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Abstract

Sampling from a complex distribution π and approximating its intractable normalizing constant Z are
challenging problems. In this paper, a novel family of importance samplers (IS) and Markov chain Monte
Carlo (MCMC) samplers is derived. Given an invertible map T, these schemes combine (with weights)
elements from the forward and backward Orbits through points sampled from a proposal distribution ρ.
The map T does not leave the target π invariant, hence the name NEO, standing for Non-Equilibrium
Orbits. NEO-IS provides unbiased estimators of the normalizing constant and self-normalized IS estima-
tors of expectations under π while NEO-MCMC combines multiple NEO-IS estimates of the normalizing
constant and an iterated sampling-importance resampling mechanism to sample from π. For T chosen as a
discrete-time integrator of a conformal Hamiltonian system, NEO-IS achieves state-of-the art performance
on difficult benchmarks and NEO-MCMC is able to explore highly multimodal targets. Additionally, we
provide detailed theoretical results for both methods. In particular, we show that NEO-MCMC is uni-
formly geometrically ergodic and establish explicit mixing time estimates under mild conditions.

1 Introduction
Consider a target distribution of the form π(x) ∝ ρ(x)L(x) where ρ is a probability density function (pdf) on
Rd and L is a nonnegative function. Typically, in a Bayesian setting, π is a posterior distribution associated
with a prior distribution ρ and a likelihood function L. An other situation of interest is generative modeling
where π is the distribution implicitly defined by a Generative Adversarial Networks (GAN) discriminator-
generator pair where ρ is the distribution of the generator and L is derived from the discriminator (Turner
et al., 2019; Che et al., 2020). An other situation of interest is generative modeling where π is the distribution
implicitly defined by a Variational Auto Encoder (VAE) encoder-decoder pair where ρ is the distribution
output by the encoder and L is an importance weight between the distribution of the decoder and of the
encoder (Kingma and Welling, 2013; Burda et al., 2016). We are interested in this paper in sampling from π
and approximating its intractable normalizing constant Z =

∫
ρ(x)L(x)dx. These problems arise in many

applications in statistics, molecular dynamics or machine learning, and remain challenging.
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Many approaches to compute normalizing constants are based on Importance Sampling (IS) - see Aga-
piou et al. (2017); Akyildiz and Mı́guez (2021) and the references therein - and its variations, among others,
Annealed Importance Sampling (AIS) (Neal, 2001; Wu et al., 2016; Ding and Freedman, 2019) and Sequen-
tial Monte Carlo (SMC) (Del Moral et al., 2006). More recently, Neural IS has also become very popular
in machine learning; see e.g. El Moselhy and Marzouk (2012); Müller et al. (2019); Papamakarios et al.
(2019); Prangle (2019); Wirnsberger et al. (2020). Neural IS is an adaptive IS which relies on an impor-
tance function obtained by applying a normalizing flow to a reference distribution. The parameters of this
normalizing flow are chosen by minimizing a divergence between the proposal and the target (such as the
Kullback-Leibler Müller et al. (2019) or the χ2-divergence Agapiou et al. (2017)).

More recently, the Non-Equilibrium IS (NEIS) method has been introduced by Rotskoff and Vanden-
Eijnden (2019) as an alternative to these approaches. Similar to Neural IS, NEIS consists in transporting
samples {Xi}Ni=1 from a reference distribution using a family of deterministic mappings. This family for
NEIS is chosen to be an homogeneous differential flow (φt)t∈R. In contrast to Neural IS, for any i ∈ [N ],
the sample Xi is propagated both forward and backward in time along the orbits associated with (φt)t∈R
until stopping conditions are met. Moreover, the resulting estimator of the normalizing constant is obtained
by computing weighted averages of the whole orbit (φt(X

i))t∈[τ+,i,τ−,i], where τ+,i, τ−,i are the resulting
stopping times, and not only the endpoints φτ+,i(X

i), φτ−,i(X
i). In Rotskoff and Vanden-Eijnden (2019),

the authors provide an application of NEIS with (φt)t∈R associated with a conformal Hamiltonian dynamics,
and reports impressive numerical results on difficult normalizing constants estimation problems, in particular
for high-dimensional multimodal distributions.

We propose in this work NEO-IS which alleviates the shortcomings of NEIS. Similar to NEIS, samples
are drawn from a reference distribution, typically set to ρ, and are propagated under the forward and back-
ward orbits of a discrete-time dynamical system associated with an invertible transform T. An estimator of
the normalizing constant is obtained by reweighting all the points on the whole orbits using the IS rule. Con-
trary to NEIS, the NEO-IS estimator of Z is unbiased under assumptions that are mild and easy to verify. It
is more flexible than NEIS because it does not rely on the accuracy of the discretization of a continuous-time
dynamical system.

We then show how it is possible to leverage the unbiased estimator of Z defined by NEO-IS to obtain
NEO-MCMC, a novel massively parallel MCMC algorithm to sample from π. In a nutshell, NEO-MCMC
relies on parallel walkers which each estimates the normalizing constant but are allowed to interact through
a resampling mechanism. Our contributions can be summarized as follows.

(i) We present a novel class of IS estimators of the normalizing constant Z referred to as NEO-IS. More
broadly, a small modification of this algorithm also allows us to estimate integrals with respect to π.
Both finite sample and asymptotic guarantees are provided for these two methodologies.

(ii) We develop a new massively parallel MCMC method, NEO-MCMC. NEO-MCMC combines NEO-
IS unbiased estimator of the normalizing constant with iterated sampling-importance resampling meth-
ods. We prove that it is π-reversible and ergodic under very general conditions. We derive also condi-
tions which imply that NEO-MCMC is uniformly geometrically ergodic (with an explicit expression
of the mixing time).

(iii) We illustrate our findings using numerical benchmarks which show that both NEO-IS and NEO-
MCMC outperform state-of-the-art (SOTA) methods in difficult settings.
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Algorithm 1 NEO-IS Sampler

1. Sample X1:N iid∼ ρ for i ∈ [N ].

2. For i ∈ [N ], compute the path (Tj(Xi))Kj=0 and weights (wj(X
i))Kj=0.

3. INEO
$,N (f) = N−1

∑N
i=1

∑
k∈Z wk(Xi)f(Tk(Xi)).

2 NEO-IS algorithm
In this section, we derive the NEO-IS algorithm. The two key ingredients for this algorithm are (1) the
reference distribution ρ and (2) a transformation T assumed to be a C1-diffeomorphism with inverse T−1.
Write, for k ∈ N∗ = N \ {0}, Tk = T ◦Tk−1, T0 = Idd and similarly T−k = T−1 ◦T−(k−1). For
any k ∈ Z, denote by ρk : Rd → R+ the pushforward of ρ by Tk, defined for x ∈ Rd by ρk(x) =
ρ(T−k(x))JT−k(x), where JΦ(x) ∈ R+ is the absolute value of the Jacobian determinant of Φ : Rd → Rd
evaluated at x. In line with multiple importance sampling à la Owen and Zhou Owen and Zhou (2000), we
introduce the proposal density

ρT(x) = Ω−1
∑

k∈Z
$kρk(x) , (1)

where {$k}k∈Z is a nonnegative sequence and Ω =
∑
k∈Z$k. Note that we assume in the sequel that the

support of the weight sequence defined as {k ∈ Z : $k 6= 0} is finite. Thus, the mixture distribution in (1)
is a finite mixture. Given x ∈ Rd, ρT(x) is a function of the forward and backward orbit of T through x.
For any nonnegative function f , the definition of ρT implies that∫

f(y)ρT(y)dy = Ω−1

∫ ∑
k∈Z

$kf(Tk(x))ρ(x)dx .

Assuming that $0 > 0, the ratio ρ(x)/ρT(x) ≤ $−1
0 Ω < ∞ is bounded. We can therefore apply the IS

principle which allows to write the identity∫
f(x)ρ(x)dx =

∫ (
f(y)

ρ(y)

ρT(y)

)
ρT(y)dy =

∫ ∑
k∈Z

f(Tk(x))wk(x)ρ(x)dx , (2)

where the weights are given by (see Appendix A.2 for a detailed derivation),

wk(x) = $kρ(Tk(x))/{ΩρT(Tk(x))} = $kρ−k(x)
/∑

i∈Z
$k+iρi(x) . (3)

We assume in the sequel that $0 > 0. In particular, note that under this condition, the weights wk are also
upper bounded uniformly in x: for any x ∈ Rd, wk(x) ≤ $k/$0. Eqs. (2) and (3) suggest to estimate
the integral

∫
f(x)ρ(x)dx by INEO

$,N (f) = N−1
∑N
i=1

∑
k∈Z wk(Xi)f(Tk(Xi)) where {Xi}Ni=1 are i.i.d.

samples from the proposal ρ, which is denoted by X1:N iid∼ ρ.
This estimator is obtained by a weighted combination of the elements of the independent forward and

backward orbits {Tk(Xi)}k∈Z with X1:N iid∼ ρ. This estimator is referred to as NEO-IS. Choosing f ≡ L
provides the NEO-IS estimator of the normalizing constant of π:
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ẐXi =
∑
k∈Z L(Tk(Xi))wk(Xi) , ẐX1:N = N−1

∑N
i=1 ẐXi . (4)

We now study the performance of the NEO-IS estimator. The following two quantities play a fundamental
role in the analysis:

E$T = EX∼ρ
[(∑

k∈Z wk(X)L(Tk(X))/Z
)2]

,M$
T = supx∈Rd

∑
k∈Z wk(x)L(Tk(x))/Z . (5)

Theorem 1. ẐX1:N is an unbiased estimator of Z. If E$T <∞, then, E[|ẐX1:N /Z− 1|2] = N−1(E$T − 1).

If M$
T <∞, then, for any δ ∈ (0, 1), with probability 1− δ,

√
N
∣∣∣ẐX1:N /Z − 1

∣∣∣ ≤M$
T

√
log(2/δ)/2.

The (elementary) proof is postponed to Appendix A.3. E$T plays the role of the second-order mo-
ment of the importance weights EX∼ρ[L2(X)] which is key to the performance of IS algorithms Agapiou
et al. (2017); Akyildiz and Mı́guez (2021). In addition, since the NEO-IS estimator ẐX1:N is unbiased, the
Cauchy-Schwarz inequality shows that EX∼ρ

[(∑
k∈Z wk(X)L(Tk(X)))2

]
≥ Z2 and hence that E$T ≥ 1.

Note that if ‖L‖∞ = supx∈Rd L(x) <∞, then since the weights are uniformly bounded by Ω$−1
0 , we have

M$
T ≤ ‖L‖∞Ω$−1

0 /Z.
Using the NEO-IS estimate ẐX1:N of the normalizing constant, we can construct a self-normalized IS

estimate of
∫
f(x)π(x)dx:

JNEO
$,N (f) = N−1

N∑
i=1

ẐXi

ẐX1:N

∑
k∈Z

L(Tk(Xi))wk(Xi)

ẐXi
f(Tk(Xi)) , (6)

referred to as NEO-SNIS estimator. This expression may seem unnecessarily complicated but highlights the
hierarchical structure of the estimator. We combine estimators (ẐXi)

−1
∑
k∈Z L(Tk(Xi))wk(Xi)f(Tk(Xi))

evaluated on the forward and backward orbits through the points {Xi}Ni=1 using weights {ẐXi/ẐX1:N }Ni=1.
Although the NEO-IS estimator is unbiased, the NEO-SNIS is in general biased. However, for bounded
functions, both the bias and the variance of the NEO-SNIS estimator are O(N−1), with constants propor-
tional to E$T . For g a π-integrable function, we set π(g) =

∫
g(x)π(x)dx.

Theorem 2. Assume that E$T < ∞. Then, for any function g satisfying supx∈Rd |g(x)| ≤ 1 on Rd, and
N ∈ N,

E
X1:N iid∼ρ

[
|JNEO
$,N (g)− π(g)|2

]
≤ 4 ·N−1E$T , (7)∣∣∣E

X1:N iid∼ρ

[
JNEO
$,N (g)− π(g)

]∣∣∣ ≤ 2 ·N−1E$T . (8)

If M$
T <∞, then for δ ∈ (0, 1], with probability at least 1− δ,

√
N |JNEO

$,N (g)− π(g)| ≤ ‖g‖∞M$
T

√
32 log(4/δ) . (9)

The proof is postponed to Appendix A.4. These results extend to NEO-SNIS estimators the results
known for self-normalized estimators; see e.g., Agapiou et al. (2017); Akyildiz and Mı́guez (2021) and
the references therein. The upper bounds stated in this result suggest it is good practice to keep E$T /N
small in order to obtain sensible approximations. For two pdfs p and q on Rd, denote by Dχ2(p, q) =∫
{p(x)/q(x)− 1}2q(x)dx the χ2-divergence between p and q.

Lemma 3. For any nonnegative sequence ($k)k∈Z, we have E$T ≤ Dχ2(π‖ρT) + 1.
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The proof is postponed to Appendix A.5. Lemma 3 suggests that accurate sampling requires N to scale
linearly with the χ2-divergence between the target π and the extended proposal ρT.

Remark 1. We can extend NEO to non homogeneous flows, replacing the family {Tk : k ∈ Z} with a
collection of mappings {Tk : k ∈ Z}. This would allow us to consider further flexible classes of trans-
formations such as normalizing flows; see e.g. Papamakarios et al. (2019). The χ2-divergence Dχ2(π‖ρT)
provides natural criteria for learning the transformation. We leave this extension to future work.

Conformal Hamiltonian transform The efficiency of NEO relies heavily on the choice of T. Intuitively,
a sensible choice of T requires that (i) E$T is small, i.e. ρT should be close to π by Lemma 3 (see (5)),
(ii) the inverse T−1 and the Jacobian of T are easy to compute. Following Rotskoff and Vanden-Eijnden
(2019), we use for T a discretization of a conformal Hamiltonian dynamics. Assume that U(·) = − log π(·)
is continuously differentiable. We consider the augmented distribution π̃(q, p) ∝ exp{−U(q) −K(p)} on
R2d, where q is the position, p is the momentum, and K(p) = pTM−1p/2 is the kinetic energy, with M a
positive definite mass matrix. By construction, the marginal distribution of the momentum under π̃ is the
target pdf π(q) =

∫
π̃(q, p)dp. The conformal Hamiltonian ODE associated with π̃ is defined by

dqt/dt = ∇pH(qt, pt) = M−1pt , (10)
dpt/dt = −∇qH(qt, pt)− γpt = −∇U(qt)− γpt ,

where H(q, p) = U(q) +K(p), and γ > 0 is a damping constant. Any solution (qt, pt)t≥0 of (10) satisfies
setting Ht = H(qt, pt), dHt/dt = −γpTt M−1pt ≤ 0. Hence, all orbits converge to fixed points that satisfy
∇U(q) = 0 and p = 0; see e.g. Franca et al. (2019); Maddison et al. (2018).

05101520252.52.01.51.00.50.0 = 0.1 = 1.0 = 2.0

Figure 1: Left: E
1[K]

Th
(K) vs EIS(K) (red) in log10-scale as a function of optimization step K. Second left

to right: Corresponding orbits for γ = 0.1, 1, 2.

In the applications below, we consider the conformal version of the symplectic Euler (SE) method of
(10), see Franca et al. (2019). This integrator can be constructed as a splitting of the two conformal and
conservative parts of the system (10). When composing a dissipative with a symplectic operator, we set
for all (q, p) ∈ R2d, Th(q, p) = (q + hM−1{e−hγp − h∇U(q)}, e−hγp − h∇U(q)), where h > 0
is a discretization stepsize. This transformation can be connected with classical momentum optimization
schemes, see (Franca et al., 2019, Section 4). By (Franca et al., 2019, Section 3), for any h > 0 Th
is a C1-diffeomorphism on R2d with Jacobian given by JTh(q, p) = e−γhd. In addition, its inverse is
T−1
h (q, p) = (q − hM−1p, eγh{p+ h∇U(q − hM−1p)}). Therefore, the weight (3) of the NEO estimator

is given by

wk(q, p) =
$kρ̃(Tkh(q, p))e−γkhd∑

j∈Z$k+j ρ̃(Tjh(q, p))e−γjhd
,

where ρ̃(q, p) ∝ ρ(q)e−K(p). Figure 1 displays for different values of γ, the bound E
1[0:K]

Th
− 1 (5) as a

function of K corresponding to the sequence of weights ($k)k∈Z = (1[0:K](k))k∈Z (i.e. only the K + 1
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Algorithm 2 NEO-MCMC Sampler
At step n ∈ N∗, given the conditioning orbit point Yn−1.
Step 1: Update the conditioning point

1. Set X1
n = Yn−1 and for any i ∈ {2, . . . , N}, sample Xi

n
iid∼ ρ.

2. Sample the orbit index In with probability proportional to (ẐXin)i∈[N ], (4).

3. Set Yn = XIn
n

Step 2: Output a sample

4. Sample index Kn with probability proportional to {wk(Yn)L(Tk(Yn))/ẐYn}k∈Z

5. Output Un = TKn(Yn).

first elements of the forward orbits are used and are equally weighted). For comparison, we also present
on the same plot, the bounds achieved by averaging K + 1 independent IS estimates, EIS(K) − 1 =
(K + 1)−1EX∼ρ[L(X)2]. Interestingly, Figure 1 shows that there is a trade-off in the choice of γ which
controls the exploration of the state space by the Hamiltonian dynamics since the higher γ, the faster the
orbits converge towards the modes.

3 NEO-MCMC algorithm
We now derive sampling methods based on the NEO-IS estimator. A natural idea consists in adapting the
Sampling Importance Resampling procedure (SIR) (see for example Rubin (1987); Skare et al. (2003)) to
the NEO framework. The SIR method to sample JNEO

$,N (see (6)) consists of 4 steps.

(SIR-1) Draw independentlyX1:N iid∼ ρ and compute the associated forward and backward orbits {Tk(Xi)}k∈Z
of the point.
(SIR-2) Compute the normalizing constants associated with each orbit {ẐXi}Ni=1.
(SIR-3) Sample an orbit index IN ∈ [N ] with probability {ẐXi/

∑N
j=1 ẐXj}Ni=1.

(SIR-4) Draw the iteration indexKN on the IN -th orbit with probability {L(Tk(XIN ))wk(XIN )/ẐXIN }k∈Z.

The resulting draw is denoted by UN = TK
N

(XIN ). By construction, for any bounded function f , we
get that E

[
f(UN )

∣∣X1:N , IN
]

= {ẐXIN }
−1
∑
k∈Z wk(XIN )L(Tk(XIN )) which implies E

[
f(UN )

∣∣X1:N , IN
]

=

JNEO
$,N (f) (see (6)). Using Theorem 2, we therefore obtain |E[f(UN )]−

∫
f(z)π(z)dz| ≤ 101/2‖f‖∞E$T N−1,

showing that the law of the random variable µN = Law(UN ) converges in total variation to π as N →∞,

‖µN − π‖TV = sup
‖f‖∞≤1

|µN (f)− π(f)| ≤ 101/2E$T N
−1 . (11)

Based on Andrieu et al. (2010), we now derive the NEO-MCMC procedure, which in a nutshell consists
in iterating the SIR procedure while keeping a conditioning point (or equivalently, orbit); see Appendix C.
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The convergence of NEO-MCMC does not rely on letting N → ∞: the NEO-MCMC works as soon as
N ≥ 2, although as we will see below the mixing time decreases as N increases.

This procedure is summarized in Algorithm 2. The NEO-MCMC procedure is an iterated algorithm
which produces a sequence {(Yn, Un)}n∈N of points in Rd. The n-th iteration of the NEO-MCMC algorithm
consists in two main steps: 1) updating the conditioning point Yn−1 → Yn 2) sampling Un by selecting a
point in the orbit {Tk(Yn)}k∈Z of the conditioning point. Compared to SIR, only the generation of the

points (step (SIR-1)) is modified: we set X1
n = Yn−1 (the conditioning point), and then draw X2:N :

iid∼
n ρ.

The sequence {Yn}n∈N defined by Algorithm 2 is a Markov chain:

P (Yn ∈ A |Y0:n−1) = P (Yn ∈ A |Yn−1) = P (Yn,A) ,

where

P (y,A) =

∫
δy(dx1)

N∏
j=2

ρ(xj)dxj
N∑
i=1

Ẑxi∑N
j=1 Ẑxj

1A(xi) , y ∈ Rd ,A ∈ B(Rd) . (12)

Note that this Markov kernel describes the way, at stage n + 1, the conditioning point Yn+1 is selected
given Yn, which depends only on the estimator of the normalizing constants associated with each orbit,
but not on the sample Un selected on the conditioning orbit. In addition, given the conditioning point
Yn at the n-th iteration, the conditional distribution of the output sample Un is P

(
Un ∈ B | In, X1:N

n

)
=

P (Un ∈ B |Yn) = Q(Yn,B) where

Q(y,B) =
∑
k∈Z

wk(y)L(Tk(y))

Ẑy
1B(Tk(y)) , y ∈ Rd ,B ∈ B(Rd) . (13)

With these notations, if the Markov chain is started at Y0 = y, then for any n ∈ N, the law of the n-th
conditioning point is P (Yn ∈ A |Y0 = y) = Pn(y,A) and the law of the n-th sample is P (Un ∈ B |Y0) =
PnQ(y,B). Define π̃ the pdf given, for y ∈ Rd, by

π̃(y) =
ρ(y)

Z

∑
k∈Z

wk(y)L(Tk(y)) =
ρ(y)Ẑy
Z

. (14)

The following theorem shows that, for any initial condition y ∈ Rd, the distribution of the variable Yn
converges in total variation to π̃ and that the distribution of Un converges to π.

Theorem 4. The Markov kernel P is reversible with respect to the distribution π̃, ergodic and Harris posi-
tive, i.e., for all y ∈ Rd, limn→∞ ‖Pn(y, ·)− π̃‖TV = 0. In addition, π = π̃Q and limn→∞ ‖PnQ(y, ·)−
π‖TV = 0. Moreover, for any bounded function g and any y ∈ Rd, limn→∞ n−1

∑n−1
i=0 g(Ui) = π(g),

P-almost surely, where {Ui}i∈N is defined in Algorithm 2 with Y0 = y.

The proof is postponed to Appendix A.6.

Remark 2. We may provide another sampling procedure of {Yn}n∈N. Define the pdf on the extended space
[N ]×RdN by π̌(i, x1:N ) = N−1π̃(xi)

∏N
j=1,j 6=i ρ(xj). Consider a Gibbs sampler targeting π̌ consisting in

(a) samplingX1:N\{In−1}
n |(In−1, Xn−1) ∼

∏
j 6=In−1

ρ(xj), (b) sampling In|X1:N
n ∼ Cat({ẐXin/

∑N
j=1 ẐXjn}

N
i=1

and (c) set Yn = XIn
n . This algorithm is a Gibbs sampler on π̌ and we easily verify that the distribution of

{Yn}n∈N is the same as Algorithm 2.
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The next theorem provides non asymptotic quantitative bounds on the convergence in total variation.
The main interest of NEO-MCMC algorithm is motivated empirically from observed behaviour: the mixing
time of the corresponding Markov chain improves as N increases. This behaviour is quantified theoretically
in the next theorem. Moreover, this improvement is obtained with little extra computational overhead, since
samplingN points from the proposal distribution ρ, computing the forward and backward orbits of the points
and evaluating the normalizing constants {ẐXin}

N
i=1 can be performed in parallel.

Theorem 5. Assume that M$
T < ∞, see (5). Set εN = (N − 1)/(2M$

T +N − 2) and κN = 1 − εN .
Then, for any y ∈ Rd and k ∈ N, ‖P k(y, ·)− π̃‖TV ≤ κkN and ‖P kQ(y, ·)− π‖TV ≤ κkN .

Instead of sampling the new points X2:N
n independently from ρ (Step 1 in Algorithm 2), it is possible to

draw the proposals X1:N
n conditional to the current point Yn−1; see So (2006); Craiu and Lemieux (2007);

Shestopaloff et al. (2018); Ruiz et al. (2020) for related works. Following Ruiz et al. (2020), we use a
reversible Markov kernel with respect to the proposal ρ, i.e., such that ρ(x)m(x, x′) = ρ(x′)m(x′, x),
assuming for simplicity that this kernel has density m(x, x′). If ρ = N(0, σ2 Idd) , an appropriate choice is
an autoregressive kernel m(x, x′) = N(x′;αx, σ2(1− α2) Idd). More generally, we can use a Metropolis–
Hastings kernel with invariant distribution ρ. In this case, for each i ∈ [N ], define for i ∈ [N ],

ri(x
i, x1:N\{i}) =

i−1∏
j=1

m(xj+1, xj)

N∏
j=i+1

m(xj−1, xj) . (15)

Since m is reversible with respect to ρ, for all i, j ∈ [N ], ρ(xi)ri(x
i, x1:N\{i}) = ρ(xj)rj(x

j , x1:N\{j}).
The only modification in Algorithm 2 is Step 1, which is replaced by: Draw Un ∈ [N ] uniformly, set
XUn
n = Yn−1 and sample X1:N\{Un}

n ∼ rUn(XUn
n , ·). The validity of this procedure is established in

Appendix A.6.

4 Continuous-time version of NEO and NEIS

The NEO framework takes up and extends NEIS introduced in Rotskoff and Vanden-Eijnden (2019). NEIS
focuses on normalizing constant estimation and should be therefore compared with NEO-IS. In Rotskoff
and Vanden-Eijnden (2019), the authors do not consider possible extensions of these ideas to sampling
problems. Proofs of the statements and detailed technical conditions are postponed to Appendix B. We first
consider how NEO can be adapted to continuous-time dynamical system. Consider the Ordinary Differential
Equation (ODE) ẋt = b(xt) , where b : Rd → Rd is a smooth vector field. Denote by (φt)t∈R the flow of
this ODE (assumed to be well-behaved). Under appropriate regularity condition Jφt(x) = exp(

∫ t
0
∇ ·

b(φs(x))ds); see Lemma 10. Let $ : R → R+ be a nonnegative smooth function with finite support,
with Ωc =

∫∞
−∞$(t)dt. The continuous-time counterpart of the proposal distribution (1) is ρc

T(x) =

(Ωc)−1
∫∞
−∞$(t)ρ(φ−t(x))Jφ−t(x)dt, which is a continuous mixture of the pushforward of the proposal

ρ by the flow of (φs)s∈R. Assuming for simplicity that ρ(x) > 0 for all x ∈ Rd, then ρc
T(x) > 0 for all

x ∈ Rd, and using again the IS formula, for any nonnegative function f ,∫
f(x)ρ(x)dx =

∫
f(x)

ρ(x)

ρc
T(x)

ρc
T(x)dx =

∫ [∫ ∞
−∞

wc
t (x)f(φt(x))dt

]
ρ(x)dx , (16)

wc
t (x) = $(t)ρ(φt(x))Jφt(x)

/∫ ∞
−∞

$(s+ t)ρ(φs(x))Jφs(x)ds . (17)
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These relations are the continuous-time counterparts of (2). Eqs. (16)-(17) define a version of NEIS Rotskoff
and Vanden-Eijnden (2019), with a finite support weight function$; see Appendices B.2 and B.3 for weight
functions with infinite support. This identity is of theoretical interest but must be discretized to obtain
a computationally tractable estimator. For h > 0, denote by Th an integrator with stepsize h > 0 of
the ODE ẋ = b(x). We may construct NEO-IS and NEO-SNIS estimators based on the transform T ←
Th and weights $k ← $(kh). We might show that for any bounded function f and for any x ∈ Rd,
limh↓0

∑
k∈Z wk(x)f(Tkh(x)) =

∫∞
−∞ wc

t (x)f(φt(x))dt, where we omitted here the dependency in h of
wk. Therefore, taking h ↓ 0+, the NEO-IS converges to the continuous-version (16)-(17). There is however
an important difference between NEO and the NEIS method in Rotskoff and Vanden-Eijnden (2019) which
stems from the way (16)-(17) are discretized. Compared to NEIS, NEO-IS using T ← Th and weights
$k ← $(kh) is unbiased for any stepsize h > 0. NEIS uses an approach inspired by the nested-sampling
approach, which amounts to discretizing the integral in (16) also in the state-variable x; see Skilling (2006);
Chopin and Robert (2010). This discretization is biased which prevents the use of this approach to develop
MCMC sampling algorithm; see Appendix B.

5 Experiments and Applications
Normalizing constant estimation The performance of NEO-IS is assessed on different normalizing con-
stant estimation benchmarks; see Jia and Seljak (2020). We focus on two challenging examples. Additional
experiments and discussion on hyperparameter choice are given in the supplementary material, see Ap-
pendix D.1. (1) Mixture of Gaussian (MG25): π(x) = P−1

∑P
i=1 N(x;µi,j , Dd), where d ∈ {10, 20, 40},

Dd = diag(0.01, 0.01, 0.1, . . . , 0.1) and µi,j = [i, j, 0, . . . , 0]T with i, j ∈ {−2, . . . , 2}. (2) Funnel dis-
tribution (Fun) π(x) = N(x1; 0, a2)

∏d
i=1 N(xi; 0, e2bx1) with d ∈ {10, 20, 40}, a = 1, and b = 0.5. In

both case, the proposal is ρ = N(0, σ2
ρ Idd) with σ2

ρ = 5.
The NEO-IS estimator is compared with (i) the IS estimator using the proposal ρ, (ii) the Adaptive

Importance Sampling (AIS) estimator of Tokdar and Kass (2010) and (iii) the Neural Importance Sampling
(NIS)1. For NEO-IS, we use $k = 1[K](k) with K = 10 (ten steps on the forward orbit), and conformal
Hamiltonian dynamics γ = 1, M = 5 · Idd for dimensions d = {10, 20}, and γ = 2.5 for d = 40 (where γ
is the damping factor, M the mass matrix, h is the stepsize of the integrator). The parameters of AIS are set
to obtain a complexity comparable to NEO-IS; see Appendix D.1. For NIS, we use the default parameters.
In Fun, we set γ = 0.2, K = 10, M = 5 · Idd, and h = 0.3. The IS estimator was based on 5 · 105 samples,
and NIS, NEO-IS and AIS were computed with 5 · 104 samples. Figure 2 shows that NEO-IS consistently
outperforms the competing methods.

Sampling NEO-MCMC is assessed for the distributions (MG25) (d = 40) and Fun (d = 20). NEO-
MCMC sampler is compared with (i) the No-U-Turn Sampler - Pyro library Bingham et al. (2019) - and (ii)
i-SIR algorithm Ruiz et al. (2020). The proposal distribution is ρ = N(0, σ2

ρ Idd) with σ2
ρ = 5. Dependent

proposals are used (see (15)) with m(x, x′) = N(x′;αx, σ2
ρ(1 − α2) Idd) with α = 0.99. For NUTS, the

default parameters are used. For i-SIR, we use the same number of proposals N = 10, proposal distribution
and dependent proposal as for NEO-MCMC. To make a fair comparison, we use the same clock time for all
three algorithms. The number of iterations for correlated i-SIR, NEO-MCMC, and NUTS are n = 4 · 106,
n = 4 · 105, and n = 5 · 105, respectively. Figure 3 displays the empirical two-dimensional histograms of
the two first coordinates of samples from the ground truth, i-SIR, NUTS and NEO-MCMC sampler. It is
worthwhile to note that NEO-MCMC algorithm performs much better for MG25 which is a very challenging

1We used the implementation provided by: https://github.com/ndeutschmann/zunis
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Figure 2: Boxplots of 500 independent estimations of the normalizing constant in dimension d =
{10, 20, 45} (from left to right) for MG25 (top) and Fun (bottom). The true value is given by the red
line. The figure displays the median (solid lines), the interquartile range, and the mean (dashed lines) over
the 500 runs.

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

4 2 0 2 4

4

2

0

2

4

Figure 3: Empirical 2-D histogram of the samples of different algorithms targeting MG25 example (top)
and Fun (bottom). From left to right: samples from the target distribution, correlated i-SIR, NUTS, NEO-
MCMC.

distribution, even for SOTA algorithm such as NUTS, which struggles to cross energy barriers between
modes. For Fun, NEO-MCMC performs favourably with respect to NUTS, which is well adapted for this
type of distributions.
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Figure 4: Gibbs inpainting for CelebA dataset. From top to bottom: i-SIR, HMC and NEO-MCMC: From
left to right, original image, blurred image to reconstruct, and output every 5 iterations of the Markov chain.
Last line: a forward orbit used in NEO-MCMC.

Block Gibbs Inpainting with Deep Generative models and NEO-MCMC We apply NEO-MCMC to
the task of sampling the posterior of a deep latent variable model. The model consists of a latent variable
x ∼ N(0, Idd) and a conditional distribution p(z | x) which generates an image z = (z1, . . . , zD) ∈ RD.
Given a family of parametric decoders {x 7→ pθ(z | x), θ ∈ Θ}, and a training set D = {zi}Mi=1, train-
ing involves finding the MLE θ∗ = arg maxθ∈Θ pθ(D). As pθ(z) =

∫
pθ(z | x)p(x)dx, the likelihood is

intractable and to alleviate this problem, Kingma and Welling (2013) proposed to train jointly an approx-
imate posterior qφ(x|z) that maximizes a tractable lower-bound on the log-likelihood: ELBO(z, θ, φ) =
EX∼qφ(·|z)[log pθ(z,X)/qφ(X|z)] ≤ pθ(z), where qφ(x | z) is a tractable conditional distribution with
parameters φ ∈ Φ. It is assumed in the sequel that conditional to the latent variable x, the coordinates are
independent, i.e. pθ(z | x) =

∏D
i=1 pθ(z

i|x).
It is possible to train VAE with the NEO algorithm using the unbiased estimate of the normalizing

constant to construct an ELBO. This approach is described in the supplement Appendix E. It is assumed
here that the VAE has been trained and we are only interested in the sampling problem. In our experiment,
we use a VAE trained on CelebA dataset 2 Liu et al. (2018). We consider the Block Gibbs inpainting task
introduced in (Levy et al., 2018, Section 5.2.2). We in-paint the bottom of an image using Block Gibbs
sampling. Given an image z, denote by [zt, zb] the top and the bottom half pixels. A two-stage Gibbs
sampler amounts to (a) sampling pθ∗(x|zt, zb) and (b) sampling pθ∗(zb|x, zt) = pθ∗(z

b|x) (since zb and zt

are independent conditional on x). Starting from an image z0, we sample at each step xk ∼ pθ∗(z | zk)
and then z̃k ∼ pθ∗(z | xk). We then set zk+1 = (zt∗, z̃

b
k+1). Stage (b) is elementary but stage (a) is

challenging. We use the following decomposition of pθ∗(x | z) = qβφ∗(x | z)pθ∗(x, z)/(q
β
φ∗(x | z)pθ∗(z))

with β ∈ (0, 1). We identify the proposal ρ(x) ∝ qβφ∗(x | z) , the likelihood L← pθ∗(x, z)/q
β
φ∗(x | z) and

the normalizing constant Z = pθ∗(z) and apply i-SIR and NEO-MCMC sampler for stage (a). We compare
different algorithms in stage (a): i-SIR, HMC and NEO-MCMC, with the same computational complexity
(N = 10, K = 12, γ = 0.2 for NEO-MCMC, N = 120 for i-SIR, and HMC is run with K = 20 leap-
frog steps). For each algorithm, 10 steps are performed. Figure 8 displays the evolution of the resulting
Markov chains. The samples clearly illustrate that NEO-MCMC mixes better than i-SIR and HMC. More
are showcased in the supplementary.

2See https://github.com/YannDubs/disentangling-vae/tree/master/results/betaH_celeba
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6 Conclusion
In this paper, we have proposed a new family of algorithms, NEO, for computing normalizing constants and
sampling from complex distributions. This methodology comes with asymptotic and non-asymptotic con-
vergence guarantees. For normalizing constant estimation, NEO-IS compares favorably to state-of-the-art
algorithms on difficult benchmarks. NEO-MCMC is also very efficient for sampling complex distributions:
it is particularly well-adapted to sampling multimodal distributions, thanks to its proposal mechanism which
avoids being trapped in local modes. There are numerous potential extensions to this work. For example, it
would be interesting to consider deterministic transformations other than conformal Hamiltonian dynamics
integrators. These transformations could be trained, as for Neural IS, using a variation lower bound. It would
also be interesting to further investigate the influence of the mixture weights {$k}k∈Z on the efficiency of
NEO.
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A Proofs

A.1 Additional notation
By abuse of notation, we denote by ρ and π̃ the probability measures with density with respect to the
Lebesgue measure ρ and π̃ respectively.

A.2 Proof of (3)
The second expression of wk follows from JT−j (T

k(x)) = JTk−j (x)/JTk(x) which implies

wk(x) = $kρ(Tk(x))/
∑

j∈Z
$jρ(Tk−j(x))JT−j (T

k(x)) ,

= $kρ(Tk(x))JTk(x)/
∑

j∈Z
$jρ(Tk−j(x))JTk−j (x) = $kρ−k(x)

/∑
i∈Z

$k+iρi(x) .

A.3 Proof of Theorem 1
The unbiasedness of ẐX1:N follows directly from (2). Moreover, as ẐX1:N is unbiased and E$T < ∞, we
can write

Varρ[ẐX/Z] = Eρ[(ẐX/Z)2]− 1 = E$T − 1 . (18)

As X1:N iid∼ ρ, Varρ[ẐX1:N /Z] = N−1 Varρ[ẐX/Z]. Finally, if M$
T < ∞, then Hoeffding’s inequality

applies and we can write for any ε > 0,

P(|ẐX1:N /Z − 1| > ε) ≤ 2 exp(−2Nε2/(M$
T )2) . (19)

Writing δ = 2 exp(−2Nε2/(M$
T )2), we identify log(2/δ) = 2Nε2/(M$

T )2 and ε = M$
T

√
log(2/δ)/(2N).

Plugging this expression of ε in (19) concludes the proof.

A.4 Proof of Theorem 2
We preface the proof of Theorem 2 with two auxiliary lemmas.

Lemma 6. Let A,B be two integrable random variables satisfying |A/B| ≤ M almost surely and denote
a = E[A], b = E[B]. Then,

|E[A/B]− a/b| ≤
√

Var(A/B) Var(B)

b
, (20)

Var(A/B) ≤ E
[
|A/B − a/b|2

]
≤ 2

B2

(
E
[
|AN −A|2

]
+M2E

[
|BN −B|2

])
. (21)

Proof. Write first, using the Cauchy-Schwarz inequality,∣∣∣∣E [AB
]
− a

b

∣∣∣∣ =

∣∣∣∣E [AB
]
− E [A]

b

∣∣∣∣ =

∣∣∣∣E [A( 1

B
− 1

b

)]∣∣∣∣ ,
=

∣∣∣∣E [AB
(
b−B
b

)]∣∣∣∣ =

∣∣∣∣E [(AB − E
[
A

B

])(
B − b
b

)]∣∣∣∣ ,
≤
√

Var(A/B)
√

Var(B)

b
.
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Moreover, using |A/B| ≤M yields∣∣∣∣AB − a

b

∣∣∣∣ =

∣∣∣∣1b (A− a) +A

(
1

B
− 1

b

)∣∣∣∣ ≤ 1

b
|A− a|+ |A|

Bb
|B − b| ,

≤ 1

b
|A− a|+ M

b
|B − b| .

Therefore,

|A/B − a/b|2 ≤ 2

b2
(
|A− a|2 +M2|B − b|2

)
,

Using that E
[
|A/B − a/b|2

]
= Var(A/B) + |E[A/B]− a/b|2 concludes the proof.

We get the following lemma from (Douc et al., 2011, Lemma 4).

Lemma 7. Assume that A and B are random variables and that there exist positive constants b,M,C,K
such that

(i) |A/B| ≤M , P-a.s. ,

(ii) for all ε > 0 and all N ≥ 1, P (|B − b| > ε) ≤ K exp(−Rε2) ,

(iii) for all ε > 0 and all N ≥ 1, P (|A| > ε) ≤ K exp
(
−Rε2/M2

)
,

then,
P(|A/B| ≥ ε) ≤ 2K exp(−Rb2ε2/4M2) .

Proof. By the triangle inequality,

|A/B| =
∣∣∣∣AB (b−B)b−1 + b−1A

∣∣∣∣ ,
≤ b−1 |A/B| |b−B|+ b−1 |A| ≤Mb−1 |b−B|+ b−1 |A| .

Therefore,

{|A/B| ≥ ε} ⊆
{
|B − b| ≥ εb

2M

}
∪
{
|A| ≥ εb

2

}
.

Then, conditions (ii) and (iii) imply that

P (|A/B| ≥ ε) ≤ P
(
|B − b| ≥ εb

2M

)
+ P

(
|A| ≥ εb

2

)
,

≤ 2K exp(−Rb2ε2/(4M2)) .

Proof of Theorem 2. Let g : Rd → R such that supx∈Rd |g| (x) ≤ 1 and denote π(g) =
∫
gdπ. We use

Lemma 6 with A = AN and B = ẐX1:N where

AN =
1

N

N∑
i=1

∑
k∈Z

wk(Xi)L(Tk(Xi))g(Tk(Xi)) , ẐX1:N =
1

N

N∑
i=1

∑
k∈Z

wk(Xi)L(Tk(Xi)) . (22)
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By construction, since supx∈Rd |g| (x) ≤ 1, almost surelyAN/ẐX1:N ≤ 1 and Var(ẐX1:N ) = N−1Var(ẐX1).
Then, using (2) with a = E[AN ] = Zπ(g) and b = E[ẐX1:N ] = Z, Lemma 6 implies

∣∣JNEO
$,N (g)− π(g)

∣∣ =
∣∣∣E[AN/ẐX1:N ]− a/b

∣∣∣ ≤ N−1/2

√
Var(AN/ẐX1:N )Var(ẐX1) . (23)

On the other hand,

E
[
|AN − a|2

]
= N−1EX∼ρ

[{∑
k∈Z wk(X)L(Tk(X))g(Tk(X))− Zπ(g)

}2] ≤ N−1Z2E$T .

These inequalities yield using Var(ẐX1) ≤ E$T and Lemma 6 again:

E
[
|JNEO
$,N (g)− π(g)|2

]
≤ 2

N
(E$T + Var(ẐX1)) ≤ 4

N
E$T ,

|E
[
JNEO
$,N (g)− π(g)

]
| ≤

√
2(E$T + Var(ẐX1))Var(ẐX1)

N
≤ 2E$T

N
,

which concludes the proof.
Define

ÃN = N−1
N∑
i=1

∑
k∈Z

wk(Xi)L(Tk(Xi))
(
g(Tk(Xi))− π(g)

)
.

With this notation, the proof of (9) relies on the application of Lemma 7 to A = ÃN and B = ẐX1:N , since

JNEO
$,N (g)− π(g) = AN/ẐX1:N .

As supx∈Rd |g| (x) ≤ 1, we get that ÃN/ẐX1:N ≤ 2. By (2), E[ẐX1:N ] = Z and ẐX1:N = N−1
∑N
i=1Wi

with Wi =
∑
k∈Z wk(Xi)L(Tk(Xi)) ≤M$

T . Then, by Hoeffding’s inequality, for all ε > 0,

P(|BN − Z| > ε) ≤ 2 exp(−2N(ε/M$
T )2) .

Similarly, AN is centered and AN = N−1
∑N
i=1 Ui with

Ui =
∑
k∈Z

wk(Xi)L(Tk(Xi)){g(Tk(Xi))− π(g)}

and |Ui| ≤ 2M$
T almost surely. By Hoeffding’s inequality, for all ε > 0,

P(|AN | > ε) ≤ 2 exp(−Nε2/(8(M$
T )2)) .

The assumptions of Lemma 7 are met so that

P(|JNEO
$,N (g)− π(g)| > ε) ≤ 4 exp(−ε2NZ2/[32(M$

T )2]) ,

which concludes the proof.
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A.5 Proof of Lemma 3
As wk(x) = $kρ(Tk(x))/{ΩρT(Tk(x))}, by Jensen’s inequality,

E$T =

∫ (∑
k∈Z

wk(x)L(Tk(x))/Z

)2

ρ(x)dx =

∫ (∑
k∈Z

$k

Ω

π(Tk(x))

ρT(Tk(x))

)2

ρ(x)dx ,

≤
∫ ∑

k∈Z

$k

Ω

(
π(Tk(x))

ρT(Tk(x))

)2

ρ(x)dx ,

≤ Ω−1
∑
k∈Z

$k

∫ (
π(Tk(x))

ρT(Tk(x))

)2

ρ(x)dx .

Using the change of variables y = Tk(x) yields, by (1),

E$T ≤ Ω−1
∑
k∈Z

$k

∫ (
π(y)

ρT(y)

)2

ρ(T−k(y))JT−k(y)dy ≤
∫ (

π(y)

ρT(y)

)2

ρT(y)dy .

A.6 Proofs of NEO MCMC sampler
Proof of Theorem 4. Note first that by symmetry, we have

P (y,A) = N−1

∫ N∑
i=1

δy(dxi)

N∏
j=1,j 6=i

ρ(xj)dxj
N∑
k=1

Ẑxk∑N
j=1 Ẑxj

1A(xk) . (24)

We begin with the proof of reversibility of P with respect to π̃. Let f, g be nonnegative measurable functions.
By definition of P ,∫

π̃(dy)P (y,dy′)f(y)g(y′) =
1

NZ

∫ N∑
i=1

ρ(dy)Ẑyf(y)δy(dxi)

N∏
l=1,l 6=i

ρ(dxl)

N∑
k=1

Ẑxk∑N
j=1 Ẑxj

g(xk) ,

=
1

NZ

∫ N∑
i=1

Ẑxif(xi)

N∏
l=1

ρ(dxl)

N∑
k=1

Ẑxk∑N
j=1 Ẑxj

g(xk) ,

=
1

NZ

∫ N∏
l=1

ρ(dxl)

∑N
i=1 Ẑxif(xi)

∑N
k=1 Ẑxkg(xk)∑N

j=1 Ẑxj
,

=

∫
π̃(dy)P (y,dy′)f(y′)g(y) ,

18
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which shows that P is π̃-reversible. We now establish that P is π̃-irreducible. We have for y ∈ Rd,
A ∈ B(Rd),

P (y,A) =

∫
δy(dx1)

N∑
i=1

Ẑxi

NẐx1:N

1A(xi)

N∏
j=2

ρ(dxj)

=

∫
Ẑy

Ẑy +
∑N
j=2 Ẑxj

1A(x)

N∏
j=2

ρ(dxj) +

∫ N∑
i=2

Ẑxi

Ẑy +
∑N
j=2 Ẑxj

1A(xi)

N∏
j=2

ρ(dxj)

≥
N∑
i=2

∫
Ẑxi

Ẑy + Ẑxi +
∑N
j=2,j 6=i Ẑxj

1A(xi)

N∏
j=2

ρ(dxj)

≥
N∑
i=2

∫
π̃(dxi)1A(xi)

∫
Z

Ẑy + Ẑxi +
∑N
j=2,j 6=i Ẑxj

N∏
j=2,j 6=i

ρ(dxj) .

Since the function f : z 7→ (z + a)−1 is convex on R+ for a > 0, we get for i ∈ {2, . . . , N},

∫
Z

Ẑy + Ẑxi +
∑N
j=2,j 6=i Ẑxj

N∏
j=2,j 6=i

ρ(dxj) ≥ Z

Ẑy + Ẑxi +
∫ ∑N

j=2,j 6=i Ẑxj
∏N
j=2,j 6=i ρ(dxj)

≥ Z

Ẑy + Ẑxi + Z(N − 2)
. (25)

Therefore, for A ∈ B(Rd) satisfying π̃(A) > 0, we get P (y,A) > 0 for any y ∈ Rd since Ẑx < ∞ for any
x ∈ Rd. By definition, P is π̃-irreducible.

We show that P is Harris recurrent using (Tierney, 1994, Corollary 2). To this end, since P is π̃-
irreducible, it is sufficient to show thatP is a Metropolis type kernel. Defineα(x1, x2) = (N−1)

∫ ∏N
j=3 ρ(dxj)Ẑx2/

∑N
j=1 Ẑxj

for x1, x2 ∈ Rd and ρ2:N (dx2:N ) = {
∏N
j=2 ρ2:N (xj)}dx2:N . Then, by (12), we get with this notation, for

y ∈ Rd, A ∈ B(Rd),

P (y,A)

=

∫
δy(dx1)ρ2:N (dx2:N )

N∑
i=2

Ẑxi

NẐx1:N

1A(xi) +

∫
δy(dx1)ρ2:N (dx2:N )

Ẑx1

NẐx1:N

1A(x1)

=

N∑
i=2

∫
δy(dx1)ρ2:N (dx2:N )

Ẑxi

NẐx1:N

1A(xi) +

∫
δy(dx1)ρ2:N (dx2:N )

Ẑx1

NẐx1:N

1A(x1)

=

N∑
i=2

∫
δy(dx1)ρ(dxi)

∫ N∏
j=2,j 6=i

ρ(xj)dxj
Ẑxi1A(xi)

NẐx1:N

+

∫
δy(dx1)ρ2:N (dx2:N )

Ẑx11A(x1)

NẐx1:N

=

N∑
i=2

∫
α(y, xi)

(N − 1)
1A(xi)ρ(dxi) +

∫
δy(dx1)ρ2:N (dx2:N )

{
1−

N∑
i=2

Ẑxi

NẐx1:N

}
1A(x1)

=

∫
A

α(y, y′)ρ(y′)dy′ +

(
1−

∫
α(y, y′)ρ(y′)dy′

)
δy(A) . (26)
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With the terminology of (Tierney, 1994, Corollary 2), P is Metropolis type kernel and therefore is Harris
recurrent.

Note that Algorithm 2 defines a Markov chain {Yi, Ui}i∈N taking for U0 an arbitrary initial point with
Markov kernel denoted by P̃ . By abuse of notation, we denote by {Yi, Ui}i∈N the canonical process on the
canonical space (Rd × Rd)N endowed with the corresponding σ-field and denote by Py,u the distribution
associated with the Markov chain with kernel P̃ and initial distribution δy ⊗ δu. Denote for any y ∈ Rd by
Py the marginal distribution of Py,u with respect to {Yi}i∈N, i.e. Py(A) = P(y,u)({Yi}i∈N ∈ A) for u ∈ Rd,
noting that by definition, P(y,u)(A × (Rd)N) does not depend on u. In addition, under Py , {Yi}i∈N is a
Markov chain associated with P . Therefore, since P is π̃-irreducible and Harris recurrent, we get by (Douc
et al., 2018, Theorem 11.3.1) and (Tierney, 1994, Theorem 2, 3) for any y ∈ Rd, limk→∞ ‖δyP k−π̃‖TV = 0
and for any bounded and measurable function g,

n−1
n∑
k=1

g(Yk) = π̃(g) , Py-almost surely . (27)

We now turn to proving the properties regarding Q. For any B ∈ B(Rd), using (2), we obtain∫
π̃(y)Q(y,B)dy = Z−1

∫
ρ(y)

∑
k∈Z

wk(y)L(Tk(y))1B(Tk(y))dy = π(B) .

Using for all y ∈ Rd, limn→∞ ‖Pn(y, ·) − π̃‖TV = 0, we get limn→∞ ‖PnQ(y, ·) − π‖TV = 0. It
remains to show the stated Law of Large Numbers. Let y, u ∈ Rd and g be a bounded measurable function.
Define for any i ∈ N∗, Ũi = g(Ui) − Qg(Yi). By definition, for any i ∈ N∗,

∣∣∣Ũi∣∣∣ ≤ 2 supx∈Rd |g(x)|
and E(y,u)[Ũi|Fi−1] = 0, where {Fk}k∈N is the canonical filtration. Therefore, {Ũi}i∈N∗ are {Fk}k∈N-
martingale increments and {Sk =

∑k
i=1 Ũi}k∈N is a {Fk}k∈N-martingale. Using (Hall and Heyde, 1980,

Theorem 2.18), we get
lim
n→∞

{Sn/n} = 0 , P(y,u)-almost surely . (28)

The proof is completed using that limn→∞{n−1
∑n
i=1Qg(Yi)} = π̃(Qg) = π(g), Py-almost surely by (27)

and therefore by definition, P(y,u)-almost surely.

Proof of Theorem 5. We have for (x,A) ∈ Rd × B(Rd),

P (y,A) ≥
N∑
i=2

∫
π̃(dxi)1A(xi)

∫
Z

Ẑy + Ẑxi +
∑N
j=2,j 6=i Ẑxj

N∏
j=2,j 6=i

ρ(dxj) .

Moreover, as for any x ∈ Rd, Ẑx/Z ≤M$
T ,∫

Z

Ẑy + Ẑxi +
∑N
j=2,j 6=i Ẑxj

N∏
j=2,j 6=i

ρ(dxj) ≥ Z

Ẑy + Ẑxi + Z(N − 2)
≥ 1

2M$
T +N − 2

.

We finally obtain the inequality

P (x,A) ≥ π̃(A)× N − 1

2M$
T +N − 2

= εN π̃(A) . (29)

20



NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform

The proof for P is concluded from (Douc et al., 2018, Theorem 18.2.4).
As ‖P k(y, ·)− π̃‖TV ≤ κkN , for any bounded function f , ‖f‖∞ ≤ 1, we have |P kf(y)− π̃(f)| ≤ κkN ,

by definition of the Total Variation Distance. Then, writing f = Qg for any bounded function g, ‖g‖∞ ≤ 1,
we have ‖f‖∞ ≤ 1 and

|P kf(y)− π̃(f)| = |P kQg(y)− π̃Q(g)| = |P kQg(y)− π(g)| ≤ κkN . (30)

Write now P the Markov kernel extending to correlated proposals: for y ∈ Rd and A ∈ B(Rd),

P (y,A) = N−1

∫ N∑
i=1

δy(dxi)ri(x
i,dx1:n\{i})

N∑
k=1

Ẑxk

NẐx1:N

1A(xk) , (31)

where the Markov kernels Ri are defined by Ri(xi,dx1:N\{i}) = ri(x
i, x1:N\{i})dx1:N\{i} and ri by (15).

Theorem 8. P is π̃-invariant.

Proof. Define the Nd-dimensional probability measure ρ̄N (dx1:N ) = ρ(dx1)R1(x1,dx2:n). Let A ∈
B(Rd). Then, we have

π̃P (A) = N−1

∫
π̃(dy)

∫ N∑
i=1

δy(dxi)Ri(x
i,dx1:n\{i})

N∑
k=1

Ẑxk

NẐx1:N

1A(xk)

= (NZ)−1

∫ N∑
i=1

ρ(dxi)ẐxiRi(x
i,dx1:n\{i})

N∑
k=1

Ẑxk

NẐx1:N

1A(xk)

= (NZ)−1

∫
ρ̄N (dx1:N )

N∑
i=1

Ẑxi
N∑
k=1

Ẑxk

NẐx1:N

1A(xk)

= (NZ)−1

∫ N∑
k=1

Ẑxk ρ̄N (dx1:N )1A(xk)

= (NZ)−1

∫ N∑
k=1

Ẑxkρ(dxk)1A(xk) = π̃(A) .

B Continuous-time limit of NEO and NEIS

B.1 Proof for the continuous-time limit
Consider h̄ > 0 and a family {Th : h ∈

(
0, h̄
]
} of C1-diffeomorphisms. For N ∈ N∗ and a bounded and

continuous f : Rd → R, write

INEO
$,N,h(f) = N−1

N∑
i=1

∑
k∈Z

wk,h(Xi)f(Tkh(Xi)) , (32)
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where {Xi}Ni=1
iid∼ ρ and for some weight function $c : R → R+ with bounded support (see H3), k ∈ Z

and h > 0, setting $k,h = $c(kh),

wk,h(x) = $k,hρ−k(x)
/∑

i∈Z
$k+i,hρi(x) . (33)

We show in this section the convergence of the sequence of NEO-IS estimators {INEO
$,N,h(f) : h ∈(

0, h̄
]
} as h ↓ 0 to its continuous counterpart, the version (16) of NEIS Rotskoff and Vanden-Eijnden

(2019), with weight function $, in the case where for any h ∈
(
0, h̄
]
, Th corresponds to one step of a

discretization scheme with stepsize h of the ODE

ẋt = b(xt) , (34)

where b : Rd → Rd is a drift function. We are particularly interested in the case where (34) corresponds
to the conformal Hamilonian dynamics (10) and {Th : h ∈

(
0, h̄
]
} to its conformal symplectic Euler

discretization: for all (q, p) ∈ R2d,

Th(q, p) = (q + hM−1{e−hγp− h∇U(q)}, e−hγp− h∇U(q)) . (35)

We make the following conditions on b, ρ, $c and {Th : h ∈
(
0, h̄
]
}.

H1. The function b is continuously differentiable and Lb-Lipschitz.

Under H1, consider (φt)t≥0 the differential flow associated with (34), i.e. φt(x) = xt where (xt)t∈R is
the solution of (34) starting from x. Note that H1 implies that (t, x) 7→ φt(x) is continuously differentiable
on R× Rd, see (Hartman, 1982, Theorem 4.1 Chapter V).

H1 is satisfied in the case of the conformal Hamiltonian dynamics if the potential U is continuously
differentiable and with Lipschitz gradient, that is there exists LU ∈ R∗+ such that for any x1, x2 ∈ Rd,
‖∇U(x1)−∇U(x2)‖ ≤ LU‖x1 − x2‖.

H2. For any h ∈
(
0, h̄
]
, Th : Rd → Rd is a C1-diffeomorphism. In addition, it holds:

(i) there exist C ≥ 0 and δ ∈ (0, 1] such that for any x ∈ Rd,

‖Th(x)− (x+ hb(x))‖ ≤ Ch1+δ(1 + ‖x‖) ;

(ii) for any x ∈ Rd and T ∈ R∗+,

lim
h↓0

max
k∈[−bT/hc:bT/hc]

‖Jφkh(x)− JTkh
(x)‖ = 0 .

Note that H2 is automatically satisfied for the conformal symplectic Euler discretization (35) of the
conformal Hamiltonian dynamics. Indeed, in that case div b(φt(x)) = γd, and therefore Jφt(x) = eγdt for
t ∈ R, and for any h > 0, k ∈ Z, JTkh

(x) = eγdhk; see Franca et al. (2019).
Define

support($c) = {t ∈ R : $c(t) 6= 0} . (36)

H3. (i) ρ is continuous and positive on Rd

(ii) $c is piecewise continuous on R, its support support($c) is bounded and sup(s,t)∈A$ $
c(t)/$c(t+

s) = m <∞ where

A$ = {(s, t) ∈ R2; t ∈ support($c), (s+ t) ∈ support($c)} .
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(iii) Moreover, for any x ∈ Rd, we have ρcT(x) =
∫
$c(t)ρ(φt(x))Jφt(x)dt > 0.

Note that H3 implies that supt∈R |$c(t)| < +∞. H3 is automatically satisfied for example in the case
$c = 1[−T1,T2] for T1, T2 ≥ 0.

Theorem 9. Assume H1, H2, H3. For any x ∈ Rd and f : Rd → R continuous and bounded,

lim
h↓0

∣∣∣∣∣∑
k∈Z

wk,h(x)f(Tkh(x))−
∫ ∞
−∞

wc
t (x)f(φt(x))dt

∣∣∣∣∣ = 0 ,

where {wk,h}k∈Z and wc
t are defined in (33) and (17) respectively, i.e. for x ∈ Rd and t ∈ R,

wc
t (x) = $c(t)ρ(φt(x))Jφt(x)

/∫ ∞
−∞

$c(s+ t)ρ(φs(x))Jφs(x)ds . (37)

Proof. Let f be a bounded continuous function, x ∈ Rd. Setting

gk,h(x) = ρ(Tkh(x))$c(kh)JTkh
(x)f(Tkh(x))

h∆k,h(x) = h
∑
i∈Z

ρ(Tih(x))$c((k + i)h)JTih(x) ,

we have that∑
k≥0

hgk,h(x)

h∆k,h(x)
=

∫ T$

0

1

h∆bt/hc,h(x)
gbt/hc,h(x)dt+

∫ hbT$/hc+h

T$

1

h∆bt/hc,h(x)
gbt/hc,h(x)dt ,

as gk,h(x) = 0 when k > bT$/hc. Therefore, we can consider the following decomposition,∣∣∣∣∣∣
∑
k≥0

ρ(Tkh(x))$c(kh)JTkh
(x)f(Tkh(x))∑

i∈Z ρ(Tih(x))$c((k + i)h)JTih(x)

−
∫ T$

0

$c(t)ρ(φt(x))Jφt(x)f(φt(x))dt∫
$c(t+ s)ρ(φs(x))Jφs(x)ds

∣∣∣∣∣∣ ≤ A+B

with

A =

∣∣∣∣∣
∫ T$

0

1

h∆bt/hc,h(x)

{
gbt/hc,h(x)−$c(t)ρ(φt(x))Jφt(x)f(φt(x))

}
dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ hbT$/hc+h

T$

1

h∆bt/hc,h(x)
gbt/hc,h(x)dt

∣∣∣∣∣ ,
and

B =

∫ T$

0

∣∣∣∣$c(t)ρ(φt(x))Jφt(x)f(φt(x))dt

h∆bt/hc,h(x)
− $c(t)ρ(φt(x))Jφt(x)f(φt(x))∫

$c(t+ s)ρ(φs(x))Jφs(x)ds

∣∣∣∣dt ,
We bound those terms separately. First of all, under H3-(ii), for any k such that kh ∈ [0, T$], we have
h∆k,h(x) ≥ hm−1∆0,h(x). Second, as limh↓0 h∆0,h(x) =

∫ T$
0

ρ(φs(x))Jφs(x)$c(s)ds > 0, there
exists some h̃ > 0 and c > 0 such that for all k ∈ Z, h < h̃ implies∫ T$

0

$c(t)ρ(φt(x))Jφt(x)dt > c , h∆k,h(x) ≥ hm−1∆0,h(x) > c . (38)
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Then, for h < h̃,

A ≤ c−1

∫ T$

0

|gbt/hc,h(x)−$c(t)ρ(φt(x))Jφt(x)f(φt(x))|dt+ c−1

∫ hbT$/hc+h

T$

∣∣gbt/hc,h(x)
∣∣dt .

By H1 and H3, the function t→ $c(t)ρ(φt(x))Jφt(x)f(φt(x)) is continuous on the compact [0, 2T$] and
thus is bounded. Therefore, for any h ∈

(
0, h̄
)
,

sup
t∈[0,2T$]

|$c(t)ρ(φt(x))Jφt(x)f(φt(x))| ≤ sup
t∈R
|$c| sup

x∈Rd
|f(x)| sup

t∈[0,2T$]

|ρ(φt(x))Jφt(x)| <∞ . (39)

Under H2, (39) and Lemma 13 imply that

sup
t∈[0,hbT$/hc+h)

gbt/hc,h(x) ≤ sup
t∈R
|$c(t)| sup

x∈Rd
|f(x)| sup

t∈[0,hbT$/hc+h)

ρ(T
bt/hc
h (x))J

T
bt/hc
h

(x) <∞ ,

Then, limh↓0
∫ hbT$/hc+h
T$

∣∣gbt/hc,h(x)
∣∣ dt = 0. Finally, Lemma 14 implies that limh↓0A = 0. Moreover,

setting for t ∈ [0, T$],

∆B
t,h(x) (40)

=

∫
|ρ(φhbs/hc(x))$c(h(bs/hc+ bt/hc))Jφhbs/hc(x) −$c(s+ t)ρ(φs(x))Jφs(x))|1A$ (s, t)ds

+

∫ h(bT$/hc−bt/hc+1)

T$−hbt/hc
|ρ(φhbs/hc(x))$c(h(bs/hc+ bt/hc))Jφhbs/hc(x)|1A$ (s, t)ds ,

we have for h < h̃, by (38) and H3-(ii),

B =

∫ T$

0

∣∣∣∣$c(t)ρ(φt(x))Jφt(x)f(φt(x))

h∆bt/hc,h(x)
− $c(t)ρ(φt(x))Jφt(x)f(φt(x))∫

$c(s+ t)ρ(φs(x))Jφs(x)ds

∣∣∣∣dt
≤
∫ T$

0

$c(t)ρ(φt(x))Jφt(x)f(φt(x))

h∆bt/hc,h(x)
∫
$c(s+ t)ρ(φs(x))Jφs(x)ds

∆B
t,h(x)dt

≤ mc−2

∫ T$

0

$c(t)ρ(φt(x))Jφt(x)f(φt(x))∆B
t,h(x)dt

≤ mc−2 sup
t∈R
|$c(t)| sup

x∈Rd
|f(x)| sup

t∈[0,T$]

|ρ(φs(x))Jφs(x)|
∫ T$

0

∆B
t,h(x)dt . (41)

By H1 and H3, the function s → ρ(φs(x))Jφs(x) is continuous on the interval [−T$, T$] and thus is
bounded. Therefore, for any h ∈

(
0, h̄
)
,

sup
(s,t)∈A$

|$c(h(bt/hc+ bs/hc))ρ(φhbs/hc(x))Jφhbs/hc(x)|

≤ sup
(s,t)∈A$

|$c(s+ t)ρ(φs(x))Jφs(x)| < T$ sup
s∈R
|$c(s)| sup

s∈[−T$,T$]

|ρ(φs(x))Jφs(x)| <∞ . (42)

This implies that

lim
h↓0

∫ h(bT$/hc−bt/hc+1)

T$−hbt/hc
|ρ(φhbs/hc(x))$c(h(bs/hc+ bt/hc))Jφhbs/hc(x)|ds = 0 .
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Moreover, for any t ∈ [0, T$], the function

s 7→ |$c(h(bt/hc+ bs/hc))ρ(φhbs/hc(x))Jφhbs/hc(x)−$c(t+ s)ρ(φs(x))Jφs(x)|1A$ (s, t)

converges pointwise to 0 for almost all s ∈ R when h ↓ 0 using H1, H3 and the continuity of s 7→ φs(x).
The Lebesgue dominated convergence theorem applies and by (40), for all t ∈ [0, T$],

lim
h↓0

∆B
t,h(x) = 0 .

Moreover, using h∆k,h(x) = h
∑
i∈Z ρ(Tih(x))$c((k + i)h)JTih(x) and (42),

sup
t∈[0,T$]

sup
h∈(0,h̄)

∆B
t,h(x) <∞ .

The Lebesgue dominated convergence theorem and (41) show that limh↓0B = 0 which concludes the
proof.

B.1.1 Supporting Lemmas

For f ∈ C1(Rd,Rd), define Jf (x) the Jacobian matrix of f evaluated at x and the divergence operator by
div f(x) = tr[Jf (x)].

Lemma 10. Let b be a C1 vector field in Rd and (φt)t∈R be the flow of the ODE (34). For any t ∈ R, the
Jacobian of φt is given by

Jφt(x) = exp(
∫ t

0
div b(φs(x))ds) .

Proof. First, for t ∈ R and x ∈ R, write A(t, x) = Jφt(x) the Jacobian matrix of φt evaluated at x. By
Jacobi’s formula, ˙detA(t, x) = tr[adj(A(t, x)) · Ȧ(t, x)], where tr[M ] denotes the trace of a matrix M
and adj(M) its adjugate, i.e. the transpose of the cofactor matrix of M such that adj(M)M = det(M) Id.
Since for all t and x, Ȧ(t, x) = Jb◦φt(x) = Jb(φt(x)) ·A(t, x), then

J̇φt(x) = tr[adj(A(t, x)) · Jb(φt(x)) ·A(t, x)] = tr[Jb(φt(x))]Jφt(x) . (43)

Integrating this ODE yields Jφt(x) = exp(
∫ t

0
div b(φs(x))ds).

Lemma 11. Assume H1. Then, there exists C > 0 such that for any x ∈ Rd, t ∈ R, k ∈ Z, h > 0,

‖φt(x)‖ ≤ CeC|t|(‖x‖+ 1) ,

‖Tkh(x)‖ ≤ CeC|kh|(‖x‖+ 1) .

This lemma follows from Gronwall’s inequality and H1.

Lemma 12. Assume H1 and H2-(i). There exists C > 0 such that for any x ∈ Rd, h ∈
(
0, h̄
)
,

‖Th(x)− φh(x)‖ ≤ C{1 + ‖x‖}‖h1+δ . (44)
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Proof. Under H1 and H2-(i), we have

‖Th(x)− φh(x)‖ ≤ ‖x+ hb(x)− φh(x)‖+ CFh
1+δ(1 + ‖x‖) ,

and as φh(x) = x+
∫ h

0
b(φs(x))ds,

‖x+ hb(x)− φh(x)‖ = ‖hb(x)−
∫ h

0
b(φs(x))‖ ≤ hLb sups∈[0,h] ‖φs(x)− x‖

≤ Lbh2{Lb sup
s∈[0,h]

φs(x) + ‖b(0)‖} . (45)

The proof is completed using Lemma 11.

Lemma 13. Assume H1 and H2-(i). There exists C > 0 such that for any x ∈ Rd, k ∈ N, h ∈
(
0, h̄
)
,

kh ≤ T$,
‖Tkh(x)− φkh(x)‖ ≤ CekhC(1 + ‖x‖)hδ . (46)

Proof. Using Lemma 12, H1 and H2-(i), there exist C1, C2, C3 > 0 such that for any x ∈ Rd, k ∈ N, h ∈(
0, h̄
)
, kh ≤ T$,

‖Tk+1
h (x)− φ(k+1)h(x)‖ ≤ ‖Tk+1

h (x)− Th ◦φkh(x)‖+ ‖Th ◦φkh(x)− φ(k+1)h(x)‖
≤ (1 + hLb)‖Tkh(x)− φkh(x)‖

+ h1+δC1{2 + ‖Tkh(x)‖+ ‖φkh(x)‖}+ ‖Th ◦φkh(x)− φ(k+1)h(x)‖
≤ (1 + hLb)‖Tkh(x)− φkh(x)‖+ h1+δ2C1C2e

C2T${1 + ‖x‖}+ C3{1 + ‖φkh(x)‖}h1+δ

≤ (1 + hLb)‖Tkh(x)− φkh(x)‖
+ h1+δ2C1C2e

C2T${1 + ‖x‖}+ C3{1 + C2(1 + ‖x‖)}h1+δeC2T$

≤ (1 + hLb)‖Tkh(x)− φkh(x)‖+AT {1 + ‖x‖}h1+δ ,

with AT = (2C1C2 + C3(1 + C2))eC2T$ . A straightforward induction yields

‖Tkh(x)− φkh(x)‖ ≤ (1 + hLb)
k

Lb
AT (1 + ‖x‖)hδ .

Lemma 14. Assume H1, H2, H3 . For any x ∈ Rd, and f : Rd → Rd bounded and continuous,

lim
h↓0

∫ T$

0

∣∣∣$c(h bt/hc)ρ(T
bt/hc
h (x))J

T
bt/hc
h

(x)f(T
bt/hc
h (x))−$c(t)ρ(φt(x))Jφt(x)f(φt(x))

∣∣∣ dt = 0 .

Proof. Let x ∈ Rd. Consider the following decomposition, for any h < h̄,∫ T$

0

∣∣∣$c(h bt/hc)ρ(T
bt/hc
h (x))J

T
bt/hc
h

(x)f(T
bt/hc
h (x))−$c(t)ρ(φt(x))Jφt(x)f(φt(x))

∣∣∣dt
≤ h

T$

∑
k∈Z$

c(kh)|ρ(Tkh(x))JTkh
(x)f(Tkh(x))− ρ(φkh(x))Jφkh(x)f(φkh(x))|

+
∫ T$

0
|$c(t)ρ(φt(x))Jφt(x)f(φt(x))−$c(h bt/hc)ρ(φhbt/hc(x))Jφhbt/hc(x)f(φhbt/hc(x))|dt .
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The first term converges to 0 by Lemma 13 and H2-(ii) as $c(kh) = 0 for kh > T$. By H1 and H3,
the function t→ $c(t)ρ(φt(x))Jφt(x)f(φt(x)) is continuous on the compact [0, T$] and thus is bounded.
Therefore, for any h ∈

(
0, h̄
)
,

sup
t∈[0,T$]

|$c(h bt/hc)ρ(φhbt/hc(x))Jφhbt/hc(x)f(φhbt/hc(x))|

≤ sup
t∈R
|$c| sup

x∈Rd
|f(x)| sup

t∈[0,T$]

|ρ(φt(x))Jφt(x)| <∞ . (47)

Moreover, t 7→ $c(h bt/hc)ρ(φhbt/hc(x))Jφhbt/hc(x)f(φhbt/hc(x)) converges pointwise when h ↓ 0 to
t→ $c(t)ρ(φt(x))Jφt(x)f(φt(x)) by continuity, using H1 and H3. The Lebesgue dominated convergence
theorem applies and the second term goes to 0 as h ↓ 0.

B.2 NEIS algorithm after Rotskoff and Vanden-Eijnden (2019)
Non Equilibrium Importance Sampling (NEIS) has been introduced in the pioneering work of Rotskoff and
Vanden-Eijnden (2019). NEIS relies on the flow of the ODE ẋt = b(xt) and the introduction of a set
O ⊂ Rd. As in Appendix B, we assume H1 holds and denote by (φt)t∈R the flow of this ODE.

Define for x ∈ O, the exit times τ+(x) ≥ 0 (resp. τ−(x) ≤ 0) satisfying

τ+(x) = inf{t ≥ 0 : φt(x) /∈ O} , τ−(x) = inf{t ≤ 0 : φt(x) /∈ O} . (48)

The validity of NEIS relies on the following assumption.

H4. The average time of an orbit in O is finite, i.e.

Zτ =

∫
O

(τ+(x)− τ−(x))ρ(x)dx <∞ . (49)

Under H4, we can define the proposal distribution

ρT(x) = Z−1
τ

∫
O

1[τ−(x),τ+(x)](t)ρ(φt(x))Jφt(x)dt . (50)

Under H4, (Rotskoff and Vanden-Eijnden, 2019, Equation (8)) derive the following estimator of ρ(f), closely
related to (16), in the case $ ≡ 1, on the restricted set O ⊂ Rd :

INEIS
N (f) =

1

N

N∑
i=1

∫ τ+(Xi)

τ−(Xi)

wt(X
i)f(φt(X

i))dt (51)

wt(x) =
ρ(φt(x))Jφt(x)∫ τ+(x)

τ−(x)
ρ(φt(x))Jφt(x)dt

. (52)

Note that in practice, in order for H4 to be verified, one typically requires that O be bounded, as discussed
in Rotskoff and Vanden-Eijnden (2019).

Following Rotskoff and Vanden-Eijnden (2019), consider a d-dimensional system with position q ∈ Rd,
momentum p ∈ Rd and Hamiltonian H(p, q) = (1/2)‖p‖2 +U(q) where U(q) is a potential assumed to be
bounded from below. Denote by V (E) the volume of the phase-space below some threshold energy E,

V (E) =

∫
1{H(p,q)≤E}dpdq . (53)
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To calculate (53), we set x = (p, q), define O = {x;H(x) ≤ Emax} for some Emax < ∞, and use the
dissipative Langevin dynamics with b(x) = (p,−∇U(q)− γp), i.e.

q̇ = p , ṗ = −∇U(q)− γp ,

for some friction coefficient γ > 0. With this choice, Jφt(x) = e−dγt. Taking ρ to be the uniform distribu-
tion on the (bounded) set O, write the estimator forE ≤ Emax, V (E)/V (Emax) =

∫
1{H(p,q)≤E}ρ(p, q)dpdq,

where ρ(p, q) = 1O(p, q)/V (Emax), we get

V (E)/V (Emax) =
1

N

N∑
i=1

∫ τ+(Xi)

τ−(Xi)
Jφt(Xi)1{H(φt(Xi))≤E}dt∫ τ+(Xi)

τ−(Xi)
Jφt(Xi)dt

=
1

N

N∑
i=1

∫ τ+(Xi)

τE(Xi)
Jφt(Xi)dt∫ τ+(Xi)

τ−(Xi)
Jφt(Xi)dt

=
1

N

N∑
i=1

e−dγ(τE(Xi)−τ−(Xi)) , (54)

where τE(x) denotes the (possibly infinite) time for a trajectory initiated at x = (p, q) to reach the energy
E ≤ Emax.

Finally, to estimate the normalizing constant, Rotskoff and Vanden-Eijnden (2019) discretize the energy
levels {E0, . . . , EP } and write their estimator as

ẐNEIS
X1:N =

1

N

N∑
i=1

P∑
`=1

e−dγ(τE` (Xi)−τ−(Xi))(E` − E`−1) , (55)

using an approximation of the identity

Z =

∫
O

∫ ∞
0

1{L(x)>L}ρ(x)dLdx =

∫ ∞
0

PX∼ρ(L(X) > L)dL ,

which is at the core of nested sampling Chopin and Robert (2010).

B.3 NEO with exit times
Consider O ⊂ Rd and let T be a C1-diffeomorphism on Rd. We introduce here an estimator based on the
forward and backward orbits in O associated with T. Define the exit times τ+ : Rd → N and τ− : Rd →
N−, given, for all x ∈ Rd, by

τ+(x) = inf{k ≥ 1 : Tk(x) 6∈ O} , (56)

τ−(x) = sup{k ≤ −1 : Tk(x) 6∈ O} , (57)

with the convention inf ∅ = +∞ and sup ∅ = −∞, and set

I = {(x, k) ∈ O× Z : k ∈ [τ−(x) + 1 : τ+(x)− 1]} . (58)

For any k ∈ Z, define ρk : Rd → R+ by

ρk(x) = ρ(T−k(x))JT−k(x)1I(x,−k) . (59)
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The density ρk is the push-forward of 1I(x, k)ρ(x) by Tk, i.e. for any k ∈ Z and any bounded function
g : Rd → R, ∫

O

g(y)ρk(y)dy =

∫
O

g(Tk(x))1I(x, k)ρ(x)dx . (60)

Consider the following assumption:

H5. The nonnegative sequence ($k)k∈Z satisfies $0 > 0 and

Z$T =

∫
O

∑
k∈Z

$kρk(x)dx =

∫
O

∑
k∈Z

$kρ(Tk(x))JTk(x)1I(x, k)dx <∞ . (61)

Consider the pdf

ρT(x) =
1

Z$T

∑
k∈Z

$kρk(x) , (62)

where Z$T is the normalizing constant. This is a non-equilibrium distribution, since ρT is not invariant by
T in general. Using ρT as an importance distribution to obtain an unbiased estimator of

∫
f(x)ρ(x)dx is

feasible since as $0 > 0, supx∈O ρ(x)/ρT(x) ≤ ZT/$0 <∞, hence∫
O

f(x)ρ(x)dx =

∫
O

(
f(x)

ρ(x)

ρT(x)

)
ρT(x)dx .

From (60), the right hand side can be computed using the following key result.

Theorem 15. For any f : Rd → R measurable bounded function, we have∫
O

f(x)ρ(x)dx =

∫
O

∑
k∈Z

f(Tk(x))wk(x)ρ(x)dx , (63)

where, for any x ∈ Rd and k ∈ Z,

wk(x) = $kρ−k(x)
/∑

j∈Z
$j+kρj(x) . (64)

Proof. Let f : Rd → R be a measurable bounded function. By (60), writing g ← fρ/ρT,∫
O

f(x)ρ(x)dx =

∫
O

(
f(x)

ρ(x)

ρT(x)

)
ρT(x)dx

=

∫
O

∑
k∈Z

(
f(Tk(x))

$kρ(Tk(x))1I(x, k)

Z$T ρT(Tk(x))

)
ρ(x)dx .

We now need to prove:

$kρ(Tk(x))1I(x, k)

Z$T ρT(Tk(x))
=

$kρ(Tk(x))1I(x, k)

1I(x, k)
∑
i∈Z$iρi(T

k(x))
=

$kρ−k(x)∑
j∈Z$j+kρj(x)

= wk(x) ,

with the convention 0/0 = 0. We thus need to show that for any x ∈ O, k ∈ Z,

1I(x, k)
∑
i∈Z

$iρi(T
k(x)) =

1I(x, k)

JTk(x)

∑
j∈Z

$j+kρj(x) .
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Using the identity JT−i+k(x) = JT−i(T
k(x))JTk(x), we obtain

1I(x, k)
∑
i∈Z

$iρi(T
k(x)) =

∑
i∈Z

1I(x, k)$iρ(T−i(Tk(x)))JT−i(T
k(x))1I(T

k(x),−i)

=
1

JTk(x)

∑
i∈Z

1I(x, k)$iρ(T−i+k(x))JT−i+k(x)1I(T
k(x),−i)

=
1

JTk(x)

∑
j∈Z

$j+kρ(T−j(x))JT−j (x)1I(T
k(x),−j − k)1I(x, k)

Note that if (x, k) ∈ I, we have (x,−j) ∈ I if and only if (Tk(x),−j − k) ∈ I by definition of I (58). The
proof is concluded by noting that:

1I(T
k(x)),−j − k)1I(x, k) = 1I(x,−j)1I(x, k) .

C Iterated SIR
Let us recall the principle of the Sampling Importance Resampling method (SIR; Rubin (1987); Smith and
Gelfand (1992)) whose goal is to approximately sample from the target distribution π using samples drawn
from a proposal distribution ρ.

In SIR, a N -i.i.d. sample X1:N is first generated from the proposal distribution ρ. A sample X∗ is
approximately drawn from the target π by choosing randomly a value inX1:N with probabilities proportional
to the importance weights {L(Xi)}Ni=1, where L(x) = π(x)/ρ(x). Note that the importance weights are
required to be known only up to a constant factor.

For SIR, as N →∞, the sample X∗ is asymptotically distributed according to π; see Smith and Gelfand
(1992).

A subsequent algorithm is the iterated SIR (i-SIR) (Andrieu et al., 2010). Here,N is not necessarily large
(N ≥ 2), the whole process of sampling a set of proposals, computing the importance weights, and picking
a candidate, is iterated. At the n-th step of i-SIR, the active set of N proposals X1:N

n and the index In ∈ [N ]
of the conditioning proposal are kept. First i-SIR updates the active set by setting XIn

n+1 = XIn
n (keep the

conditioning proposal) and then draw independently X1:N\{In}
n+1 from ρ. Then it selects the next proposal

index In+1 ∈ [N ] by sampling with probability proportional to {w̃(Xi
n+1)}Ni=1. As shown in Andrieu et al.

(2010), this algorithm defines a partially collapsed Gibbs sampler (PCG) of the augmented distribution

π̄(x1:N , i) =
1

N
π(xi)

∏
j 6=i

ρ(xj) =
1

N
w̃(xi)

N∏
j=1

ρ(xj) .

The PCG sampler can be shown to be ergodic provided that ρ and π are continuous and ρ is positive on
the support of π. If in addition the importance weights are bounded, the Gibbs sampler can be shown to be
uniformly geometrically ergodic (Lindsten et al., 2015; Andrieu et al., 2018). It follows that the distribution
of the conditioning proposal X∗n = XIn

n converges to π as the iteration index n goes to infinity. Indeed, for
any integrable function f on Rd, with (X1:N , I) ∼ π̄,

E[f(XI)] =

∫ N∑
i=1

f(xi)π̄(x1:N , i)dx1:N = N−1
N∑
i=1

∫
f(xi)π(xi)dxi =

∫
f(x)π(x)dx .

30



NEO: Non Equilibrium Sampling on the Orbit of a Deterministic Transform

When the state space dimension d increases, designing a proposal distribution ρ guaranteeing proper mixing
properties becomes more and more difficult. A way to circumvent this problem is to use dependent proposals,
allowing in particular local moves around the conditioning orbit. To implement this idea, for each i ∈ [N ],
we define a proposal transition, ri(xi;x1:N\{i}) which defines the the conditional distribution of X1:N\{i}

given Xi = xi. The key property validating i-SIR with dependent proposals is that all one-dimensional
marginal distributions are equal to ρ, which requires that for each i, j ∈ [N ],

ρ(xi)ri(x
i;x1:N\{i}) = ρ(xj)rj(x

j ;x1:N\{j}) . (65)

The (unconditional) joint distribution of the particles is therefore defined as

ρN
(
x1:N

)
= ρ(x1)r1(x1;x1:N\{1}) . (66)

The resulting modification of the i-SIR algorithm is straightforward: X1:N\{In} is sampled jointly from the
conditional distribution rIn(XIn

n , ·) rather than independently from ρ.

D Additional Experiments

D.1 Normalizing constant estimation
We consider here the problem of the estimation of the normalizing constant of Cauchy mixtures. The Cauchy
distribution with scale σ has a pdf defined by Cauchy(x;µ, σ) = [πσ(1 + {(x − µ)/σ}2]−1. The target
distribution is a product of mixtures of two Cauchy distributions,

π(x) =

n∏
i=1

1

2
[Cauchy (xi;µ, σ) + Cauchy (xi;−µ, σ)] , µ = 5, σ = 1 .

NEO-IS is compared with IS estimator using the same proposal ρ. We also compare NEO-IS to Neural IS
Müller et al. (2019) with a Cauchy as base distribution.
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Figure 5: Boxplots of 500 independent estimations of the normalizing constant of the Cauchy mixture in
dimension d = 10, 15 (top, bottom). The true value is given by the red line. The figure displays the median
(solid lines), the interquartile range, and the mean (dashed lines) over the 500 runs
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Model VAE, d = 32 VAE, d = 16 IWAE, d = 32 IWAE, d = 16
IS -90.17 -90.44 -88.76 -90.13

AIS -89.67 -89.97 -88.30 -89.61
NEO-IS -88.81 -89.17 -87.46 -88.99

Table 1: Evaluation of the log-likelihood (normalizing constant) of different Variational Auto Encoders.

Finally, we compare NEO-IS with NEIS3. We consider here MG25 in dimension 5 and 10, where all
the covariances of the Gaussian distributions are diagonal and equal to 0.005 Id. NEIS and NEO-IS are
run for the same computational time. We add an IS scheme as a baseline for comparison. All algorithms
(NEO-IS, NEIS, IS) are run for 7.20s and 11.30s wall clock time respectively for d = 5 and d = 10. For
NEO-IS, we use a conformal transform with h = 0.1, K = 10 and γ = 1. For NEIS, we choose γ = 1
and consider a stepsize h = 10−4 corresponding to an optimal trade-off between the discretization bias
inherent to NEISand its computational budget. We can observe that NEO-IS always outperforms NEIS,
which suffers from a non-negligeable bias if the stepsize h is not chosen small enough.
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Figure 6: NEO v. NEIS. 25 GM with σ2 = 0.005, d = 5. 500 runs each.

D.2 Log-likelihood estimation
We finally present the evaluation of the log-likelihood of the VAE introduced in Section 5: given a test set
T = {zi}MTi=1 , we estimate

∑MT
i=1 log pθ∗(zi). We also estimate similarly the log-likelihood of an Importance

Weighted Auto Encoder (IWAE) Burda et al. (2016). Following Wu et al. (2016), we compare IS, AIS, and
NEO-IS. As previously, AIS, IS, and NEO-IS are given a similar computational budget, choosing here
K = 12, N = 5 · 103. For NEO, we choose γ = 1. and h = 0.2. Similarly, the stepsize of HMC
transitions in AIS is h = 0.1 in order to achieve an acceptance ratio of around 0.6 in the HMC transitions.
We report in Table 1 the log-likelihood computed on the test set for VAE, IWAE with latent dimension in
{16, 32}. For the same computational budget, NEO-IS yields consistently better values for the estimation
of the log-likelihood of the VAE.

3The code from Rotskoff and Vanden-Eijnden (2019) we run is available at https://gitlab.com/rotskoff/
trajectory_estimators/-/tree/master.
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Figure 7: Forward orbits of NEO-MCMC.

D.3 Gibbs inpainting
We display here additional results for the Gibbs inpainting experiment presented in Section 5. We emphasize
that the starting images are chosen at random in the test set.

E NEO-VAE
Denote by pθ(x, z) the joint distribution of the observation z ∈ Rp and the latent variable x ∈ Rd. The
marginal likelihood is given, for z ∈ Rp by pθ(z) =

∫
pθ(x, z)dx. Given a training set D = {zi}Mi=1,

the objective is to estimate θ by maximizing the likelihood, i.e. maximizing log pθ(D) =
∑M
i=1 log pθ(zi).

Variational inference (VI) provides us with a tool to simultaneously approximate the intractable posterior
pθ(x|z) and maximize the marginal likelihood pθ(D) in the parameter θ. This is achieved by introducing
a parametric family {qφ(x|z), φ ∈ Φ} to approximate the posterior pθ(x|z) and maximizing the Evidence
Lower Bound (ELBO) (see Kingma and Welling (2019)) LELBO(D, θ, φ) =

∑M
i=1 LELBO(zi, θ, φ) where

LELBO(z, θ, φ) =

∫
log

(
pθ(x, z)

qφ(x | z)

)
qφ(x | z)dx (67)

= log pθ(z)−KL(qφ(· | z)‖pθ(· | z)) ,

and KL is the Kullback–Leibler divergence. In the sequel, we set ρ(x) = qφ(x | z) and L(x) = pθ(x, z)/qφ(x |
z). In such a case, π(x) = ρ(x)L(x)/Z = pθ(x | z) and Z = pθ(z) (in these notations, the dependence in
the observation z is implicit).

We follow the the auxiliary variational inference framework (AVI) provided by Agakov and Barber
(2004). We consider a joint distribution p̄θ(x, u, z) which is such that pθ(z) =

∫
pθ(x, u, z)dxdu where

u ∈ U is an auxiliary variable (the auxiliary variable can both have discrete and continuous components;
when u has discrete components the integrals should be replaced by a sum). Then as the usual VI approach,
we consider a parametric family {q̄φ(x, u|z), φ ∈ Φ}. Introducing auxiliary variables loses the tractability
of (67) but they allow for their own ELBO as suggested in Agakov and Barber (2004); Lawson et al. (2019)
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Figure 8: Gibbs inpainting for CelebA dataset. From top to bottom: i-SIR, HMC and NEO-MCMC: From
left to right, original image, blurred image to reconstruct, and output every 5 iterations of the Markov chain.
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by minimizing

KL(q̄φ(· | z)‖p̄θ(· | z)) =

∫
q̄φ(x, u|z) log

(
p̄θ(x, u, z)

q̄φ(x, u|z)

)
dxdu . (68)

The auxiliary variable u is naturally associated with the extended target π̄ defined similar to Remark 2,

π̄N ([x, x1:N\{i}], i) =
Ẑx
NZ

ρN (x1:N ) (69)

with (x, u) = ([x, x1:N\{i}], i), a shorthand notation for a N -tuple x1:N with xi = x, and, with ri defined
in (15),

ρN (x1:N ) = ρ(x1)r1(x1, x2:N ) = ρ(xj)rj(x
j , x1:N\{j}) , j ∈ {1, . . . , N} . (70)

An extended proposal playing the role of q̄φ(x, u|z) is derived from the NEO MCMC sampler, i.e.

ρ̄N ([x, x1:N\{i}], i) =
Ẑx

NẐx1:N

ρN (x1:N ) . (71)

where Ẑx1:N is the NEO estimator (4) of the normalizing constant. Note that, by construction,

N∑
i=1

ρ̄N (x1:N , i) = ρN (x1:N ) (72)

showing that this joint proposal can be sampled by drawing the proposals x1:N ∼ ρN , then sampling the
path index i ∈ [N ] with probability proportional to (Ẑxi)

N
i=1 (with Ẑx defined in (4)). The ratio of (69) over

(71) is
π̄N (x1:N , i)

/
ρ̄N (x1:N , i) = Ẑx1:N

/
Z . (73)

Thus, we write the augmented ELBO (68)

LNEO =

∫
ρN (x1:N ) log Ẑx1:Ndx1:N = logZ −KL(ρ̄N |π̄N ) , (74)

where we have used (72) and that the ratio π̄N (x1:N , i)
/
ρ̄N (x1:N , i) does not depend on the path index i.

When$k = δk,0, where δi,j is the Kronecker symbol, and ρN (x1:N ) =
∏N
j=1 ρ(xj), we exactly retrieve the

Importance Weighted AutoEncoder (IWAE); see e.g. Burda et al. (2016) and in particular the interpretation
in Cremer et al. (2017).

Choosing the conformal Hamiltonian introduced in Section 2 allows for a family of invertible flows that
depends on the parameter θ which itself is directly linked to the target distribution. Table 2 displays the
estimated NLL of all models provided by IS and the NEO method. It is interesting to note here again that
NEO improves the training of the VAE when the dimension of the latent space is small to moderate.
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Table 2: Negative Log Likelihood estimates for VAE models for different latent space dimensions.
d = 4 d = 8 d = 16 d = 50

model IS NEO IS NEO IS NEO IS NEO

VAE 115.01 113.49 97.96 97.64 90.52 90.42 88.22 88.36
IWAE, N = 5 113.33 111.83 97.19 96.61 89.34 89.05 87.49 87.27
IWAE, N = 30 111.92 110.36 96.81 95.94 88.99 88.64 86.97 86.93

NEO VAE, K = 3 109.14 107.47 94.50 94.26 89.03 88.92 88.14 88.16
NEO VAE, K = 10 110.02 107.90 94.63 94.22 89.71 88.68 88.25 86.95
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