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UMR 7039 - Nancy-Université, 2, Avenue de la Forêt de Haye, 54516 Vandœuvre, France.

bstract

he detection of outliers in a series of measurements, but even more so their location, is a neces

hen these measurements are to be used in a monitoring system. This detection/localisation can

e done if redundant information is available, which may be based on the model of the system on w

he measurements were collected.

n some cases, however, it is not necessary to detect and locate outliers. Instead, a robust approac

heir use may be preferred, one that minimizes the influence of these outliers, such as using a me

ather than a mean.

n this paper, the focus will be on the notion of robustness through a few examples and notably

roposing extensions to two well-known data processing techniques (data reconciliation and princ

omponent analysis). The numerical examples proposed clearly show how to implement these

echniques and how to use them in a system monitoring procedure.

eywords: Outliers, detection, deletion, acceptance, redundancy, robustness

. Introduction

ome general considerations on the problems related to the presence of outliers will be followed b

hort presentation of work related to the treatment of outliers, and then the plan adopted for this pa

.1. Positioning of the problem to be solved

ue to the intensive use of data (especially from sensors), but also to the increase in their volume

heir use in monitoring and control tools, the problems resulting from the presence of outliers have ta

n considerable importance in recent decades [54, 69].

ow to recognize outliers? They are commonly defined as observations that appear to be inconsis

ith the main part of the data set, or as observations that deviate significantly from the model

ulated. Some historical definitions of outliers, which are indeed still relevant, are also worth not

arnet and Lewis [5] indicate that an outlier is an observation that appears to deviate significa

rom other members of the sample in which it occurs. Hawkins [31] defines an outlier as an observa

hat deviates so far from other observations that it raises suspicions that it was generated by a diffe

echanism.

efinition 1 (Residues as indicators of outliers). The fundamental principle of model-based fault

ection is based on the estimation of the state of the system from the available measurements.

esulting estimation error constitutes the residual vector. Subsequently, a decision on whether or

measurement inconsistency is present is made by comparing this residue to a given threshold. F

ignal generated from measurements collected on a system to be a true residue, it must be sensitiv

easurement inconsistencies. In a general way, the generation of a residual is based on a data tr

ormation to generate a residual capable of revealing at best the deviation from a reference situation

he following, the generation of the residue will be at the heart of the approaches presented.
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n any case, the detection of outliers can only be done if redundant information is available, which

e of hardware or software origin. Hardware redundancy comes from the simultaneous use of sev

ensors to measure the same quantity. The detection of an aberrant measurement, thus coming f

faulty sensor, is then based on the comparison of the measurements between them and the use

ajority vote. Software redundancy exploits the properties of the model of the system on which

ata are collected. Subject to structural conditions to be met, the adequacy of the measurements w

espect to the model can be tested to determine whether or not there are any measurement errors.

n the literature, there are currently three research communities dealing with the problem of f

iagnosis: the FDI (Fault Detection and Isolation) community, whose methodological tools are lar

ased on the synthesis of dynamic diagnostic filters, the DX (Diagnosis) community, whose foundat

ome from the fields of computer science and artificial intelligence, and the signal processing commu

hose tools are based on statistical signal processing and also on pattern recognition. Even if t

re common principles between the three communities, such as the use of models or the genera

f alarm signals, each has focused on the development of its own terminologies, calculation tools

ethodological approaches, guided by different constraints and objectives. Similarly, the mode

ormalisms are very different for each domain; for example, the models of the FDI community are o

ased on differential algebra, while those of the DX community are mostly symbolic and qualita

lthough links exist between these three communities, which obviously have very similar objective

he field of diagnosis, it is nevertheless true that specific vocabularies remain, (to this day, there is

o consensus on the terms used) such as for example: outliers, faults, defects, anomalies, discord

bservations, peculiarities or contaminants, which nevertheless designate very similar facts.

.2. Related works

he wide variety of available methods based on well-established statistical tools [53, 67], has mad

ossible, in many practical applications, to use techniques to handle measurement inconsistencies.

his article is not intended to be an inventory of usable tools, but simply to raise the reader’s aware

f the problem of outliers through a few simple examples and situations, in particular by focusin

wo model-based methods, namely measurement reconciliation and principal component analysis.

ourse, many other model-based techniques would need to be examined, including those using li

egression models [57] and their variants [15], nonlinear regression techniques [41], machine lear

43], Bayesian models [54]. Among the methods that have been developed to deal with outliers is

f Rousseeuw and Hubert [59]. The latter consists first of all in constructing an adjustment tha

obust to them, generating residuals with respect to this adjustment, and then analyzing these resid

o identify outliers. A very large number of works have been published on this subject, and among

ost recent are the following : [68, 49, 17, 60, 26, 34].

oving beyond outlier detection, the reader may be interested in the more general problem of detec

nomalous series in relation to a set of series. In [10] the author has been interested in the detec

f unsupervised anomalies in uni- and multi-variate time series with a particular application for ma

f data in the field of tyres. In [30] the author deals with the detection of multiple breaks in a si

ith an extension to the case of multiple breaks in several synchronized time series. Some aut

3, 21] supplement this classification of methods with techniques based on proximity concepts (d

lassification techniques for example). In [11] a taxonomy is presented based on the main aspects

haracterize an outlier detection technique.

or industrial applications and the processing of large volumes of data, the emphasis is often pla

n the online detection of outliers directly related to security, safety and production quality monito

ssues. As an example, in a wide variety of fields, we can refer to the following work [6] for telecom

ications, [70] for tyre quality assessment, [62] in the field of aeronautics, [52] for sensor networks,

n the field of mineral processing, [1] in the field of chemical engineering. Much more broadly, it ca

rgued that no area is unaffected by the problem of dealing with outliers, particularly in the con
2
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f societal applications : fraud detection, intrusion detection, face detection, video surveillance, so

edia analysis.

.3. Positioning of the present work

n the following, the treatment of outliers will be approached through three complementary functio

ault detection (the determination of the presence of faults in a system and the time of occurrence of t

aults), fault isolation (determination of the exact location of a fault), fault identification (determina

f the size of a fault), which are often performed sequentially, but which, depending on the techn

sed, can also be performed concomitantly.

t is also necessary to specify, on the one hand, the nature of the systems to which this presentatio

ddressed and, on the other hand, the assumptions made about outliers. The systems will be consid

tationary as well as the noises that affect their measurements. Therefore, situations where the inte

tructure of the systems may vary or variations in the internal parameters of the systems are exclu

rom the proposed approaches. As for outliers, they concern amplitude biases on their measureme

e therefore exclude outliers that may come from other sources of disturbance such as change

ariance or frequency.

s the objective here is to detect/locate/identify outliers in interdependent multivariate systems, t

easures need to be treated globally, which obviously excludes single signal approaches. The strate

enerally used are all based on the synthesis of residuals indicating the presence of outliers ; the pre

ocalisation of the outliers needs a particular structuring of these residuals. As shown in the two exam

n sections (3.3) and (4.5), the analysis of these residuals is done by fairly classical approaches, w

ay use jump tests or classification techniques.

ection 3 presents this possibility through a procedure known as data reconciliation. The presenta

ims, on the one hand, to give some specific references to the users of the measurements and, on the o

and, to insist on the robustness of certain techniques for processing the measurements [44, 24, 2, 28,

he robust reconciliation procedure that we propose here has the advantage of being carried ou

onjunction with the detection/localization of outliers.

ection 4 is based on a well-known tool, Principal Component Analysis, but is revisited by propo

relatively unknown technique for reconstructing variables from a selection of available variables

rojecting them into the so-called residual space in order to obtain structured indicators for detec

nd isolating outliers.

. Some classical approaches for abnormal values detection

his section illustrates, using simple examples, some approaches to highlighting abnormal data. A

llustrating some types of outliers (section 2.1), the academic example of a two-equation system in

uces the notion of residual and structured residual (section 2.2), which then allows the general cas

multivariate system in a static regime to be presented (section 2.3). The next two sections 2.4

.5 specify the approaches for replacing outliers and then for their acceptance.

.1. Different types of outliers

igure 1 shows two types of error [5] in the case of a two-dimensional variable. Bias affecting b

irections of measurement and random errors are shown. The sensors that delivered the measurem

an be characterized by their accuracy and fidelity (these two qualities being possibly associated

hown in Table 1. Depending on the use made of them, these measurements can be processed in

way as to reduce the influence of the two sources of error. Obviously, the situation is more com

hen we are interested in a network of sensors equipping a physical process, as the faults that a

hem may be related to each other.
3
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Figure 1: Various types of errors.

Sensor Systematic Random

errors errors

true and unfair minor important

wrong and fair important minor

true and fair (precise) minor minor

wrong and unfair important important

Table 1: Quality of a sensor

.2. Active approach: detection of outliers in multiple time series

his term refers to a set of techniques that can detect and locate outliers in a series of observati

nce localized, these can either be removed, which may subsequently cause some processing diffi

ies, or replaced by so-called substitution values obtained for example by interpolation using hea

easurements close to those that have been removed. Numerous statistical tests have been develo

or outlier detection (Dixon, Grubbs, Cochran, Tukey, Chauvenet, Tietjen-Moore, Student, Thomp

..) as well as substitution techniques (winsorising, trimming). Numerous publications deal with t

echniques and the reader is invited to refer to the historical references [19, 27, 7, 66, 25], and to m

ecent ones [58, 14, 45, 35, 48, 63], but also works of synthesis [31, 5, 4]. The techniques mentio

bove are generalized to the multivariate case where the detection involves the analysis of measurem

f several variables coupled by a model.

s an example let us consider the system characterized by four variables and described by the mod

x21 − x2 + 2 log x3 = 0

x2 + x3 − x4 = 0

he twenty available measures of xi, i = 1, . . . , 4 are grouped in Table (2) and we wish to establi

iagnosis of the consistency of these data. As this is a simulation, one fault affects x2 for observa

2 and another affects x3 for observation 6. To make a diagnosis, the model residuals were calcul

rom the measurements, i.e. :
r1 = x21 − x2 + 2 log x3
r2 = x2 + x3 − x4

n order to improve diagnostic efficiency, the equations (2) can be combined in an additive man

hich removes the variable x2 (a similar approach is used for the variable x3, which could also

emoved):

x21 + 2 log x3 + x3 − x4 = 0

nd makes it possible to evaluate the residue r3 = x21 + 2 log x3 + x3 − x4 but without using that o

he validity of the measurements is highlighted by the analysis of the magnitude of the absolute va

f the three residuals (ri, i = 1, 2, 3) whose values are shown in Table (2) and graphically illustrate
4
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x1 x2 x3 x4 | r1 | | r2 | | r3 |
1 0.86 0.61 0.95 1.54 0.02 0.02 0.03

2 1.24 1.49 0.98 2.45 0.01 0.01 0.02

3 2.15 2.01 0.29 2.30 0.12 0.00 0.12

4 1.62 2.17 0.80 2.96 0.01 0.01 0.02

5 1.50 2.05 0.90 2.95 0.00 0.00 0.00

6 1.69 1.81 0.95 2.39 0.93 0.37 1.30

7 1.31 1.48 0.89 2.37 0.02 0.00 0.02

8 1.13 1.17 0.94 2.13 0.01 0.02 0.02

9 1.45 0.91 0.55 1.45 0.01 0.00 0.00

10 1.15 0.68 0.73 1.40 0.02 0.01 0.03

11 1.27 0.50 0.58 1.07 0.04 0.00 0.04

12 2.77 0.86 0.03 0.38 0.49 0.50 0.00

13 1.37 0.25 0.44 0.69 0.00 0.00 0.01

14 1.02 0.18 0.65 0.82 0.00 0.01 0.01

15 1.20 0.12 0.52 0.64 0.01 0.00 0.01

16 1.45 0.09 0.37 0.46 0.04 0.00 0.04

17 0.43 0.06 0.94 0.99 0.00 0.00 0.00

18 0.64 0.04 0.83 0.87 0.01 0.00 0.01

19 0.59 0.03 0.85 0.88 0.00 0.00 0.01

20 1.42 0.02 0.37 0.39 0.01 0.00 0.01

Table 2: Measures available over time and model residuals

δx1 δx2 δx3 δx4
r1 × × × .

r2 . × × ×
r3 × . × ×

Table 3: structured faults signature

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

0 2 4 6 8 10 12 14 16 18 20

0

1

2

Figure 2: Model Residuals

he figure (2). The three model residuals are essentially zero except for the two observations 6 and

he 6 observation triggers all three residuals significantly, while the 12 observation triggers only th

nd r2 residuals. This is explained by the table (3) of signatures of possible faults δxi whose ro

undamental to characterize the detectability and the isolability of the measurement faults. The cro

how the sensitivity of the residues to the faults, the absence of sensitivity being marked by a dot.

ensitivities of the residuals with respect to the faults δxi are all different which shows the isolabilit

hese measurement faults, which would not be possible if only the first two residuals r1 and r2 had b
5
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sed because in this case δx2 and δx3 would have had the same signature. Concerning the detec

hase, the visual examination of the figure (2) can be advantageously replaced by a technique of ju

etection or extreme value detection (Dixon’s test for example).

.3. Active approach: Outlier detection in a multisensor system

he previous example can be easily generalized to any dimension system. In what follows, we summa

he technique of the parity space [56] which is based on the construction of the parity vector w

tructure is established from the equations of the system whose consistency we want to monitor. Le

onsider, at a particular instant, the measurement linear system :

xm = C x+ ε+ F d

x ∈ Rn, xm ∈ Rm, d ∈ Rp, ε ∈ Rn,m > n

here xm is the known measurement vector, x the vector of the variables to be measured, d the vecto

he unknown faults and ε the vector of the measurement noise. C ∈ Rm×n is the assumed full row ma

haracterizing the measurement system and F is the matrix of the fault directions. The constraint m

eflects redundancy of information and comes from the fact that there are more measurements t

ariables. To detect the presence of faults, we seek to establish analytical redundancy relations betw

he measurements which are independent of the unknown quantities x but which remain sensitiv

he faults d. For this, we define the parity vector :

p = Wxm

here W ∈ R(m−n)×n is the projection matrix orthogonal to C resulting from (4) by simple mult

ation by W :

p = Wε+WFd

he expression (5) is the so-called ”computation” form of the parity vector from the xm measurem

hile the expression (6) explains the influence of the d faults on the parity vector through the

atrix. In the absence of measurement noise ε and failure d the parity vector p is null. In this partic

ituation, the equation (5) then translates the set of redundancies that link the measurements xm

W xm = 0

iven the expression (6) the capability to isolate d faults affecting the measurements is directly rel

o the structure of the WF matrix and in particular to its rank. Let us consider, for example,

ystem of measurements subject to two faults affecting some of them :

xm =




1 2 1

1 0 2

1 1 1

1 0 1

2 0 2



x+




1

1

1

1

1



ε+




1 0

0 0

0 0

1 1

0 0



d

olving W C = 0 leads to:

W =

[−1 0 2 −1 0

−2 0 4 0 −1

]

hich makes it possible to explain the parity vector in the following two forms:

p =

[ −xm,1 + 2xm,3 − xm,4
−2xm,1 + 4xm,3 − xm,5

]

p =

[
0

1

]
ε+

[−2 −1

−2 0

]
d

6



w n of

t lues

o sely,

i lts d

f 190

(10)

2

T n of

t lues

t g is

k cted 195

f

S and

t . ,m

o size

n 200

(11)

R ely,

f tion

c

R ized

a ata. 205

I

(12)

A

(13)

F ost

c �

F and 210

m r of

t tion

o o by

t

here xm,i are the components of the xm measurement vector. The form (9a) allows the calculatio

he parity vector from the available measurements; since the ε errors are usually of zero mean va

r low magnitude, the form (9b) can be used to detect and estimate possible faults d. More preci

f the influence of ε is neglected and as the WF matrix is regular, one can easily estimate the fau

rom the definition of p (9b) itself evaluated from the measurements (9a):

d =

[ −0.5p1
0.5(p2 − p1)

]

=

[
xm,1 − 2xm,3 + 0.5xm,5

2xm,3 − xm,1 + xm,4 − xm,5

]

.4. Active approach: Outlier replacement

he aim is to eliminate and replace outliers affecting a temporal signal with a ”minimal” distortio

he useful signal. A basic idea is the median of a sample which is much less sensitive to extreme va

han the mean. The observations furthest from the median can then be discarded and this discardin

nown as trimming in the English literature and winsorizing when the discarded values are reconstru

rom the remaining values.

pecifically, a winsorized or ”trimmed” {r, s} mean is the replacement of the smallest r observations

he largest s observations, where r and s are integers. Let us consider the values xi+j , j = −m, . .
f a signal to be filtered where the current index i corresponds to the center of a moving window of

= 2m+ 1. The filtered value is defined by :

x̂i =
1

n

(
r xi−m+r +

m−s∑

j=−m+r

xi+j + s xi+m−s
)

ejecting extreme points simply requires setting the parameters r and s and this can be done adaptiv

or example by rejecting points that deviate from the mean by more than k times the standard devia

alculated on the window considered.

emark 1. In the case where the number of rejected points is not an integer, one can define a winsor

verage at 2a% which implies the replacement of a given 2a percentage of values at both ends of the d

n the case of a symmetric filter r = s, we have :

x̂i =
1

(1− 2a)n

(
(1− f)xi−m+r +

m−r−1∑

j=−m+r+1

xi+j+

(1− f)xi+m−r
)
, f = an− r

s an example, with m = 4, a = 0.3, r = 2, we get the filter:

x̂i =
1

3.6
(0.3xi−2 + xi−1 + xi + xi+1 + 0.3xi+2), i > 3

or example, the median is the most fitted statistic (nominally 50 %) because it rejects all but the m

entral data. In [2] an application of trimming to robust classification is provided.

igure (3) is an illustration of outlier replacement (in signal sav) using trimming (signal stf)

edian filtering (signal smf) techniques. Of course the filter window width is the key paramete

hese techniques. A close look at this figure shows the removal of outliers but with a slight distor

f the rest of the signal. The right part of the figure compares the 3 signals by their differences tw

wo.
7
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Figure 3: Outlier filtering

.5. Passive approach: acceptance of outliers and robustness

n contrast to the previous approach, the aim here is not to eliminate outliers, but to reduce t

ndesirable effects during their use. For example, to identify the parameters of a system, one

ry to construct an estimation algorithm that directly minimizes the influence of the outliers on t

arameters. As a well-known example, let us recall the case of the robust mean using the me

lter. Two tools will be recalled to reach a certain level of robustness in the treatments: contamin

istributions and M-estimators.

Contaminated distributions [22, 18]

so-called contaminated model assumes that a large µ portion of the data is generated from a clas

ormal error model of small magnitude. The remaining data, corresponding to the (1−µ) fraction of

data set, may be affected by abnormal noise generated by a distribution of different characteris

s an example, the distribution taking into account the two different types of errors can be :

p(ε) = µ N (0, σ2
1) + (1− µ) N (0, σ2

2)

his type of distribution model, after an adequate setting of µ, σ1 and σ2, proves to be efficien

dentification in the presence of outliers. To illustrate its application, let us consider the simple cas

stimating the mean of a sample size N in the presence of outliers, the aim being of course that

stimate is not very sensitive to outliers. The likelihood function for this sample is explicit:

V =
∏N
i=1(µp1(xi) + (1− µ)p2(xi))

p1(x) =
1√

2πσ1
exp

(
− (x−m)2

2σ2
1

)

p2(x) =
1√

2πσ2
exp

(
− (x−m)2

2σ2
2

)

here m is the mean to be estimated and σ1, σ2 the standard deviations of the contaminated distribut

few comments are necessary to justify the interest of this type of function. To do so, we can ana

ts sensitivity g(x) = V/∂x compared to the data x :

g(x) =

wp1(x)

σ1
+

(1− w)p2(x)

σ2
wp1(x) + (1− w)p2(x)

he figure (4) shows the role of the parameters σ1, σ2, w on the ability to take into account the va

f x which will subsequently represent the outliers. For an easier interpretation of the graphs, they h

een normalized, i.e. they represent the normalized functions g(x) = g(x)/g(0).
8
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Figure 4: Influence function

or w = 1 we naturally obtain a constant weight; thus all the data are equallly weighted and

articular, the optimisation criterion will be sensitive to large magnitude of data, i.e. to outl

aking w = 0.1, σ1 = 0.5, σ2 = 1 reduces the influence of outliers since the weight decreases fro

or data around the origine to 0.63 for data with large magnitude. Ultimately, what is important

ave separate sensitivities for low and high values of the x variable. Of course, the situation is e

learer with the choice (w = 0.1, σ1 = 0.5, σ2 = 4) where this time the weight of the large values of

egligible, which greatly reduces the influence of outliers.

he maximum of the likelihood function V with respect to m is obtained for :

N∑

i=1

wi (xi −m) = 0

wi = µ
p1,i
σ2
1

+ (1− µ)
p2,i
σ2
2

iven the expressions of p1,i and p2,i (15) which depend on m, the non-linear equation (16) is so

teratively with respect to m, for example according to the scheme (17) initialized with weights w0
i e

o unity :

miter+1 =

∑N
i=1 w

iter
i xi∑N

i=1 w
iter
i

witeri = µ
piter1,i

σ2
1

+ (1− µ)
piter2,i

σ2
2

piter1,i =
1√

2πσ1
exp

(
− (xi −miter)2

2σ2
1

)

piter2,i =
1√

2πσ2
exp

(
− (xi −miter)2

2σ2
2

)

able 4 shows an estimation result of the mean of a sample of 50 values (with 4 outliers) and by exten

ts standard deviation. The first two rows of this table relate to the standard valuation without

ith outliers. The robust evaluation in the third row shows estimates close to those obtained in

bsence of outliers, thus demonstrating the robustness of the method.

he figure (5) shows the 50 values of the sample with its outliers and the weights wi used for

alculation of the mean, which also makes it easy to locate the outliers. Of course, the robustnes

he estimate with respect to outliers is related to their proportion to healthy values. The setting of

arameters σ1, σ2 and µ conditions this robustness; it can be realized heuristically by learning but

y a more analytical optimization procedure, directly from the likelihood function.

M-estimators [12, 38, 72]

-estimators were introduced as a generalization of the maximum likelihood minimization estimat

ρ function over the available data set zi, i = 1, . . . , N . Thus, the M-estimator(s) associated with
9
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Mean Standard deviation

Conventional evaluation without abnormal value 1.501 0.277

Conventional evaluation with abnormal value 1.821 1.145

Robust evaluation with abnormal value 1.501 0.282
Table 4: Robust estimation of a mean and standard deviation

ata and the function ρ is given by :

θ̂ = argminθ

(
N∑

i=1

ρ(zi, θ)

)

well-known example is the function of Cauchy or Lorenz :

ρ(zi, a, b) =
c2

2
log

(
1 +

(εi
c

)2)

here zi = {xi, yi} and where εi = yi−axi− b is an image of model errors when representing data w

straight line. The sensitivity of ρ to the errors ε becomes explicit :

∂ρ

∂εi
=

εi

1 +
(εi
c

)2

nd concludes that a large εi >> c error produces a small insensitivity on θ̂ and a small εi << c e

roduces a sensitivity in the order of εi. Thus, the choice of the c threshold, at the user’s discret

etermines the robustness of the estimator with respect to outliers. Starting from (19) and (20),

eader will be able to establish the optimality equations of the parameters a and b of the regres

odel by himself: ∑N
i=1 wi(a, b)(yk − axk − b)xi = 0∑N
i=1 wi(a, b)(yk − axk − b) = 0

ith the following expression of weights:

wi(a, b) =
1

1 +

(
yi − axi − b

c

)2

he non-linear system (21, 22) can be solved by a simple iteration mechanism from an initial choic

eights wi for example to the unit value. This procedure is to be compared with that obtained by

rdinary least squares method, the only difference being the use of adapted weights [33], i.e. func

f outliers.
10
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he figure (6) shows the arrangement of 22 pairs of points {xi, yi} of which three are obviously outl

s well as the regression lines obtained by an ordinary regression and a robust regression. The

arameters a and b of the system are 2 and −3, those obtained by ordinary least squares 1.594

2.169, and those obtained by the robust procedure are 2.001 and −3.008, which highlights the m

f the robust estimator.

. Reconciliation of data in the presence of outliers

his section is devoted to a technique for dealing with measurements potentially contaminated

utliers. It has a twofold objective, on the one hand to reconcile the measurements against a model

n the other hand, to detect/locate outliers. Successively, the principle of measurement reconciliatio

iven, then its refinement by complementing it with a procedure for robust estimation of the variab

o illustrate its implementation, the case of a non-linear model system is treated numerically, th

omparison with three more classical techniques is proposed and discussed.

.1. Basic principle of data reconciliation

he purpose of data reconciliation,[42, 64], is to make the measurements made on a system compat

ith its model, which is assumed to be accurate because it is based on the laws of matter or en

onservation [32]. As such, the reconciliation methods are close to the state estimation methods es

ished in a much more general framework. An important consequence of reconciliation is the detec

f outliers. Indeed, the reconciled values can be compared to the measurements; the discrepancies fo

an be analysed, the largest of them being able to testify to the presence of outliers. The simp

ormulation in the context of a linear model system linking the true quantities x∗ is discussed in

ection:

M x∗ = 0, x∗ ∈ Rv, M ∈ Rn×v

hose measurements xm are defined in the additive form with respect to noises ε related to the ins

entation and the measurement procedure:

xm = x∗ + ε+ F d

here the matrix F gives the directions of influence of the faults d on the measurements. Typically

m measures do not exactly verify the model (23) of the system and the reconciliation principle a

t correcting them to satisfy this model. Since the measures are assumed not to be totally outliers,

orrected quantities must remain close to them and for this reason of proximity, the estimated x̂ w

inimizes the criterion here chosen quadratically with a weighting matrix W:

Φ =‖ xm − x∗ ‖2W−1

s defined by :
x̂ = arg min

x∗
Φ under M x∗ = 0

=
(
I −WMT (MWMT )−1M

)
xm
11
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hich is explicit:

x̂ =
(
I −WMT (MWMT )−1M

)
xm

his expression provides, on the one hand, estimates of true quantities that are consistent in the s

f the satisfaction of the system model and, on the other hand, estimates of the corrections that h

een made to the measurements :

x̃ = xm − x̂
= WMT (MWMT )−1M xm

he analysis of the magnitudes of the corrective terms x̃ provides information on the magnitud

he errors and their distribution. To clarify this point it is then possible to specify the expressio

he corrective terms and the reader will be able to check from (24, 28) the following expression of

orrective terms :

x̃ = WMT (MWMT )−1M ε+WMT (MWMT )−1MF d

here the influence of ”small” random ε errors and the more important influence of d faults appe

he interpretation of (29) in terms of performance of detection and isolation of faults d is to be fo

n [50]. As the ε errors are small in magnitude, the approximation can be adopted:

x̃ ∼WMT (MWMT )−1MF d

hich makes explicit the corrective terms according to the faults. Therefore the fault di (the ith com

ent of d) is detectable if the ith column of the matrix WMT (MWMT )−1MF is non-zero. The isola

f the fault(s) obviously depends on the structure of this same matrix. In a certain way, this reco

ation procedure does not have the desired robustness in the sense that the faults are corrected bu

he detriment of their dissemination on all the variables. This justifies the following paragraph w

resents a robust approach to the problem of reconciliation of measurements, the robustness allow

ot to disseminate the measurement faults on all the variables during the reconciliation procedure

n important result, the correction of the measurements essentially will concern those subject to fa

emark 2. It is also interesting to consider the problem of reconciliation when using only part of

vailable measures. To ignore the measure of the p-th variable, an elegant way of dealing with this

s to choose a diagonal weighting matrix whose (p, p) element takes an infinite value.

emark 3. The previous data reconciliation principle extends to non-linear and dynamic systems.

he sake of brevity, let us consider only the case of bilinear systems for which the models involve prod

f variables. This is very frequent in the chemical or mineralurgical field when total and partial

aterial balances are established. In this case, if x and y designate, for example, the vector of fl

nd the vector of concentrations in a chemical or mineral species, the constraints (23) are extended

x∗ = 0 and M x∗⊗y∗ = 0, where the ⊗ operator makes the term to term product of two vectors.

easurement equations then become xm = x∗ + εx and ym = y∗ + εy.

riterion (25) is amended as :

Φ =‖ xm − x∗ ‖2W−1
x

+ ‖ ym − y∗ ‖2W−1
y

nd the estimation of the reconciled variables x̂ and ŷ results from the Lagrangian optimization:

L =‖ xm − x∗ ‖2W−1
x

+ ‖ ym − y∗ ‖2W−1
y

+λT Mx∗ + µT Mx∗ ⊗ y∗

ith respect to the variables x∗, y∗, λ and µ, thus leading to the estimates x̂ and ŷ. We leave i

he reader to carry out this rather classic calculation and to repeat the analysis of the residuals of

esulting x̃ and ỹ estimates.
12
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.2. Robust data reconciliation

umerous developments are complementing the basic principle of data reconciliation that we have

ecalled. Thus, extensions made it possible to deal with dynamic systems [16], non-linear systems

he presence of poorly known parameters [71], the localisation of measurement faults [47], the ta

nto account of missing measures [39].

n this paragraph, only the specific point of the robustness of reconciliation against outliers is addres

o introduce this issue, it should be remembered that reconciliation is based on the minimization

riterion formed from the discrepancies between the variables and their respective measures. The vali

nd optimal character of this approach are eminently linked to the strong assumption of normalit

easurement errors. In practice, this assumption can be defeated in the presence of large errors

onstitute outliers, which can hardly be considered as realizations of normal random variables.

e thus bring more realism by posing the reconciliation problem in the following way: from xm m

urements estimate the true quantities x∗ of a linear model system (23). Starting from the assump

hat the number of large errors is low, the first technique proceeds by reconciling the measurem

y weighted ordinary least squares (OLS), then detects and locates the large errors (analysis of

orrective terms), and finally repeats the reconciliation procedure cited above by assigning a very

eight to the measurements for which large errors have been located. The major drawback of

pproach is that the first reconciliation can be highly erroneous due to the presence of the large err

his can then make it difficult to locate the large errors by analyzing the corrective terms.

o directly take into account the presence of gross errors, a more appropriate error distribution

s used. Recall that the class of M-estimators provides estimates that are robust to large errors.

s consider the measurement case xm = x∗ + ε, the components of ε being noted εi. The estima

riterion (25) is now taken as :

Φ =
c2

2

v∑

i=1

log

(
1 +

(εi
c

)2)

et us recall the important role played by the constant c in this criterion. It appears clearly that

rrors of magnitude higher than c are more taken into account in Φ than those of lower magnitude

ower than c. Therefore, minimizing Φ tends to reduce the influence of large errors on the estima

he previous formulation can then be repeated, taking into account the model (23) and the objec

unction (34). We leave it to the reader to find the following estimate:

x̂ = (I −WMT (MWMT )−1M)xm

W = Iv +
1

c2
diag (x̃⊗ x̃)

x̃ = xm − x̂

he non-linear system (34) is solved with respect to x̂ in a iterative manner from an initial choic

he matrix of weights W , for example the identity matrix.

emark 4. As before, the case of bilinear systems extends the robust M-estimator formulation. T

his, we consider again the variables x and y defined in remark 2 and the estimation criterion t

onsidered is now:

Φ =
c2x
2

v∑

i=1

log

(
1 +

(
εx,i
cx

)2
)

+
c2y
2

v∑

i=1

log

(
1 +

(
εy,i
cy

)2
)

he cx and cy parameters setting the outlier insensitivity. The reconciliation procedure is then based

nding the minimum Φ under the respect of the equations M x∗ = 0 and M x∗ ⊗ y∗ = 0. Since this

tandard procedure, the establishment of the optimality equations is not explained here.
13
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.3. Application

he following example, although small in size, illustrates the benefits of the robust approach for re

iling data, some of which are polluted by outliers, that need to be detected and located. The data u

ill also be processed (section 3.4) by three other approaches that also allow outliers to be detected

ocated. In order not to burden the presentation with an abundance of numerical results, the exam

ses only one set of outliers.

igure (3.3) shows a material transport network in the chemical industry (but it could also be in

ineral industry, water, gas, oil products distribution circuits, etc.) made up of nine production u

nd sixteen connecting routes between these units.
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Figure 7: Material transport network

he law of conservation of the flows of material makes it possible to write, in permanent regime,

ystem of equations (36, 37) linking the flows x∗i and the concentrations y∗i in a chemical species. T

quations only reflect the conservation of total and partial flows and could in a more general case

nto account the variations of material stocks in the production units but also of other constituent





x∗1 − x∗2 − x∗4 = 0

x∗2 − x∗3 − x∗11 = 0

x∗3 − x∗4 − x∗5 = 0

x∗5 − x∗6 − x∗10 = 0

x∗6 − x∗8 − x∗7 = 0

x∗7 + x∗10 − x∗9 = 0

x∗11 − x∗12 − x∗13 − x∗16 = 0

x∗12 + x∗13 − x∗14 = 0

x∗16 + x∗14 − x∗15 = 0





x∗1y
∗
1 − x∗2y∗1 − x∗4y∗4 = 0

x∗2y
∗
2 − x∗3y∗3 − x∗11y∗11 = 0

x∗3y
∗
3 − x∗4y∗4 − x∗5y∗5 = 0

x∗5y
∗
5 − x∗6y∗6 − x∗10y∗10 = 0

x∗6y
∗
6 − x∗8y∗8 − x∗7y∗7 = 0

x∗7y
∗
7 + x∗10y

∗
10 − x∗9y∗9 = 0

x∗11y
∗
11 − x∗12y∗12 − x∗13y∗13 − x∗16y∗16 = 0

x∗12y
∗
12 + x∗13y

∗
13 − x∗14y∗14 = 0

x∗16y
∗
16 + x∗14y

∗
14 − x∗15y∗15 = 0

he measures (xm, ym) of these sixteen pairs of variables over a given time period are recorde

able (5). The purpose of data validation is twofold: to detect outliers (here, two biases of respec
14
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mplitudes 12 and 6 affect the measures of the second component of x and the eleventh componen

), and to propose replacement values for the outliers.

1 2 3 4 5 6 7 8

xm 54.23 80.39 59.33 10.52 47.04 59.61 33.18 24.76

x̂RLS 56.00 67.81 58.31 11.81 46.49 59.39 34.12 25.27

x̃RLS -1.77 12.58 1.02 -1.29 0.55 0.22 -0.95 -0.51

x̂OLS 57.88 72.98 62.17 15.10 47.08 59.67 34.10 25.57

x̃OLS -3.65 7.41 -2.84 -4.57 -0.04 -0.06 -0.92 -0.81

ym 8.26 6.64 6.20 1.16 7.47 6.81 4.22 10.92

ŷRLS 8.14 6.92 6.11 1.13 7.38 7.08 4.29 10.85

ỹRLS 0.12 -0.28 0.09 0.03 0.09 -0.27 -0.07 0.06

ŷOLS 8.56 7.03 5.83 1.16 7.32 7.05 4.25 10.78

ỹOLS -0.31 -0.40 0.37 -0.01 0.15 -0.23 -0.03 0.14

9 10 11 12 13 14 15 16

xm 21.58 13.58 10.08 16.60 2.81 19.99 9.30 9.01

x̂RLS 21.22 12.90 9.51 16.53 2.73 19.26 9.51 9.76

x̃RLS 0.36 0.68 0.58 0.07 0.08 0.73 -0.20 -0.75

x̂OLS 21.51 12.60 10.81 17.16 2.98 20.13 10.81 9.32

x̃OLS 0.07 0.99 -0.73 -0.56 -0.16 -0.14 -1.50 -0.31

ym 3.34 6.10 17.62 6.52 2.52 6.25 11.75 0.20

ŷRLS 3.25 6.02 11.85 6.57 2.53 5.99 11.85 0.29

ỹRLS 0.10 0.08 5.77 -0.05 -0.01 0.25 -0.09 -0.09

ŷOLS 3.21 6.04 13.99 7.84 2.75 7.09 13.99 -0.91

ỹOLS 0.14 0.06 3.63 -1.32 -0.23 -0.84 -2.23 1.11

Table 5: Measured, estimated and corrective terms for flows and concentrations

n order to highlight the contribution of the robust technique, this table shows the results of estima

and ŷ of variables x and y on the one hand by robust least squares (RLS) on the other hand

rdinary least squares (OLS), as well as the corrective terms x̃ and ỹ. Concerning the estimates of

ariable x through RLS, it can be seen that its second component is the most corrected (12.58),

ther components being only slightly corrected. The results are quite different with OLS where

nly the second component of x is adjusted but also the 3, 4 and 15 components. The same is

or the variable y where the eleventh component of y is corrected by 5.77 for OLS, the others b

nly slightly corrected. Robustness is reflected by the fact that a faulty measure is corrected with

orrecting other measures. It should also be noted that the correction terms with RLS (12.58 and 5

re completely related to the magnitude of the simulated faults (12 and 6), which is not the case w

LS.

igure (8) gives an overview of the correction terms (CT) in absolute value of the variables x and y

oth techniques (x̃RLS and ỹRLS for RLS and x̃OLS and ỹOLS for OLS). This figure only graphic

ranslates the results of the table (5) and shows the correct location of the corrections of the

easurement faults. To judge an average effect of the procedures RLS and OLS, 12 simulations w

ade with the same variables x and y in fault but by generating random measurement noise of s

mplitude. Figure (9) visualizes the mean corrective terms from these 12 simulations and confirm

eed be the relevance of the robust approach for the detection of measurement errors where variables

ubject to errors have not been corrected in a sensitive way. Moreover, with respect to the magnitud

he errors, RLS gives a fairly accurate estimate, which is not the case with OLS. Of course, in prac

his technique is repeated over time in order to continuously monitor the system in question.
15
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Figure 8: Corrective terms CT for flows and concentrations
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Figure 9: Corrective terms CT for flows and concentrations. Mean over 12 cases.

.4. Comparisons and discussion

oughly speaking, it can be said that the techniques for detecting and locating outliers are b

n two strategies, respectively described as global or sequential, depending on whether they see

etermine them simultaneously or one by one. In all cases, and this also appears in our approach w

an be qualified as global, the choice of a detection threshold (or even several) remains necessary

he previous section, our approach has shown its capacities of detection/localization/identificatio

utliers. It should now be compared with approaches widely used in the literature. Of course, we

onstrained to some limitations and have chosen to give some results from a sequential approach

pproach using brute force technique and an approach using the signature of the residues with res

o outliers.

.4.1. Sequential detection and localization

s its name suggests, the sequential procedure seeks to detect and locate one after the other suspic

ariables. Since the variable x1 is first suspected, the aim is to estimate all the variables from all

easures except that of x1; this estimation is directly related to the reconciliation procedure of sec

.1 by taking advantage of the remark 2. The consistency of the estimates x̂i, i = 1, . . . , v obta

s then tested by evaluating the vector of residuals M x̂ and then globally its norm ΦR,1 =‖ M
his evaluation is then restarted by suspecting the other variables xi, i = 2, . . . , v. The criteria ΦR,
x̂ ‖, i = 1, . . . , v obtained are then analyzed, the one whose value is judged below a threshold c

o zero corresponding to a suspicious variable. The procedure can be carried out again to detect on

ne hand a possible suspicious x variable and on the other hand one or more suspicious y variables
16
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f course, the search for another outlier can benefit from the previous outlier estimate. This estima

llows the correction of the affected measurement and thus the search for another outlier taking

ccount the previous correction. The table (6) gathers the results obtained by this sequential techni

hich results from 16 eliminations for a variable x and as much for a variable y, each elimination b

ollowed by a reconstruction of the variables, the quality of each reconstruction being evaluated by

orm of the residual vector of the redundancy models (36, 37) computed with the estimated variab

he first two lines of this table relate to the elimination of a variable xi, the next two lines to tha

variable yi. Examination of the norms for the residuals of the redundancy equations unambiguo

oints to x1 and y12 as variables with aberrant measurements. In the reconstruction, let us indicate

he corrective terms affecting these two measures were respectively 12.1 and 5.9 values in accorda

ith the biases that had been created. For this example, let us note that the detection and localiza

f outliers is done without ambiguity, the contrast between the minimum values of the two resi

riteria with respect to the other values being significant: 1 compared to 12 and 9 compared to 74

emark 5. The above sequential procedure does not claim to provide the best solution for isola

utliers. Indeed it proceeds by decoupling, a first outlier is detected, localized and corrected by the re

iliation technique. This reconciled value is substituted for the measurement of the variable concer

he procedure is resumed to process a second outlier and so on until the procedure is stopped. It is c

hat in the presence of several simultaneous outliers, the estimate of the first value may be partially

aminated by the second. A more advanced version of this sequential technique can be used to iterati

efine the different estimates.

deleted variable x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
‖M x ‖ 12 1 15 15 17 17 17 17 17 17 15 17 17 17 17 17

deleted variable y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16
‖M (x⊗ y) ‖ 88 74 76 88 88 88 88 88 88 88 9 77 77 88 88 76

Table 6: Sequential outlier search technique

.4.2. Detection and localization using brute force technique

n computer science, brute-force search or exhaustive search, also known as generate and test, is a

eneral problem-solving technique and algorithmic paradigm that consists of systematically enumera

ll possible candidates for the solution and checking whether each candidate satisfies the proble

tatement.

ften not very efficient in terms of calculation time, this procedure is nevertheless easy to implem

n an optimization problem, as it analyzes all possible solutions, one is sure to highlight the opt

olution. For the example we are interested in, we have to search nf = 2 (this number could

odified) simultaneously aberrant measures among 32 (16 variables xi and 16 variables yi, which m

96 different situations to examine. For each situation, only two faulty measures are set. The se

ariables is then reconciled with respect to the redundancy equations according to the same techniqu

reviously described, this reconciliation using all the measures except those of the two faulty variab

e thus have 496 reconciliation results,

he best situation is the one where the corrections essentially affect nf = 2 variables among the 32

here the residual vector has the smaller norm. For this situation, the table (7) shows the correc

erms x̃ and ỹ made to the measurements, which can be compared to the terms in the table

ariables x2 and y11 have the largest corrections, the other variables are only slightly corrected. T

his procedure essentially causes the corrections to be carried over to the outliers, which is indeed

esired effect. In the end, the results obtained by this technique are quite similar to those obtained w

he proposed method. However, as indicated above, this method is time consuming and is unsuit

or large systems.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x̃ 0.15 12.1 0.27 0.27 0.06 0.23 0.28 0.41 0.14 0.04 0.17 0.23 0.23 0.05 0.30 0.28

ỹ 0.12 0.10 0.21 0.02 0.15 0.11 0.22 0.04 0.17 0.06 5.80 0.06 0.01 0.29 0.07 0.11

Table 7: Corrective terms. Brute force technique algorithm

.4.3. Detection and localization of outliers from the signature of model residuals

s previously mentioned, the diagnostic technique requires the synthesis of indicators that can re

he presence of anomalies that may affect the measurement. Here, these indicators are simply the re

f the adequacy of the measurements with respect to the redundancy equations.

efinition 2. (Fault Signatures).

he signature of a fault fj is the binary vector FS(fj) = [s1,j , . . . , sn,j ]
T where si,j = 1 if fj is a vari

f the equation used to form the redundancy equation ri, otherwise si,j = 0.

his defintion implicitly assumes that the occurrence of fj is observable on the result of ri, i.e., if

atisfied, then fault fj did not occur. This is known as a simple fault exoneration assumption.

efinition 3. (Fault Isolability). A surveillance system does not respect the isolability property, if

heoretical signatures are identical, i.e. if the Hamming distance between two signatures is zero.

llow an unambiguous recognition of the fault by tolerating k degradations on the real signature,

heoretical signatures must be at least 2.k + 1 bits apart. Indeed, if the distance between two theore

ignatures is only 2.k bits, k degradations of one of them bring the real signature at an equal dista

rom both. The failure is thus not isolable.

ooking again at the example in section 3.3, the equations (36, 37) allow us to establish the t

8) of occurrence (with the symbols ”1” and ”.” to translate the presence or absence) of the varia

i, yi, i = 1, . . . , 16. This table which consists of 32 columns for the variables and 18 rows for

quations reflects the influence of outliers in the different equations. It is important to note that

olumns of this table are distinct from each other (except for the 12 and 13 columns).

emark 6 (Multiple outliers). The synthesis of the signature of multiple outliers, i.e. occurring

omitantly, is a generalization of the previous case. As an example, the simultaneous presence of out

ffecting variables x2 and x10 is characterized by a signature that is deduced by applying a logical oper

o columns 2 and 10 of the table (8).

emark 7 (Structuring the residues). Signatures for multiple outliers may become identical, limi

he ability to isolate them. For example, as simultaneous outliers on variables x6 and x10 have the s

ignature as simultaneous outliers on variables x8 and x10, i.e. [. . . 1 1 1 . . .]
T

, the j

utliers x6, x10 and x8, x10 are detectable but cannot be isolated. Subject to satisfying some struct

onditions of the equations, this isolation can be solved by structuring the residuals by combining

quations so as to eliminate some variables [50]. For the example shown, merging the 4 and 5 equat

f the system (36) generates the redundancy equation x∗5−x∗8−x∗9 = 0, which allows to complete the t

8) with a tenth line translating the occurrences of the 16 variables xi in this equation. As a consequ

f this addition, the signatures of the x6, x10 and x8, x10 variable pairs become distinct, which solves

revious isolation problem.

ow to use this signature table for detection/location of outliers affecting measurements?

ith measurements of the variables to be analyzed, the residual of the redundancy models is evalua

enerating a signature. The detection and location of faults are carried out by comparing this signa

ith those in the table (8). As the latter are in binary form, it is therefore appropriate that the ac

ignature is also in binary form : this is done by comparing each residual component to a thresh

aving normalized the experimental signature and the theoretical signatures, it is then necessar

hoose a criterion to compare them, and here the Hamming distance has been chosen.
18
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x y

1 1 1 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 . 1 1 . . . . . . . 1 . . . . . . . . . . . . . . . . . . . .

3 . . 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . .

4 . . . . 1 1 . . . 1 . . . . . . . . . . . . . . . . . . . . .

5 . . . . . 1 1 1 . . . . . . . . . . . . . . . . . . . . . . .

6 . . . . . . 1 . 1 1 . . . . . . . . . . . . . . . . . . . . .

7 . . . . . . . . . . 1 1 1 . . 1 . . . . . . . . . . . . . . .

8 . . . . . . . . . . . 1 1 1 . . . . . . . . . . . . . . . . .

9 . . . . . . . . . . . . . 1 1 1 . . . . . . . . . . . . . . .

10 1 1 . 1 . . . . . . . . . . . . 1 1 . 1 . . . . . . . . . . .

11 . 1 1 . . . . . . . 1 . . . . . . 1 1 . . . . . . . 1 . . . .

12 . . 1 1 1 . . . . . . . . . . . . . 1 1 1 . . . . . . . . . .

13 . . . . 1 1 . . . 1 . . . . . . . . . . 1 1 . . . 1 . . . . .

14 . . . . . 1 1 1 . . . . . . . . . . . . . 1 1 1 . . . . . . .

15 . . . . . . 1 . 1 1 . . . . . . . . . . . . 1 . 1 1 . . . . .

16 . . . . . . . . . . 1 1 1 . . 1 . . . . . . . . . . 1 1 1 . .

17 . . . . . . . . . . . 1 1 1 . . . . . . . . . . . . . 1 1 1 .

18 . . . . . . . . . . . . . 1 1 1 . . . . . . . . . . . . . 1 1

Table 8: Fault signature table for x, y variables

he example in section (3.3) is again considered with the measurements recorded in the table (9), w

he outliers are always x2 and y11. The table (10) shows a result of outlier detection/localization.

line is the residuals from the measurements and the 18 redundancy equations (36, 37) that sh

e analyzed against the theoretical outlier signatures. Examination of the values taken by r sh

group of values close to 0 and another behaviour of significantly larger values without being

o clearly establish a threshold separating these two groups. The line rN represents a normaliza

f the respective residuals of the redundancy equations (36, 37) by their maximum values. The
(2,11)
t corresponds to the theoretical signature of the fault pair on {x2, y11} and its comparison w

he theoretical signatures of the table (8) confirms the presence of faults on {x2, y11}. The reader

asily notice the difficulty in choosing a threshold to apply to the values of rN in order to binarize

N residual to find the theoretical signature s
(2,11)
t see for example the values 0.36 and 0.23 for resid

1 and 12). Of course this is a particular conclusion related to this example, for different measurem

ith lower noise levels the outliers were perfectly localized.

n conclusion, it is clear that in this technique, the calculation of the residuals of the redunda

quations is easy to implement, but the adequate setting of a threshold to binarize them often rem

roblematic.

1 2 3 4 5 6 7 8

x 56.67 78.76 57.1 9.32 49.08 60.60 32.39 26.63

y 7.73 6.43 6.09 1.02 7.18 7.14 3.80 10.30

9 10 11 12 13 14 15 16

x 21.04 11.56 9.80 16.90 2.58 22.05 10.21 10.83

y 3.05 5.89 18.30 7.16 2.60 6.22 12.61 0.08

Table 9: Measures of x and y variables

o conclude this triple comparative analysis, with the exception of the redundancy equation resid

nalysis approach which suffers from a significant difficulty in threshold setting, the so-called sequen

nd brute force approaches give detection/location results that are quite comparable to the one
19
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

r 12 12 1.2 0.1 1.6 0.2 1 3 1 58 21 13 12 35 9 52

rN 1 0.92 0.1 0 0.1 0.02 0.1 0.2 0.1 1 0.36 0.23 0.2 0.6 0.16 0.9

s
(2,11)
t 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

Table 10: Residuals of redundancy equations

ropose. However, at the computational level, the brute force approach quickly finds its limitations w

he size of the system increases. The sequential approach remains competitive but has a methodolog

isadvantage, as the estimation of the variables is done in a decoupled way and therefore presen

ertain pessimism. On the other hand, the proposed approach carries out a global estimation of

ariables, but, to remain critical, it is necessary to adjust the hyper-parameters cx and cz of the objec

unction Φ (36), in order to satisfy the attenuation of the effects of outliers. However, practice sh

hat the choice of these parameters can be made in a wide range of operation.

. Robust Principal Component Analysis

rincipal Component Analysis (PCA) is a widely used statistical tool for analyzing data collected f

running system to monitor its behavior. However, one of the major drawback of the ”ordin

CA approach results from the use of least squares estimation techniques, which often fail to overc

he bias of accidental measurements, which is unfortunately quite frequent in practice. Howeve

CA model can be constructed from the data without prior filtering, this construction being ro

o the presence of large errors. The obtained model PCA being healthy, i.e. not (or only sligh

ontaminated by outliers, its use for diagnosis (detection and localization of measurement error

hen efficient [61, 29, 46].

fter a reminder of its classical formulation and its robust version, we focus on a much less known as

f PCA which concerns the generation of residues suitable for the detection/localisation of outliers.

erformance of these residuals comes from their structuring, which combines the reconstruction of v

bles and their projection in an ad-hoc subspace. The numerical example proposed remains modes

ize, but allows us to show the implementation of this approach and the results of detection/localisat

.1. Recalls on Principal Component Analysis

n practice, we have a matrix of X ∈ RN data, row vectors xTi , which brings together the N meas

ents made on the n variables of the system. To search for the set of principal axes, we procee

ollows:

evaluate the matrix of experimental variances and covariances of the centered data:

Σ = XTX

solve, with respect to the P and Λ, equation :

ΣP = PΛ

∈ Rn.n being the orthogonal matrix of eigenvectors pi of Σ and Λ ∈ Rn.n that, diagonal, o

igenvalues λi.

t can also be shown that:

X = TPT T = XP

elationships (40) essentially find their interest when you decrease the size of the representational sp

the number of main components used). Once the number ` of compoents to be retained is determi
20
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he X matrix of the data can be approximated. To do this, the eigenvector matrix is partitioned

he form :

P =
(
P̂ P̃

)
P̂ ∈ Rn×`

rom the decomposition (41), we can then explicite the part X̂ of the data explained by the `

igenvectors and the residual s X̃ explained by the remaining components :

X̂ = XP̂ P̂T

X̃ = X(I − P̂ P̂T )

he following sections show how to apply these relationships to a new observation whose consiste

ou want to test.

.2. Robust Principal Component Analysis Formulation

major difficulty with the PCA is its sensitivity to outliers. To reduce this sensitivity, various techni

an be used, notably the one that consists in performing the PCA directly on the data that may

ontaminated by outliers using an algorithm that is robust to these outliers. In [23] the authors de

”local” matrix of variances and covariances in the sense that the proposed form tends to empha

he contribution of close observations to the detriment of distant observations due to the presenc

utliers. This matrix noted Σr is defined in the following form according to the observations xi :

Σr =

N−1∑

i=1

N∑

j=i+1

wi,j(xi − xj)(xi − xj)T

N−1∑

i=1

N∑

j=i+1

wi,j

wi,j = exp

(
−β

2
(xi − xj)TV −1(xi − xj)

)

being a parameter to be adjusted to effectively obtain a reduction in the influence of distant obse

ions, the authors recommend a value close to 2. Decompositions (40) to (43) are then made using

nstead of Σ in (39).

.3. Principle of variable reconstruction

nowing the robust PCA model, the consistency of a new x measurement vector can now be tes

onsidering the previous results (42, 43), we can write the following decomposition:

x = x̂+ x̃ (

x̂ = C(`)x (4

x̃ = (I − C(`))x (

C(`) = P̂ P̂T (4

here x̂ and x̃ are respectively the projection of x on the spaces generated by the ` main compon

nd the n− ` remaining components (residual space). The analysis of the magnitude of the compon

f x̃, or even those of x̂, can reveal the presence of measurement faults. However, note that x̂ is obta

rom all the components of the x measurement vector. Consequently, the presence of an outlier in

bservation vector x makes the estimate x̂ sensitive to this value and to avoid this we can try to exp

his estimate using only a part of the observation vector x.

et’s try to estimate the r-th component of the x vector. By noting cij the elements of the matrix C

he r-th component of x̂ (46b) becomes explicit:

x̂r =
n∑

j=1,j 6=r
crjxj + crrxr
21
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here we have particularized the contribution of the rth component xr of the x measure for rea

hat are going to make sense. For the estimation (47), if one wishes not to use the r-th componen

f the measure x, one can replace, in the right-hand side of the equation (47), xr by ẑr, which g

under the condition crr 6= 1) the desired estimate: :

x̂r =

[
cT−r 0 cT+r

]

1− crr
x

here the indices −r and +r are respectively used to construct a vector formed by the first r−1 and

ast n−r elements of the vector cr. Thus, the r-th component of x is estimated using all its compon

xcept the rth. If only the r-th component of x is subject to error, then the resulting estimate is

ensitive to this error. Consequently, this partial reconstruction of the measurement vector is noted

x̂(r) =
[
xT−r x̂r xT+r

]T
, x̂(r) ∈ Rn

here (.)(r) recalls r index is that of the variable not used in the reconstruction. For the purpos

iagnosis, the estimate (49) should be analysed, e.g. by comparing it with measurements. In fac

s more interesting to analyze the projection of this estimate in the residual space and this for th

ossible reconstructions according to the value of the r index. These projections are an indicator of

resence of a fault and can be explained as follows:

x̃(r) = (I − C(`))x̂(r)

fter postponing (49) in (50), we can show that:

x̃(r) = P (`)
r x (

P (`)
r = (I − C(`))

(
I +

ξr ξ
T
r C

(`)

1− ξTr C(`)ξr

)
(I − ξr ξTr ) (5

here the vector ξr ∈ Rn has all its components equal to one except the r rank which is equal to z

emark 8. It is important to note again that the previous reconstruction x̂(r) is done using all avail

easures except the one of rank r. There are thus n reconstruction possibilities and this remark wi

sed later during the phase of isolating the outlier(s). The same applies to the projection x̃(r).

emark 9. The matrix P
(`)
r (51b) has two important special properties. Given its definition the re

an check that :

P (`)
r ξr = 0

ξTr P
(`)
r = 0

hich highlights the peculiar structure of the P
(`)
r matrix, namely that the r-th column and the

ow of this matrix all have zero components. Obviously, the examination of the expression (51a) sh

hat the x̃(r) projection has a structure particularly adapted to the detection and localization of aber

easurements.

emark 10. The proposed reconstruction with (47, 48, 51a) is concerned with a single componen

he measurement vector. Using a classical hypothesis of observability, it is possible to reconstruct sev

ariables at the same time from the same measurement vector. This extension is particularly usefu

he presence of several measurements in fault simultaneously [8], [9].

.4. Detection and localization of abnormal measurements

o specify the way to detect measurement faults, let us consider the case of a healthy data x∗ corrup

y a noise of zero mean value ε and a fault of magnitude d acting in the direction ξf (d and ξf not b

nown):

xm = x∗ + ε+ ξfd
22
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n this expression x∗ is the true value (and thus satisfies the PCA model), ξf is the null vector ex

ts f component equal to the unit and xm is an available observation of x∗. Under (51a), the resi

alculated by reconstructing only the r rank component of x is explicit :

x̃(r) = P
(`)
r (x∗ + ε+ ξfd)

= P
(`)
r (ε+ ξfd)

hose mathematical expectation is:

E(x̃(r)) = P (`)
r ξfd

hich highlights the role played by the r-th row and r-th column of the P
(`)
r projection matrix.

an generalize this analysis by calculating the projection matrices for the various possible direction

ault ξr, r = 1, . . . , n as well as the resulting residuals. The analysis of these residuals, thanks to

roperties (52) and (53), then makes it possible to detect and localize the fault if it exists. Indeed

s consider all the possible reconstructions r = 1, . . . , n. Starting from (56) for the different projec

atrices we can state the two rules :

• R1 : if the direction of reconstruction ξr is that of the fault, i.e. if r = f , then all the compon

of the vector P
(`)
r ξf are zero

• R2 : if the direction of reconstruction ξr is different from that of the fault, then the compon

of the vector P
(`)
r ξf are not a priori null, except the component of rank r.

he implementation of this isolation technique is systematic. It requires, at each time instant,

alculation of the projection of the reconstructions according to a set of n directions, but the projec

atrices can be calculated once and for all and applied to the analysis of all new observations acqu

n the system.

.5. Example

simple example has been constructed with n = 7 variables and N = 120 measures. The X ma

ollecting the data is expressed :

X =




xT1
xT2
. . .

xTN




here the components of xi (i = 1, . . . , N) are :

xi,1 = sin2(0.2 i)(1 + cos(0.33 i))

xi,2 = 2xi,1(.1 + xi,1)

xi,3 = sin(0.5 i)(1 + cos(0.16i))

xi,4 = 3.5xi,1 − xi,2
xi,5 = xi,1 + 0.5xi,2

xi,6 = xi,1 + xi,3

xi,7 = 0.5xi,2 + xi,3

o these seven variables are added realizations of variables distributed according to centered nor

aws of the same standard deviation equal to 0.02.

constant amplitude bias 1.5 simulates the presence of outliers dj affecting variables xj , j = {1, 2, 3, 5
bservations 14 to 20 for x1, from 29 to 35 for x2, from 44 to 59 for x3, from 74 to 80 for x5, from

o 110 for x7. The objective is to detect them and especially to locate them.
23
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Figure 10: Raw data

igure (10) represents the temporal evolution of these variables. In accordance with what was

n section 4.4, table 11 indicates the theoretical sensitivity of the projections (51a) with respec

he faults di, i = 1, . . . , n} where x̃
(r)
i,j designates the jth component of the residue evaluated at tim

ithout using the measure of the variable r.

or each variable, seven reconstructions can be proposed, which justifies the presence of the se

rojections x̃
(r)
i,j in table 11 established thank to the properties (52, 53) (as a reminder, r is the inde

he variable not used for the reconstruction, i the time, j the number of one of the seven variables).

resence of a cross indicates the structural influence of an outlier on a residual projection, as opp

o the 0 symbol.

hus, the analysis of the magnitudes of the residuals x̃(r).,. for r = 1...n reveals the presence of fa

nd makes it possible to determine the component of the measurement affected by this fault. N

owever, that the sensitivity table only reflects the occurrence of faults in the residuals independe

f their numerical values. Be aware that certain operating conditions can lead to very low nume

ensitivities that do not allow for any conclusion.

sing the raw data contaminated by outliers, we determined the robust PCA model by applying

ropositions in sections 4.2 and 4.3. The analysis of the decay of the normalized eigenvalues of

ariance and covariance matrix, allows us to limit to for the number of principal components to

etained for the reconstruction of the variables using the PCA model. Given this model, the proced

n section 4.3 can then be applied to reconstruct the variables and to project he reconstruction erro

igures (11) to (16) display the results of detection and isolation of outliers. Each figure has se

raphs, each relating to one of the seven system variables. For reasons of space, only the figures rela

o the reconstructions in directions ξ1, ξ2, ξ4 are given.

he 1 to 7 graphs in figure 11 visualize the estimates (in red color) of the seven variables x̂
(1)
.,j , j = 1, .

btained by reconstruction without using the measurement of the first variable. They can be comp

o the measurements (in blue color) and thus highlight the corrections made.

he graphs 1 to 7 in figure 12 concern the residuals x̃
(1)
.,j , j = 1, . . . , 7 obtained by projecting the prev

econstructions of the variables obtained without using the 1 variable measure. For this, (51a) was u

ith the projection matrix P
(`)
1 elaborated with the direction ξ1 = [1 0 0 0 0 0 0]T .

n a similar fashion, Figures 13 and 14 on the one hand and Figures 15 and 16 on the other have b

onstructed with the respective directions of projection. ξ2 = [0 1 0 0 0 0 0]T and ξ4 = [0 0 0 1 0 0

o analyse the different residues obtained, reference should be made to the properties of the projec
24
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d1 d2 d3 d4 d5 d6 d7

Residues, without using

the measure of variable 1

x̃
(1)
.,1 0 0 0 0 0 0 0

x̃
(1)
.,2 0 × × × × × ×
x̃
(1)
.,3 0 × × × × × ×
x̃
(1)
.,4 0 × × × × × ×
x̃
(1)
.,5 0 × × × × × ×
x̃
(1)
.,6 0 × × × × × ×
x̃
(1)
.,7 0 × × × × × ×

Residues, without using

the measure of variable 2

x̃
(2)
.,1 × 0 × × × × ×
x̃
(2)
.,2 0 0 0 0 0 0 0

x̃
(2)
.,3 × 0 × × × × ×
x̃
(2)
.,4 × 0 × × × × ×
x̃
(2)
.,5 × 0 × × × × ×
x̃
(2)
.,6 × 0 × × × × ×
x̃
(2)
.,7 × 0 × × × × ×

...

Residues, without using

the measure of variable 7

x̃
(7)
.,1 × × × × × × 0

x̃
(7)
.,2 × × × × × × 0

x̃
(7)
.,3 × × × × × × 0

x̃
(7)
.,4 × × × × × × 0

x̃
(7)
.,5 × × × × × × 0

x̃
(7)
.,6 × × × × × × 0

x̃
(7)
.,7 0 0 0 0 0 0 0

Table 11: Sensitivity of projected residues to faults
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Figure 11: Reconstructions without using variable 1
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Figure 12: Projection without using variable 1

atrix. Let us consider the first time interval 14 - 20 where a fault has been applied on the variable

he seven projections are substantially null when the reconstruction is done without the measurem

f the first variable. Two hypotheses can be stated: absence of fault or presence of a fault in the direc
25
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Figure 13: Reconstruction without using variable 2
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Figure 14: Projection without using variable 2
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Figure 15: Reconstruction without using variable 4
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Figure 16: Projection without using variable 4

1 that is to say affecting the variable x1. This figure alone is not enough to resolve the ambiguity.

n a similar fashion examining the figure 14 (constructed without using the measure of the sec

ariable) always for the time interval 14 - 20 reveals non-zero values for several projections and there

he existence of a fault. Since two of the projections for the first variable are non-zero, it is this vari

hat is in fault. Still for this time interval 14 - 20, the reader will be able to interpret in a similar

he seven graphs of figure 16 in order to confirm the previous conclusion. The detection and isolatio

measurement fault for this interval is thus achieved. They can be repeated for the other time inter

nd conclude to the presence of faults on the other two variables. The graphical results are in per

greement with those of the detection/location signatures in Table 10.

his result can be further reinforced from the figures 17, 18 and 19. The graph number j in fi

7 shows the sums of the projections taken in absolute values when the variable j is not used.

n example, the first graph of this figure is obtained from the sum of the signals of figure 11 ta

n absolute values. Clearly, the figure 17 highlights the signatures of the faults and allows to find
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resence of fault on the variables {1, 2, 3, 5, 7}. The instants of occurrence of the faults are also obta

rom this figure by applying a classical jump detection technique.

ore synthetically, this jump detection can be performed from the signal represented in figure 19 w

s none other than the sum of the signals in figure 17. The chosen magnitude threshold equal

akes it possible to find the times of occurrence of the five faults which are respectively defined by

ntervals : [14 20], [29 35], [44 50], [74 80], [104 : 110].

inally, figure 18 partially reproduces those dedicated to reconstruction errors. However, it is lim

o visualizing the reconstruction error of each variable j, j = 1, . . . , n when the measure of this vari

s not used in the reconstruction procedure. From each graph, an estimate of the bias can be extrac

he bias corresponding, with the exception of noise, to the reconstruction error. Thus, for the first gr

elating to the reconstruction error of the first variable, the magnitude of the reconstruction error in

nterval [14 20] indicates a value of 1.5 which effectively corresponds to the bias affecting this varia

he reader will make the same kind of observation for variables 2, 3, 5, 7 from the graphs associ

ith these variables.

his succinct presentation of the use of PCA for the detection of outliers would require much fur

evelopment. The previous example presents a relatively simple situation where the magnitude of

aults is large enough to allow their detection. The magnitude of the detectable faults is to be comp

ith the magnitude of the measurement noise but also with the quality of the PCA model. The re

ill easily understand that in order to remain concise, we have omitted to present a systematic ana

f the hyper-parameters of the proposed technique and their influences on the results of fault de

ion/location: number of measurements, richness of information in the measurements used, robust

actor β in the calculation of the variance-covariance matrix, signal-to-noise ratio.
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Figure 17: Sum of projections
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Figure 18: Reconstruction errors
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Figure 19: Global fault detection indicator
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. Conclusion

lthough partial and with restrictive assumptions regarding the static nature of the systems con

red, this presentation has attempted to draw the reader’s attention to the presence of outliers in

easurements and how to take them into account. Two points of view are presented, the first rela

o the location of these outliers and their replacement by substitute values, the second relating to t

ccommodation, i.e. their acceptance by minimising their influence in the estimation procedure. T

econd point of view has been detailed on the one hand in a robust measurement validation proced

nd on the other hand in the use of robust principal component analysis, the robustness being t

nderstood in terms of reducing the influence of outliers. The two techniques presented in sectio

nd 4 were presented in the somewhat reductive framework of static systems, but their extension to

ase of dynamic systems does not pose any methodological problems.
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[7] R.J. Beckman, R.D. Cook, R. D. Outlier..........s. Technometrics, 25 (2), 119-149, 1983.

[8] A. Ben Aicha, G. Mourot, K. Benothman, J. Ragot. Détermination de modèles ACP pou
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his proposal falls within the general theme of sensor diagnostics and data validation. More
ecifically, it deals with how to detect and locate abnormal values in a given time series by
sensor or set of sensors. Thus, to be clear, this proposal does not deal with the design of
nsors but focuses exclusively on the coherence analysis of data provided by sensors.

ighlights of our paper :

Localization of abnormal values in time series
Robust approach in data reconciliation
Structuration of fault indicator in Principal Component Analysis
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