The method of asymptotic expansions of Poincaré and Mahler measures of univariate polynomials in the Conjecture of Lehmer

Jean-Louis Verger-Gaugry

CNRS
LAMA, Université Savoie Mont Blanc, Institut Fourier, Université Grenoble Alpes,

France

BIRS

The Geometry, Algebra and Analysis of Algebraic Numbers Oct 4 - Oct 9, 2015

Poincaré asymptotic expansions and Mahler measures
L $_{N}$ - bodies $\equiv N$ zeroes

Contents

$1 \quad N$-bodies $\equiv N$ zeroes

2 Degree? Analog of time?

3 Trinomals

N bodies in space (" N-body problem")

Equation

N bodies in space (" N-body problem")

1895

Equation

N bodies in space (" N-body problem")

1895

Equation

N bodies in space (" N-body problem")

1895
(Poincaré)

Equation
 (Newton)

1895 : Henri Poincaré, Leçons de Mécanique Céleste, Paris Gauthier-Villars,
t. I (1905), Théorie générale des perturbations planétaires,
t. II-1 (1907), Développement de la fonction perturbatrice,
t. II-2 (1909), Théorie de la Lune,
t. III (1910), Théorie des marées.
gives courses at the Sorbonne, Paris.

Theory of Asymptotic expansions (Copson, Erdelyi, Dingle...) Divergent series (Hardy),

Divergent sums of functions of time
$->$ relative position of EACH planet at time $t+\delta t$, once given at time t : as an asymptotic expansion of time t.

Theory of Asymptotic expansions (Copson, Erdelyi, Dingle...) Divergent series (Hardy),

Divergent sums of functions of time
$->$ relative position of EACH planet at time $t+\delta t$, once given at time t : as an asymptotic expansion of time t.

N zeroes z_{i} in \mathbb{C} ("close to $|z|=1$ ")

Equation

N zeroes z_{i} in \mathbb{C} ("close to $|z|=1$ ")

Cj Lehmer

N zeroes z_{i} in \mathbb{C} ("close to $|z|=1$ ")

Cj Lehmer

Equation

N zeroes z_{i} in $\mathbb{C} \quad$ ("close to $|z|=1$ ")

Cj Lehmer
small Mahler measure < 1.32...

Equation

(polynomial eq., rec. monic) (having the $z_{i} s$ as zeroes)

Is the method of asymptotic expansions of H. Poincaré applicable in this numbertheoretic context?

how? : trinomials $-1+X+X^{n}, \quad n \geq 2 \quad$ (VG 2015)

Each z_{i} becomes a function of? analog of time t ? The Mahler measure $\prod_{\left|z_{i}\right|>1}\left|z_{i}\right|$ also.

Is the method of asymptotic expansions of H. Poincaré applicable in this numbertheoretic context?

how? : trinomials $-1+X+X^{n}, \quad n \geq 2$
(VG 2015)

Is the method of asymptotic expansions of H. Poincaré applicable in this numbertheoretic context?

how ? : trinomials $-1+X+X^{n}, \quad n \geq 2$
(VG 2015)

Each z_{i} becomes a function of? analog of time t ?
The Mahler measure $\prod_{\left|z_{i}\right| \geq 1}\left|z_{i}\right|$ also.

$$
\mathrm{M}(\alpha)=\sum_{q=0}^{r-1} a_{q} \varphi_{q}(n ?)+O\left(\varphi_{r}(n ?)\right) \quad n ? \rightarrow+\infty
$$

Contents

$1 \quad N$-bodies $\equiv N$ zeroes

2 Degree? Analog of time?

3 Trinomals

Poincaré asymptotic expansions and Mahler measures

- Degree? Analog of time?

Degree

?

Conjecture of Lehmer (1933) : in the search of big prime numbers, Lehmer asked the following problem : if ϵ is a positive quantity, to find a polynomial of the form

$$
f(x)=x^{r}+a_{1} x^{r-1}+\ldots+a_{r}
$$

where the a's are integers, such that the absolute value of the product of those roots of f which lie outside the unit circle, lies between 1 and $1+\epsilon \ldots$ Whether or not the problem has a solution for $\epsilon<0.176$ we do not know.

Conjecture of Schinzel-Zassenhaus (1965) : $\alpha \neq 0$ any algebraic integer of degree n, not being a root of unity,

Conjecture of Lehmer (1933) : in the search of big prime numbers, Lehmer asked the following problem : if ϵ is a positive quantity, to find a polynomial of the form

$$
f(x)=x^{r}+a_{1} x^{r-1}+\ldots+a_{r}
$$

where the a's are integers, such that the absolute value of the product of those roots of f which lie outside the unit circle, lies between 1 and $1+\epsilon \ldots$ Whether or not the problem has a solution for $\epsilon<0.176$ we do not know.

Conjecture of Schinzel-Zassenhaus (1965) : $\alpha \neq 0$ any algebraic integer of degree n, not being a root of unity,

$$
|\alpha| \geq 1+\frac{c_{1}}{n}
$$

for a constant $c_{1}>0$ (i.e. independent of n).

Dobrowolski (1979) :

$$
\mathrm{M}(\alpha)>1+(1-\epsilon)\left(\frac{\log \log n}{\log n}\right)^{3}, \quad n>n_{1}(\epsilon)
$$

for any nonzero algebraic number α of degree n [Effective : replace $1-\epsilon$ by 1/1200].

Voutier (1996) : same minoration with the constant

Dobrowolski (1979) :

$$
\mathrm{M}(\alpha)>1+(1-\epsilon)\left(\frac{\log \log n}{\log n}\right)^{3}, \quad n>n_{1}(\epsilon)
$$

for any nonzero algebraic number α of degree n [Effective : replace $1-\epsilon$ by 1/1200].

Voutier (1996) : same minoration with the constant

$$
1 / 4
$$

and all $n \geq 2$.

Kronecker (1857) : α an algebraic integer,

$$
|\alpha|=1 \text { if and only if } \alpha \text { is a root of unity. }
$$

The sufficient condition was weakened by Blansky and Montgomery (1971) who showed that α, with $\operatorname{deg} \alpha=n$, is a root of unity provided

Dobrowolsky (1978) sharpened this condition by : if

then α is a root of unity.

Kronecker (1857) : α an algebraic integer,

$$
|\alpha|=1 \text { if and only if } \alpha \text { is a root of unity. }
$$

The sufficient condition was weakened by Blansky and Montgomery (1971) who showed that α, with $\operatorname{deg} \alpha=n$, is a root of unity provided

$$
|\alpha| \leq 1+\frac{1}{30 n^{2} \log (6 n)}
$$

Dobrowolsky (1978) sharpened this condition by : if

Kronecker (1857) : α an algebraic integer,

$$
|\alpha|=1 \text { if and only if } \alpha \text { is a root of unity. }
$$

The sufficient condition was weakened by Blansky and Montgomery (1971) who showed that α, with $\operatorname{deg} \alpha=n$, is a root of unity provided

$$
\left\lvert\, \alpha \leq 1+\frac{1}{30 n^{2} \log (6 n)}\right.
$$

Dobrowolsky (1978) sharpened this condition by : if

$$
|\alpha|<1+\frac{\log n}{6 n^{2}}
$$

then α is a root of unity.

Laurent (1983) : techniques of transcendance theory. -> Elliptic curves, Abelian analog of Lehmer problem (Conjecture of Hindry (1997) for abelian varieties over a number field).

Interpolation determinants : Waldschmidt quoting: That n is closely related to the degree, but different in some cases, is common : quoting Waldschmidt (2000), "we insist that n is only an upper bound for the degree of α, and not the actual degree".

Perturbing polynomials:
:
G.A. Ray (1994)
M.J. Mossinghoff, C.G Pinner and J.D. Vaaler (1998)
E. Hironaka (2005)

Contents

$1 \quad N$-bodies $\equiv N$ zeroes
 2 Degree? Analog of time?

3 Trinomals

n zeroes z_{i} in \mathbb{C} (of the polynomial " $-1+X+X^{n "}$)

n zeroes z_{i} in \mathbb{C} (of the polynomial " $-1+X+X^{n "}$)

Equation

n zeroes z_{i} in \mathbb{C} (of the polynomial " $-1+X+X^{n "}$)

Equation

$-1+z+z^{y}$
(y real variable, $y \geq 2$)

$$
\begin{gathered}
G_{n}(X):=-1+X+X^{n} \\
G_{n}^{(}(X)=X^{n} G_{n}(1 / X)
\end{gathered}
$$

$\theta_{n}:=$ unique root of G_{n} in $(0,1)$ $\theta_{n}^{-1}:=$ dominant root of $G_{n}^{*}(X)$. with (Selmer) :
$\theta_{n}^{-1}>1$, is a Perron number,

For the family $\left\{\theta_{n}^{-1}\right\}$:

Solve: Conjectures of Lehmer, of Schinzel-Zassenhaus improve : Voutier's minoration. $\left(\mathrm{M}\left(G_{n}\right)=\mathrm{M}\left(G_{n}^{*}\right)=\mathrm{M}\left(\theta_{n}^{-1}\right)=\mathrm{M}\left(\theta_{n}\right)\right)$

$$
\begin{gathered}
G_{n}(X):=-1+X+X^{n} \\
G_{n}^{*}(X)=X^{n} G_{n}(1 / X)
\end{gathered}
$$

$\theta_{n}:=$ unique root of G_{n} in $(0,1)$
$\theta_{n}^{-1}:=$ dominant root of $G_{n}^{*}(X)$. with (Selmer) :
$\theta_{n}^{-1}>1$, is a Perron number, $\lim _{n \rightarrow+\infty} \theta_{n}=\lim _{n \rightarrow+\infty} \theta_{n}^{-1}=1$

For the family $\left\{\theta_{n}^{-1}\right\}$:
Solve: Conjectures of Lehmer, of Schinzel-Zassenhaus improve : Voutier's minoration. $\left(\mathrm{M}\left(G_{n}\right)=\mathrm{M}\left(G_{n}^{*}\right)=\mathrm{M}\left(\theta_{n}^{-1}\right)=\mathrm{M}\left(\theta_{n}\right)\right)$

$$
\begin{gathered}
G_{n}(X):=-1+X+X^{n} \\
G_{n}^{*}(X)=X^{n} G_{n}(1 / X)
\end{gathered}
$$

$\theta_{n}:=$ unique root of G_{n} in $(0,1)$
$\theta_{n}^{-1}:=$ dominant root of $G_{n}^{*}(X)$. with (Selmer) :
$\theta_{n}^{-1}>1$, is a Perron number, $\lim _{n \rightarrow+\infty} \theta_{n}=\lim _{n \rightarrow+\infty} \theta_{n}^{-1}=1$

For the family $\left\{\theta_{n}^{-1}\right\}$:
Solve: Conjectures of Lehmer, of Schinzel-Zassenhaus improve : Voutier's minoration.

$$
\begin{gathered}
G_{n}(X):=-1+X+X^{n} \\
G_{n}^{*}(X)=X^{n} G_{n}(1 / X)
\end{gathered}
$$

$\theta_{n}:=$ unique root of G_{n} in $(0,1)$
$\theta_{n}^{-1}:=$ dominant root of $G_{n}^{*}(X)$. with (Selmer) :
$\theta_{n}^{-1}>1$, is a Perron number, $\lim _{n \rightarrow+\infty} \theta_{n}=\lim _{n \rightarrow+\infty} \theta_{n}^{-1}=1$

For the family $\left\{\theta_{n}^{-1}\right\}$:
Solve: Conjectures of Lehmer, of Schinzel-Zassenhaus improve : Voutier's minoration.

$$
\left(\mathrm{M}\left(G_{n}\right)=\mathrm{M}\left(G_{n}^{*}\right)=\mathrm{M}\left(\theta_{n}^{-1}\right)=\mathrm{M}\left(\theta_{n}\right)\right)
$$

Theorem (Smyth)

Let χ_{3} be the uniquely specified odd character of conductor 3 $\left(\chi_{3}(m)=0,1\right.$ or -1 according to whether $m \equiv 0,1$ or
$2(\bmod 3)$, equivalently $\chi_{3}(m)=\left(\frac{m}{3}\right)$ the Jacobi symbol), and denote $L\left(s, \chi_{3}\right)=\sum_{m \geq 1} \frac{\chi_{3}(m)}{m^{s}}$ the Dirichlet L-series for the character χ_{3}. Then

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} \mathrm{M}\left(\mathrm{G}_{n}\right)=\exp \left(\frac{3 \sqrt{3}}{4 \pi} \mathrm{~L}\left(2, \chi_{3}\right)\right) \\
=\exp \left(\frac{-1}{\pi} \int_{0}^{\pi / 3} \log \left(2 \sin \left(\frac{x}{2}\right)\right) d x\right) \\
=1.38135 \ldots=: \Lambda
\end{gathered}
$$

Theorem

Let n_{0} be an integer such that $\frac{\pi}{3}>2 \pi \frac{\log n_{0}}{n_{0}}$, and let $n \geq n_{0}$. Then,
$\mathrm{M}\left(G_{n}\right)=\left(\lim _{m \rightarrow+\infty} \mathrm{M}\left(G_{m}\right)\right)\left(1+r(n) \frac{1}{\log n}+O\left(\frac{\log \log n}{\log n}\right)^{2}\right)$
with the constant $1 / 6$ involved in the Big O, and with $r(n)$ real, $|r(n)| \leq 1 / 6$.
$n=\operatorname{deg} \theta_{n}^{-1}$ if $n \not \equiv 5(\bmod 6)$, and $n=\operatorname{deg} \theta_{n}^{-1}+2$ if $n \equiv 5(\bmod 6)$.

Corollary

$$
\mathrm{M}\left(\theta_{n}^{-1}\right)>\Lambda-\frac{\Lambda}{6}\left(\frac{1}{\log n}\right), \quad n \geq n_{1}=2
$$

Theorem

For all $n \geq 2$,

$$
\left|\theta_{n}^{-1}\right|=\theta_{n}^{-1} \geq 1+\frac{c}{n}
$$

with $c=2\left(\theta_{2}^{-1}-1\right)=1.2360 \ldots$ reached only for $n=2$, and,

$$
\left|\theta_{n}^{-1}\right|=\theta_{n}^{-1}>1+\frac{(\log n)\left(1-\frac{\log \log n}{\log n}\right)}{n}
$$

off extremality (Rhin, Wu). Here :
$n=\operatorname{deg} \theta_{n}^{-1}$ if $n \not \equiv 5(\bmod 6)$, and $n=\operatorname{deg} \theta_{n}^{-1}+2$ if $n \equiv 5(\bmod 6)$.

Extremality

Denote by $\mathrm{m}(n)$ the minimum of the houses of the algebraic integers of degree n which are not a root of unity. An algebraic integer α, of degree n, is said extremal if $\mid \alpha=m(n)$. An extremal algebraic integer is not necessarily a Perron number.

Conjecture (Lind - Boyd)

The smallest Perron number of degree $n \geq 2$ has minimal polynomial

$$
\begin{array}{cl}
X^{n}-X-1 & \text { if } n \neq 3,5 \bmod 6 \\
\left(X^{n+2}-X^{4}-1\right) /\left(X^{2}-X+1\right) & \text { if } n \equiv 3 \bmod 6 \\
\left(X^{n+2}-X^{2}-1\right) /\left(X^{2}-X+1\right) & \text { if } n \equiv 5 \bmod 6
\end{array}
$$

Conjecture (Boyd)

(i) If α is extremal, then it is always nonreciprocal,
(ii) if $n=3 k$, then the extremal α has minimal polynomial

$$
x^{3 k}+x^{2 k}-1, \quad \text { or } \quad x^{3 k}-x^{2 k}-1,
$$

(iii) the extremal α of degree n has asymptotically a number of conjugates $\alpha^{(i)}$ outside the closed unit disc equal to

$$
\cong \frac{2}{3} n, \quad n \rightarrow \infty .
$$

Conjecture (Smyth)

For all integers $n \geq 4, k \geq 1$ such that $\operatorname{gcd}(n, k)=1, k<n / 2$,
$\square \mathrm{M}\left(z^{n}+z^{k}+1\right)<\Lambda$ if and only if 3 divides $n+k$,
$\square \mathrm{M}\left(z^{n}-z^{k}+1\right)<\Lambda$ with n odd if and only if 3 does not divide $n+k$,

- $\mathrm{M}\left(z^{n}-z^{k}-1\right)<\Lambda$ with n even if and only if 3 does not divide $n+k$.

Smyth's conjecture was recently proved by Flammang (2014) for large n.
Comparison : asymptotic expansions vs Smyth/Boyd/Duke's method:

Theorem

Let $n \geq 2$ be an integer. Then,

$$
\mathrm{M}\left(-1+X+X^{n}\right)=\left(\lim _{m \rightarrow+\infty} \mathrm{M}\left(G_{m}\right)\right)\left(1+\frac{s(n)}{n^{2}}+O\left(n^{-3}\right)\right)
$$

with, for n odd :
$s(n)=\left\{\begin{array}{l}\sqrt{3} \pi / 18=+0.3023 \ldots \\ -\sqrt{3} \pi / 6=-0.9069 \ldots\end{array}\right.$ if $n \equiv 1$ or $3(\bmod 6)$,
if $n \equiv 5 \quad(\bmod 6)$,
for n even :

$$
\begin{aligned}
& s(n)=\left\{\begin{array}{l}
-\sqrt{3} \pi / 36=-0.1511 \ldots \\
+\sqrt{3} \pi / 12=+0.4534 \ldots
\end{array}\right. \\
& \text { if } n \equiv 0 \text { or } 4 \\
& (\bmod 6), \\
& \text { if } n \equiv 2 \\
& (\bmod 6) \text {. }
\end{aligned}
$$

Other trinomials

Conjecture :

$$
\mathrm{M}\left(X^{n}+a X^{k}+b\right)>c_{0}-c_{2} / \log n
$$

n ? - Strankov (2014), Flammang (2015).

VG : On the Conjecture of Lehmer, limit Mahler measure of trinomials and asymptotic expansions, UDT J. (2015).

Other trinomials

Conjecture :

$$
\mathrm{M}\left(X^{n}+a X^{k}+b\right)>c_{0}-c_{2} / \log n
$$

n ? - Strankov (2014), Flammang (2015).

VG: On the Conjecture of Lehmer, limit Mahler measure of trinomials and asymptotic expansions, UDT J. (2015).

