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Abstract

The detection of outliers in a series of measurements, but even more so their location, is a necessity
when these measurements are to be used in a monitoring system. This detection/localisation can only
be done if redundant information is available, which may be based on the model of the system on which
the measurements were collected.

In some cases, however, it is not necessary to detect and locate outliers. Instead, a robust approach to
their use may be preferred, one that minimizes the influence of these outliers, such as using a median
rather than a mean.

In this paper, the focus will be on the notion of robustness through a few examples and notably by
proposing extensions to two well-known data processing techniques (data reconciliation and principal
component analysis). The numerical examples proposed clearly show how to implement these two
techniques and how to use them in a system monitoring procedure.
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1. Introduction

Some general considerations on the problems related to the presence of outliers will be followed by a
short presentation of work related to the treatment of outliers, and then the plan adopted for this paper.

1.1. Positioning of the problem to be solved

Due to the intensive use of data (especially from sensors), but also to the increase in their volume and
their use in monitoring and control tools, the problems resulting from the presence of outliers have taken
on considerable importance in recent decades [54, 69].

How to recognize outliers? They are commonly defined as observations that appear to be inconsistent
with the main part of the data set, or as observations that deviate significantly from the model pos-
tulated. Some historical definitions of outliers, which are indeed still relevant, are also worth noting.
Barnet and Lewis [5] indicate that an outlier is an observation that appears to deviate significantly
from other members of the sample in which it occurs. Hawkins [31] defines an outlier as an observation
that deviates so far from other observations that it raises suspicions that it was generated by a different
mechanism.

Definition 1 (Residues as indicators of outliers). The fundamental principle of model-based fault de-
tection is based on the estimation of the state of the system from the available measurements. The
resulting estimation error constitutes the residual vector. Subsequently, a decision on whether or not
a measurement inconsistency is present is made by comparing this residue to a given threshold. For a
signal generated from measurements collected on a system to be a true residue, it must be sensitive to
measurement inconsistencies. In a general way, the generation of a residual is based on a data trans-
formation to generate a residual capable of revealing at best the deviation from a reference situation. In
the following, the gemeration of the residue will be at the heart of the approaches presented. |
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In any case, the detection of outliers can only be done if redundant information is available, which may
be of hardware or software origin. Hardware redundancy comes from the simultaneous use of several
sensors to measure the same quantity. The detection of an aberrant measurement, thus coming from
a faulty sensor, is then based on the comparison of the measurements between them and the use of a
majority vote. Software redundancy exploits the properties of the model of the system on which the
data are collected. Subject to structural conditions to be met, the adequacy of the measurements with
respect to the model can be tested to determine whether or not there are any measurement errors.

In the literature, there are currently three research communities dealing with the problem of fault
diagnosis: the FDI (Fault Detection and Isolation) community, whose methodological tools are largely
based on the synthesis of dynamic diagnostic filters, the DX (Diagnosis) community, whose foundations
come from the fields of computer science and artificial intelligence, and the signal processing community,
whose tools are based on statistical signal processing and also on pattern recognition. Even if there
are common principles between the three communities, such as the use of models or the generation
of alarm signals, each has focused on the development of its own terminologies, calculation tools and
methodological approaches, guided by different constraints and objectives. Similarly, the modeling
formalisms are very different for each domain; for example, the models of the FDI community are often
based on differential algebra, while those of the DX community are mostly symbolic and qualitative.
Although links exist between these three communities, which obviously have very similar objectives in
the field of diagnosis, it is nevertheless true that specific vocabularies remain, (to this day, there is still
no consensus on the terms used) such as for example: outliers, faults, defects, anomalies, discordant
observations, peculiarities or contaminants, which nevertheless designate very similar facts.

1.2. Related works

The wide variety of available methods based on well-established statistical tools [53, 67], has made it
possible, in many practical applications, to use techniques to handle measurement inconsistencies.
This article is not intended to be an inventory of usable tools, but simply to raise the reader’s awareness
of the problem of outliers through a few simple examples and situations, in particular by focusing on
two model-based methods, namely measurement reconciliation and principal component analysis. Of
course, many other model-based techniques would need to be examined, including those using linear
regression models [57] and their variants [15], nonlinear regression techniques [41], machine learning
[43], Bayesian models [54]. Among the methods that have been developed to deal with outliers is that
of Rousseeuw and Hubert [59]. The latter consists first of all in constructing an adjustment that is
robust to them, generating residuals with respect to this adjustment, and then analyzing these residuals
to identify outliers. A very large number of works have been published on this subject, and among the
most recent are the following : [68, 49, 17, 60, 26, 34].

Moving beyond outlier detection, the reader may be interested in the more general problem of detecting
anomalous series in relation to a set of series. In [10] the author has been interested in the detection
of unsupervised anomalies in uni- and multi-variate time series with a particular application for masses
of data in the field of tyres. In [30] the author deals with the detection of multiple breaks in a signal
with an extension to the case of multiple breaks in several synchronized time series. Some authors
[3, 21] supplement this classification of methods with techniques based on proximity concepts (data
classification techniques for example). In [11] a taxonomy is presented based on the main aspects that
characterize an outlier detection technique.

For industrial applications and the processing of large volumes of data, the emphasis is often placed
on the online detection of outliers directly related to security, safety and production quality monitoring
issues. As an example, in a wide variety of fields, we can refer to the following work [6] for telecommu-
nications, [70] for tyre quality assessment, [62] in the field of aeronautics, [52] for sensor networks, [55]
in the field of mineral processing, [1] in the field of chemical engineering. Much more broadly, it can be
argued that no area is unaffected by the problem of dealing with outliers, particularly in the context



of societal applications : fraud detection, intrusion detection, face detection, video surveillance, social
media analysis.

1.8. Positioning of the present work

In the following, the treatment of outliers will be approached through three complementary functions :
fault detection (the determination of the presence of faults in a system and the time of occurrence of these
faults), fault isolation (determination of the exact location of a fault), fault identification (determination
of the size of a fault), which are often performed sequentially, but which, depending on the technique
used, can also be performed concomitantly.

It is also necessary to specify, on the one hand, the nature of the systems to which this presentation is
addressed and, on the other hand, the assumptions made about outliers. The systems will be considered
stationary as well as the noises that affect their measurements. Therefore, situations where the internal
structure of the systems may vary or variations in the internal parameters of the systems are excluded
from the proposed approaches. As for outliers, they concern amplitude biases on their measurements.
We therefore exclude outliers that may come from other sources of disturbance such as changes in
variance or frequency.

As the objective here is to detect/locate/identify outliers in interdependent multivariate systems, these
measures need to be treated globally, which obviously excludes single signal approaches. The strategies
generally used are all based on the synthesis of residuals indicating the presence of outliers ; the precise
localisation of the outliers needs a particular structuring of these residuals. As shown in the two examples
in sections (3.3) and (4.5), the analysis of these residuals is done by fairly classical approaches, which
may use jump tests or classification techniques.

Section 3 presents this possibility through a procedure known as data reconciliation. The presentation
aims, on the one hand, to give some specific references to the users of the measurements and, on the other
hand, to insist on the robustness of certain techniques for processing the measurements [44, 24, 2, 28, 37].
The robust reconciliation procedure that we propose here has the advantage of being carried out in
conjunction with the detection/localization of outliers.

Section 4 is based on a well-known tool, Principal Component Analysis, but is revisited by proposing
a relatively unknown technique for reconstructing variables from a selection of available variables and
projecting them into the so-called residual space in order to obtain structured indicators for detecting
and isolating outliers.

2. Some classical approaches for abnormal values detection

This section illustrates, using simple examples, some approaches to highlighting abnormal data. After
illustrating some types of outliers (section 2.1), the academic example of a two-equation system intro-
duces the notion of residual and structured residual (section 2.2), which then allows the general case of
a multivariate system in a static regime to be presented (section 2.3). The next two sections 2.4 and
2.5 specify the approaches for replacing outliers and then for their acceptance.

2.1. Different types of outliers

Figure 1 shows two types of error [5] in the case of a two-dimensional variable. Bias affecting both
directions of measurement and random errors are shown. The sensors that delivered the measurements
can be characterized by their accuracy and fidelity (these two qualities being possibly associated) as
shown in Table 1. Depending on the use made of them, these measurements can be processed in such
a way as to reduce the influence of the two sources of error. Obviously, the situation is more complex
when we are interested in a network of sensors equipping a physical process, as the faults that affect
them may be related to each other.
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Figure 1: Various types of errors.

Sensor Systematic | Random
errors errors
true and unfair minor important
wrong and fair important | minor
true and fair (precise) | minor minor
wrong and unfair important | important

Table 1: Quality of a sensor

2.2. Active approach: detection of outliers in multiple time series

This term refers to a set of techniques that can detect and locate outliers in a series of observations.
Once localized, these can either be removed, which may subsequently cause some processing difficul-
ties, or replaced by so-called substitution values obtained for example by interpolation using healthy
measurements close to those that have been removed. Numerous statistical tests have been developed
for outlier detection (Dixon, Grubbs, Cochran, Tukey, Chauvenet, Tietjen-Moore, Student, Thompson
...) as well as substitution techniques (winsorising, trimming). Numerous publications deal with these
techniques and the reader is invited to refer to the historical references [19, 27, 7, 66, 25], and to more
recent ones [58, 14, 45, 35, 48, 63], but also works of synthesis [31, 5, 4]. The techniques mentioned
above are generalized to the multivariate case where the detection involves the analysis of measurements
of several variables coupled by a model.

As an example let us consider the system characterized by four variables and described by the model :

2

i —22+2logzs = 0 (1)
To + T3 — Ty =0
The twenty available measures of z;,i = 1,...,4 are grouped in Table (2) and we wish to establish a

diagnosis of the consistency of these data. As this is a simulation, one fault affects x5 for observation
12 and another affects x3 for observation 6. To make a diagnosis, the model residuals were calculated
from the measurements, i.e. :

ry =% —x9+2logms @)
Ty =19+ T3 — X4

In order to improve diagnostic efficiency, the equations (2) can be combined in an additive manner,
which removes the variable x5 (a similar approach is used for the variable x3, which could also be
removed):

22 4+ 2logws + a3 — x4 =0 (3)

and makes it possible to evaluate the residue r3 = x% + 2log 3 + x3 — x4 but without using that of xs.
The validity of the measurements is highlighted by the analysis of the magnitude of the absolute values
of the three residuals (r;,7 = 1,2, 3) whose values are shown in Table (2) and graphically illustrated in



X Z9 x3 T4 [re | |re| |73
1 0.86 0.61 0.95 1.54 0.02 0.02 0.03
2 1.24 1.49 0.98 2.45 0.01 0.01 0.02
3 2.15 2.01 0.29 2.30 0.12 0.00 0.12
4 1.62 2.17 0.80 2.96 0.01 0.01 0.02
5 1.50 2.05 0.90 2.95 0.00 0.00 0.00
6 1.69 1.81 0.95 2.39 0.93 0.37 1.30
7 1.31 1.48 0.89 2.37 0.02 0.00 0.02
8 1.13 1.17 0.94 2.13 0.01 0.02 0.02
9 1.45 0.91 0.55 1.45 0.01 0.00 0.00
10 1.15 0.68 0.73 1.40 0.02 0.01 0.03
11 1.27 0.50 0.58 1.07 0.04 0.00 0.04
12 2.77 0.86 0.03 0.38 0.49 0.50 0.00
13 1.37 0.25 0.44 0.69 0.00 0.00 0.01
14 1.02 0.18 0.65 0.82 0.00 0.01 0.01
15 1.20 0.12 0.52 0.64 0.01 0.00 0.01
16 1.45 0.09 0.37 0.46 0.04 0.00 0.04
17 0.43 0.06 0.94 0.99 0.00 0.00 0.00
18 0.64 0.04 0.83 0.87 0.01 0.00 0.01
19 0.59 0.03 0.85 0.88 0.00 0.00 0.01
20 1.42 0.02 0.37 0.39 0.01 0.00 0.01

Table 2: Measures available over time and model residuals

51‘1 51‘2 5$3 5$4
71 X X .
r9 . X X
T3 X X X
Table 3: structured faults signature
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Figure 2: Model Residuals

the figure (2).
The 6 observation triggers all three residuals significantly, while the 12 observation triggers only the 71
and 7o residuals. This is explained by the table (3) of signatures of possible faults dz; whose role is
fundamental to characterize the detectability and the isolability of the measurement faults. The crosses

The three model residuals are essentially zero except for the two observations 6 and 12. 155

show the sensitivity of the residues to the faults, the absence of sensitivity being marked by a dot. The
sensitivities of the residuals with respect to the faults dz; are all different which shows the isolability of 160
these measurement faults, which would not be possible if only the first two residuals r; and r, had been
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used because in this case dzo and dxs would have had the same signature. Concerning the detection
phase, the visual examination of the figure (2) can be advantageously replaced by a technique of jump
detection or extreme value detection (Dixon’s test for example).

2.8. Active approach: Qutlier detection in a multisensor system

The previous example can be easily generalized to any dimension system. In what follows, we summarize
the technique of the parity space [56] which is based on the construction of the parity vector whose
structure is established from the equations of the system whose consistency we want to monitor. Let us
consider, at a particular instant, the measurement linear system :

Ty =Cx+e+ Fd
rE€R" 2 ER™,dERP,eec R, m>n

(4)

where x,, is the known measurement vector, x the vector of the variables to be measured, d the vector of
the unknown faults and e the vector of the measurement noise. C' € R™*™ is the assumed full row matrix
characterizing the measurement system and F is the matrix of the fault directions. The constraint m > n
reflects redundancy of information and comes from the fact that there are more measurements than
variables. To detect the presence of faults, we seek to establish analytical redundancy relations between
the measurements which are independent of the unknown quantities  but which remain sensitive to
the faults d. For this, we define the parity vector :

p=Wzxn, (5)

where W € R(m~™)*" is the projection matrix orthogonal to C' resulting from (4) by simple multipli-
cation by W :
p=We+WEFd (6)

The expression (5) is the so-called ”computation” form of the parity vector from the z,, measurements
while the expression (6) explains the influence of the d faults on the parity vector through the W F
matrix. In the absence of measurement noise € and failure d the parity vector p is null. In this particular
situation, the equation (5) then translates the set of redundancies that link the measurements x, :

Wy =0 (7)

Given the expression (6) the capability to isolate d faults affecting the measurements is directly related
to the structure of the WF matrix and in particular to its rank. Let us consider, for example, the
system of measurements subject to two faults affecting some of them :

1 2 1 1 1 0
1 0 2 1 0 0
Tm= |1 1 1|z+ |1|e+ |0 0|d (8)
1 0 1 1 11
2 0 2 1 0 0
Solving W C' = 0 leads to:
-1 0 2 -1 0
W= {2 04 0 1}

which makes it possible to explain the parity vector in the following two forms:

p= |: —Tm,1 + 2xm,3 — Tm,4 :|
_2xm,1 + 4xm,3 — Tm,5

b= m et {_3 _01} d (9b)



where z,, ; are the components of the z,, measurement vector. The form (9a) allows the calculation of
the parity vector from the available measurements; since the € errors are usually of zero mean values
or low magnitude, the form (9b) can be used to detect and estimate possible faults d. More precisely,
if the influence of ¢ is neglected and as the W F matrix is regular, one can easily estimate the faults d
from the definition of p (9b) itself evaluated from the measurements (9a):

‘- {0-5&5?}1)]

_ [ Tm,1 — 2Tm,3 + 0.52, 5 ]
2xm,3 — Tm,1 + Tm,4 — Tm,5

(10)

2.4. Active approach: Outlier replacement

The aim is to eliminate and replace outliers affecting a temporal signal with a ”minimal” distortion of
the useful signal. A basic idea is the median of a sample which is much less sensitive to extreme values
than the mean. The observations furthest from the median can then be discarded and this discarding is
known as trimming in the English literature and winsorizing when the discarded values are reconstructed
from the remaining values.

Specifically, a winsorized or ”trimmed” {r, s} mean is the replacement of the smallest r observations and
the largest s observations, where r and s are integers. Let us consider the values x;y;,j = —m,...,m
of a signal to be filtered where the current index 4 corresponds to the center of a moving window of size

n = 2m + 1. The filtered value is defined by :
1 m—s
i‘i = E(T Ti—m+r + - Z Titj + 5$i+7n—s) (11)
Jj=—m+r

Rejecting extreme points simply requires setting the parameters r and s and this can be done adaptively,
for example by rejecting points that deviate from the mean by more than k times the standard deviation
calculated on the window considered.

Remark 1. In the case where the number of rejected points is not an integer, one can define a winsorized
average at 2a% which implies the replacement of a given 2a percentage of values at both ends of the data.
In the case of a symmetric filter r = s, we have :

m—r—1
1
i = ———— (1= f)Ticmsr it+j
* (1—-2a)n (= Picmr + , Z e (12)
j=—m+r+1
(1_f)mi+m—7')7 f=an—r
As an example, with m = 4,a = 0.3,r = 2, we get the filter:
1

T; = %(0.31}_2 +Ti1+x; + T4+ 0.3.Z'i+2), 1>3 (13)

For example, the median is the most fitted statistic (nominally 50 %) because it rejects all but the most
central data. In [2] an application of trimming to robust classification is provided. |

Figure (3) is an illustration of outlier replacement (in signal sav) using trimming (signal stf) and
median filtering (signal smf) techniques. Of course the filter window width is the key parameter of
these techniques. A close look at this figure shows the removal of outliers but with a slight distortion
of the rest of the signal. The right part of the figure compares the 3 signals by their differences two by
two.
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Figure 3: Outlier filtering

2.5. Passive approach: acceptance of outliers and robustness

In contrast to the previous approach, the aim here is not to eliminate outliers, but to reduce their
undesirable effects during their use. For example, to identify the parameters of a system, one can
try to construct an estimation algorithm that directly minimizes the influence of the outliers on these
parameters. As a well-known example, let us recall the case of the robust mean using the median
filter. Two tools will be recalled to reach a certain level of robustness in the treatments: contaminated
distributions and M-estimators.

e Contaminated distributions [22, 18]

A so-called contaminated model assumes that a large p portion of the data is generated from a classical
normal error model of small magnitude. The remaining data, corresponding to the (1— ) fraction of the
N data set, may be affected by abnormal noise generated by a distribution of different characteristics.
As an example, the distribution taking into account the two different types of errors can be :

ple) = 1 N (0,67) + (1 = ) N0, 03) (14)

This type of distribution model, after an adequate setting of u,o1 and o, proves to be efficient in
identification in the presence of outliers. To illustrate its application, let us consider the simple case of
estimating the mean of a sample size N in the presence of outliers, the aim being of course that this
estimate is not very sensitive to outliers. The likelihood function for this sample is explicit:

Vo o= H%l(upl(wi)+((1—M))§2($i))

pi(z) = Vom0, P —(20,%)) (15)
1 z —m)?

p2(r) = Vano, P _%5)

where m is the mean to be estimated and o1, 09 the standard deviations of the contaminated distribution.
A few comments are necessary to justify the interest of this type of function. To do so, we can analyze
its sensitivity g(z) = V/0x compared to the data z :

wpy (x) N (1 —w)pa(x)
wp1(z) + (1 — w)p2(z)

g(w) =

The figure (4) shows the role of the parameters 01,02, w on the ability to take into account the values
of x which will subsequently represent the outliers. For an easier interpretation of the graphs, they have
been normalized, i.e. they represent the normalized functions g(x) = g(x)/g(0).
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Figure 4: Influence function

For w = 1 we naturally obtain a constant weight; thus all the data are equallly weighted and, in
particular, the optimisation criterion will be sensitive to large magnitude of data, i.e. to outliers.
Taking w = 0.1,017 = 0.5,02 = 1 reduces the influence of outliers since the weight decreases from 1
for data around the origine to 0.63 for data with large magnitude. Ultimately, what is important is to
have separate sensitivities for low and high values of the x variable. Of course, the situation is even
clearer with the choice (w = 0.1,01 = 0.5, 09 = 4) where this time the weight of the large values of x is
negligible, which greatly reduces the influence of outliers.

The maximum of the likelihood function V with respect to m is obtained for :

N
Zwi (x; —m) =0
i=1

Pi,i P2,i
;= ) 1_ )
w No_%'i'( :u)o_%

(16)

Given the expressions of py; and ps; (15) which depend on m, the non-linear equation (16) is solved
iteratively with respect to m, for example according to the scheme (17) initialized with weights w? equal

to unity : v
iter ..
piter+1 — 2oi=1 Wi i
N iter
D1 Wi
iter pét@‘r
iter 1,2 52
w? = p—+1—-p—=
K o2 ( ) o2 (17)
L iter\2
p,ite,r _ 1 Exp _ (.’Bz m )
"’ V2moy 202 )
L iter
iter _ 1 _ (‘TZ m )
Y2X = exp B)
’ 2mos 205

Table 4 shows an estimation result of the mean of a sample of 50 values (with 4 outliers) and by extension
its standard deviation. The first two rows of this table relate to the standard valuation without and
with outliers. The robust evaluation in the third row shows estimates close to those obtained in the
absence of outliers, thus demonstrating the robustness of the method.

The figure (5) shows the 50 values of the sample with its outliers and the weights w; used for the
calculation of the mean, which also makes it easy to locate the outliers. Of course, the robustness of
the estimate with respect to outliers is related to their proportion to healthy values. The setting of the
parameters 01,09 and p conditions this robustness; it can be realized heuristically by learning but also
by a more analytical optimization procedure, directly from the likelihood function.

e M-estimators [12, 38, 72]
M-estimators were introduced as a generalization of the maximum likelihood minimization estimate of
a p function over the available data set z;,i = 1,..., N. Thus, the M-estimator(s) associated with the
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Figure 5: Series z; with abnormal values and weights w;

Mean Standard deviation
Conventional evaluation without abnormal value | 1.501 0.277
Conventional evaluation with abnormal value 1.821 1.145
Robust evaluation with abnormal value 1.501 0.282

Table 4: Robust estimation of a mean and standard deviation

data and the function p is given by :
N
6 = argmin, (Z p(z, 9)) (18)
i=1

A well-known example is the function of Cauchy or Lorenz :

c? €\ 2
plzira,b) = S log (14 (2) (19)
2 c
where z; = {z;,y;} and where g; = y; — az; — b is an image of model errors when representing data with
a straight line. The sensitivity of p to the errors € becomes explicit :

ap _ €
Oe; 1_;_(@)2

c

(20)

and concludes that a large £; >> c error produces a small insensitivity on 6 and a small &; << ¢ error
produces a sensitivity in the order of ;. Thus, the choice of the ¢ threshold, at the user’s discretion,
determines the robustness of the estimator with respect to outliers. Starting from (19) and (20), the
reader will be able to establish the optimality equations of the parameters a and b of the regression
model by himself:

Sy wila,b) (e - az, — bz, = 0 e
S wila b (g —aze =b) = 0
with the following expression of weights:
1
wi(a’v b) b 2 929
1+<yi—axi— ) (22)
¢

The non-linear system (21, 22) can be solved by a simple iteration mechanism from an initial choice of
weights w; for example to the unit value. This procedure is to be compared with that obtained by an
ordinary least squares method, the only difference being the use of adapted weights [33], i.e. function
of outliers.

10
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Figure 6: Ordinary and robust regression

The figure (6) shows the arrangement of 22 pairs of points {z;,y;} of which three are obviously outliers,
as well as the regression lines obtained by an ordinary regression and a robust regression. The true
parameters a and b of the system are 2 and —3, those obtained by ordinary least squares 1.594 and
—2.169, and those obtained by the robust procedure are 2.001 and —3.008, which highlights the merits
of the robust estimator.

3. Reconciliation of data in the presence of outliers

This section is devoted to a technique for dealing with measurements potentially contaminated by
outliers. It has a twofold objective, on the one hand to reconcile the measurements against a model and,
on the other hand, to detect/locate outliers. Successively, the principle of measurement reconciliation is
given, then its refinement by complementing it with a procedure for robust estimation of the variables.
To illustrate its implementation, the case of a non-linear model system is treated numerically, then a
comparison with three more classical techniques is proposed and discussed.

8.1. Basic principle of data reconciliation

The purpose of data reconciliation,[42, 64], is to make the measurements made on a system compatible
with its model, which is assumed to be accurate because it is based on the laws of matter or energy
conservation [32]. As such, the reconciliation methods are close to the state estimation methods estab-
lished in a much more general framework. An important consequence of reconciliation is the detection
of outliers. Indeed, the reconciled values can be compared to the measurements; the discrepancies found
can be analysed, the largest of them being able to testify to the presence of outliers. The simplest
formulation in the context of a linear model system linking the true quantities x* is discussed in this
section:

Mz*=0, 2*€R’ MeR"™ (23)

whose measurements x,, are defined in the additive form with respect to noises ¢ related to the instru-
mentation and the measurement procedure:

Ty =2"+e+Fd (24)

where the matrix F' gives the directions of influence of the faults d on the measurements. Typically the
X, measures do not exactly verify the model (23) of the system and the reconciliation principle aims
at correcting them to satisfy this model. Since the measures are assumed not to be totally outliers, the
corrected quantities must remain close to them and for this reason of proximity, the estimated & which
minimizes the criterion here chosen quadratically with a weighting matrix W:

® = wm — 2" [[f- (25)

is defined by :
& = argmin® under M xz* =0

(I -WMT(MWMT)"'M) , (26)
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which is explicit:
T = (IfWMT(MWMT)_lM) T (27)

This expression provides, on the one hand, estimates of true quantities that are consistent in the sense
of the satisfaction of the system model and, on the other hand, estimates of the corrections that have
been made to the measurements :

I = Ty —=

WMT(MWMT)"'M z,, (28)

The analysis of the magnitudes of the corrective terms Z provides information on the magnitude of
the errors and their distribution. To clarify this point it is then possible to specify the expression of
the corrective terms and the reader will be able to check from (24, 28) the following expression of the
corrective terms :

F=WMT(MWMT)Y "Me+WMT(MWMT)"'MFd (29)

where the influence of ”small” random ¢ errors and the more important influence of d faults appears.
The interpretation of (29) in terms of performance of detection and isolation of faults d is to be found
in [50]. As the € errors are small in magnitude, the approximation can be adopted:

T~ WMT(MWMT) 'MFd (30)

which makes explicit the corrective terms according to the faults. Therefore the fault d; (the ith compo-
nent of d) is detectable if the ith column of the matrix WM™ (MW MT)~1MF is non-zero. The isolation
of the fault(s) obviously depends on the structure of this same matrix. In a certain way, this reconcil-
iation procedure does not have the desired robustness in the sense that the faults are corrected but to
the detriment of their dissemination on all the variables. This justifies the following paragraph which
presents a robust approach to the problem of reconciliation of measurements, the robustness allowing
not to disseminate the measurement faults on all the variables during the reconciliation procedure. As
an important result, the correction of the measurements essentially will concern those subject to faults.

Remark 2. It is also interesting to consider the problem of reconciliation when using only part of the
available measures. To ignore the measure of the p-th variable, an elegant way of dealing with this case
is to choose a diagonal weighting matriz whose (p,p) element takes an infinite value.

|

Remark 3. The previous data reconciliation principle extends to non-linear and dynamic systems. For
the sake of brevity, let us consider only the case of bilinear systems for which the models involve products
of variables. This is very frequent in the chemical or mineralurgical field when total and partial flow
material balances are established. In this case, if x and y designate, for example, the vector of flows
and the vector of concentrations in a chemical or mineral species, the constraints (23) are extended as:
Mz* =0 and M z* @ y* = 0, where the ® operator makes the term to term product of two vectors. The
measurement equations then become x,, = * + €5 and ym = y* +&y.

Criterion (25) is amended as :

=l zm —a" G+ 1 ym =" 5 (31)
and the estimation of the reconciled variables & and § results from the Lagrangian optimization:
L= xpy —a* ||%’V?1 + | Ym — y* ”%V;l AN Ma* 4+ pf Moz @y (32)

with respect to the variables x*,y*, A\ and p, thus leading to the estimates & and y. We leave it to
the reader to carry out this rather classic calculation and to repeat the analysis of the residuals of the
resulting T and § estimates.

12



8.2. Robust data reconciliation

Numerous developments are complementing the basic principle of data reconciliation that we have just
recalled. Thus, extensions made it possible to deal with dynamic systems [16], non-linear systems [13],
the presence of poorly known parameters [71], the localisation of measurement faults [47], the taking
into account of missing measures [39].

In this paragraph, only the specific point of the robustness of reconciliation against outliers is addressed.
To introduce this issue, it should be remembered that reconciliation is based on the minimization of a
criterion formed from the discrepancies between the variables and their respective measures. The validity

340

and optimal character of this approach are eminently linked to the strong assumption of normality of 345

measurement errors. In practice, this assumption can be defeated in the presence of large errors that
constitute outliers, which can hardly be considered as realizations of normal random variables.

We thus bring more realism by posing the reconciliation problem in the following way: from x,, mea-
surements estimate the true quantities z* of a linear model system (23). Starting from the assumption
that the number of large errors is low, the first technique proceeds by reconciling the measurements
by weighted ordinary least squares (OLS), then detects and locates the large errors (analysis of the
corrective terms), and finally repeats the reconciliation procedure cited above by assigning a very low
weight to the measurements for which large errors have been located. The major drawback of this
approach is that the first reconciliation can be highly erroneous due to the presence of the large errors;
this can then make it difficult to locate the large errors by analyzing the corrective terms.

To directly take into account the presence of gross errors, a more appropriate error distribution law
is used. Recall that the class of M-estimators provides estimates that are robust to large errors. Let
us consider the measurement case x,, = x* + €, the components of € being noted ¢;. The estimation

o — C;émg (1 n (Ec)2> (33)

Let us recall the important role played by the constant c¢ in this criterion. It appears clearly that the

criterion (25) is now taken as :

errors of magnitude higher than ¢ are more taken into account in ® than those of lower magnitude, i.e.
lower than c¢. Therefore, minimizing ® tends to reduce the influence of large errors on the estimates.
The previous formulation can then be repeated, taking into account the model (23) and the objective
function (34). We leave it to the reader to find the following estimate:

io= (- WMT(MWMT)"'M)z,,

1 . -
w o= I,+ C—deag (Z®zx) (34)
T = XTm—2=

350

355

360

The non-linear system (34) is solved with respect to & in a iterative manner from an initial choice of 365

the matrix of weights W, for example the identity matrix.

Remark 4. As before, the case of bilinear systems extends the robust M-estimator formulation. To do
this, we consider again the variables x and y defined in remark 2 and the estimation criterion to be

2 v 2 2 v 2
c Exi c e s
=2 log|1+4+ = = > log (14 2 35
iy (2)) - Sxm (2 5)
=1 =1 :
the ¢, and c, parameters setting the outlier insensitivity. The reconciliation procedure is then based on
finding the minimum ® under the respect of the equations M x* =0 and M x* @ y* = 0. Since this is a

considered is now:

standard procedure, the establishment of the optimality equations is not explained here.
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3.3. Application

The following example, although small in size, illustrates the benefits of the robust approach for recon-
ciling data, some of which are polluted by outliers, that need to be detected and located. The data used
will also be processed (section 3.4) by three other approaches that also allow outliers to be detected and
located. In order not to burden the presentation with an abundance of numerical results, the example
uses only one set of outliers.

Figure (3.3) shows a material transport network in the chemical industry (but it could also be in the
mineral industry, water, gas, oil products distribution circuits, etc.) made up of nine production units
and sixteen connecting routes between these units.

Figure 7: Material transport network

The law of conservation of the flows of material makes it possible to write, in permanent regime, the
system of equations (36, 37) linking the flows zF and the concentrations y} in a chemical species. These
equations only reflect the conservation of total and partial flows and could in a more general case take
into account the variations of material stocks in the production units but also of other constituents.

* * * _
T — x5 — Ty =0
* * * _

Lo — T3 — Ty =
T5—x) — T =0
T3 — Tg — Tl =0
* * * _
TE— T§ — T = (36)
x7 + 279 — g =
* * * * _
z —xly — 23— 2y =0
* * * _
Tip + T3 — Ty =0
* * * —
Ti6 T T14 — T15 =0

TiYT — X3YT — ThY) =0

T3Y5 — T3Y5 — T4 =

T3Y3 — TLY5 — T5Ys =0

TZY5 — T§Ys — TioYio =0

TEYS — TIYS — TTY3 =0 (37)
T7y7 + ToYio — ToYs =0

T11Y11 — TiaYle — Tis3Yis — Tig¥ie =0

T1aY1a + TI3YTs — T14Y14 =0

Ti6Y16 T T1aYT4 — TI5Y75 =0

The measures (Z.,,ym) of these sixteen pairs of variables over a given time period are recorded in
table (5). The purpose of data validation is twofold: to detect outliers (here, two biases of respective

14



amplitudes 12 and 6 affect the measures of the second component of = and the eleventh component of 390

y), and to propose replacement values for the outliers.

Table 5: Measured, estimated and corrective terms for flows and concentrations

In order to highlight the contribution of the robust technique, this table shows the results of estimating
% and g of variables z and y on the one hand by robust least squares (RLS) on the other hand by
ordinary least squares (OLS), as well as the corrective terms & and §. Concerning the estimates of the
variable z through RLS, it can be seen that its second component is the most corrected (12.58), the
other components being only slightly corrected. The results are quite different with OLS where not
only the second component of z is adjusted but also the 3, 4 and 15 components. The same is true
for the variable y where the eleventh component of y is corrected by 5.77 for OLS, the others being
only slightly corrected. Robustness is reflected by the fact that a faulty measure is corrected without
correcting other measures. It should also be noted that the correction terms with RLS (12.58 and 5.77)
are completely related to the magnitude of the simulated faults (12 and 6), which is not the case with
OLS.

Figure (8) gives an overview of the correction terms (CT) in absolute value of the variables x and y for
both techniques (Zrrs and grrs for RLS and Zors and gors for OLS). This figure only graphically
translates the results of the table (5) and shows the correct location of the corrections of the two
measurement faults. To judge an average effect of the procedures RLS and OLS, 12 simulations were
made with the same variables z and y in fault but by generating random measurement noise of small
amplitude. Figure (9) visualizes the mean corrective terms from these 12 simulations and confirms if
need be the relevance of the robust approach for the detection of measurement errors where variables not
subject to errors have not been corrected in a sensitive way. Moreover, with respect to the magnitude of
the errors, RLS gives a fairly accurate estimate, which is not the case with OLS. Of course, in practice,
this technique is repeated over time in order to continuously monitor the system in question.
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Figure 8: Corrective terms CT for flows and concentrations
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Figure 9: Corrective terms CT for flows and concentrations. Mean over 12 cases.

8.4. Comparisons and discussion

Roughly speaking, it can be said that the techniques for detecting and locating outliers are based
on two strategies, respectively described as global or sequential, depending on whether they seek to
determine them simultaneously or one by one. In all cases, and this also appears in our approach which
can be qualified as global, the choice of a detection threshold (or even several) remains necessary. In
the previous section, our approach has shown its capacities of detection/localization/identification of
outliers. It should now be compared with approaches widely used in the literature. Of course, we are
constrained to some limitations and have chosen to give some results from a sequential approach, an
approach using brute force technique and an approach using the signature of the residues with respect
to outliers.

3.4.1. Sequential detection and localization

As its name suggests, the sequential procedure seeks to detect and locate one after the other suspicious
variables. Since the variable x; is first suspected, the aim is to estimate all the variables from all the
measures except that of z1; this estimation is directly related to the reconciliation procedure of section
3.1 by taking advantage of the remark 2. The consistency of the estimates #;,% = 1,...,v obtained
is then tested by evaluating the vector of residuals M & and then globally its norm ®rq =|| M & ||
This evaluation is then restarted by suspecting the other variables z;,% = 2,...,v. The criteria ®p; =||
M3z ||,i =1,...,v obtained are then analyzed, the one whose value is judged below a threshold close
to zero corresponding to a suspicious variable. The procedure can be carried out again to detect on the
one hand a possible suspicious x variable and on the other hand one or more suspicious y variables.

16



Of course, the search for another outlier can benefit from the previous outlier estimate. This estimation
allows the correction of the affected measurement and thus the search for another outlier taking into
account the previous correction. The table (6) gathers the results obtained by this sequential technique,
which results from 16 eliminations for a variable  and as much for a variable y, each elimination being
followed by a reconstruction of the variables, the quality of each reconstruction being evaluated by the
norm of the residual vector of the redundancy models (36, 37) computed with the estimated variables.
The first two lines of this table relate to the elimination of a variable x;, the next two lines to that of
a variable y;. Examination of the norms for the residuals of the redundancy equations unambiguously
points to x1 and yi15 as variables with aberrant measurements. In the reconstruction, let us indicate that
the corrective terms affecting these two measures were respectively 12.1 and 5.9 values in accordance
with the biases that had been created. For this example, let us note that the detection and localization
of outliers is done without ambiguity, the contrast between the minimum values of the two residual
criteria with respect to the other values being significant: 1 compared to 12 and 9 compared to 74.

Remark 5. The above sequential procedure does nmot claim to provide the best solution for isolating
outliers. Indeed it proceeds by decoupling, a first outlier is detected, localized and corrected by the recon-
ciliation technique. This reconciled value is substituted for the measurement of the variable concerned,
the procedure is resumed to process a second outlier and so on until the procedure is stopped. It is clear
that in the presence of several simultaneous outliers, the estimate of the first value may be partially con-
taminated by the second. A more advanced version of this sequential technique can be used to iteratively

refine the different estimates. |
deleted variable Ty X2 X3 Ta Ts Te Ly Ty T9g Xio Ti1 Ti12 13 Ti4a Tis Ti6
| M | 12 1 15 15 17 17 17 17 17 17 15 17 17 17 17 17
deleted variable | y1 %2 %3 Y14 Ys Y6 Yr Ys Yo Yo Y11 Y12 Y13 Y4 Y15 Y16
M (zxy) | 88 74 T6 88 88 83 88 88 88 88 9 77T T7 88 88 76

Table 6: Sequential outlier search technique

8.4.2. Detection and localization using brute force technique

In computer science, brute-force search or exhaustive search, also known as generate and test, is a very
general problem-solving technique and algorithmic paradigm that consists of systematically enumerating
all possible candidates for the solution and checking whether each candidate satisfies the problem’s
statement.

Often not very efficient in terms of calculation time, this procedure is nevertheless easy to implement.
In an optimization problem, as it analyzes all possible solutions, one is sure to highlight the optimal
solution. For the example we are interested in, we have to search ny = 2 (this number could be
modified) simultaneously aberrant measures among 32 (16 variables z; and 16 variables y;, which makes
496 different situations to examine. For each situation, only two faulty measures are set. The set of
variables is then reconciled with respect to the redundancy equations according to the same technique as
previously described, this reconciliation using all the measures except those of the two faulty variables.
We thus have 496 reconciliation results,

the best situation is the one where the corrections essentially affect ny = 2 variables among the 32 and
where the residual vector has the smaller norm. For this situation, the table (7) shows the correction
terms Z and § made to the measurements, which can be compared to the terms in the table (5).
Variables x9 and y11 have the largest corrections, the other variables are only slightly corrected. Thus,
this procedure essentially causes the corrections to be carried over to the outliers, which is indeed the
desired effect. In the end, the results obtained by this technique are quite similar to those obtained with
the proposed method. However, as indicated above, this method is time consuming and is unsuitable
for large systems.
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1 2 3 4 ) 6 7 8 9 10 11 12 13 14 15 16
0.15 12.1 0.27 0.27 0.06 0.23 0.28 0.41 0.14 0.04 0.17 0.23 0.23 0.05 0.30 0.28
0.12 0.10 0.21 0.02 0.15 0.11 0.22 0.04 0.17 0.06 5.80 0.06 0.01 0.29 0.07 0.11

ISH

<)

Table 7: Corrective terms. Brute force technique algorithm

8.4.8. Detection and localization of outliers from the signature of model residuals

As previously mentioned, the diagnostic technique requires the synthesis of indicators that can reveal
the presence of anomalies that may affect the measurement. Here, these indicators are simply the result
of the adequacy of the measurements with respect to the redundancy equations.

Definition 2. (Fault Signatures).

The signature of a fault f; is the binary vector FS(fj) = [s1,j,--.,5n,;]T where s; j = 1 if f; is a variable
of the equation used to form the redundancy equation r;, otherwise s; ; = 0.

This defintion implicitly assumes that the occurrence of f; is observable on the result of r;, i.e., if r; is
satisfied, then fault f; did not occur. This is known as a simple fault exoneration assumption. |

Definition 3. (Fault Isolability). A surveillance system does not respect the isolability property, if two
theoretical signatures are identical, i.e. if the Hamming distance between two signatures is zero. To
allow an unambiguous recognition of the fault by tolerating k degradations on the real signature, the
theoretical signatures must be at least 2.k + 1 bits apart. Indeed, if the distance between two theoretical
signatures is only 2.k bits, k degradations of one of them bring the real signature at an equal distance
from both. The failure is thus not isolable. |

Looking again at the example in section 3.3, the equations (36, 37) allow us to establish the table
(8) of occurrence (with the symbols 71”7 and ”.” to translate the presence or absence) of the variables
zi, Y, = 1,...,16. This table which consists of 32 columns for the variables and 18 rows for the
equations reflects the influence of outliers in the different equations. It is important to note that the
columns of this table are distinct from each other (except for the 12 and 13 columns).

Remark 6 (Multiple outliers). The synthesis of the signature of multiple outliers, i.e. occurring con-
comitantly, is a generalization of the previous case. As an example, the simultaneous presence of outliers
affecting variables xo and x19 is characterized by a signature that is deduced by applying a logical operator
to columns 2 and 10 of the table (8). |

Remark 7 (Structuring the residues). Signatures for multiple outliers may become identical, limiting
the ability to isolate them. For example, as simultaneous outliers on variables x¢ and x1o have the same
signature as simultaneous outliers on variables xg and x10, 4.€. [ . . 1 1 1 . . .]T, the joint
outliers xg,x10 and xg,x10 are detectable but cannot be isolated. Subject to satisfying some structural
conditions of the equations, this isolation can be solved by structuring the residuals by combining the
equations so as to eliminate some variables [50]. For the example shown, merging the 4 and 5 equations
of the system (36) generates the redundancy equation xf —x§—x§ = 0, which allows to complete the table
(8) with a tenth line translating the occurrences of the 16 variables z; in this equation. As a consequence
of this addition, the signatures of the xg, 10 and xg,x19 variable pairs become distinct, which solves the
previous isolation problem. |

How to use this signature table for detection/location of outliers affecting measurements?

With measurements of the variables to be analyzed, the residual of the redundancy models is evaluated,
generating a signature. The detection and location of faults are carried out by comparing this signature
with those in the table (8). As the latter are in binary form, it is therefore appropriate that the actual
signature is also in binary form : this is done by comparing each residual component to a threshold.
Having normalized the experimental signature and the theoretical signatures, it is then necessary to
choose a criterion to compare them, and here the Hamming distance has been chosen.

18



1 23456 789 101112131415161 2 3 4 5 6 7 8 9 10111213141516

i Y
171 1.1
2 11 . 1
3 11 1.
4 11 1
) 1 11.
6 1 11 .o
7 111 1
3 1 .
9 . 111
1001 1 1 11 .1 .
11 11 1 1 . . 1
12 111 11 1.
13 11 1 11 . 1
14 111 . . 111
15 1 11 . . 1 11 . .
16 111 1 11 1. 1
17 11 . 111 . .
18 111 111

Table 8: Fault signature table for z,y variables

The example in section (3.3) is again considered with the measurements recorded in the table (9), where
the outliers are always x5 and y11. The table (10) shows a result of outlier detection/localization. The
r line is the residuals from the measurements and the 18 redundancy equations (36, 37) that should
be analyzed against the theoretical outlier signatures. Examination of the values taken by r shows
a group of values close to 0 and another behaviour of significantly larger values without being able
to clearly establish a threshold separating these two groups. The line ry represents a normalization
of the respective residuals of the redundancy equations (36, 37) by their maximum values. The line
s§2711) corresponds to the theoretical signature of the fault pair on {z9,y11} and its comparison with
the theoretical signatures of the table (8) confirms the presence of faults on {z2,y11}. The reader will
easily notice the difficulty in choosing a threshold to apply to the values of r in order to binarize the
) see for example the values 0.36 and 0.23 for residuals
11 and 12). Of course this is a particular conclusion related to this example, for different measurements

)

rn residual to find the theoretical signature s;

with lower noise levels the outliers were perfectly localized.

In conclusion, it is clear that in this technique, the calculation of the residuals of the redundancy
equations is easy to implement, but the adequate setting of a threshold to binarize them often remains
problematic.

1 2 3 4 ) 6 7 3
r | 56.67 78.76 57.1  9.32 49.08 60.60 32.39 26.63
y | 773 643 6.09 102 718 7.14 3.80 10.30
9 10 11 12 13 14 15 16
r | 21.04 1156 9.80 16.90 2.58 22.05 10.21 10.83
y | 3.05 589 1830 716 260 6.22 1261 0.08

Table 9: Measures of  and y variables

To conclude this triple comparative analysis, with the exception of the redundancy equation residuals
analysis approach which suffers from a significant difficulty in threshold setting, the so-called sequential
and brute force approaches give detection/location results that are quite comparable to the one we
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
r 12 12 12 01 16 02 1 3 1 58 21 13 12 35 9 52 10 7
TN 1 092 0.1 0 0.1 0.02 01 02 01]1 0.36 0.23 0.2 0.6 0.16 0.9 0.16 0.13

s*™11 1 0 0o o o o 0 o0 |1 1 0 0 O O 1 0 O

Table 10: Residuals of redundancy equations

propose. However, at the computational level, the brute force approach quickly finds its limitations when
535 the size of the system increases. The sequential approach remains competitive but has a methodological

disadvantage, as the estimation of the variables is done in a decoupled way and therefore presents a

certain pessimism. On the other hand, the proposed approach carries out a global estimation of the

variables, but, to remain critical, it is necessary to adjust the hyper-parameters ¢, and c, of the objective

function ® (36), in order to satisfy the attenuation of the effects of outliers. However, practice shows
540 that the choice of these parameters can be made in a wide range of operation.

4. Robust Principal Component Analysis

Principal Component Analysis (PCA) is a widely used statistical tool for analyzing data collected from
a running system to monitor its behavior. However, one of the major drawback of the ”ordinary”
PCA approach results from the use of least squares estimation techniques, which often fail to overcome

545 the bias of accidental measurements, which is unfortunately quite frequent in practice. However, a
PCA model can be constructed from the data without prior filtering, this construction being robust
to the presence of large errors. The obtained model PCA being healthy, i.e. not (or only slightly)
contaminated by outliers, its use for diagnosis (detection and localization of measurement errors) is
then efficient [61, 29, 46].

550 After a reminder of its classical formulation and its robust version, we focus on a much less known aspect
of PCA which concerns the generation of residues suitable for the detection/localisation of outliers. The
performance of these residuals comes from their structuring, which combines the reconstruction of vari-
ables and their projection in an ad-hoc subspace. The numerical example proposed remains modest in
size, but allows us to show the implementation of this approach and the results of detection/localisation.

555 4.1. Recalls on Principal Component Analysis

In practice, we have a matrix of X € R¥ data, row vectors z7, which brings together the N measure-
ments made on the n variables of the system. To search for the set of principal axes, we proceed as
follows:

e evaluate the matrix of experimental variances and covariances of the centered data:

Y=XxTX (38)
560 e solve, with respect to the P and A, equation :
P =PA (39)

P € R™™ being the orthogonal matrix of eigenvectors p; of ¥ and A € R™" that, diagonal, of its
eigenvalues \;.

It can also be shown that:
X=TP" T=XP (40)

565 Relationships (40) essentially find their interest when you decrease the size of the representational space
(the number of main components used). Once the number ¢ of compoents to be retained is determined,
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the X matrix of the data can be approximated. To do this, the eigenvector matrix is partitioned into
the form :

P= (P 15) P e R (41)
From the decomposition (41), we can then explicite the part X of the data explained by the £ first
eigenvectors and the residual s X explained by the remaining components :

X =XPPT (42)
X = X(I - PPT) (43)

The following sections show how to apply these relationships to a new observation whose consistency
you want to test.

4.2. Robust Principal Component Analysis Formulation

A major difficulty with the PCA is its sensitivity to outliers. To reduce this sensitivity, various techniques
can be used, notably the one that consists in performing the PCA directly on the data that may be
contaminated by outliers using an algorithm that is robust to these outliers. In [23] the authors define
a "local” matrix of variances and covariances in the sense that the proposed form tends to emphasize
the contribution of close observations to the detriment of distant observations due to the presence of
outliers. This matrix noted X" is defined in the following form according to the observations z; :

N-1 N
S wig(wi —ay) (@i — ;)"

,i=1 j=itl
Y= TN (44)
Do wiy
i=1 j=—it1
B _
w;,; = €xXp (2(:13Z — xj)TV Yoy — z;) (45)

[ being a parameter to be adjusted to effectively obtain a reduction in the influence of distant observa-
tions, the authors recommend a value close to 2. Decompositions (40) to (43) are then made using X"
instead of ¥ in (39).

4.3. Principle of variable reconstruction

Knowing the robust PCA model, the consistency of a new z measurement vector can now be tested.
Considering the previous results (42, 43), we can write the following decomposition:

r=2T+7z (46a)
i=0Wyg (46b)
i=U—-CY)z (46¢)
c® = ppT (46d)

where & and T are respectively the projection of x on the spaces generated by the ¢ main components
and the n — ¢ remaining components (residual space). The analysis of the magnitude of the components
of &, or even those of &, can reveal the presence of measurement faults. However, note that Z is obtained
from all the components of the x measurement vector. Consequently, the presence of an outlier in the
observation vector x makes the estimate Z sensitive to this value and to avoid this we can try to express
this estimate using only a part of the observation vector .

Let’s try to estimate the r-th component of the z vector. By noting ¢;; the elements of the matrix C ON
the r-th component of & (46b) becomes explicit:

Ty = Z Cri®j + Crry (47)

i=Ly#r

21

570

575

580

585

590



595

600

605

610

615

where we have particularized the contribution of the rth component z, of the x measure for reasons
that are going to make sense. For the estimation (47), if one wishes not to use the r-th component x,
of the measure x, one can replace, in the right-hand side of the equation (47), x, by 2., which gives
(under the condition ¢, # 1) the desired estimate: :

[T, 0 ]

A~ -Tr

Tp=————2 48
1—cpp (48)
where the indices —r and +r are respectively used to construct a vector formed by the first r — 1 and the
last n —r elements of the vector ¢,. Thus, the r-th component of x is estimated using all its components
except the rth. If only the r-th component of x is subject to error, then the resulting estimate is not

sensitive to this error. Consequently, this partial reconstruction of the measurement vector is noted:

T

i =T, & 2T, M er" (49)

—r

where (.)(") recalls r index is that of the variable not used in the reconstruction. For the purpose of
diagnosis, the estimate (49) should be analysed, e.g. by comparing it with measurements. In fact, it
is more interesting to analyze the projection of this estimate in the residual space and this for the n
possible reconstructions according to the value of the r index. These projections are an indicator of the
presence of a fault and can be explained as follows:

2 = (1 -z (50)
After postponing (49) in (50), we can show that:
i =ply (51a)

5*Rﬂ))0@§) (51b)

) — (7 _ ) _SrSr ™
Fr={-c %“1—$dwr

where the vector &. € R™ has all its components equal to one except the r rank which is equal to zero.

Remark 8. It is important to note again that the previous reconstruction (") is done using all available
measures except the one of rank r. There are thus n reconstruction possibilities and this remark will be
used later during the phase of isolating the outlier(s). The same applies to the projection 2, |

Remark 9. The matrix Pﬁl) (51b) has two important special properties. Given its definition the reader
can check that :

P, =0 (52)
&P =0 (53)

which highlights the peculiar structure of the Pﬁé) matriz, namely that the r-th column and the r-th
row of this matriz all have zero components. Obviously, the examination of the expression (51a) shows
that the &) projection has a structure particularly adapted to the detection and localization of aberrant
measurements. |

Remark 10. The proposed reconstruction with (47, 48, 51a) is concerned with a single component of
the measurement vector. Using a classical hypothesis of observability, it is possible to reconstruct several
variables at the same time from the same measurement vector. This extension is particularly useful in
the presence of several measurements in fault simultaneously [8], [9]. [ |

4.4. Detection and localization of abnormal measurements

To specify the way to detect measurement faults, let us consider the case of a healthy data z* corrupted
by a noise of zero mean value € and a fault of magnitude d acting in the direction &5 (d and &7 not being
known):

Tm =" +e+Epd (54)
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In this expression z* is the true value (and thus satisfies the PC A model), & is the null vector except 620
its f component equal to the unit and z,, is an available observation of z*. Under (51a), the residual
calculated by reconstructing only the r rank component of x is explicit :

i = PO + e+ &pd)
0 (55)
P (e+ ffd)
whose mathematical expectation is:
E@ ) = P¢sd (56)

which highlights the role played by the r-th row and r-th column of the PT(Z) projection matrix. One

can generalize this analysis by calculating the projection matrices for the various possible directions of 625
fault &., r = 1,...,n as well as the resulting residuals. The analysis of these residuals, thanks to the
properties (52) and (53), then makes it possible to detect and localize the fault if it exists. Indeed, let

us consider all the possible reconstructions r = 1,...,n. Starting from (56) for the different projection
matrices we can state the two rules :

e Ry : if the direction of reconstruction &, is that of the fault, i.e. if r = f, then all the components 630
of the vector Pﬁ‘)g § are zero

e R, : if the direction of reconstruction &, is different from that of the fault, then the components
of the vector Py)g ¢ are not a priori null, except the component of rank 7.

The implementation of this isolation technique is systematic. It requires, at each time instant, the
calculation of the projection of the reconstructions according to a set of n directions, but the projection 635
matrices can be calculated once and for all and applied to the analysis of all new observations acquired

on the system.

4.5. Example

A simple example has been constructed with n = 7 variables and N = 120 measures. The X matrix
collecting the data is expressed :

vl
xo|* (57)
i
where the components of z; (i =1,...,N) are :
x;1 = sin*(0.24)(1 + cos(0.334)) (58)

xio=2x;1(14+x51)

xi3 = sin(0.54)(1 + cos(0.167))
Tia=3.9T;1 — X2

Tis = X310 + 0.525 2

Ti6 = Ti1 + T3

T = 0.5 Ti2+ T3

To these seven variables are added realizations of variables distributed according to centered normal
laws of the same standard deviation equal to 0.02. 640
A constant amplitude bias 1.5 simulates the presence of outliers d; affecting variables ;,j = {1,2,3,5, 7}:
observations 14 to 20 for x1, from 29 to 35 for x5, from 44 to 59 for x3, from 74 to 80 for x5, from 104

to 110 for x7. The objective is to detect them and especially to locate them.
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Figure 10: Raw data

Figure (10) represents the temporal evolution of these variables. In accordance with what was said
in section 4.4, table 11 indicates the theoretical sensitivity of the projections (5la) with respect to
the faults d;,i = 1,...,n} where :ig? designates the jth component of the residue evaluated at time ¢
without using the measure of the variable r.

For each variable, seven reconstructions can be proposed, which justifies the presence of the seven
projections 5552) in table 11 established thank to the properties (52, 53) (as a reminder, 7 is the index of
the variable not used for the reconstruction, ¢ the time, j the number of one of the seven variables). The
presence of a cross indicates the structural influence of an outlier on a residual projection, as opposed
to the 0 symbol.

Thus, the analysis of the magnitudes of the residuals it(f) for r = 1...n reveals the presence of faults
and makes it possible to determine the component of the measurement affected by this fault. Note,
however, that the sensitivity table only reflects the occurrence of faults in the residuals independently
of their numerical values. Be aware that certain operating conditions can lead to very low numerical
sensitivities that do not allow for any conclusion.

Using the raw data contaminated by outliers, we determined the robust PC'A model by applying the
propositions in sections 4.2 and 4.3. The analysis of the decay of the normalized eigenvalues of the
variance and covariance matrix, allows us to limit to for the number of principal components to be
retained for the reconstruction of the variables using the PC'A model. Given this model, the procedure
in section 4.3 can then be applied to reconstruct the variables and to project he reconstruction errors.

Figures (11) to (16) display the results of detection and isolation of outliers. Each figure has seven
graphs, each relating to one of the seven system variables. For reasons of space, only the figures relating
to the reconstructions in directions &1, &2, &4 are given.

Q) 5 _q 7
N 7] )
obtained by reconstruction without using the measurement of the first variable. They can be compared

to the measurements (in blue color) and thus highlight the corrections made.
1
v
reconstructions of the variables obtained without using the 1 variable measure. For this, (51a) was used
with the projection matrix Pl(e) elaborated with the direction & =[1 000 0 0 0]7.

In a similar fashion, Figures 13 and 14 on the one hand and Figures 15 and 16 on the other have been
constructed with the respective directions of projection. & =[010000 0]7 and &, =[00010 0 0]7.

To analyse the different residues obtained, reference should be made to the properties of the projection

The 1 to 7 graphs in figure 11 visualize the estimates (in red color) of the seven variables &

The graphs 1 to 7 in figure 12 concern the residuals '/, j = 1,..., 7 obtained by projecting the previous
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Figure 11: Reconstructions without using variable 1 Figure 12: Projection without using variable 1

matrix. Let us consider the first time interval 14 - 20 where a fault has been applied on the variable z;. 675
The seven projections are substantially null when the reconstruction is done without the measurements
of the first variable. Two hypotheses can be stated: absence of fault or presence of a fault in the direction

25



680

685

690

- M% 1.837  Rcohstructions projection without using
05 0.
0 20 40 60 80 100 120 (o] 20 40 60 80 100 120
691 0.8f
1.8 /\.J\M./\’A‘M@/\ o8l | ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 (o] 20 40 60 80 100 120
A AN AN A e~
-0.6 ¢ . ! ) : ! -0.4 . . . . .
0 20 40 60 80 100 120 o] 20 40 60 80 100 120
07} 03f
N /\/\/\/\../\/\J\/\../\/\/\/'\/\/\/V\ s M
0 20 40 60 80 100 120 (o] 20 40 60 80 100 120
- ;\,J\.MM\ - ;A‘“\‘/J\_V—I\VW_/—\*M\_I’*
-1.2 SN —_ JES—) -0.4 L L L L Il
0 20 40 60 80 100 120 (o] 20 40 60 80 100 120
23} 0.1
0 20 40 60 80 100 120 (o] 20 40 60 80 100 120
- W\/\/\/\/\/\/\*\/M - 7%/’*”"\#“"“/_’\‘”'
1.2 f . ! ) ! : -0.4 | . . . .
0 20 40 60 80 100 120 [o] 20 40 60 80 100 120

Figure 13: Reconstruction without using variable 2

xZ
21 T ut using x,
-0.5 L L L L Il
0 20 40 60 80 100 120
- :/\_../\f'/\./\_./\_—../\z\_./\
1.3 N N
0 20 40 60 80 100 120
Sl AN ANA_ AN
0.6 | LM VA V.
0 20 40 60 80 100 120
07 MWW 0.8}
21 ¢ f . . . , -0.8 £ . . . . ,
0 20 40 60 80 100 120 0 20 40 60 80 100 120
- wa,_/\ > 7W\W\M\"
-1.2 . ) ) . : 0.5 d . . . .
0 20 40 60 80 100 120 0 20 40 60 80 100 120
23 /\/\.,/\/\/\/\/\/\/\/\/\/V\/\/\/\/\ - W\A\f'[v\\www
-1 F L L L L Il -0.4 ¢
0 20 40 60 80 100 120 0 20 40 60 80 100 120
q2F -0.6 b
0 20 40 60 80 100 120 o 20 40 60 80 100 120
Figure 15: Reconstruction without using variable 4 Figure 16: Projection without using variable 4

&, that is to say affecting the variable x;. This figure alone is not enough to resolve the ambiguity.

In a similar fashion examining the figure 14 (constructed without using the measure of the second
variable) always for the time interval 14 - 20 reveals non-zero values for several projections and therefore
the existence of a fault. Since two of the projections for the first variable are non-zero, it is this variable
that is in fault. Still for this time interval 14 - 20, the reader will be able to interpret in a similar way
the seven graphs of figure 16 in order to confirm the previous conclusion. The detection and isolation of
a measurement fault for this interval is thus achieved. They can be repeated for the other time intervals
and conclude to the presence of faults on the other two variables. The graphical results are in perfect
agreement with those of the detection/location signatures in Table 10.

This result can be further reinforced from the figures 17, 18 and 19. The graph number j in figure
17 shows the sums of the projections taken in absolute values when the variable j is not used. As
an example, the first graph of this figure is obtained from the sum of the signals of figure 11 taken
in absolute values. Clearly, the figure 17 highlights the signatures of the faults and allows to find the
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presence of fault on the variables {1,2,3,5,7}. The instants of occurrence of the faults are also obtained
from this figure by applying a classical jump detection technique.

More synthetically, this jump detection can be performed from the signal represented in figure 19 which
is none other than the sum of the signals in figure 17. The chosen magnitude threshold equal to 2
makes it possible to find the times of occurrence of the five faults which are respectively defined by the
intervals : [14 20], [29 35], [44 50], [74 80], [104 : 110].

Finally, figure 18 partially reproduces those dedicated to reconstruction errors. However, it is limited
to visualizing the reconstruction error of each variable j, 7 = 1,...,n when the measure of this variable
is not used in the reconstruction procedure. From each graph, an estimate of the bias can be extracted,
the bias corresponding, with the exception of noise, to the reconstruction error. Thus, for the first graph
relating to the reconstruction error of the first variable, the magnitude of the reconstruction error in the
interval [14 20] indicates a value of 1.5 which effectively corresponds to the bias affecting this variable.
The reader will make the same kind of observation for variables 2,3,5,7 from the graphs associated
with these variables.

This succinct presentation of the use of PC'A for the detection of outliers would require much further
development. The previous example presents a relatively simple situation where the magnitude of the
faults is large enough to allow their detection. The magnitude of the detectable faults is to be compared
with the magnitude of the measurement noise but also with the quality of the PC A model. The reader
will easily understand that in order to remain concise, we have omitted to present a systematic analysis
of the hyper-parameters of the proposed technique and their influences on the results of fault detec-
tion/location: number of measurements, richness of information in the measurements used, robustness
factor 8 in the calculation of the variance-covariance matrix, signal-to-noise ratio.
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Flgure 17: Sum of projections Figure 18: Reconstruction errors
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Figure 19: Global fault detection indicator
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5. Conclusion

Although partial and with restrictive assumptions regarding the static nature of the systems consid-
ered, this presentation has attempted to draw the reader’s attention to the presence of outliers in the
measurements and how to take them into account. Two points of view are presented, the first relating
to the location of these outliers and their replacement by substitute values, the second relating to their
accommodation, i.e. their acceptance by minimising their influence in the estimation procedure. This
second point of view has been detailed on the one hand in a robust measurement validation procedure
and on the other hand in the use of robust principal component analysis, the robustness being to be
understood in terms of reducing the influence of outliers. The two techniques presented in sections 3
and 4 were presented in the somewhat reductive framework of static systems, but their extension to the
case of dynamic systems does not pose any methodological problems.
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This proposal falls within the general theme of sensor diagnostics and data validation. More
specifically, it deals with how to detect and locate abnormal values in a given time series by
a sensor or set of sensors. Thus, to be clear, this proposal does not deal with the design of
sensors but focuses exclusively on the coherence analysis of data provided by sensors.

Highlights of our paper :

e Localization of abnormal values in time series
e Robust approach in data reconciliation
e Structuration of fault indicator in Principal Component Analysis
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