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Error estimate of the Non Intrusive Reduced Basis method with

finite volume schemes

March 22, 2021

Elise Grosjean 1, Yvon Maday 1 2

Abstract

The context of this paper is the simulation of parameter-dependent partial differential equations (PDEs).
When the aim is to solve such PDEs for a large number of parameter values, Reduced Basis Methods (RBM) are
often used to reduce computational costs of a classical high fidelity code based on Finite Element Method (FEM),
Finite Volume (FVM) or Spectral methods. The efficient implementation of most of these RBM requires to modify
this high fidelity code, which cannot be done, for example in an industrial context if the high fidelity code is only
accessible as a ”black-box” solver. The Non Intrusive Reduced Basis method (NIRB) has been introduced in the
context of finite elements as a good alternative to reduce the implementation costs of these parameter-dependent
problems. The method is efficient in other contexts than the FEM one, like with finite volume schemes, which are
more often used in an industrial environment. In this case, some adaptations need to be done as the degrees of
freedom in FV methods have different meenings. At this time, error estimates have only been studied with FEM
solvers. In this paper, we present a generalisation of the NIRB method to Finite Volume schemes and we show
that estimates established for FEM solvers also hold in the FVM setting. We first prove our results for the hybrid-
Mimetic Finite Difference method (hMFD), which is part the Hybrid Mixed Mimetic methods (HMM) family.
Then, we explain how these results apply more generally to other FV schemes. Some of them are specified, such
as the Two Point Flux Approximation (TPFA).

Keywords: Reduced Basis Method, Finite Volume Method

Introduction

This paper is concerned with the efficient simulation of parameter-dependent partial differential equations
(PDEs), with a parameter varying in a given set G. For complex physical systems, computational costs can
be huge. It may happen, for instance in the context of parameter optimization or real time simulations in an
industrial context, that the same problem needs to be solved for several parameter values.

In such cases, different model order reductions (MOR) like the reduced basis methods have been proposed
(see eg [24, 20]) based on POD or greedy selection of the reduced basis, the reduced basis elements being
computed accurately enough through a high fidelity code. In these approaches, the efficient implementation of
the reduced method, leading to reductions in the computational time, requires to be able to deeply enter into the
high fidelity code, in order to compute offline, a key ingredient which saves the implementation costs online. This
can be tedious, even impossible when the code has been bought, as it is often the case in an industrial context.
The Non Intrusive Reduced Basis methods (NIRB) [23, 6] has been proposed in this framework. This method
is useful to reduce computational costs of parametric-dependent PDEs in a non intrusive way. Unlike other
MOR, the NIRB method does not require to modify the solver code and hence does not depend on the numerical
approach underlying the code. This method, based on two grids, one fine where high fidelity computations
are done offline and one coarse which is used online, has been introduced in [23, 6]. It was presented and
analysed in the case where the high fidelity code is based on a finite element solver. In these papers, an optimal
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error estimate is recovered and illustrated with numerical simulations. The method can be extended to other
classical discretizations but the key ingredient is a better approximation rate in the L2 norm than in the energy
norm, thanks to the Aubin-Nitsche’s trick that is easy for variational approximations. In addition, the degrees of
freedom in FVM don’t have the same status as in FEM and the transfer of information from one grid to another
must be adapted. The aim of this paper is to propose the adaptation of the NIRB method to FV and to propose
the numerical analysis able to recover the classical error estimate with Finite Volume (FV) schemes.

The Non Intrusive Reduced Basis Method.

Let Ω be an open bounded domain in R
d with d ≤ 3. The NIRB method in the context of a high fidelity solver

of finite element or finite volume types involves two partitioned meshes, one fine mesh Mh and one coarse
mesh MH , where h and H are the respective sizes of the meshes and h << H. The size h (res. H) is defined
as h = max

K∈Mh

hK (resp. H = max
K∈MH

HK) where the diameter hK (or HK) of any element K in a mesh is equal to

sup
x,y∈K

|x − y|.

As is classical in other reduced basis methods, the NIRB method is based on the assumption (assumed or
actually checked) that the manifold of all solutions S = {u(µ), µ ∈ G} has a small Kolmogorov n-width ε(n) [22].
This leads to the fact that very few well chosen solutions are sufficient to approximate well any element in S .
These well chosen elements are called the snapshots. In this frame, the method is based on two steps : one offline
step and one online. The “offline” part is costly in time because the snapshots must be generated with a high
fidelity code on the fine mesh Mh. The “online” step is performed on the coarse mesh MH , and thus much less
expensive than a high fidelity computation. This algorithm remains effective as the offline part is performed only
once and in advance and also independently from the online stage. The online stage can then be done as many
times as desired.

• In the offline part, several snapshots are computed on the fine mesh for different well chosen parameters in
the parameter set G with the (fine and costly) solver. The best way to determine the required parameters is
through a greedy procedure [28, 1, 5] if available or through an SVD approach.

• The online part consists in computing a coarse solution with the same solver for some (new) parameter
µ ∈ G and then L2-project this (coarse) solution on the (fine) reduced basis. This results in an improved ap-
proximation, in the sense that we may retrieve almost fine error estimates with a much lower computational
cost.

Motivation and earlier works.

Several papers have underlined the efficiency of the NIRB method in the finite element context, illustrated both
with numerical results presenting error plots and the online part compurational time [23, 6, 8, 7]. However, to the
best of our knowledge, works with Finite Volume (FV) schemes have not yet been studied with a non intrusive
approach [21, 27, 19, 26], and they are often preferred to finite element methods in an industrial context. Thanks
to recent works on super-convergence [17], and with some technical subtleties, we are now able to generalize the
two-grids method which is non intrusive to FV methods and propose the numerical analysis of this method.
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Snapshots:
{uh(µ1), . . . , uh(µN)}

computed on a fine mesh Mh

Offline
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Solver

Orthonormal basis: (Φh
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hH(µ)
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L2-projection: set uN
hH(µ) =

N

∑
i=1

(uH(µ), Φh
i )Φ

h
i

Main results.

In the context of P1-FEM solvers, the works [23, 6] retrieve an estimate error of the order of O(h + H2) in the
energy norm using the Aubin-Nitsche’s Lemma [3] for the coarse grids solution (for a reduced basis dimension
large enough). With FV schemes, no equivalent of the Aubin-Nitsche’s lemma is available, instead, we consider
the class of Hybrid Mimetic Mixed methods (HMM) schemes for elliptic equations and use a super-convergence
property proven in ( [11, 17, 12]).
Let us consider the following linear second-order parameter dependent problem as our model problem:

{
− div(A(µ)∇u) = f in Ω, (1a)

u = 0 on ∂Ω, (1b)

where f ∈ L2(Ω), µ is a parameter in a set G, and for any µ ∈ G, A(.; µ) : Ω → R
d×d is measurable, bounded,

uniformly elliptic, and A(x; µ) is symmetric for a.e. x ∈ Ω.
Under general hypotheses, it is well known that this problem has a unique solution.

The usual weak formulation for problem (1a)-(1b) reads:
Find u ∈ H1

0(Ω) such that,

∀v ∈ H1
0(Ω), a(u, v; µ) = ( f , v), (2)

where

a(w, v; µ) =
∫

Ω
A(x; µ)∇w(x) · ∇v(x) dx, ∀w, v ∈ H1

0(Ω).

The main result of this paper is the following estimate:

Theorem 0.1 (NIRB error estimate for hMFD solvers). Let uN
hH(µ) be the reduced solution projected on the fine mesh

and generated with the hMFD solver with the unknowns defined on xk = xK (the cell centers of mass), and u(µ) be the
exact solution of (2) under an H2 regularity assumption (8) (which will be stated later), then the following estimate holds

∥∥∥u(µ)− uN
hH(µ)

∥∥∥
D
≤ ε(N) + C1h + C2(N)H2, (3)

where C1 and C2 are constants independent of h and H,C2 depends on N, the number of functions in the basis, and ‖·‖D
is the discrete norm introduced in section 1, and ε depends of the Kolmogorov n-width. If H is such as H2 ∼ h, and ε(N)
small enough, it results in an error estimate in O(h).

Note that if H is chosen such as H2 ∼ h and ε(N) small enough, it results in an error estimate in O(h).
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Outline of the paper.

The rest of this paper is organized as follows. In section 1 we describe the mathematical context. In section
2 we recall the two-grids method. Section 3 is devoted to the proof of theorem 0.1 with the hybrid-Mimetic
Finite Difference scheme (hMFD). Section 4 generalizes theorem 0.1 to other schemes, such as the Two Point Flux
Approximation (TPFA). In the last section, the implementation is discussed and we illustrate the estimate with
several numerical results on the NIRB method.

1 Mathematical Background

1.1 The Hybrid Mimetic Finite Difference method (hMFD)

In this section, we recall the hybrid-Mimetic Finite Difference method (hMFD) [4] and all the notations that will
be necessary for the analysis of NIRB method in this finite volume context.

This scheme uses interface values and fluxes as unknowns. The hMFD scheme, which is part of the family of
Hybrid Mimetic Mixed methods (HMM) ([15, 10, 16, 14, 11]), is a finite volume method despite its name. Indeed
hMFD scheme relies on both a flux balance equation and on a local conservativity of numerical fluxes. HMM also
includes mixed finite volume schemes (MFV) [13] and hybrid finite volume schemes (HFV), a hybrid version of
the SUSHI scheme [18]. This scheme is built on a general mesh, namely a polytopal mesh, which is a star-shaped
mesh regarding the unknowns of the cells.

Describing the hMFD method requires to introduce the Gradient Discretisation (GD) method [15], which is a
general framework for the definition and the convergence analysis of many numerical methods (finite element,
finite volume, mimetic finite difference methods, etc).
The GD schemes involve a discete space, a reconstruction operator and a gradient operator, which taken together
are called a Gradient Discretisation. Selecting the gradient discretisation mostly depends on the boundary con-
ditions (BCs). We now introduce the definition of GD for Dirichlet BCs as in [15] and the GD scheme associated
to our model problem.

Definition 1.1. (Gradient Discretisation) For homogeneous Dirichlet BCs, a gradient discretisation D is a triplet (XD,0, ΠD ,∇D),
where the space of degrees of freedom XD,0 is a discrete version of the continuous space H1

0(Ω).

• ΠD : XD,0 → L2(Ω) is a function reconstruction operator that relates an element of XD,0 to a function in L2(Ω).

• ∇D : XD,0 → L2(Ω)d is a gradient reconstruction in L2(Ω) from the degrees of freedom. It must be chosen such that
‖·‖D =‖∇D ·‖L2(Ω)

d is a norm on XD,0.

In what follows, we will refer to ΠH
D or Πh

D depending on the mesh considered and for the gradient reconstruc-

tion too (respectively ∇H
D or ∇h

D).

Definition 1.2. (Gradient discretisation scheme) For the variational form (2), the related gradient discretisation scheme
with the new operators is defined by:
Find uD ∈ XD,0 such that, ∀vD ∈ XD,0,

∫

Ω
A(µ)∇DuD · ∇DvD dx =

∫

Ω
f ΠDvD dx. (4)

We will use two general polytopal meshes (Definition 7.2 [15]) which are admissible meshes for the hMFD
scheme.

Definition 1.3. (Polytopal mesh) Let Ω be a bounded polytopal open subset of R
d(d ≥ 1). A polytopal mesh of Ω is a

quadruplet T = (M,F ,P ,V), where:

1. M is a finite family of non-empty connected polytopal open disjoint subsets Ω (the cells) such that Ω = ∪
K∈M

K. For

any K ∈ M, |K| > 0 is the measure of K and hK denotes the diameter of K.
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2. F = Fint ∪ Fext is a finite family of disjoint subsets of Ω (the edges of the mesh in 2D), such that any σ ∈ Fint is
contained in Ω and any σ ∈ Fext is contained in ∂Ω. Each σ ∈ F is assumed to be a nonempty open subset of a
hyperplane of R

d, with a positive (d − 1)-dimensional measure |σ|. Furthermore, for all K ∈ M, there exists a subset
FK of F such that ∂K = ∪

σ∈FK

σ. We assume that for all σ ∈ F ,Mσ = {K ∈ M : σ ∈ FK} has exactly one element

and σ ⊂ ∂Ω or Mσ has two elements and σ ⊂ Ω. The center of mass is xσ, and, for K ∈ M and σ ∈ FK, nK,σ is
the (constant) unit vector normal to σ outward to K.

3. P is a family of points of Ω indexed by M and F , denoted by P = ((xK)K∈M, (xσ)σ∈F ), such that for all K ∈
M, xK ∈ K and for all σ ∈ F , xσ ∈ σ. We then denote by dK,σ the signed orthogonal distance between xK and
σ ∈ FK, that is:
dK,σ = (x − xK) · nK,σ, for all x ∈ σ. We then assume that each cell K ∈ M is strictly star-shaped with respect to
xK, that is dK,σ > 0 for all σ ∈ FK. This implies that for all x ∈ K, the line segment [xK, x] is included in K. We
denote xK the center of mass of K and by xσ the one of σ. For all K ∈ M and σ ∈ FK , we denote by DK,σ the cone
with vertex xK and basis σ, that is DK,σ = {txK + (1 − t)y, t ∈ (0, 1), y ∈ σ}.

4. V is a set of points (the vertices of the mesh). For K ∈ M, the set of vertices of K, i.e. the vertices contained in K, is
denoted VK. Similarly, the set of vertices of σ ∈ F is Vσ.

+
xK

σ

K

dK,σ

DK,σ

nK,σ

Figure 1: A cell K of a polytopal 2D mesh

The regularity factor for the mesh is

θ = max
σ∈Fint,Mσ={K,K′}

dK,σ

dK′,σ
+ max

K∈M
(max

σ∈FK

hK

dK,σ
+ Card(FK)). (5)

In what follows, we will consider two polytopal meshes. The fine mesh will be denoted T h = (Mh,F h,Ph,Vh)
and T H = (MH,FH,PH ,VH) will be referred to as the coarse mesh.

All HMM schemes require to choose one point inside each mesh cell xK, and in the case the center of mass xK is
chosen, then the scheme corresponds to hMFD and superconvergence is well known [11, 17, 10]. Until section 4,
we will consider xK = xK.

Definition 1.4. (Hybrid Mimetic Mixed gradient discretisation (HMM-GD))
For hMFD scheme, we use the following GD (Definition 13.1.1 [15]):

1. Let XD,0 = {v = ((vK)K∈M, (vσ)σ∈F ) : vK ∈ R, vσ ∈ R, vσ = 0 if σ ∈ Fext},
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2. ΠD : XD,0 → L2(Ω) is the following piecewise constant reconstruction on the mesh:
∀v ∈ XD,0, ∀K ∈ M,

ΠDv(x) = vK on K. (6)

3. ∇D : XD,0 → L2(Ω)d reconstructs piecewise constant gradients on the cones (DK,σ)K∈M,σ∈FK
:

∀v ∈ XD,0, ∀K ∈ M, ∀σ ∈ F ,

∇Dv(x) = ∇Kv +

√
d

dK,σ
[LKRK(v)]σ nK,σ on DK,σ, (7)

where:

• ∇Kv = 1
|K| ∑σ∈FK

|σ|vσnK,σ,

• RK : XD,0 → R
FK is given by RK(v) = (RK,σ(v)))σ∈FK

with RK,σ(v) = vσ − vK −∇Kv · (xσ − xK),

• LK is an isomorphism of the space Im(RK).

As explained in the introduction of this chapter, hMFD, HFV and MFV schemes are three different presen-
tations of the same method. With the notations above, any HMM method for the weak form (2) can be written
(Equation 2.25 [16]):
Find uT (µ) ∈ XD,0 such that, for all vT ∈ XD,0,

µ ∑
K∈M

|K|AK(µ)∇KuT · ∇KvT + ∑
K∈M

RK(vT )
T

BKRK(uT ) = ∑
K∈M

vK

∫

K
f (x) dx,

where AK(µ) is the L2 projection of A(µ) on K and BK = ((BK)σ,σ′)σ,σ′∈FK
is a symmetric positive definite matrix.

For a certain choice of isomorphism LK : ℑ(RK) → ℑ(RK), the HMM scheme (1.1) is identical to GDs (4) (see
Theorem 13.7 [15]).

We now introduce the super-convergence property which will be used in the proof of theorem 0.1, but first we
need the following H2 regularity assumption (which holds if A is Lipschitz continuous and Ω is convex):

Let f ∈ L2(Ω), the solution u(µ) to (2) belongs to H2(Ω), and
∥∥u(µ)

∥∥
H2(Ω) +

∥∥A(µ)∇u(µ)
∥∥

H1(Ω)d ≤ C
∥∥ f
∥∥

L2(Ω) , (8)

with C depending only on Ω and A.

We define πMh : L2(Ω) → L2(Ω) as the orthogonal projection on the piecewise constant functions on Mh

that is

∀Ψ ∈ L2(Ω), ∀K ∈ Mh, πMh Ψ =
1

|K|
∫

K
Ψ(x) dx on K.

Theorem 1.5 (Super-convergence for hMFD schemes, Theorem 4.7 [17]). Let d ≤ 3, f ∈ H1(Ω), and u(µ) be the
solution of (2) under assumption (8). Let Th be a polytopal mesh, and D be an HMM gradient discretisation on Th with
the unknowns defined on xK, and let uh(µ) be the solution of the corresponding GD. Recall that xK is the center of mass
of K and we are in the case where xK = xK. Then, considering uP (µ) as the piecewise constant function on Mh equal to
u(xK; µ) on K ∈ M, there exists C > 0 not depending on h such that

∥∥∥Πh
Duh(µ)− uP (µ)

∥∥∥
L2(Ω)

≤ C(
∥∥ f
∥∥

H1(Ω) +‖u‖H2(Ω))h
2. (9)

To recover (9) in the case xK = xK, we used the Lemma 7.5 of [17] on the approximation of H2 functions by
affine functions to obtain ∥∥πMh u(µ)− uP (µ)

∥∥
L2(ω) ≤ Ch2‖u‖H2(Ω) .

Remark 1.6. We consider here‖·‖D as the discrete semi norm of H1 so as not to make notations too cumbersome. The usual
discrete semi-norm for H1 is defined by

∀v ∈ T , |v|2T ,2 = ∑
K∈M

∑
σ∈FK

|σ|dK,σ

∣∣∣∣∣
vσ − vK

dK,σ

∣∣∣∣∣

2

. (10)

Under some conditions on the regularity of the mesh, this norm and‖∇D ·‖L2(Ω)d are equivalent (Lemma 13.11 [15]).
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In the next section, we recall the offline and the online parts of the two-grids algorithm.

2 The Non Intrusive Reduced Basis method (NIRB)

This section recalls the main steps of the two-grids method algorithm [23, 6].

Let uh(µ) refer to the hMFD solution on a fine polytopal mesh Th, with cells Mh and respectively uH(µ) the one
on a coarse mesh TH , with the cells MH .

We briefly recall the NIRB method. Points 1 and 2 are in the offline part, and the others are done online.

1. Several snapshots {uh(µi)}i∈{1,...N} are computed with the hMFD scheme (4), where µi ∈ G ∀i = 1, · · · , N.

The space generated by the snapshots is named XN
h = Span{uh(µ1), . . . , uh(µN)}.

2. We generate the basis functions (Φh
i )i=1,··· ,N with the following steps:

• A Gram-Schmidt procedure is used, which involves L2 orthonormalization of the reconstruction func-
tions.

• This procedure is also completed by the following eigenvalue problem:





Find Φh ∈ XN
h , and λ ∈ R such that:

∀v ∈ XN
h ,
∫

Ω
∇h

DΦh · ∇h
Dv dx = λ

∫

Ω
Πh

DΦh · Πh
Dv dx, (11)

where ∇h
D and Πh

D are respectively the discrete gradient and the discrete reconstruction operators as
in the definition of the HMM GD ((6), (7)). We get an increasing sequence of eigenvalues λi, and
orthogonal eigenfunctions (Πh

DΦh
i )i=1,··· ,N, orthonormalized in L2(Ω) and orthogonalized in H1(Ω),

such that (Φh
i )i=1,··· ,N defines a new basis of the space XN

h .

3. We solve the hMFD problem (4) on the coarse mesh TH for a new parameter µ ∈ G. Let us denote by uH(µ)
the solution.

4. We then introduce αH
i (µ) =

∫
Ω

ΠH
DuH(µ) · Πh

DΦh
i dx. The approximation used in the two-grids method is

uN
Hh(µ) =

N

∑
i=1

αH
i (µ)Πh

DΦh
i .

In the next section, we detail how to obtain the classical finite elements estimate in O(h) on the NIRB algorithm,
when the snapshots are computed with the hMFD GD using a polytopal mesh.

3 NIRB error estimate

In this section, we consider xK = xK which is the case with the hMFD scheme. Some other cases will be detailed
in section 4.
We now continue with the proof of theorem 0.1.

Proof. In this proof, we will denote A . B for A ≤ CB with C not depending on h or H.

We use the triangle inequality on
∥∥∥u(µ)− uN

Hh(µ)
∥∥∥
D

to get

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
D
≤
∥∥∥u(µ)− Πh

Duh(µ)
∥∥∥
D
+
∥∥∥Πh

Duh(µ)− uN
hh(µ)

∥∥∥
D
+
∥∥∥uN

hh(µ)− uN
Hh(µ)

∥∥∥
D

=: T1 + T2 + T3, (12)

where uN
hh(µ) =

N

∑
i=1

αh
i (µ)Π

h
DΦh

i , and αh
i (µ) =

∫
Ω

Πh
Duh(µ) · Πh

DΦh
i dx.

7



• The first term T1 can be estimated using a classical result for finite volume schemes (Consequence of
Proposition 13.16 [15]) such that:

∥∥∥u(µ)− Πh
Duh(µ)

∥∥∥
D
. h‖u‖H2(Ω) . (13)

• The best achievable error in the uniform sense of a fine solution projected into XN
h relies on the notion

of Kolmogorov n-width (Theorem 20.1 [25]). If K is a compact set in a Banach space V, the Kolmogorov
n-width of K is

dn(K) = inf
dim(Vn)≤n

sup
v∈K

min
w∈Vn

‖v − w‖V . (14)

Here we suppose the set of all the reconstructions of the solutions S = {Πh
Duh(µ), µ ∈ G} has a low

complexity which means for an accuracy ε = ε(N) related to the Kolmogorov n-width of the manifold S ,
there exists a set of parameters {µ1, . . . , µN} ∈ G, such that [9, 23, 6, 5]

T2 =

∥∥∥∥∥Πh
Duh(µ)−

N

∑
i=1

αh
i (µ)Π

h
DΦh

i

∥∥∥∥∥
D
≤ ε(N). (15)

• Consider the term T3 now. We will need the following proposition where the property of super-convergence
for the hMFD scheme (9) is used.

Propositiong 3.1. Let uH(µ) be the solution of the hMFD on a polytopal mesh TH with the unknowns on xK = xK.
Denote by u(µ) the exact solution of equation (2), and let (Φh

i )i=1,··· ,N be the basis functions of the NIRB algorithm,
then there exists a constant C = C(N) > 0 not depending on H or h,and depending on N such that

∣∣∣∣
∫

Ω
(u(µ)− ΠH

DuH(µ)) · Πh
DΦh

i dx

∣∣∣∣ . ((‖Φi‖L∞(Ω) + C(N))‖u‖H2(Ω) +
∥∥ f
∥∥

H1(Ω))H2. (16)

Proof. Since MH is a partition of Ω,
∫

Ω
ΠH

DuH(µ) · Πh
DΦh

i dx = ∑
K∈MH

∫

K
ΠH

DuH(µ) · Πh
DΦh

i dx. (17)

To begin with, let ΠH
0 : C(Ω) → L∞(Ω) be the piecewise constant projection operator on MH such that:

ΠH
0 Φ(x) = Ψ(xK), on K, ∀K ∈ MH , ∀Ψ ∈ C(Ω). (18)

We use the triangle inequality on the left part of the inequality (16) and therefore,
∣∣∣∣
∫

Ω
(u(µ)− ΠH

DuH(µ)) · Πh
DΦh

i dx

∣∣∣∣ ≤
∣∣∣∣
∫

Ω
(u(µ)− ΠH

0 u(µ)) · Πh
DΦh

i dx

∣∣∣∣+
∣∣∣∣
∫

Ω
(ΠH

0 u(µ)− ΠH
DuH(µ)) · Πh

DΦh
i dx

∣∣∣∣ ,

=: T3,1 + T3,2. (19)

– We first consider the term T3,1, but beforehand the estimate of T3,1 requires the use of a further operator
which we now introduce. Each cell K ∈ MH is star-shaped with respect to a ball BK centered in xK

of radius ρ = min
σ∈FK

dK,σ (Lemma B.1 [15]). We then use an averaged Taylor polynomial as in [3] but

simplified. Let us consider the following polynomial of u(µ) averaged over BK:

QKu(x; µ) =
1

|BK|
∫

BK

[u(y; µ) + D1u(y; µ)(x − y)] dy. (20)

This polynomial is of degree less or equal to 1 in x.
Let us introduce ΠH

1 : H1(Ω) ∩ C(Ω) → R, the piecewise affine projection operator on MH such that:

ΠH
1 Ψ = QKΨ(x), on K, ∀K ∈ MH , ∀Ψ ∈ H1(Ω) ∩ C . (21)

With the triangle inequality, we obtain

T3,1 ≤
∣∣∣∣
∫

Ω
(u(µ)− ΠH

1 u(µ)) · Πh
DΦh

i dx

∣∣∣∣+
∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · Πh

DΦh
i dx

∣∣∣∣ ,

=: T3,1,1 + T3,1,2. (22)
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* Using the Cauchy-Schwarz inequality,

T3,1,1 ≤
∫

Ω

∣∣∣(u(µ)− ΠH
1 u(µ)) · Πh

DΦh
i

∣∣∣ dx,

≤
∥∥∥u(µ)− ΠH

1 u(µ)
∥∥∥

L2(Ω)

∥∥∥Πh
DΦh

i

∥∥∥
L2(Ω)

,

≤
∥∥∥u(µ)− ΠH

1 u(µ)
∥∥∥

L2(Ω)
, since Πh

DΦh
i ∀i = 1, · · · , N are normalized in L2. (23)

Let K ∈ MH . As in Proposition 4.3.2 [3],

sup
x∈K

|u(x; µ)− QKu(x; µ)| . H
2− d

2
K |u(µ)|H2(K). (24)

Since K ⊂ B(x, H) for all x ∈ K,

|K| ≤ |B(xK, H)| = |B(0, 1)|Hd
K. (25)

Thus, with the inequalities (25) and (24), we get

sup
x∈K

|u(x; µ)− QKu(x; µ)| . H2
K|K|−

1
2 |u(µ)|H2(K), (26)

taking the square and integrating over K, we obtain

∫

K
|u(µ)− ΠH

1 u(µ)|2 dx . H4
K|u(µ)|2H2(K), (27)

and summing over K yields

∥∥∥u(µ)− ΠH
1 u(µ)

∥∥∥
L2(Ω)

. H2|u(µ)|H2(Ω). (28)

The inequality (28), combined with (23), entails that

T3,1,1 . H2|u(µ)|H2(Ω). (29)

* The term T3,1,2 can be estimated using a continuous reconstruction of Φh
i , denoted by Φi .

With the triangle inequality,

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · Πh

DΦh
i dx

∣∣∣∣ ≤
∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ))(Πh

DΦh
i − ΠH

0 Φi) dx

∣∣∣∣

+

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi) dx

∣∣∣∣ . (30)

Since xK is the center of mass,
∫

K x dx = |K|xK. Therefore,

∫

K
QKu(x; µ) dx = |K|QKu(xK; µ). (31)

From the inequality (24),

|QKu(xK; µ)− u(xK; µ)| . H
2− d

2
K |u(µ)|H2(K). (32)
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Thus, since ΠH
0 Φi is constant on each cell K ∈ MH , and |K| . Hd

K (25),

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx

∣∣∣∣ =

∣∣∣∣∣∣ ∑
K∈MH

∫

K
(QKu(x; µ)− u(xK; µ)) · ΠH

0 Φi dx

∣∣∣∣∣∣
,

≤ ∑
K∈MH

∣∣∣∣Φi(xK)
∫

K
QKu(x; µ)− u(xK; µ) dx

∣∣∣∣ ,

≤ ∑
K∈MH

|K|
∣∣Φi(xK)(QKu(xK; µ)− u(xK; µ))

∣∣ , from (31),

≤‖Φi‖L∞(Ω) ∑
K∈MH

|K|
∣∣QKu(xK; µ)− u(xK; µ)

∣∣ ,

.‖Φi‖L∞(Ω) ∑
K∈MH

|K|H2− d
2

K |u(µ)|H2(K) from (32),

.‖Φi‖L∞(Ω) ∑
K∈MH

H
2+ d

2
K |u(µ)|H2(K). (33)

Since Card(MH) ≃ H−d, using the Cauchy-Schwarz inequality, the inequality (33) becomes

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx

∣∣∣∣ .‖Φi‖L∞ H2( ∑
K∈MH

|u(µ)|2
H2(K))

1
2 ,

=‖Φi‖L∞ |u(µ)|H2(Ω)H
2, (34)

which implies that there exists a constant C̃1 > 0 not depending on h or H such that (30) becomes

T3,1,2 ≤
∫

Ω

∣∣∣(ΠH
1 u(µ)− ΠH

0 u(µ))(Πh
DΦh

i − ΠH
0 Φi)

∣∣∣ dx + C̃1‖Φi‖L∞ |u(µ)|H2(Ω)H
2. (35)

From the Cauchy-Schwarz inequality and the inequality (35),

T3,1,2 ≤
∥∥∥ΠH

1 u(µ)− ΠH
0 u(µ)

∥∥∥
L2(Ω)

∥∥∥Πh
DΦh

i − ΠH
0 Φi

∥∥∥
L2(Ω)

+ C̃1‖Φi‖L∞ |u(µ)|H2(Ω)H
2. (36)

From Bramble-Hilbert’s Lemma (see [3]), we deduce that

∥∥∥u(µ)− ΠH
0 u(µ)

∥∥∥
L2(Ω)

. H
∥∥u(µ)

∥∥
H2(Ω) . (37)

For the first term in the right-hand side of (36), from (28)-(37) and the triangle inequality,

∥∥∥ΠH
1 u(µ)− ΠH

0 u(µ)
∥∥∥

L2(Ω)
≤
∥∥∥ΠH

1 u(µ)− u(µ)
∥∥∥

L2(Ω)
+
∥∥∥u(µ)− ΠH

0 u(µ)
∥∥∥

L2(Ω)
,

. H‖u‖H2(Ω) , neglecting the estimate in H2, (38)

and the inequality (37) and the classical finite volume estimate as for (13) (Πh
Dφh

i being a linear

combination of the family (Πh
Duh

j )
N
j=1, ∀i = 1, · · · , N) implies that there exists C̃2 = C̃2(N) > 0

not depending of H or h but depending on N such that

∥∥∥Πh
DΦh

i − ΠH
0 Φi

∥∥∥
L2(Ω)

≤
∥∥∥Πh

DΦh
i − Φi

∥∥∥
L2(Ω)

+
∥∥∥Φi − ΠH

0 Φi

∥∥∥
L2(Ω)

,

≤ C̃2(N)H, neglecting the estimate in h. (39)

From (38)-(39), we deduce that each L2 term is in O(H) in the product of the right-hand side of
(36). Hence the equation (30) yields to

T3,1,2 =

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · Πh

DΦh
i dx

∣∣∣∣ . (C̃1‖Φi‖L∞(Ω) + C̃2(N))‖u‖H2(Ω) H2. (40)
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– We now proceed with the estimate on T3,2 :

With the super-convergence property on the hMFD scheme (9), and with the normalization of Πh
DΦh

i

in L2(Ω)

∣∣∣∣
∫

Ω
(ΠH

DuH(µ)− ΠH
0 u(µ)) · Πh

DΦh
i dx

∣∣∣∣ ≤
∫

Ω

∣∣∣(ΠH
DuH(µ)− ΠH

0 u(µ)) · Πh
DΦh

i

∣∣∣ dx,

≤
∥∥∥ΠH

DuH(µ)− ΠH
0 u(µ)

∥∥∥
L2(Ω)

∥∥∥Πh
DΦh

i

∥∥∥
L2(Ω)

,

. (
∥∥ f
∥∥

H1(Ω) +‖u‖H2(Ω))H2. (41)

Combining the estimates (29)-(40)-(41) with the inequalities (19)-(22), this results in the inequality (16).

We now consider the third term T3 =
∥∥∥uN

hh(µ)− uN
Hh(µ)

∥∥∥
D

.

T3 =

∥∥∥∥∥
N

∑
i=1

αh
i (µ)Π

h
DΦh

i −
N

∑
i=1

αH
i (µ)Πh

DΦh
i

∥∥∥∥∥
D

,

≤
N

∑
i=1

∣∣∣αh
i (µ)− αH

i (µ)
∣∣∣
∥∥∥Πh

DΦh
i

∥∥∥
D

,

=
N

∑
i=1

∣∣∣(Πh
Duh(µ)− ΠH

DuH(µ), Πh
DΦh

i )L2

∣∣∣
∥∥∥Πh

DΦh
i

∥∥∥
D

. (42)

From (11), we get that

∥∥∥Πh
DΦh

i

∥∥∥
2

D
=
∫

Ω
|∇DΦh

i |2 dx = λi

∥∥∥ΠDΦh
i

∥∥∥
2

L2(Ω)
≤ max

i=1,··· ,N
(λi) = λN . (43)

Therefore we obtain from (42) and (43),

T3 ≤
√

λN

N

∑
i=1

∣∣∣(Πh
Duh(µ)− ΠH

DuH(µ), Πh
DΦh

i )L2

∣∣∣ . (44)

Using the triangle inequality in the right-hand side of (44),

T3 ≤
√

λN

N

∑
i=1

∣∣∣(Πh
Duh(µ)− u(µ), Πh

DΦh
i )
∣∣∣+
∣∣∣(u(µ)− ΠH

DuH(µ), Πh
DΦh

i )
∣∣∣ . (45)

From Proposition 1, with the estimate (16) applied to Mh and MH , neglecting the estimate in O(h2)

T3 .
√

λN N((‖Φi‖L∞(Ω) + C(N))‖u‖H2(Ω) +
∥∥ f
∥∥

H1(Ω))H2. (46)

The conclusion follows combining the estimates on T1, T2 and T3 (estimates (13),(15) and (46)).

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
D
=

∥∥∥∥∥u(µ)−
N

∑
i=1

αH
i (µ)Πh

DΦh
i

∥∥∥∥∥
D

,

≤ ε(N) + C1h + C2(N)H2 ∼ O(h) if h ∼ H2. (47)

4 Results on other FV schemes

In this section, we consider the case where xK is not the center of mass, as it is the case for some FV schemes.
Therefore the left hand side of the inequality (33) cannot be estimated using equation (31). The unknowns xK
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are not necessarily the centers of mass of the cells neither with HMM methods nor with the Two-Point Flux
Approximation (TPFA) scheme [2, 12]. Under the following superadmissibility condition

∀K ∈ MH , σ ∈ FK : nK,σ =
xσ − xK

dK,σ
, (48)

the TPFA scheme is a member of the the HMM family schemes ( [15] section 13.3 , [16] section 5.3) with the
choice LK = Id. This leads to take xK as the circumcenters of the cells with 2D triangular meshes. Theorem
1.1 holds in 2D on uniform rectangles with TPFA since the superadmissibility condition is satisfied in this case
where xK is the centre of mass of the cells. The TPFA scheme is rather simple to implement, and therefore we will
present in the last section numerical results with a TPFA solver. We will use the definition of a local grouping
of the cells as in [17] (Definition 5.1). We will extend the Theorem 1.1 in the case where such groupings of cells
exist.

Definition 4.1. (Local grouping of the cells). Let TH be a polytopal mesh of Ω. A local grouping of the cells of TH is
a partition G of MH , such that for each G ∈ G, letting UG := ∪

K∈G
K, there exists a ball BG ⊂ UG such that UG is

star-shaped with respect to BG. This implies that for all x ∈ UG and all y ∈ BG, the line segment [x, y] is included in UG.
We then define the regularity factor of G

µG := max
G∈G

Card(G) + max
G∈G

max
K∈G

HK

diam(BG)
, (49)

and, with eK = xK − xK, and

eG :=
1

|UG| ∑
K∈G

|K| eK, ∀G ∈ G, (50)

eG := max
G∈G

|eG| . (51)

Note that we are interested in situations where |eG| =
∣∣∣ 1
|UG | ∑K∈G |K| eK

∣∣∣ is much smaller than |eK| ∀K ∈ G.

The aim of this section is to estimate the left hand side of the inequality (33) in O(H2) using a local grouping of
the cells. The rest of the proof remains unchanged.

We will need the following Theorem of super-convergence for HMM schemes with local grouping (Theorem
5.4 [17]).

Theorem 4.2 (Super-convergence for HMM schemes with local grouping (Theorem 5.4 [17])). Let f ∈ H1(Ω), and
u(µ) be the solution of (2) under assumption (8). Let Th be a polytopal mesh, and D be an HMM gradient discretisation
on Th and eG be a local grouping, and let uh(µ) be the solution of the corresponding GD. Then, considering uP (µ) as the
piecewise constant function on Mh equal to u(xK; µ) on K ∈ M, there exists C not depending on H or h such that

∥∥∥Πh
Duh(µ)− uP (µ)

∥∥∥
L2(Ω)

≤ C
∥∥ f
∥∥

H1(Ω) (h
2 + eG). (52)

Theorem 4.3 (NIRB error estimate with local grouping). Let uN
hH(µ) be the reduced solution projected on the fine mesh

and generated with the hMFD solver with the unknowns defined on xk such that eG is in O(H2) on the coarse mesh, and
u(µ) be the exact solution of (2) under assumption (8), then the following estimate holds

∥∥∥u(µ)− uN
hH(µ)

∥∥∥
D
≤ ε(N) + C1h + C2(N)H2, (53)

where C1 and C2 are constants independent of h and H,C2 depends on N, the number of functions in the basis, and ‖·‖D
is the discrete norm introduced in section 1, and ε depends of the Kolmogorov n-width. If H is such as H2 ∼ h, and ε(N)
small enough, it results in an error estimate in O(h).

Proof. In this proof, we will still denote A . B for A ≤ CB with C not depending on h or H. The reconstruction
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Φi of Φh
i must belong to W1,∞. As in the previous section, with the equation (31),

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx

∣∣∣∣ =

∣∣∣∣∣∣ ∑
K∈MH

∫

K
(QKu(x; µ)− u(xK; µ)) · ΠH

0 Φi dx

∣∣∣∣∣∣
,

=

∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− u(xK; µ)

]∣∣∣∣∣∣
,

≤

∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣

+‖Φi‖L∞(Ω) ∑
K∈MH

∣∣QKu(xK; µ)− u(xK; µ)
∣∣ from the triangle inequality.

(54)

As in the previous section (34),

‖Φi‖L∞(Ω) ∑
K∈MH

|K|
∣∣QKu(xK; µ)− u(xK; µ)

∣∣ .‖Φi‖L∞(Ω)‖u‖H2(Ω) H2. (55)

Thus, the inequality (54) yields

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx

∣∣∣∣ .

∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
+‖Φi‖L∞(Ω)‖u‖H2(Ω) H2.

(56)
With the triangle inequality, the first term in (56) becomes

∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
.

∣∣∣∣∣∣ ∑
K∈MH

[
Φi(xG) + (Φi(xK)− Φi(xG))

]
|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
,

.

∣∣∣∣∣∣ ∑
K∈MH

Φi(xG)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣

+‖∇Φi‖L∞(Ω) ∑
K∈MH

HK|K|
∣∣QKu(xK; µ)− QKu(xK; µ)

∣∣ since diam(UG) ≤ µG HK .

(57)

Using the decomposition of the mesh in patches UG and with the definition of QK, the first term of (57) gives

∣∣∣∣∣∣ ∑
K∈MH

Φi(xG)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
≤
∣∣∣∣∣ ∑
G∈G

∑
K∈G

Φi(xG)
|K|
|BK|

∫

BK

D1u(y) · eK dy

∣∣∣∣∣ ,

≤ ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy

)
|K| eK

∣∣∣∣∣ . (58)

Using the definition of QK (20), the second term in (57) yields

‖∇Φi‖L∞(Ω) ∑
K∈MH

HK|K|
∣∣QKu(xK; µ)− QKu(xK; µ)

∣∣ =‖∇Φi‖L∞(Ω) ∑
K∈MH

HK
|K|
|BK|

∣∣∣∣
∫

BK

D1u(y) · eK dy

∣∣∣∣ ,

.‖∇Φi‖L∞(Ω) ∑
K∈MH

H2
K‖∇u‖L1(BK)

, since |BK| ≥ θ−1
H |K| (5),

≤ H2‖∇Φi‖L∞(Ω)‖∇u‖L1(Ω) . (59)
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Thus (57) becomes
∣∣∣∣∣∣ ∑
K∈MH

Φi(xK)|K|
[

QKu(xK; µ)− QKu(xK; µ)

]∣∣∣∣∣∣
. ∑

G∈G
‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy

)
|K| eK

∣∣∣∣∣

+ H2‖∇Φi‖L∞(Ω)‖∇u‖L1(Ω) . (60)

Now, the Lemma 7.6. in [17] is going to be used three times on the first term the right hand side of (60). This
lemma reads:
Let U, V and O be open sets of R

d such that, for all (x, y) ∈ U × V, [x, y] ⊂ O. There exists C only depending
on d such that, for all Φ ∈ W1,1(O),

∣∣∣∣
1

|U|
∫

U
Φ(x) dx − 1

|V|
∫

V
Φ(x) dx

∣∣∣∣ ≤ C
diam(O)d+1

|U||V|
∫

O
|∇Φ(x)| dx. (61)

We will use it successively with [U, V, O] = [BK, K, UG], [U, V, O] = [K, BG, UG], and [U, V, O] = [BG, UG, UG].

We use the triangle inequality on (58),

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy

)
|K| eK

∣∣∣∣∣ ≤ ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣ ∑
K∈G

( ∣∣∣∣
1

|BK|
∫

BK

D1u(y) dy − 1

|K|
∫

K
D1u(y; µ) dy

∣∣∣∣

+

∣∣∣∣∣
1

|K|
∫

K
D1u(y; µ) dy − 1

|BG|
∫

BG

D1u(y; µ) dy

∣∣∣∣∣

+

∣∣∣∣∣
1

|BG|
∫

BG

D1u(y; µ) dy − 1

|UG|
∫

UG

D1u(y; µ) dy

∣∣∣∣∣

+
1

|UG|
∫

UG

D1u(y; µ) dy

)
|K| eK

∣∣∣∣. (62)

and we get

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy

)
|K| eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣ ∑
K∈G

(
‖u‖W2,1(UG)

diam(UG)
d

[
diam(UG)

|BK||K|

+
diam(UG)

|BG||K|
+

diam(UG)

|UG||BG|

]
+

1

|UG|
∫

UG

D1u(y; µ) dy

)
|K| eK

∣∣∣∣.

(63)

With the regularity factor θH (see the previous definition of a polytopal mesh (5)), |K| ≤ |B(0, 1)|Hd
K . |BK|θd

H .

Since Card(G) is bounded by µG, diam(UG) ≤ µG HK. Thus, diam(UG)
d ≤ µd

G Hd
K, and

diam(UG)
|BK | ≤ C, |BG| ≥

µ−d
G diam(UG)

d, |BG| & µ−d
G Hd

K & µ−d
G |K|, and |UG| ≥ diam(UG)

d.
Therefore (63) becomes

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy

)
|K|eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣ ∑
K∈G

(
‖u‖W2,1(UG)

diam(UG)

|K|

+
1

|UG|
∫

UG

D1u(y; µ) dy

)
|K| eK

∣∣∣∣. (64)

Since diam(UG) ≤ µG HK and |eK| ≤ HK,

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy

)
|K| eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G)

[
∑

K∈G

H2
K‖u‖W2,1(UG)

+

∣∣∣∣∣
1

|UG| ∑
K∈G

∫

UG

D1u(y; µ) dy|K|eK

∣∣∣∣∣

]
. (65)
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Then,

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy

)
|K|eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G) ∑
K∈G

H2
K‖u‖W2,1(UG)

+ ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣
1

|UG| ∑
K∈G

|K| eK

∣∣∣∣∣

∣∣∣∣∣

∫

UG

D1u(y; µ) dy

∣∣∣∣∣ , (66)

which implies, since Card(G) ≤ µG,

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

(
1

|BK|
∫

BK

D1u(y) dy

)
|K|eK

∣∣∣∣∣ . ∑
G∈G

‖Φi‖L∞(G) H2‖u‖W2,1(UG)

+ ∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣
1

|UG| ∑
K∈G

|K| eK

∣∣∣∣∣‖u‖W1,1(UG)
. (67)

and finally,

∑
G∈G

‖Φi‖L∞(G)

∣∣∣∣∣ ∑
K∈G

1

|BK|
∫

BK

D1u(y) dy|K| eK

∣∣∣∣∣ ≤‖Φi‖L∞(Ω)‖u‖W2,1(Ω) H2 +‖Φi‖L∞(Ω) max
G∈G

‖u‖W1,1(Ω)

∣∣∣∣∣
1

|UG| ∑
K∈G

|K| eK

∣∣∣∣∣ .

(68)
This results using (54), (55), (57), (59), and (68) in

∣∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx

∣∣∣∣ . (‖Φi‖W1,∞(Ω)‖u‖W2,1(Ω)+‖u‖H2(Ω)‖Φi‖L∞(Ω))H2 +(‖Φi‖L∞(Ω)‖u‖W1,1(Ω))eG.

(69)

If eG = max
G∈G

∣∣∣∣∣

(
1

|UG | ∑
K∈G

|K| eK

)∣∣∣∣∣ is in O(H2) then the estimate of
∣∣∣
∫

Ω
(ΠH

1 u(µ)− ΠH
0 u(µ)) · ΠH

0 Φi dx
∣∣∣ is in

O(H2). This concludes the proof since the rest is similar to the one of Theorem 0.1. Note that for the esti-
mate of T3,2 (41), the equation (52) from the Theorem of super-convergence with local grouping is used instead
of (9).

5 Some details on the implementation and numerical results

We consider two simple cases in 2D for the numerical results based with the TPFA scheme. Both results are
computed on the unit square. We use an harmonic averaging of the diffusion coefficient( [16] section 5.3). Our
variable parameter is µ ∈ R

4 = (µ1, µ2, µ3, µ4). For both cases, the size of mesh h is defined as the maximum
length of the edges. The diffusion coefficient we consider here is A(µ) = (2µ1 + µ2 sin(x + y) cos(xy)) and
f = (µ3(1 − y) + µ4x(1 − x)). We choose random coefficients for the snapshots with N = 5 and our solution is
defined with µ1 = 0.99, µ2 = 0.8, µ3 = 0.2, µ4 = 0.78. For the exact solution, we consider the TPFA solution on
a finer mesh (Figures 2, 4). For the computation of the norm, we use the discrete semi-norm as in the remark of
the section 1 (10). NIRB results are compared to the classical finite volume error (Figures 3, 5). We measure the
following relative error ∥∥∥u(µ)− uN

Hh(µ)
∥∥∥
T ,2∥∥u(µ)

∥∥
T ,2

. (70)

Uniform grid The first case presents results on a rectangular uniform grid where xK is the center of mass of
the cell.
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Figure 2: coarse and fine solution with the uniform grid
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Figure 3: Numerical result on the uniform grid

Triangular mesh The second case is defined on a triangular mesh where xK are the circumcenter of the cells,
such that eG is in O(H2).
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Figure 4: coarse and fine solution with the triangular mesh
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Figure 5: Numerical result on the triangular mesh

Discussion on the implementation We implement the TPFA scheme on Scilab and retrieve several solutions
for the NIRB algorithm on Python to highlight the black box side of the solver.

• Implementation of TPFA
The TPFA on Th reads: Find uh = (uK)K∈M such that:

∀K ∈ Mh, ∑
σ∈FK∩Fint

τσ(uK − uL) + ∑
σ∈FK∩Fext

τσuK =
∫

K
f (x)dx, (71)

where the harmonic average τσ = |σ| A(xL ;µ)A(xK ;µ)
A(xL ;µ)×dL,σ+A(xK ;µ)×dK,σ

on Fint, and τσ = |σ| A(xK ;µ)
dK,σ

on Fext.

To assemble the matrices A of the TPFA scheme, we iterate on each edge, and add the harmonic average τσ

on each cell, and for b we add the term |DK,σ| × f (xK).
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• Time execution (min,sec)

NIRB Online FV solver
uniform grid 00:06 01:48

triangular mesh 00:05 01:15

Remark 5.1. Note that for discontinious diffusion coefficient A, with TPFA scheme, we recoverd numerically the same
estimate as in the Lipschitz continious case, when we use the harmonic average even if the proof does not work anymore.
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