnaires to the end users
[22].

There is an increasing awareness to the quality in use of languages, fostered
by the competition of language providers. Better usability is a competitive ad-

Iterative evaluation of Domain-Specific Languages 3

vantage, although evaluating it remains challenging. While evaluating competing
languages it is hard to interpret the existing metrics in a fair, unbiased way, pro-
vide reliable design changes and assure that scope of evaluation is preserved to
target user groups.

When we consider General Purpose Languages (GPLs), their users are part
of population that master well mathematical and technical concepts. In order to
develop programming solutions they need to master also domain concepts. On
other hand, as DSLs are ment to reduce use of computation domain concept by
putting focus on the domain concepts, they are expected to be used by the much
diverse target population.

The increased productivity achieved by using DSLs, when compared to using
GPLs, is one of the strongest claims by the DSL community. With anecdotal
boosted speed development reports of DSLs ([13], [24], [19], [18]) in industrial
settings, why bother with its validation? The problem, of course, is that those
anecdotal reports on improvements lack external validity.

3 Approach

As result of inspection of current methodologies and tools for evaluation of UIs
and GPLs we propose an iterative user-centered approach for evaluation of DSLs.
Goal of this approach is to establish formal correspondences between the DSL
development process and the experimental evaluation at all the stages [7].

Approach is described by set of patterns that are introduced in order to pro-
vide a complete solution to a complex problem of placing intended users as a
focal point of DSLs design and conception, and by that ensure that the language
satisfies the user requirements [3]. Using the goal of these enter-depended pat-
terns is to disseminate the knowledge of best practices to end users. It provides
means of performing experimental validation in the most costeffective manner
and is expected to give the rationale about correct and usable indicators that
can eventually be reused.

The patterns are divided in three spaces, that represent different level of
abstraction. Agile Development Process gives set of patterns devoted to project
management and engineering of a DSL. This is the most important set of pat-
terns, as it is trough organization and planing of language development and
evaluation activities and goals we are controlling and tracking success of pro-
duced language. After an iteration, goals are scoped and budget is fixed, we are
ready to proceed to design and implementation activities that are guided by
patterns given in Iterative User-Centered Design pattern space. As the users are
the central part of a DSL evaluation, this patterns considers how to engage the
user in the development process and how to collect valuable information about
the DSL and its level of usability while it is being developed. Finally, they are
expected to result with concrete hypothesis, tests, metrics, samples and state-
ments that should be addressed and validated trough Experimental Evaluation
Design.

4 Ankica Barǐsić

Fig. 1. Patterns for evaluating Usability of DSLs (taken from [3])

Following this best practices, each development iteration is focusing on dif-
ferent increment or level of abstraction that will be evaluated or refined. By
planing carefully development process and organization of responsibilities and
costs, goal is to establish balanced menagment and engineering plan that will sat-
isfy both: business and user needs, by optimizing impact of evaluation feedback
on language development. Also, time that is invested into strategy and design
of problem and its solution can be planed well with technical implementation of
solution.

According to it set of language and evaluation goals should be identified
during domain engineering phase of DSL’s construction i.e. while eliciting min-
imum set of domain concepts. A first step would be to understand and specify
the context of use of DSLs and which kind of user groups it should target by
constructing User and Context model. In order to achieve that, interviews or
questionnaires with the DSL’s intended end users should be designed in order to
capture information about their working environment and the baseline approach
to solve problems. In the language design phase, it is necessary to identify which
quality attributes are impacted by the implementation of which domain concepts
or layer of abstraction. During the implementation phase, the language engineer
can benefit from the collected information by means of tools or instruments that
implements chosen measures directly on the DSL prototype. Finally, in the test-

Iterative evaluation of Domain-Specific Languages 5

ing phase, the language engineer should conduct (at least) a expert evaluation to
validate that the known quality problems and functional tests passed well. When
seams that evaluation goals are met, we should conduct a user-based evaluation,
in a real context of use, to assess the DSL’s quality in use. That is done by giv-
ing the users real problems to solve in order to cover the most important tasks
identified in the domain. Data about satisfaction and cognitive workload should
also be evaluated subjectively through questionnaires. It is especially important
in this phase to measure all the learnability issues, since DSLs should be (in
principle) easy to learn and remember. Examples of the user based evaluations
of DSLs, that presents examples of tasks and questions that are constructed to
measure achieved Quality in Use can be seen in [6] and [15].

4 Experimental validation

Under the perspective of SLE, in order to experimentally evaluate a DSL, we
need to know what is the criteria involved, understand notion of quality from
the relevant perspectives and understand the experimental process itself. This
complex challenge with respect to reuse was covered by general model for DSL
experimental evaluation presented in [2]. This experimental model served as a
set of proof of concept instantiations of the proposed experiment.

Experimental model outlines the activities needed to perform an experimen-
tal evaluation of a software engineering claim, following the scientific method.
In order to effectively reason about experimental process and eventually de-
tect flaws before it is applied and analysed we systematically compared four
language evaluation experiments ([6], [14], [15], [20]). These evaluations are
currently exceptional in the realm of DSLs and are chosen precisely for that:
they are examples of best practices in languages evaluation with a concern on
quality in use, from which we can perform some meta-analysis, leading not only
to a collection of lessons learned from the trenches, but also to the identification
of opportunities to further improve existing validation efforts.

By allowing significant changes to correct deficiencies along the development
process instead of just evaluating at the end of it (when it might be too late),
presented user-centered design is ment to reduce development and support costs,
increase sales, and reduce staff cost for employers [9]. The proof of this claims
is expected to be justified by the set of experiments of DSL development in
academical and industrial cases.

Acknowledgments I gratefully thank to my supervisors Vasco Amaral and
Miguel Goulão . This work was partially supported by the CITI - PEst - OE /EEI
/UI0527 /2011, Centro de Informtica e Tecnologias da Informao (CITI/FCT/UNL)
- 2011-2012)

References

1. Colin Atkinson and Thomas Kühne. Model-driven development: A metamodeling
foundation. IEEE Softw., 20:36–41, September 2003.

6 Ankica Barǐsić

2. A. Barǐsić, V. Amaral, M. Goulão, and B. Barroca. Evaluating the usability of
domain-specific languages. In Marjan Mernik, editor, Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, pages 386–407. IGI Global,
2012.

3. A. Barǐsić, V. Amaral, M. Goulão, and M.P. Monteiro. Patterns for evaluating us-
ability of domain-specific languages. Proceedings of the 19th Conference on Pattern
Languages of Programs (PLoP), SPLASH 2012, September 2012.

4. Ankica Barisic, Vasco Amaral, and Miguel Goulão. Usability evaluation of domain-
specific languages. In Eighth International Conference on the Quality of Infor-
mation and Communications Technology (QUATIC), 2012, pages 342–347. IEEE,
2012.

5. A. Barǐsić, V. Amaral, M. Goulão, and B. Barroca. How to reach a usable dsl? mov-
ing toward a systematic evaluation. Recent Advances in Multi-paradigm Modeling
(MPM 2011), Electronic Communications of the EASST, 50, October 2011.

6. A. Barǐsić, V. Amaral, M. Goulão, and B. Barroca. Quality in use of domain
specific language: a case study. Proceedings of the 3rd ACM SIGPLAN Workshop
on Evaluation and Usability of Programming Languages and Tools (PLATEAU
2011), held at Splash 2011, pages 65–72, October 2011.

7. A. Barǐsić, V. Amaral, M. Goulão, and B. Barroca. Quality in use of dsls: Current
evaluation methods. Proceedings of the 3rd INForum - Simpósio de Informática
(INForum2011), September 2011.

8. Fred Brooks. The Mythical Man. Addison-Wesley, 1975.
9. T. Catarci. What happened when database researchers met usability. Information

Systems, 25(3):177–212, 2000.
10. Alan Dix. Human computer interaction. Pearson Education, 2004.
11. Pedro Gabriel, Miguel Goulão, and Vasco Amaral. Do software languages engi-

neers evaluate their languages? In Xavier Franch, Itana Maria de Sousa Gimenes,
and Juan-Pablo Carvallo, editors, XIII Congreso Iberoamericano en ”Software
Engineering” (CIbSE’2010), ISBN: 978-9978-325-10-0, pages 149–162, Cuenca,
Ecuador, 2010. Universidad del Azuay.

12. International Standard Organization. Iso/iec 9126: Information technology - soft-
ware product evaluation - software quality characteristics and metrics, 2004.

13. Steven Kelly and Juha-Pekka Tolvanen. Visual domain-specific modelling: benefits
and experiences of using metacase tools. In Jean Bézivin and J. Ernst, editors,
International Workshop on Model Engineering, at ECOOP’2000, 2000.

14. R.B. Kieburtz, L. McKinney, J.M. Bell, J. Hook, A. Kotov, J. Lewis, D.P. Oliva,
T. Sheard, I. Smith, and L. Walton. A software engineering experiment in soft-
ware component generation. Proceedings of the 18th international conference on
Software engineering, page 552, 1996.

15. Toma Kosar, Marjan Mernik, and Jeffrey Carver. Program comprehension of
domain-specific and general-purpose languages: comparison using a family of ex-
periments. Empirical Software Engineering, pages 1–29, 2011.

16. Aaron Marcus. The roi of usability. In Bias and Mayhew, editors, Cost-Justifying
Usability. North- Holland: Elsevier, 2004.

17. Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344, 2005.

18. MetaCase. Eads case study, http://www.metacase.com/papers/metaedit in eads.pdf.
Technical report, MetaCase, 2007.

19. MetaCase. Nokia case study, http://www.metacase.com/papers/metaedit in nokia.pdf.
Technical report, MetaCase, 2007.

Iterative evaluation of Domain-Specific Languages 7

20. N.S. Murray, N.W. Paton, C.A. Goble, and J. Bryce. Kaleidoquery–a flow-based
visual language and its evaluation. Journal of Visual Languages & Computing,
11(2):151–189, 2000.

21. Jakob Nielsen and S. Gilutz. Usability return on investment. Technical report,
Nielsen Norman Group, 2003.

22. J. Rubin and D. Chisnell. Handbook of Usability Testing: How to plan, design and
conduct effective tests. Wiley-India, 2008.

23. Eelco Visser. Webdsl: A case study in domain-specific language engineering. In
Generative and Transformational Techniques in Software Engineering II, Ralf Lm-
mel, Joost Visser, and Joo Saraiva (Eds.). Lecture Notes In Computer Science,
5235, 2007.

24. David M. Weiss and Chi Tau Robert Lai. Software Product-Line Engineering:
A Family-Based Software Development Process. Addison Wesley Longman, Inc.,
1999.

