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Introduction

Euler's formula says that for any convex polyhedron the alternating sum (1)

n 0 -n 1 + n 2 ,
is equal to 2, where the numbers n i are respectively the number of vertices n 0 , the number of edges n 1 and the number of triangles n 2 of the polyhedron. There are many controversies about the paternity of the formula, also about who gave the first correct proof.

In section 1, we provide information about the history of the formula as well as about the first topological proof given by Cauchy. Some authors criticize Cauchy's proof, saying that the proof needs deep topological results that were proved after Cauchy's time: "Não se pode, portanto, esperar obter uma demonstração elementar do Teorema de Euler, com a hipótese de que o poliedro é homeomorfo a uma esfera, como fazem Hilbert-Cohn Vossen e Courant-Robbins" (Lima,[START_REF] Lima | O Teorema de Euler sobre Poliedros[END_REF]) 1 . Notice that the proof provided by Hilbert-Cohn Vossen [HC] and Courant-Robbins [CR] is the one of Cauchy. In section 2, we provide an elementary proof which shows that only with a lifting technique and the use of sub-triangulations, Cauchy's proof works without using any other result. More precisely, considering a triangulated polygon in the plane, with possible identifications of the simplices on its boundary, we prove that the alternating sum (1) of the polygon is equal to the one of its boundary plus 1 (Theorem 2.1). The idea of our proof is, starting from the hole formed by the removal of a simplex, to extend the hole by successive puddles. The process is illutrated by the construction of a suitable pyramid. A direct consequence of the theorem is an elementary proof of Euler's formula using only Cauchy's method.

As applications of our theorem 2.1, in section 3, we also use these tools to prove that for a triangulable surface S like the torus, the projective plane, the Klein bottle and even for the pinched torus, the alternating sum (1) does not depend on the triangulation of the surface. To be completely honest, for applications (other than the sphere) in section 3, we also use the idea of "cutting" surfaces that, in general, was introduced by Alexander Veblen in a seminar in 1915 (see [Bra]). Of course, one can ask why we do not apply theorem 2.1 and the same reasoning to all (smooth) orientable and non-orientable surfaces. The reason is very simple: we want to provide proofs that it was possible to do at the time of Cauchy. It is only in 1925 that T. Radó [Rad] proved the triangulation theorem for surfaces, that was more or less assumed in Cauchy's time. The classification theorem for compact surfaces and the representation by the "normal" form was proved for the first time in a rigorous way by H.R. Brahana [Bra] (1921). It is clear that using our theorem 2.1 and the representation of surfaces under the normal form, we immediately obtain the Euler-Poincaré characteristic of any compact surface. However, that is like a dog biting his own tail. That it is the reason we do not present the result for surfaces in general but only what is possible to do with Cauchy's method for some elementary surfaces.

The first author had financial support of FAPESP (process UNESP-FAPESP number 2015/06697-9).

1. History 1.1. Before Cauchy. The name "Euler's formula" comes from an announcement of Leonhard Euler in November 14th of 1750 in a letter to his friend Goldbach of the following result:

Theorem 1.1. Let K be a convex polyhedron, with n 0 vertices, n 1 edges and n 2 two-dimensional polygons, then

(2)

n 0 -n 1 + n 2 = 2.
There are many different possible definitions of polyhedra. The discussion concerns the dimension of a polyhedron: Is a polyhedron a solid object of dimension three or only its surface? In this paper, we call "polyhedron" the three dimensional solid figure. A polyhedron is a figure constructed by polygons in such a way that each segment is the common face of exactly two 2-dimensional polygons and each vertex is the common face of at least three segments (see [Ri], Chapter 2 for discussion).

There are many questions and controversies about Euler's formula. Here, let us discuss the two following questions: Was Euler the first mathematician stating the formula? Who provided the first proof of the formula?

Let us discuss the first question: Who was the first to state the formula? Some authors (see [Eve], §3.12; [Lie], p. 90) write that it is possible that Archimedes (∼ 287 AC, ∼ 212 AC) already knew the formula. Some authors say that the formula was known to Descartes (1596Descartes ( -1650)). In fact, Descartes, in a manuscript [De], "De solidorum elementis", proved the following result:

Theorem 1.2. The sum of the angles of all the 2-dimensional polygons of a convex polyhedron is equal to 2(n 0 -2)π.

Proof that "formula (2) is equivalent to theorem 1.2". Let us denote by i = 1, . . . , n 2 the 2-dimensional faces of a convex polyhedron. For each face i, let us denote by k i the number of vertices, which is also the number of edges of the face. We use, for each face, the following property: In a convex polygon with k i edges, the sum of all the angles equals (k i -2)π. Since each edge of the polyhedron appears in two faces of the polyhedron, then n2 i=1 k i = 2n 1 . Hence the sum of the angles of all the faces of the polyhedron equals n2 i=1 (k i -2)π, that is (2n 1 -2n 2 )π. We obtain equivalence between theorem 1.2 and formula (2).

Descartes did not publish his manuscript. The original version of the manuscript disappeared, but a copy was rediscovered in 1860 among papers left by Leibnitz (1646Leibnitz ( -1716)). This copy suffered some accidents, in particular an immersion in the Seine river in Paris (see [Fo], [dJ1]). Some authors say that Descartes discovered the formula (2) as an application of his theorem 1.2. This is a reason why sometimes the formula (2) is called the "Descartes-Euler formula". Other authors, for example, Malkevich [START_REF] Malkevitch | Euler's Polyhedral Formula[END_REF], affirmed that "Though Descartes did discover facts about 3-dimensional polyhedra that would have enabled him to deduce Euler's formula, he did not take this extra step. With hindsight it is often difficult to see how a talented mathematician of an earlier era did not make a step forward that with today's insights seems natural, however, it often happens." However, we know that some of Descartes' papers disappeared, so nobody can decide if Descartes knew the formula or not and the response to the first question is not known.

Let us now discuss the second question: Who was the first to provide a correct proof of formula (2)?

Two years after writing the formula, Euler provided a proof [START_REF] Euler | Elementa doctrinae solidorum[END_REF][START_REF] Euler | Demonstratio nonnularum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita, 1751[END_REF] which consisted of removing step by step each vertex of the polyhedron together with the pyramid of which it is the vertex.

Here we provide the example of the cube, copied from [Ri] : In figure 1 (b), one eliminates the vertex A as well as the (white) pyramid of which A is a vertex. This operation does not change the alternating sum n 0 -n 1 + n 2 . In figure 1 (c) we perform the same process in order to eliminate the vertex B, and so on, till we obtain a tetrahedron. For the tetrahedron, one has n 0 -n 1 + n 2 = 2, so we obtain the formula. But this proof is not correct. In the book [Ri], Richeson provides a clear description of Euler's proof, as well as the problems with the proof. According to Richeson, these problems were solved by Samelson and by Francese and Richardson ([Sam, FR]).

The first correct proof was provided by Legendre [Leg] in the first edition of his book Éléments de Géométrie (1794) (see [Ri], Chapter 10 for a presentation of Legendre's proof). Legendre's argument was geometric in the same way as the proof of Descartes for theorem 1.2. The only difference between Descartes' argument and Legendre's argument is that Descartes used the sphere presentation of the polyhedron (polar polyhedron), while Legendre used the polyhedron itself. The passage of the polyhedron K (Legendre) to the polar polyhedron of K (Descartes) makes a permutation of n 0 and n 2 , without modifying n 1 . This is the reason why some authors say that the proof of Euler's formula (2) should be called "Descartes-Legendre's proof". 1.2. Cauchy's time: Cauchy's method -The first combinatorial and topological proof. In February of 1811, then 22 years old, Cauchy, who was already an engineer of Ponts et Chaussées, gave a talk entitled Recherches sur les polyèdres at the École Polytechnique, in Paris. This talk was published in 1813 in the Journal de l'École Polytechnique [START_REF] Cauchy | Recherches sur les polyèdres, I er Mémoire lu à la première classe de l'Institut, en Février 1811[END_REF], as the first combinatorial and topological proof of Euler's formula (2). This nice proof of Cauchy is included in many books (see, in particular, [Ri], Chapter 12 for a presentation with comments).

The first step of Cauchy's proof is to construct a planar representation.

Definition 1.3. A planar representation of a compact and without boundary surface S is a triple (K, K 0 , ϕ) where:

(1) K is a 2-dimensional polygon in R 2 , (2) the segments and vertices of the boundary of K are named and oriented with possible identifications. We denote by K 0 the boundary of K with the given identifications, (3) ϕ : |K| → S is a homeomorphism of the geometrical realisation of K (taking care of identifications of the segments and vertices on the boundary K 0 ) onto S.

It seems that Cauchy was the first person to use the idea of planar representation. We now present Cauchy's proof.

Proof. Given a convex polyhedron K, we choose a 2-dimensional face P of the polyhedron. We remove this face. The first idea of Cauchy is to construct the associated planar representation K of the polyhedron with respect to the choice of the removed face. Lakatos [Lak] explains Cauchy's construction as the following way: Put a camera above the removed face of the polyhedron, the planar representation will appear as the photograph. Notice that this idea of planar representation is similar to stereographic projection. The hole formed by the removed face appears outside in the planar representation (see the blue part in figure 3).
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The next step of Cauchy's proof is to define a triangulation of K by a subdivision of all the polygons. Notice that, in the triangulating process, the alternating sum n 0 -n 1 +n 2 does not change. The boundary of the hole consists of edges with the following property: Each edge is a face of a triangle that has only this edge as the common edge with the hole. For example, in figure 4 (a), the triangle σ has the edge τ as the common edge with the hole. The extension of the hole consists of two operations that we describe in what follows.

A B C D E F G H J A B C D E F G H J Figure 3.
The polygon K and its triangulation. The hole is in blue.

The first "operation I" consists of removing from the polyhedron K such a triangle σ together with its corresponding edge τ and then the hole is extended. Operation I does not change the sum n 0 -n 1 + n 2 , because n 0 does not change while n 1 and n 2 decrease by 1. When a situation like the one of figure 4 (b) appears, where one triangle (here σ) has two common edges τ 1 and τ 2 with the hole, we use "operation II" which consists of removing from the polyhedron K the triangle σ together with the two edges τ 1 and τ 2 and the vertex a that is the common vertex of τ 1 and τ 2 . Then, the hole is extended.

τ σ (a) Operation I τ 1 τ 2 σ • a (b) Operation II
Operation II also does not change the sum n 0 -n 1 + n 2 , since n 0 and n 2 decrease by 1 and n 1 decreases by 2.

If we take care of keeping the boundary homemorphic to a circle, then the hole is extended, using the two operations above, until we have only one triangle. In this triangle, we have n 0 -n 1 +n 2 = 3-3+1 = 1. Since we removed an (open) polygon at the beginning, we have already +1 in the sum n 0 -n 1 + n 2 . Hence for any convex polyhedron, we have n 0 -n 1 + n 2 = +2.

1.3. After Cauchy. Some authors, in particular Lakatos [Lak], criticize Cauchy's proof. In his book (see [Lak], pages 11 and 12), Lakatos provided a counter-example to Cauchy's process. Here, we adapt Lakatos' counter-example to our example in figure 2. Extending the hole by removing triangles in the indicated order in figure 5 (a), we use operations I and II of Cauchy until the ninth triangle. If we remove the tenth triangle, the hole disconnects the rest of the figure (see figure 5 (b)): The eleventh and twelfth triangles are no longer connected. Moreover, the boundary of the hole is no longer homeomorphic to a circle. Finally, we observe that if we remove the tenth triangle, we do not remove any vertex, but we remove two edges and one triangle, therefore the sum n 0 -n 1 + n 2 is not preserved.

Hence, we need to be very careful concerning the order of the removal of the triangles since it can happen that the hole disconnects the polyhedron K. Moreover, the boundary of the hole is no longer a curve homeomorphic to a circle because it has multiple points. In the paper [START_REF] Lima | O Teorema de Euler sobre Poliedros[END_REF], Lima formalized the arguments of Lakatos and described the situation of figures 6. In figures (a), (b) and (c), the extension of the hole, obtained by the removal of the triangle σ from the polyhedron K, on the one hand, changes the sum n 0 -n 1 + n 2 and, on the other hand, disconnects the polyhedron K. Lakatos' example corresponds to the situation (a) in figure of Lima. In the examples of Lima, the boundary of the hole is a curve with multiple points.

We observe that figure (d) is also a case where the boundary is a curve having multiple points. However, the sum n 0 -n 1 + n 2 is preserved when we remove the triangle σ from K since we remove two vertices x 2 and x 3 , three edges (x 1 , x 2 ), (x 2 , x 3 ), (x 1 , x 3 ) and the triangle σ. It seems that Lima did not realize that this case is admissible. The situation of figure (d) can be also used in the process of Cauchy. In this paper, we call this operation "operation III". This operation appeared also in [Cel]. Note that with operation III, Lakatos' example is no longer a counter-example: come back to figure 5 (a), after removing the ninth triangle, one can remove the twelfth triangle by operation II, then remove the tenth triangle by operation III. We have only the eleventh triangle for which n 0 -n 1 + n 2 = +1 so we are done! Some authors suggest a strategy to define an order of removal of the triangles that allows the use of Cauchy's method to obtain the result. For example, Kirk [Kirk] suggests the following strategy: "There are two important rules to follow when doing this. Firstly, we must always perform [Operation II] when it is possible to do so; if there is a choice between [Operation I] and [Operation II] we must always choose [Operation II]. If we do not, the network may break up into separate pieces. Secondly, we must only remove faces one at a time." We provide, in figure 7 (b), an example whose the process follows the rules of the strategy defined by Kirk but the process disconnects the polyhedron. So these rules are not sufficient. It is easy to build an example showing that they are not necessary.
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Figure 7. A counter-example to the "strategy" suggested by Kirk. Triangles are removed in the order of numbers. The index I or II below each number means that the triangle is removed using the corresponding operation I or II, respectively. After removing the seventh triangle, the boundary of the hole is no longer homeomorphic to a circle.

The example provided in figure 7 is also a counter-example showing that even with operation III, Cauchy's process does not work with the given order of removal. In fact, after removing the seventh triangle, we can continue untill the tenth triangle, but we cannot remove it because in that case we remove one vertex, three segments and one triangle. Notice that the vertices A and B do not belong to the hole.

After Cauchy, many authors proposed alternating proofs of Euler's formula (2), using original arguments. See the site of Eppstein [Epp] containing 20 different proofs, using tools that appeared only after Cauchy's time. In particular, some proofs use the Jordan Lemma (Jordan [Jo], 1866). In fact, we will see that Jordan curves will appear in the proof of our theorem 2.1 as an artifact.

However, to our knowledge, no one has given a strategy for removing the triangles that allows only the use of Cauchy's method and tools known in Cauchy's time. That is the goal of our paper.

1.4. Generalization of the formula (2). The formula (2) was extended by many authors, in particular by Lhuilier, first for orientable surfaces of genus g, as follows:

(1.4)

n 0 -n 1 + n 2 = 2 -2g.
In the non-orientable case, the formula is given by (see [Mas]):

n 0 -n 1 + n 2 = 2 -g.
The general result was provided by Poincaré [Po2,[START_REF] Poincaré | Sur la généralisation d'un théorème d'Euler relatif aux polyèdres[END_REF] who proved that, for any triangulation of a polyhedron X of dimension k, where n i is the number of simplices of dimension i, the sum

(3) χ(X) = k i=0 (-1) i n i
does not depend on the triangulation of X. This sum is called the Euler-Poincaré characteristic of X.

Due to the dimension convention for polyhedra in section 1.1, "Euler's formula" would be better written as the Euler-Poincaré characteristic of the convex 3-dimensional polyhedral in the form

n 0 -n 1 + n 2 -n 3 = +1.
Of course, n 3 is +1 anyway, but this form of Euler's formula seems more suitable.

Cauchy's method in the proof of Euler's formula

The classical planar representations of surfaces such as the sphere, the torus, the projective plane and the Klein bottle are examples of the following situation: The surface is homeomorphic to the geometric representation of a polygon K, itself homeomorphic to a disc D, such that there are possible identifications of simplices on the boundary K 0 . 
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The torus
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The projective plane
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The Klein bottle In this section, we prove the following theorem using only Cauchy's method (section 1.2) and subtriangulations:

Theorem 2.1. Let K be a triangulated polygon in R 2 , homeomorphic to a disc D, with possible identifications of simplices on the boundary K 0 of K. We have

χ(K) = χ(K 0 ) + 1.
We emphasize that the important point of our proof is that, from the given triangulation, we provide a sub-triangulation such that we can prove the theorem using only Cauchy's method (section 1.2), without using other tools.

Proof of theorem 2.1 using only Cauchy's method. Given a polygon K triangulated and homeomorphic to a disc in R 2 with possible identifications of the simplices on the boundary K 0 of K, the proof consists of six steps, as follows.

1)

Step 1: The first step is to construct a "lifting" of K into a pyramidal shape. Here, we call the "pyramid" only the surface (dimension 2) of the pyramid, i.e. the union of the faces of the pyramid without the base.

We can assume that the origin 0 of R 2 lies inside a 2-dimensional simplex σ 0 in the interior of the polygon K. Let us consider the Euclidean metric in R 2 . We can assume that the distances from the origin to the vertices of the triangulation are different, otherwise a small perturbation will not change the structure of the simplicial complex and the proof of the theorem can be processed in the same way.

Let us denote by a 1 , a 2 , a 3 the vertices of σ 0 and by b 1 , . . . , b k the vertices of the triangulation of K 0 . The other vertices are denoted by the following way: We call y 1 the vertex nearest to the origin 0 and y 2 , . . . , y n the vertices in the increasing order of distances from 0.

Q

Figure 11. The lifting on the polygon.

We construct a pyramid Π in R 3 lying above K by fixing the boundary K 0 as the base of the pyramid in the horizontal plane Q = R 2 in R 3 . For i = 0, . . . , n + 1, we consider the planes P i parallel to Q having distance n -i + 1 relative to the base plane Q in R 3 . Now, for i = 1, . . . , n, we denote by x i the orthogonal projection of the point y i to the plane P i . In the plane P 0 , we denote by u 1 , u 2 , u 3 the orthogonal projections of the points a 1 , a 2 , a 3 (see figure 12 (a)).

u 1 u 2 u 3 b 1 b 2 b 3 b 4 b 5 b 6 x 2 x 1 P 0 P 1 P 2 • • • • • • P n+1 Q (a) u 1 u 2 u 3 b 1 b 2 b 3 b 4 b 5 b 6 x 2 x 1 P 0 P 1 P 2 • • • • • • P n+1 (b)
Figure 12. The pyramid Π and the decomposition L of the pyramid Π.

The triangulation of the polygon induces a triangulation L on the pyramid Π lifting each simplex

[b i , y j ] to [b i , x j ], each [y i , y j ] to [x i , x j ] and each [y i , a j ] to [x i , u j ].
In the same way, we also lift the 2-dimensional simplices.

2)

Step 2: Let us construct a sub-decomposition L of the triangulation L, such that the intersections of the planes with the pyramid are triangulated in the following way: Let us define new vertices of L as the intersection of 1-dimensional simplices of L with the planes P i . In the same way, we define also new 1-dimensional simplices of L as the intersections of 2-dimensional simplices of L with the planes P i . The decomposition L of the pyramid contains vertices, edges (1-dimensional simplices), and faces which can be triangles or quadrilaterals. The sum n 0 -n 1 + n 2 is the same for the triangulation L and the decomposition L (see figure 12 (b)).

3) Step 3: Let us define a sub-triangulation L of L in the following way: each quadrilateral is divided into two triangles. The sum n 0 -n 1 + n 2 is the same for the triangulations L and L (see figure 13). 
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4)

Step 4: We will prove that the intersection of L with each plane P i is a curve homeomorphic to a circle. First, we show that the projection of L to the plane Q provides a sub-triangulation K of the polygon K (figure 14). In fact, by construction, since there is no vertical edges in the pyramid, then the orthogonal projection π of the pyramid to Q is a bijection between the triangulations L and K . Notice that each vertex of K corresponds to a vertex of L and, in the same way, for the edges and the triangles of K and L , respectively. Moreover, in the subdivision L , each edge is the common edge of exactly two triangles, and likewise in K . That implies that K is a triangulation. Now, we prove, by induction, that the intersection of L with each plane P i is a curve homeomorphic to a circle. We see that L ∩ P 0 , which is the boundary of the triangle σ 0 denoted by B 0 , is homeomorphic to a circle. Assume that B i is homeomorphic to a circle but B i+1 is not homeomorphic to a circle. Then L has multiple points in the plane P i+1 (see figure 15). By projection, K is no longer a triangulation. That provides a contradiction.

P i+1 P i z z 1 z z 2 z 3
Figure 15. Not admisible picture: The intersection B i of L with each plane P i can not have multiple points.

5)

Step 5: Apply Cauchy's method (section 1.2): Now, let us apply Cauchy's method on the pyramid starting by removing the triangle σ 0 . Assume that we have already removed all triangles above the plane P i . We will prove that if we remove all the triangles in the band situated between P i and P i+1 , the sum n 0 -n 1 + n 2 does not change. This fact can be established processed since the open band between B i and B i+1 does not possess vertices, as follows: Let us fix a triangle (α 0 , α 1 , β 0 ) of the band between B i and B i+1 , where the vertices α 0 and α 1 belong to B i and β 0 belongs to B i+1 . First, we remove the triangle (α 0 , α 1 , β 0 ) by operation I, without changing the sum n 0 -n 1 + n 2 . Now, the edge (α 1 , β 0 ) is an edge of either the triangle (α 1 , β 0 , β 1 ), where β 1 ∈ B i+1 (see figure 16 (a)), or of the triangle (α 1 , α 2 , β 0 ), where α 2 ∈ B i (see figure 16 (b)). In the first case, the triangle (α 1 , β 0 , β 1 ) can be removed by operation I of Cauchy's process, and in the second case the triangle (α 1 , α 2 , β 0 ) can be removed by operation II. In both of these two cases, the sum n 0 -n 1 + n 2 is not changed.

⇒ B i B i+1 ⇒ • • α k • α 0 • α 1 • α 2 • • β j • β 0 • β 1 • β 2 (a) ⇒ ⇒ • • α k • α 0 • α 1 • α 2 • • β j • β 0 • β 1 • β 2 (b) Figure 16. Going from B i to B i+1 .
We continue the process for all the triangles of the band, all of which are one of two cases above, until we reach the last vertices of B i and B i+1 situated before going back to α 0 and β 0 , respectively. We call these vertices α k and β j . We have two possible situations (a) and (b) (see figure 16). In situation (a), the last remaining triangles are (α k , α 0 , β j ) and (α 0 , β j , β 0 ). In this case, these triangles can be removed in this order using operation II. In situation (b), the remaining triangles (α k , β j , β 0 ) and (α k , α 0 , β 0 ) can be removed in this order using also operation II. In the two cases, the sum n 0 -n 1 + n 2 is not changed.

6)

Step 6: The conclusion.

The process continues until we reach the boundary B n+1 of the hole, which is the boundary K 0 of K, and is also the intersection of L with the plane P n+1 .

Let us denote by n K 0 , n K 1 and n K 2 respectively the numbers of vertices, edges and triangles of the triangulation K and let us use the same notation for the sub-triangulation K and the triangulation K 0 . We have

n K 0 -n K 1 + n K 2 = n K 0 -n K 1 + n K 2 = n K0 0 -n K0 1 + 1.
The first equality follows from the fact that the sub-triangulation process does not change the alternating sum and the second equality comes from the fact that we removed the triangle σ 0 at the beginning and that n K0 2 = 0. Here we take the identifications of simplices of K 0 into account. Given a triangulation K of the polygon, the result does not depend on the choices made.

Proof of theorem 1.1 using Cauchy's method. Let K be a convex polyhedron. We proceed with the planar representation K of K, according to the first step of Cauchy's proof (see figure 2). Notice that K is a polygon without any identification of simplices on its boundary

K 0 . Then n K0 0 -n K0 1 + n K0 2 = 0. Theorem 2.1 implies that n K 0 -n K 1 + n K 2 = +2
, taking into account the removed polygon P in the first step of Cauchy's proof. Since theorem 2.1 is proved using only Cauchy's method, then Euler's formula is also proved by using only Cauchy's method.

Before going further with applications, let us provide some remarks on the proof of theorem 2.1.

Remark 2.2. The stereographic projection proof of Euler's formula is a particular case of the proof.

Remark 2.3. There are other ways to define an order of the vertices of the polygon to be able to draw the pyramid, without using the Euclidean distance in R 2 .

One possible way is the use of notion of distance between two vertices as the least number of edges in an edge path joining them. As in the proof of theorem 2.1, choose a 2-dimensional simplex σ 0 in the interior of the polygon K and define distance 0 for the three vertices of σ 0 . Determining any order between vertices whose distance to vertices of σ 0 is 1, one continues the ordering determining any order between vertices whose distance to vertices of σ 0 is 2, etc. Then one proceeds with the construction of the pyramid.

Another way would be to start the proof of theorem 1.1 with the convex polyhedron and order the 2-dimensional faces according to the shelling process (see [Zie] and [BM]). The 2-dimensional faces of the polyhedron are dual to the vertices of the polar polyhedron. One obtains an order on the vertices of the polar polyhedron. One continues the proof using the polar polyhedron instead of the original polyhedron, knowing that the sum n 0 -n 1 + n 2 is the same for the polyhedron and its polar. However, the shelling is a tool which was defined well after Cauchy's time, so it is not acceptable in our context. We mention it just for the sake of completeness.

Remark 2.4. In step 4 of the proof, the projection on the plane Q of the intersection of each plane P i with the pyramid is a Jordan curve passing through y i . Moreover, in step 5 of our proof, we make it clear that if the boundary of the extended hole is homeomorphic to a circle, then Cauchy's process works. It is then possible to proceed in step 5 either with the sub-triangulation L of the pyramid or with the sub-triangulation K of the polygon K.

Remark 2.5. In step 5 of the proof we use only the operations I and II of Cauchy. Observing that if we change the order of removal of the last remaining triangles, for example, in situation (a), if we remove the triangle (α 0 , β j , β 0 ) and thereafter the triangle (α k , α 0 , β j ), we will use first operation I of Cauchy and then the operation that we called operation III in section 1.3 (see figure 6 (d)). Here also, we do not change the sum n 0 -n 1 + n 2 .

Remark 2.6. As we emphasized at the beginning of this section, we use in the proof only Cauchy's method (section 1.2) without other tools. We know very well that there exist "modern and faster" ways to prove theorem 2.1. However, these proofs use tools that appeared after Cauchy's time, in particular some proofs use the Jordan Lemma, which, as we have seen, appears as an artifact in our proof.

Applications

In the following, using theorem 2.1 as the main tool, we prove that the sum n 0 -n 1 + n 2 does not depend on the triangulation in the case of the sphere, the torus, the projective plane, the Klein bottle and even for a singular surface: the pinched torus. In each case, we use a planar representation of the surface homeomorphic to a disc with possible identifications on the boundary, and the following lemma concerning the "cutting surfaces" technique that was introduced by Alexander Veblen in a seminar in 1915 (see [Bra]). This idea is well developped in the book by Hilbert and Cohn-Vossen [HC], in particular for the surfaces that we give as examples.

The following "cutting" lemma will be used in the forthcoming proofs.

Lemma 3.1. Let T be a triangulation of a compact surface. Let Γ be a continuous simple curve in S. There exists a sub-triangulation T of T , with curvilinear simplices, compatible with the curve (that means Γ is an union of segments of T ) in such the way that the number n 0 -n 1 + n 2 is the same for T and T .

Proof. First of all, we can assume that the curve Γ is transversal to all the edges of T , i.e the intersection of Γ with each edge is a finite number of points. Otherwise, a small perturbation of Γ allows us to obtain transversality.

We choose a base point (the starting point) x 0 on the curve, as well as an orientation of the curve. If the curve is not closed, we define the base point as one of the two extremities. The following process does not depend on either the starting point, or the orientation of the curve.

A sub-triangulation T is built simplex by simplex following the orientation of the curve Γ. The first subdivided simplex is the one σ 0 containing the base point. Let y be the first point where the curve leaves σ 0 . The (curvilinear) segment (x 0 , y) will be an edge of T as well as segments connecting x 0 to vertices of σ 0 , one of which can be (x 0 , y) if the point y is a vertex of σ 0 (figure 17). Now, it is enough to perform the construction for a simplex σ = (a, b, c) the curve Γ enters. In the following construction, we assume that all the simplices that the curve meets between the base point and the simplex σ (with the given orientation) are already subdivided. The "entry" point of Γ in the simplex σ can be either a vertex or a point d located on an edge of σ.

If the entry point of the curve Γ is a vertex a, the curve can exit at a point d located either in the opposite edge, or in an edge containing the vertex a, or at another vertex. In the first case (figure 18 (i)), we divide the triangle (a, b, c) into two (curvilinear) triangles (a, b, d) and (a, d, c). In the second case (figure 18 (ii)), let e ∈ (a, c) be the point at which the curve Γ exits from the triangle and we choose a point f on the curve, located between a and e. We divide the triangle (a, b, c) into four (curvilinear) triangles (a, b, f ), (b, f, e), (b, e, c) and (a, f, e). Finally, in the last case (figure 18 (iii)), assume that the exit point is the vertex c, we choose one point f on the curve, located between a and c. Notice that, in all the three cases, the choice of sub-triangulation is not unique, but the sum n 0 -n 1 +n 2 remains unchanged independent of the choice.

If the entry point of the curve Γ is located in one edge, we denote by d the entry point and by (a, c) the edge of σ containing d. The next exit point of Γ can be either in an edge different from (a, c) (for example (a, b)), or in the same edge (a, c), or it can be a vertex (see figure 19). In the second case, for example if the curve Γ enters and exits by two points d and e situated on the same segment (a, c), we choose a point f on the curve located between d and e (figure 19 (ii)). We define a sub-triangulation of the triangle (a, b, c) formed by five (curvilinear) triangles (a, b, d), (b, d, f ), (b, f, e), (b, e, c) and (d, f, e).

The two last cases of figure 19 (iii) and (iv)) are similar to the cases of figure 18 (ii) and (i) respectively.

In the four cases, the choice of sub-triangulations is not unique, but the sum n 0 -n 1 + n 2 remains unchanged independent of the choice.

The process continues for all the 2-dimensional simplices crossed by the curve Γ, and it is completed in a finite number of steps because the number of simplices is finite, even after the subdivision.

3.1. The sphere case. In the following, we provide an alternating proof of Euler's formula for the sphere using theorem 2.1 as the main tool, with the idea of "cutting surfaces" as an additional tool.

Let T be a triangulation of the sphere S 2 . We consider four curves on the sphere: The equator E (or any parallel) and three curves γ 1 , γ 2 and γ 3 , going from the North pole N to the curve E along meridians. Let us denote by a i the intersection points γ i ∩ E, where i = 1, 2, 3. Using lemma 3.1 we can construct a subdivision T of the triangulation T compatible with the four curves, i.e. such that the union of the four curves is a subcomplex of T . By lemma 3.1, the sum n 0 -n 1 + n 2 remains the same. Now, we cut the sphere along the curves γ 1 , γ 2 and γ 3 , in such a way that the projection provides a polygon K in the plane containing the equator (see figure 20). Notice that the projection of T gives us a sub-triangulation K of K. We obtain a planar representation of the sphere, homeomorphic to a disc with identifications of the simplices on the boundary K 0 of K corresponding to the cuts.

• N • a 1 • a 2 • a 3 E ∧ γ 1 ∧ γ 2 ∧ γ 3 (1) > < γ 1 γ 2 > < γ 2 γ 3 < < γ 3 γ 1 • a 1 • a 2 • a 3 E N N N • • • (2) • N • N • N • a 1 • a 2 • a 3 • α 1 • α 2 • α 1 • α 2 τ 1 τ 2 τ 3 τ 1 τ 2 τ 3 γ 3 γ 3 γ 2 γ 2 γ 1 γ 1 (3) 
Theorem 2.1 states that the sum n T 0 -n T 1 +n T 2 of the triangulation T is equal to the sum n K0 0 -n K0 1 +1, where the sum n K0 0 -n K0 1 is calculated by the boundary of the figure. Notice that, using the same notation on the sphere and on the planar representation, the vertex N is common to all the curves γ i and must be identified. Beside this vertex N , the number of vertices in each curve γ i is equal to the number of edges (see figure 20). Then for the boundary of the planar representation, we have n K0 0 -n K0 1 = +1 and for the triangulation, we have

n T 0 -n T 1 + n T 2 = +2.
3.2. The torus case. Let T be a triangulation of the torus T = S 1 × S 1 . We choose a meridian M = S 1 × {0} and a parallel P = {0} × S 1 . They cross at one point A = {0} × {0}. Observe that, without loss of generality, we can choose them transversally to all the edges (1-dimensional simplices of T ). We define a sub-triangulation T of T , in the following way (see figure 21): Each triangle σ (2-dimensional simplex) of T meeting M or P is divided in such the way that σ ∩ M (or σ ∩ P ) is an edge of T . Lemma 3.1 implies that the sum n 0 -n 1 + n 2 remains the same for T and T .

K • • K Figure 21. Sub-triangulation T of T . > a > b > c > d > a > b > c > d ∧ e ∧ f ∧ g ∧ h ∧e ∧f ∧ g ∧h A A A A Figure 22
. A planar representation of torus. Now, cutting the torus along M and P , we obtain a planar representation K of the torus which is homeomorphic to a disc, with identifications on the boundary K 0 corresponding to the cuts. Hence, by lemma 3.1, the number n 0 -n 1 + n 2 remains unchanged. Using theorem 2.1, we have:

n T 0 -n T 1 + n T 2 = n T 0 -n T 1 + n T 2 = n K 0 -n K 1 + n K 2 = n K0 0 -n K0 1 + 1.
Now, with the identifications on the boundary K 0 , we have n

K0 1 = n K0 0 + 1. Finally n T 0 -n T 1 + n T 2 = 0
for any triangulation of the torus. The same proof holds for the torus of genus g. For example, let us take a torus of genus 3. Given a triangulation T of the torus, we fix a point A and around each "hole" of the torus, we fix a "meridian" (a 1 , a 2 , a 3 in figure 23) and a "parallel" (b 1 , b 2 , b 3 in figure 23). We construct a sub-triangulation T of T by the same methods as in the case of the torus. Cutting the torus of genus 3 along the meridians and the parallels, we obtain a planar representation of the torus of genus 3, triangulated by the triangulation T . By the same procedure as in the torus case, one obtains n 0 -n 1 + n 2 = -4. This is an example of Lhuilier's formula 1.4.

< a

1 < b 1 > a 2 > b 2 ∨ a 3 ∧b 3 > a 1 > b 1 < a 1 < b 1 < a 2 < b 2 > a 2 > b 2 < a 3 > b 3 < a 3 < b 3 Figure 23.
Planar representation of the torus of genus 3. In order to have a light figure, we did not draw a triangulation T in such a way that each edge a i and b i are subdivided in at least three segments.

3.3. The projective plane case. The projective plane is represented by a sphere whose diametrically opposite points are identified. A triangulation of the projective plane is given by a triangulation of the sphere which is symmetric with respect to the center of the sphere. Let us consider the sphere in R 3 (see figure 24 (a)) and let T be such a triangulation of the projective plane.

The intersection of T with the equator defines a triangulation J of the equator that is symmetric with respect to the center of the sphere. Let us define a sub-triangulation T of T such that simplices of J are simplices of T and such that T is symmetric with respect to the center of the sphere (see figure 24 (b)). By the lemma 3.1, the sum n 0 -n 1 + n 2 is the same for T and T . Now, the orthogonal projection of the northern hemisphere to the plane 0xy provides a triangulation of the disc D of radius 1, centered at the origin, whose triangulation of the boundary is symmetric with respect to the center of the disc. With the identification of simplices, we have n 0 -n 1 = 0 on the boundary. Then, by theorem 2.1, we have

n T 0 -n T 1 + n T 2 = +1
for any triangulation of the projective plane.

3.4. The Klein bottle case. The case of Klein bottle is similar to the case of torus. Given a triangulation T of the Klein bottle, we choose a meridian M and a parallel P . Let us define a sub-triangulation T of T compatible with M and P . The cut along M and P provides a planar representation of the Klein bottle as a rectangle triangulated with identifications on the boundary. On the boundary, we have n 1 = n 0 + 1. Then, by theorem 2.1, we have

n T 0 -n T 1 + n T 2 = 0
for any triangulation of the Klein bottle. 3.5. The pinched torus case. Not every surface with singularities admits a planar representation. The pinched torus is an example of a singular surface that does admit such a planar representation.

Let us recall that the pinched torus is a surface in R 3 defined by the following cartesian parameterization:

      
x = r 1 + r 2 cos(v) cos 1 2 u cos(u) y = r 1 + r 2 cos(v) cos 1 2 u sin(u) z = r 2 sin(v) cos 1 2 u where r 1 and r 2 are respectively the large and small radii. Let T be a triangulation of the pinched torus. We choose a "parallel" P passing through the singular point A of the pinched torus and we define a sub-triangulation T of T compatible with P using lemma 3.1. By cutting along P , one obtains a planar representation of the pinched torus (figure 29) with identifications on the boundary. One observes that the point A is duplicated. On the boundary, we have n 0 -n 1 = 0. Then, by theorem 2.1, we have

n T 0 -n T 1 + n T 2 = +1
for any triangulation of the pinched torus. 
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 1 Figure 1. Euler's proof: Successive elimination of a vertex as well as the pyramid of which it is the vertex.
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 2 Figure 2. Planar representation according to Cauchy. The pyramid with vertex O is supposed translucent.
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 4 Figure 4. The two Cauchy operations.
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 5 Figure 5. Removal order according to Lakatos.
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 6 Figure 6. The counter-examples of Lima: The hole B is in blue and the simplices to be removed are in red and pink.
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 8 Figure 8. Planar representations of the sphere.
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 9 Figure 9. Planar representations of the torus, the projective plane and the Klein bottle.
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 10 Figure 10. The triangulation of the polygon K.
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 1314 Figure 13. The sub-triangulation L of the pyramid Π.
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 17 Figure 17. Subdivision of the first simplex I.
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 20 Figure 20. Planar representation of the sphere.
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 2425 Figure 24. Triangulation T of the projective plane Sub-triangulation T of T .
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 2627 Figure26. The Klein bottle and cuts (the meridian M is in blue and the parallel P is in red).

AFigure 28 .

 28 Figure 28. The pinched torus and cut.
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 29 Figure 29. A planar representation of the pinched torus.