An attack of the Conjecture of Lehmer by the dynamical zeta function of the β-shift

Jean-Louis Verger-Gaugry
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, F-73000 Chambéry, France.
email: Jean-Louis.Verger-Gaugry@univ-smb.fr

Abstract

The present work proposes an attack of the Conjecture of Lehmer by the dynamical zeta function of the β-shift to prove that this Conjecture is true (arXiv.org $>$ math $>$ arXiv:1709.03771). In 1933 Lehmer asked the question about the existence of integer polynomials having a Mahler measure different of one, smaller than Lehmer's number (and arbitrarily close to one). The problem of Lehmer became a Conjecture, stating that there exists a universal lower bound >1 to the Mahler measures of the nonzero algebraic integers which are not roots of unity. The problem of the minoration of the Mahler measure of algebraic integers is a very deep one and has been extended in the theory of heights in arithmetic geometry.

The main ingredients arise from the Rényi-Parry dynamical system of real algebraic numbers and will be biefly presented. They involve: (i) the properties of the Parry Upper functions $f_{|\alpha|}(z)$ associated with the dynamical zeta functions $\zeta_{\Gamma \alpha \mid}(z)$ of the Rényi-Parry arithmetical dynamical systems, for α an algebraic integer of house " α " greater than 1, tending to one, (ii) the discovery of lenticuli of poles of $\zeta_{\alpha}(z)$ which uniformly equidistribute at the limit on a limit "lenticular" arc of the unit circle, for $\bar{\alpha}$ tending to 1^{+}, giving rise to a continuous lenticular minorant $\mathrm{M}_{r}(|\alpha|)$ of the Mahler measure $\mathrm{M}(\alpha)$, (iii) the Poincaré asymptotic expansions of these poles and of this minorant $\mathrm{M}_{r}(\sqrt{\alpha})$ as a function of the dynamical degree.

The same arguments apply to the Conjecture of Schinzel-Zassenhaus, also allow to obtain an inequality improving those of Dobrowolski and Voutier. Whether Lehmer's number is the smallest Mahler measure >1 of algebraic integers remains open.

