
HAL Id: hal-03168307
https://hal.science/hal-03168307v1

Submitted on 12 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TabGO: towards accessible computer science in
secondary school

Ken Andriamahery-Ranjalahy, Léa Berquez, Nadine Jessel, Philippe Truillet

To cite this version:
Ken Andriamahery-Ranjalahy, Léa Berquez, Nadine Jessel, Philippe Truillet. TabGO: towards ac-
cessible computer science in secondary school. 23rd International Conference on Human-Computer
Interaction (HCI International 2021), Jul 2021, virtual place, United States. �hal-03168307�

https://hal.science/hal-03168307v1
https://hal.archives-ouvertes.fr

TabGO: towards accessible computer science in secondary school

Andriamahery-Ranjalahy, Ken H.

Musicology Department, Univ. Toulouse II Jean Jaurès (LLA-CREATIS), Toulouse, FR,

ken.andria@univ-tlse2.fr

Berquez, Léa

CS Department, Univ. Toulouse III Paul Sabatier (IRIT), Toulouse, FR, lea.berquez@univ-tlse3.fr

Jessel, Nadine

INSPE, Univ. Toulouse II Jean Jaurès (IRIT), Toulouse, FR, Nadine.Baptiste@irit.fr

Truillet, Philippe

CS Department, Univ. Toulouse III Paul Sabatier (IRIT), Toulouse, FR, Philippe.Truillet@irit.fr

Abstract

While computing skills grow in importance in today’s technology-centered society, the learning of
these skills still isn’t accessible easily for young visually-impaired students: in French schools for
example, online platforms (like Scratch) are more and more used by teachers, but unfortunately these
platforms rely heavily on visual elements. As an inclusive approach would suggest, modifications and
adaptations of such platforms would favour collaboration between sighted and visually-impaired users:
tangible stimuli are then favoured to compensate for visual elements, while visually-impaired and
sighted communities are prompted to use the same tools. Even if tangible solutions are suggested
through scientific studies in the accessibility field, a young visually-impaired student still can’t use
these solutions autonomously: many of these prototypes still require the intervention of a sighted third
party. In this article, we describe our solution TaBGO (Tangible Blocks Go Online) which consists of
enhanced tangible Scratch’s blocks and an associated optical recognition software. We then present a
planned user study to establish if this solution is usable and easily handled by young visually impaired
and sighted students, considering users’ feedback about usability, satisfaction and cognitive load.

CCS Concepts
• Human-centered computing • Accessibility • Accessibility systems and tools

Keywords

Algorithmic, accessibility, block programming, tangible objects, optical recognition

1 Introduction

With the technological improvements of the last decades, the field of computer science and associated
computing skills grow to have an increased importance in today's world. Thus in France, the learning of these
computing skills begins in primary school since the 2016 reform11, and in secondary school using block-based

1 “Bulletin Officiel spécial n°11 du 26 novembre 2015”,
http://cache.media.education.gouv.fr/file/MEN_SPE_11/35/1/BO_SPE_11_26-11-2015_504351.pdf

Visual Programming Languages (VPL) like Scratch2 or Blockly3. Thanks to these educational strategies,
students can have a first introduction to computer science.

However, for visual impaired persons, these computing paradigms aren't accessible since they rely on visual
elements [1]. Thus, this graphical user interface (GUI) prevents visually impaired students from this easy
approach to computing skills, and subsequently doesn't encourage them to pursue a developer's career, nor
towards socio-professional integration in today's technology-centered world [2]. The issue is clear: in secondary
school, is it possible to give visually impaired student access to block-based VPL, and thus access to a simple
acquisition method of these computing skills? This article presents the TabGO (Tangible Blocks Go Online)
project, a tangible interface which allows Scratch programming in classrooms for people with visual
impairments, using tangible blocks and an associated optical recognition software. First, previous existing
technologies are presented and their influences on the TabGo project are highlighted. Then, the TabGo
prototype is introduced, with an experiment to evaluate its usability. This article ends with future perspectives
on the experimentation's results.

2 Related works

Programming languages can be accessible for visually impaired users (especially when they are based on textual
instructions), but such accessibility necessitates adaptations: some modifications concerning the IDE used or
some other additional equipment like a screen reader (JAWS4, for example). These accessibility-centered
processes are Assistive Technologies [3, 4], and many of these solutions are based on audio and/or braille
feedback to allow an intuitive navigation for visually-impaired users [5]. Moreover, the field of vocal synthesis
(Text-to-Speech) has known many progresses during the last decades, representing an aural feedback: for
example, Javaspeak [6][7], Emacspeak [8] and CAITLIN [9] are all IDEs that include a vocal synthesis-based
text editor; while the first two center around the accessibility of the Java language, CAITLIN targets the use of a
design software. In additional equipment and in accessible IDEs, vocal synthesis is used as an efficient solution
to make computer-based fields accessible for visually-impaired users.

In addition to vocal synthesis, it's important to highlight the focus on some languages, such as Java (in the
previous examples) and Python. While these languages may present accessibility issues for visually impaired
persons [10], they are nonetheless more and more used among scientific, engineering and computer-centered
communities: as a consequence, blind programmers may learn to use it anyway, as some languages have
“features that more than make up for any inconvenience that indentation may cause” [10]. While additional
equipment and IDEs are useful tools for accessibility, the use of new languages, easier to learn, is also a point
worth highlighting. Moreover, some languages are designed while consciously considering accessibility for
visually impaired users, such as Quorum5 : it is “evidence-based” (as they rely on scientific studies6[11]), and its
syntax is specially designed to be easily read by a vocal synthesis engine. Quorum is therefore an accessibility
solution which exemplifies the use of both vocal synthesis and modifications of IDE/existing programming
languages.

If these studies contribute to making programming languages as accessible as possible, they aren’t necessarily
adapted for an integration in a classroom environment. However, this classroom integration can favour the
possibility of collaboration between visually-impaired pupils and their visually-paired peers: this collaboration
has a crucial role in the integration of visually impaired people [12], as seen in previous inclusive experiments in
the classroom environment [13]. Moreover, it's important to highlight that for visually-impaired teenagers, the
use of adapted interfaces give them an additional opportunity to develop their logical, cognitive and motor
skills, and thus these interfaces may have a positive influence on their personal development, on both physical
and psychological levels [14, 15].

2 https://scratch.mit.edu

3 https://blockly.games/?lang=fr
4 https://www.freedomscientific.com/products/software/jaws
5 https://quorumlanguage.com/

6 As advertised on https://quorumlanguage.com/evidence.html

https://blockly.games/?lang=fr
https://quorumlanguage.com/evidence.html

For children, computing skills' learning is generally based on simpler IDEs, like Blockly, Scratch
StorytellingAlice [16] and LookingGlass7 [17] : it's worth mentioning these IDEs are often used by secondary
school students. However, all these environments also rely heavily on visual elements, and thus need
modifications to be accessible. For an easy and intuitive approach, one strategy is then to replace the visual
stimuli by tactile stimuli: a tangible interface (TUI) is then preferred to a graphical one (GUI) [18].

Many studies have been conducted on usable TUIs in a scholar environment. In primary school, adapted TUIs
are often derived from electronic audio-based toys: for example, Microsoft's CodeJumper/Torino project [19]
rely on linkable blocks; Bee-Bot is a bee-shaped controller, linked to Lady Beetle and World of Sounds, two
simplified music-centered programming softwares [20]. The modifications of toys into TUIs represent a simple
but efficient way to introduce some computing basics to primary schools pupils, especially block-based toys: it’s
also possible to mention some block-based prototypes among scientific communities, such as the T-Maze [21],
based on maze-construct maze-escaping tasks using tangible blocks; the P-Cube [22], based on RFID blocks and
cards; and a grid-like LEGO-based TUI [23] that uses aural communication. To appeal to older students, other
(more android-like) toys have been derived to act as feedback for simple algorithms, otherwise only accessible
by sighted students since they rely on visual modifications of an avatar. For example, the Roamer is a turtle-like
robotic toy, which would move entirely as the avatar would, translating visual stimuli into movements [24].
While a toy-based approach remains an effective one for accessibility, toys are not the only raw material for
accessible TUIs helping visually-impaired pupils.

In secondary school, other tangible solutions have also been created: Blocks4All [25] presents a sensibly
augmented IDE on Android tablet (which emulates different textures), while AccessibleBlockly [5] give access
to every Blockly modules (ArduBlockly8, OzoBlockly9, BlockyTalky [26]) through audio feedback. It's worth
mentioning that this Blockly-based inclusive approach uses audio and tactile feedback, as did the solutions
previously mentioned. Scratch has also been adapted for visually impaired users: the Accessi-DV Scratch
briefcase [27] contains tangible programming blocks based on the Scratch blocks; the CodeBox64 [28] is an
Arduino-based Scratch controller. These two examples are crucial influences for the actual project TabGO [29].
All of these technologies consider the use of TUIs and hardware as possible accessible solutions that allow a
first approach towards programming skills in secondary school.

While the prototypes mentioned above offer excellent guidelines, they still present issues for an implementation
in the classroom environment. The Codebox64's concept is issued from an Arduino-based approach and requires
constructions and realizations from sighted competent teachers, for each student. These chain productions
necessitate time and different components for each type of feedback required in each activity planned with it.
Plus, this Arduino-based approach doesn’t highlight Scratch's block-based logic and its benefits for young users
[30]. However while the Accessi-DV briefcase does underline Scratch's block-based logic, the prototype doesn't
allow the user to communicate directly with the Scratch online platform, and thus requires a sighted person to
copy the algorithm completely on the Scratch online platform. While “activity-based unplugged coding and
robotic coding training, integrated with the preschool education curriculum, enhanced the basic coding and
robotic coding skills” [31], unplugged coding still have limitations: for example, the algorithm must be
transposed to the Scratch platform for the user to experience feedback These solutions therefore require the help
of a third party : to avoid involvement of this third party and to maximize autonomy, we have designed the
TabGo solution.

3 The TabGO project

In addition to related works, the TabGO project is also based on many others focused on the conception of
block-based TUIs [32, 33], their use and efficiency [34, 35] or their reception by users [36, 37, 38]. Those works
also include prior block-based TUIs prototypes [27, 39], improved to communicate with online Scratch. The

7 http://www.alice.org/
8 github.com/carlosperate/ardublockly

9 ozoblockly.com

http://www.alice.org/

actual TabGo prototype consists of two parts : a briefcase with tangible blocks, and an associated visual
recognition device and software.

The blocks have been modeled corresponding to the virtual ones, both in aspect and in functions. They are
wood-made or plastic-made (using a laser cutter through plastic sheets of 3mm width), and are implemented
with thin magnets (2mm diameter x 3mm width) that allow for connection between blocks, just like the Scratch
system. These functions have been preserved since this system minimizes syntax errors, just like the online
platform. While the blocks can be connected depending on their shape (like puzzle pieces) using incorporated
magnets, the TabGo blocks also are enhanced with ropes in case of complex functions like conditional branches
and Boolean loops, which are essential notions in the secondary school educational program.

In the Scratch platform, different colors indicate different function domains: for example, orange is associated
with variables, while yellow is associated with events. For this useful characteristic, colors have been kept the
same while designing the TabGo prototype, mostly for visually paired users. For visually impaired users, they
have been carved with different patterns (such as straight lines, multiple dots, etc.) to mimic these colored
functionalities: the logic applied here aims to compensate visual information by tangible stimuli.

Moreover, it's worth mentioning that even the briefcase has an indicative function here: the briefcase contains
five compartments, one for each color/set of texture (see Figure 1). The first blocks in the chain are in the top
compartments: the event blocks in the top left compartment (such as the “when button pressed” event) and the
micro:bit blocks in top right compartment. The center compartment holds the variable-based blocks (such as the
“add 1 to my variable” function), as these notions are at the center, the heart of computing skills. The feedback
blocks are placed at the bottom: the sound blocks are in the bottom left compartment (such as the “play alarm
sound” function); while the Text-To-Speech blocks are in the bottom left compartment. This organization also
places Scratch's basic functions at left and advanced extensions (Text-to-Speech and micro:bit) at right:
Scratch's possibilities are organized left to right from simple to more complex. Thanks to this organization, a
visually-impaired user can differentiate the blocks more easily, when trying to recreate an algorithm.

Figure 1: Drawing representing the organisation of the TabGo briefcase.

While compensating for visual communication, it's important to note that the aural communication is also used:
The TabGO project uses Scratch extensions to create non-visual feedback. Each of these extensions represents
specific blocks that allow the integration of additional equipment or functions. Focusing on non-visual stimuli,
we chose to adapt the “Text-to-Speech”, “Music/Sound” (MIDI and musical language) and “Micro:bit”10
extensions, which offer audio or tactile feedback. The TextToSpeech blocks use vocal synthesis (with functions
like “pronounce hello world”); the music/sound blocks use and organize sample sounds in time (counted then as
a fraction of time, 0.25 sec for example) and the Micro:bit blocks allows the use of micro:bit cards, little
electronic devices that integrates audio and vibrotactile feedback to Scratch algorithms (with functions like
“when micro:bit shaked”).

10 https://microbit.org/

The blocks have been enlarged compared to the original interface (18cm x 10cm) to be enhanced by braille text
and cubarithms to be identified by visually impaired users: the cubarithms here are little plastic cubes (1cm x
1cm x 1cm) based on the Aubrey wheel11; they can be parameterized by users to hold a single braille cell. These
cubarithms can then display numbers and variables’ names. These enhancements aim to maximize the autonomy
of visually-impaired users, since they can read and identify blocks, but also correctly set them to build
customized algorithms.

As the first part of the TabGo prototype, the blocks presented here are derived from the Scratch's interface to
retain the most useful features of this pupil-friendly approach to computer science, such as magnetic linking
between blocks and color code. But they're also enhanced with many features favouring the blocks' correct
identification and setup: these features are multiple, from the briefcase's organization to additional carved
textures upon blocks.

While the precedent features were highlighted because they favour recognition by the user, the second part of
the TabGo prototype centers around optical recognition of the algorithms (recreated with blocks) by the system.
The solution presented here, in addition to blocks, centers around the use of a webcam to automatically
recognize the cubarithms and the TopCodes12 symbols placed upon the blocks.

Figure 2: Full platform overview.

By adding TopCodes symbols and associated libraries, each block's type is optically recognized by the software
part using a web-cam; while the values inside blocks are recognized by cubarithms’ analysis: the TopCodes'
analysis identify the types of blocks used in the algorithm; while the cubarithms’ analysis identify the values
held into such blocks. A JSON file and related resources are then generated as a SB3 file (common extension for
Scratch language) to be read by Scratch (as shown in Figure 3).

Figure 3: From a simple algorithm to the algorithm in Scratch after the visual recognition.

11 https://www.utopiamechanicus.com/article/braille-display-2017/

12 http://users.eecs.northwestern.edu/~mhorn/topcodes/

The main objective is to give autonomy to visually-impaired students when using Scratch with the TabGO TUI
(as shown in Figure 4): thanks to this TUI, a visually-impaired user can use Scratch autonomously, from
recreation of algorithms to optical recognition by the software, to a SB3 file exploitable by Scratch.

With the use of these enhanced blocks and this optical recognition software (as previously mentioned), it is then
possible for users to design simple algorithms that help introducing important computing notions. So, these
algorithms represent an easy way to enhance computing skills for students, whether they're visually paired or
impaired. Finally, these algorithms also represent the first experimental phase for testing this solution’s viability.

3 User study

The tests planned to evaluate the efficiency of the TabGO solution are based on a multiple case study, centered
around a sequence of four simple algorithms the subject has to build, four stages arranged by increasing
difficulty. These algorithms were limited to a few blocks and were constructed accordingly to the French
secondary school’s program, thus remaining accessible for young students. Each stage of the experiment (except
the first one) can be realized by one subject or by two subjects working together, mirroring the will previously
mentioned to focus on (respectively) autonomy and inclusive collaboration. For instance, one of the first
algorithms is based on a simple coin tossing machine (a six-block algorithm, see Fig.4) inspired by an 8th grade
assessment, introducing pupils to conditional branches and probabilities.

Figure 4: Scratch interface – Coin Toss algorithm.

While the usability of this technology (as a first approach to computer science) is the main subject of these test
series, parameters of age, technology affinity and braille knowledge are considered while evaluating efficiency
of the TabGO prototype. Thus, four groups of sighted or visually impaired users of different ages will be
confronted (P1 to P4).

● P1: Visually Impaired Teenagers
● P2: Sighted Teenagers
● P3: Visually Impaired Adults
● P4: Sighted Adults

The four groups are asked to construct specific algorithms following steps and instructions, under an informed
instructor’s watch. For each step, the instructor has to answer three questions, 1) how well does the subject
identify blocks, 2) how well does the subject connect blocks and 3) how well does the subject experience

feedback. Instructions are given to the test subject at the start of the task, and the instructor is told not to
intervene, unless told to during crucial steps or if the subject encounters many difficulties. However, the
instructor is also told to write any demand of intervention originated by the test subject: after he/she has been
asked for help four times, the instructor is told to skip the actual task and begin the next one.

The parameters observed essentially focus on completion (or non-completion) of a given task, and the time
necessary to complete each step/stage. Each parameter is appreciated by the observer with the use of a 5-point
Likert scale (see Table 1). The experiment's duration is thus notated in relative (Likert scale) values, for each
step and each stage. The experiment's completion includes progress between steps and between stages: these
progresses indicate how well does the subject adapt to the prototype while apprehending new computing
notions. Other parameters observed include collaboration if the stage is realized by two subjects working
together and autonomy if the stage is realized by a single subject. These two parameters are appreciated
according to the number of times the subject(s) has/have asked for help or verification, and also according to the
number of tries for each step. The collaboration parameter also depends on the communication between users,
higher if the communication is productive and/or enjoyable for each user.

Table 1: Experimental protocol – Observation grid

At the end of each stage, the subject will also be asked to fill (indirectly by interview for visually impaired
users) a satisfaction survey, a task load assessment (NASA-TLX) and a usability survey (SUS, or System
Usability Scale). With these methods of data collection, many aspects and related questions will be answered to
establish the actual efficiency of the TaBGo prototype.

● Q1 - Were the blocks easily used and recognized by subjects? (Usability aspect, data collected by direct
observations and by System Usability Scale).

● Q2 - Was the task difficult for subjects? (Cognitive aspects, data collected by direct observations,
NASA-TLX and by Satisfaction survey).

● Q3 - Was the approach offered by using the TabGO prototype helpful for the subject to develop
computing skills ? (Progression aspect, data collected by direct observations and by NASA-TLX).

● Q4 - Was the collaboration with other users pleasant and useful to subjects? (Collaborative aspect, data
collected by direct observations and by satisfaction survey).

Parameter observed 1 2 3 4 5

Step duration (Likert scale)

Block handling

Progress between steps

Progress between stages

Collaboration

Autonomy

Total (/35)

Stage duration (35 minutes at most):

Number of times the subject asked for help:

Number of times the subject asked for verification:

● Q5 - Was the subject able to use the prototype autonomously ? (Autonomy aspect, data collected by
direct observations and by satisfaction survey).

All of the aspects of this sample experimental phase are summed up in Table 2 below.

Table 2: Experimental protocol – Aspects investigated and methods used to investigate them

With these data collection methods combined, the experimental protocol presented here aims to be as complete
as possible, considering both quantitative and finite aspects of task-resolving, as well as qualitative and human
aspects in task-involvement. The subsequent stages imply different feedback and/or more complex algorithms,
composed of multiple pairs of blocks connected together, or realized in collaboration with another user. Though
knowledge progression and computing skills' acquisition (Q3) represent an important aspect of these tests, it is a
secondary one as the main goal here is before and foremost to evaluate usability of the prototype in different
conditions, with increasing difficulty.

The data collected are then analyzed to establish if there are differences in performance between each group of
subjects, differences that can thus be linked to each subject's individual skills and experience. For each data
collection method, the results' mean of each item is then calculated to establish if, overall, the TabGo TUI-based
first approach towards programming skills’ learning is actually intuitive enough to be used by secondary school
students, whether they’re visually impaired or sighted.

According to similar studies [28, 29], the results expected revolves around a clear apprehension and
identification of the blocks used. The tasks composing the protocol are centered around the secondary school
program, so the results shouldn't vary much from group to group, especially if the many enhancements reveal to
be useful, as seen in similar studies [35, 39] and as announced by the first results of the pre-test phase. Though
satisfaction may not be optimal for adults (as the tasks may not be particularly mentally challenging for them),
we expect these tasks to be simple and enjoyable enough to encourage involvement and collaboration between
all users, and especially between sighted and visually-impaired users. If the results are promising, the
subsequent experimental protocols focus on the learning and acquisition of computing skills with the TabGo
prototype. As previously mentioned, these results will help confirm hypotheses on the prototype's usability
while also considering important factors playing a role in a learning (cognitive load, progression) and social
(collaboration, autonomy) context: such data will help to establish if the prototype will be efficient and adapted
in a classroom environment.

4 Conclusion

While pursuing the development of the TabGO prototype and while relating its progresses, this article has first
presented possible guidelines for the conception of Assistive Technologies for visually-impaired users to learn
computing skills, in an educational context. Related works and major influences in the accessibility field were
then presented, with an emphasis on classroom-integrated TUI solutions. Some characteristics have been

Aspects investigated Method of data collection

Usability Direct observations, System Usability Scale

Cognitive load Direct observations, NASA-TLX, Satisfaction survey

Progression Direct observations, NASA-TLX

Collaboration Direct observations, Satisfaction survey

Autonomy Direct observations, Satisfaction survey

highlighted : the use of block-based VPL (such as Scratch) may be adapted by the implementation of an adapted
IDE centered on non-visual feedback (audio and tactile cues), and by the use of tangible blocks. By modifying
and enhancing a learning tool, this inclusive approach has proven to improve collaboration between
visually-impaired users and their sighted peers.

The TabGO project followed these guidelines and proposed a prototype composed of tangible enhanced Scratch
blocks (with braille symbols, cubarithms, TopCodes and carved patterns) organized in a briefcase, and an
associated optical recognition software (using a webcam), translating tangible block-based algorithms into
exploitable files for the Scratch platform. With this prototype, the project is aiming to help visually-impaired
users learn computing skills autonomously while still favoring inclusion and collaboration through a tangible
activity in the classroom environment. With promising preliminary results, the experimental phase will soon be
launched to evaluate the usability of this prototype.

Acknowledgments

This work is supported by the French UNADEV association (Grant 2019.49).

5 References

[1] Carver J. C. (ed.); Penzenstadier B., Serebrenik Al. and Staron M., Quality, Nontechnical Skills, Blind
Programmers, and Deep Learning, IEEE Software, march-april 2019,, USA.

[2] Kearney-Volpe Cl, Web Development Training for Students That Are Blind, W4A'19, 13-15 may
2019, San Francisco, California, USA

[3] Senjam S., Assistive technology for students with visual disability: Classification matters, Kerala
Journal of Ophthalmology, 2019, Bombay, India.

[4] Truillet, Ph., « L'informatique, pour un monde plus accessible », Bulletin de la Société informatique de
France – numéro 15, avril 2020, France.

[5] Ludi S., Merchant W.; & Simpson, J., Exploration of the Use of Auditory Cues in Code
Comprehension and Navigation for Individuals with Visual Impairments in a Visual Programming
Environment, ASSETS'16, 23-26 October 2016, Reno, Nevada, USA

[6] Cheong, C.; Andrew Burge (ed.), Coding without sight: Teaching object-oriented java programming to
a blind student », 8th Annual Hawaii International Conference on Education, Honolulu, Hawaii, 7-10
January 2010, pp. 1-12.

[7] Francioni, Joan M., Matzek, Sam D. & Smith, Ann C., A Java Programming Tool for Students, with
Visual Disabilities, ASSETS '00, November 2000, Arlington, Virginie, USA.

[8] Raman, T.V., Michael J. Tauber (Ed.) « Emacsspeak—A speech interface » Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI’96), p.66-71, ACM, New York, USA.

[9] Vickers, Paul & Alty, James « Musical Program Auralisation: A Structured Approach to Motif Design
», Interacting with computers, n°14, p.457-485, october 2002, USA

[10] Teaching Modern Object-Oriented Programming to the Blind: An Instructor and Student Experience --
Dr. Charles B. Owen, Michigan State University; Sarah Coburn, Michigan State University, Ms. Jordyn
Castor

[11] Kaijanaho, A.-J., Evidence-Based Programming Language Design: A Philosophical and
Methodological Exploration. PhD Diss., Information Technology Faculty, University of Jyväskylä, 2015.

[12] Archambault, Dominique, Interaction et usages des modalités non visuelles, accessibilité des contenus
complexes, (Thèse) Université Pierre et Marie Curie - Paris VI, Paris 2010.

[13] Metelja O., Thieme A., Brûlé, E, Benett C., Serrano M., Jouffrais Ch., Toward classroom experiences
inclusive of students with disabilities, vol XXVI.1, ACM Interactions, january-february 2019,

[14] Flammant, Jenny, De l’œil au regard, SIDVEM, Paris, 2016.

[15] Hatwell, Yvette, Le développement perceptivo-moteur de l'enfant aveugle, Enfance 2003/1, Vol. 55,
pages 88 à 94, Paris, 2003.

[16] Kelleher, Caitlin, Kiesler, Sara & Pausch, Randy, Storytelling Alice Motivates Middle School Girls to
Learn Computer Programming, CHI 2007 Proceedings, april-may 2007, San Jose, California, USA

[17] Chou, Mary et al., Designing a Community to Support Long-term Interest in Programming for Middle
School Children, IDC 2012, 12-15 juin 2012, Bremen, Germany.

[18] Brock, Anke, Tangible Interaction for Visually Impaired People: why and how, World Haptics
Conference - Workshop on Haptic Interfaces for Accessibility, Juin 2017, Fuerstenfeldbruck, Allemagne.
pp.3.ffhal-01523745ff

[19] Morrison Cecily, Villar, Nicolas, Hadwen-Bennett Alex, Regan Tim, Thieme, Anja,Sentance Sue,
Cletheroe, Daniel, Physical Programming for Blind and Low Vision Children at Scale, Human-Computer
Interaction, 2019, https://doi.org/10.1080/07370024.2019.1621175

[20] Jaskova, L'udmila & Kaliakova, Maria, Programming Microworlds for Visually Impaired Pupils,
Conférence de Constructionism 2014, 2014, Vienne, Autriche.

[21] Wang, Danli & Zhang, Cheng & Wang, Hongan. (2011). T-Maze: A tangible programming tool for
children. 127-135. 10.1145/1999030.1999045.

[22] Motoyoshi, Tatsuo & Tetsumura, Naoki & Masuta, Hiroyuki & Koyanagi, K. & Oshima, Toru &
Kawakami, Hiroshi. (2016). Tangible gimmick for programming education using RFID systems.
IFAC-PapersOnLine. 49. 514-518. 10.1016/j.ifacol.2016.10.608.

[23] Utreras, Emmanuel & Pontelli, Enrico. (2020). Design of a Tangible Programming Tool for Students
with Visual Impairments and Low Vision. 10.1007/978-3-030-49108-6_22.

[24] Renaud P., Virey M., Le Roamer : un robot déjà ancien au service d’apprentissages bien actuels, dans
la nouvelle revue de l’adaptation et de la scolarisation (N°52), pp 231-239, INSHEA, 2010

[25] Ladner, Richard E. & Milne, Laurne R., Blocks4All: Overcoming Accessibility Barriers to Blocks
Programming for Children with Visual Impairments, CHI 2018, Avril 2018, Montréal Canada

[26] Deitrick, Elise; Sanford, Joseph et Shapiro, Benjamin R., BlockyTalky: A Low-Cost, Extensible, Open
Source, Programmable, Networked Toolkit for Tangible Creation, IDC2014, 17-20 juin 2014, Aarhus,
Danemark.

[27] Boissel S., Mallette Accessi DV Scratch « Scratch débranché en braille et gros caractères », dans la
nouvelle revue de l’adaptation et de la scolarisation (N°77), pp 183-192, INSHEA, 2017

[28] Marco, Jean-Baptiste, Baptiste-Jessel, Nadine, Truillet, Philippe TabGO : Programmation par blocs
tangibles. (2018) In : 30e Conférence francophone sur l'Interaction Homme-Machine (IHM 2018), 23
October 2018 - 26 October 2018, Brest, France.

[29] Wagner Amber & Wang Zirui, Evaluating a Tactile Approach to Programming Scratch, ACMSE 2019,
Avril 2019, Kennesaw, USA

[30] Maloney, John & Resnick, Mitchel & Rusk, Natalie & Silverman, Brian & Eastmond, Evelyn. (2010).
The Scratch Programming Language and Environment. ACM Transactions on Computing Education
(TOCE). 10. 16. 10.1145/1868358.1868363.

[31] Metin, Sermin. (2020). Activity-based unplugged coding during the preschool period. International
Journal of Technology and Design Education. 10.1007/s10798-020-09616-8.

[32] Sanchez J., Aguayo F., Blind Learners Programming Through Audio, in CHI 2005, pp. 1769-1772,
April 2-7 2005, Portland, https://doi.org/10.1145/1056808.1057018

[33] Shreekanth T., Udayashankara V., A Review on Software Algorithms for Optical Recognition of
Embossed Braille Characters, in International Journal of Computer Applications, volume 81, No.3,
November 2013, pp. 25-35

[34] Horn M. S., Robert J. K., Tangible programming in the classroom: a practical approach. In CHI '06
Extended Abstracts on Human Factors in Computing Systems (CHI EA '06). ACM, New York, NY, USA,
869-874, http://dx.doi.org/10.1145/1125451.1125621

[35] Observatoire des Ressources Numériques adaptées, Scratch 3D Magnet, janvier 2018, 13 p.,
https://www.apmep.fr/IMG/pdf/Orna_Scratch3DMagnet.pdf

[36] Capovilla D., Krugel J., Hubwieser P., Teaching algorithmic thinking using haptic models for visually
impaired students, in LaTiCE, 2013, pp. 167-171, 21-24 March 2013,
http://dx.doi.org/10.1109/LaTiCE.2013.14

[37] UN General Assembly, Convention on the Rights of Persons with Disabilities: resolution / adopted by
the General Assembly, 24 January 2007, A/RES/61/106, available at:
http://www.refworld.org/docid/45f973632.html [accessed at: 17 July 2018]

[38] Zuckerman O., Grotzer T., and Leahy K. Flow blocks as a conceptual bridge between understanding
the structure and behavior of a complex causal system. In Proceedings of the 7th international conference
on Learning sciences (ICLS '06). International Society of the Learning Sciences 880-886.
https://dl.acm.org/citation.cfm?id=1150162

[39] Aymard P., Algorithmique Scratch et cécité… Exemple d’un support débranché et adapté, 2018,
http://revue.sesamath.net/spip.php?article1082

http://revue.sesamath.net/spip.php?article1082

