
HAL Id: hal-03168277
https://hal.science/hal-03168277v1

Preprint submitted on 12 Mar 2021 (v1), last revised 2 Aug 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WEAK CONSISTENCY OF FINITE VOLUME
SCHEMES FOR SYSTEMS OF NON LINEAR

CONSERVATION LAWS: EXTENSION TO
STAGGERED SCHEMES
T Gallouët, R Herbin, J.-C Latché

To cite this version:
T Gallouët, R Herbin, J.-C Latché. WEAK CONSISTENCY OF FINITE VOLUME SCHEMES
FOR SYSTEMS OF NON LINEAR CONSERVATION LAWS: EXTENSION TO STAGGERED
SCHEMES. 2021. �hal-03168277v1�

https://hal.science/hal-03168277v1
https://hal.archives-ouvertes.fr


WEAK CONSISTENCY OF FINITE VOLUME SCHEMES

FOR SYSTEMS OF NON LINEAR CONSERVATION LAWS:

EXTENSION TO STAGGERED SCHEMES

T. Gallouët1, R. Herbin2 and J.-C. Latché3

Abstract. We prove in this paper the weak consistency of a general finite volume convection oper-
ator acting on discrete functions which are possibly not piecewise-constant over the cells of the mesh
and over the time steps. It yields an extension of the Lax-Wendroff if-theorem for general colocated
or non-colocated schemes. This result is obtained for general polygonal or polyhedral meshes, under
assumptions which, for usual practical cases, essentially boil down to a flux-consistency constraint;
this latter is, up to our knowledge, novel and compares the discrete flux at a face to the mean value
over the adjacent cell of the continuous flux function applied to the discrete unknown function.
We then apply this result to prove the consistency of a finite volume discretisation of a convection
operator featuring a (convected) scalar variable and a (convecting) velocity field, with a staggered
approximation, i.e. with a cell-centred approximation of the scalar variable and a face-centred
approximation of the velocity.

2010 AMS Subject Classification. Primary 65M08, 76N15 ; Secondary 65M12, 76N19.

The dates will be set by the publisher.

1. Introduction

The well-known Lax-Wendroff theorem [10] states that, on uniform 1D grids, a flux-consistent and con-
servative cell-centred finite-volume scheme for a system of conservation laws is weakly consistent, in the
sense that the limit of any a.e. convergent sequence of L∞-bounded numerical solutions, obtained with a
sequence of grids with mesh and time steps tending to zero, is a weak solution of the conservation law; it is
also stated in a different form [11, Section 12.10], with a BV bound assumption on the scheme. It is gener-
alised to non uniform 1D or Cartesian meshes in [3, Theorem 21.2]. In a recent work [1], the Lax-Wendroff
theorem is extended to obtain some error estimates for higher order schemes on uniform 1D meshes. The
case of general (and, in particular, unstructured) discretisations has been also been tackled over the past
decades: [9], [5, Section 4.2.2] [2], [4]. In [2], a quasi-uniformity assumption is required on the mesh, but
the flux is only required to be continuous, while in [4], there is no uniformity assumption on the mesh but
the flux is supposed to be Lipschitz continuous or at least “lip-diag” [4, Remark 5.2]. In all the above cited
works, the scheme is supposed to be colocated, in the sense that the discrete unknowns are associated to
the cells of the mesh, so these results may not be used directly to cope with staggered approximations, for
instance.

The aim of this paper is to address all type of approximations, co-located or staggered; indeed, we prove
the weak consistency of a general finite volume convection operator acting on general (i.e. possibly not
piecewise-constant over the cells of the mesh and over the time steps) discrete functions, under sufficient
conditions which, in usual cases, turn to essentially boil down to a new flux consistency requirement; this
weak consistency result is stated in Theorem 2.1 below. The flux consistency constraint, formulated by
Assertion (13), demands a control on the difference between the discrete flux at a face (or edge) and the
mean value over the adjacent cell of the continuous flux function applied to the discrete unknown function.

Keywords and phrases: Finite-volume schemes, convection, consistency.
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Theorem 2.1 is valid for general polygonal or polyhedral meshes without any supplementary assumptions on
the mesh; as a by product of this work, we thus also obtain a consistency result for colocated schemes (i.e.
schemes using only piecewise-constant per cell unknowns) with possibly relaxed assumptions for the mesh
compared to [4]. However, let us note that the proof that the assumption (13) is satisfied is usually based on
the control of the difference between the numerical solution and its space or time translates, see [4, Section
4] and that these latter results may require some regularity assumptions on the mesh, see also Remark 2.2.

This paper is organized as follows. We state and prove the general consistency result in Section 2. We
then apply it in Section 3 to a staggered discretisation; precisely speaking, we show the consistency of a finite
volume discretisation of a nonlinear convection operator for a scalar variable ρ of the form ∂tβ(ρ)+div(g(ρ)u),
where β and g are regular functions and u is a velocity field, and where we use a cell-centred approximation
for ρ and a face-centred approximation of u.

2. The general consistency result

The aim is to prove the weak consistency of finite volume approximations of nonlinear convective terms
which appear in most models of fluid flow. The general context is the following. Given a numerical scheme
which yields some approximate solutions to the system of conservative partial differential equations, we
assume that these approximate solutions converge to some functions strongly in L1 , and we wish to show
that the limit is indeed a solution to the system, at least in a weak sense. In order to do so, the usual idea
is to mutiply the numerical scheme by an interpolate of a smooth function, sum over the cells of the mesh
and the time steps and show that passing to the limit, we get a weak formulation of the system of partial
differential equations. The theorem that we prove below is a mean to prove that one may indeed pass to the
limit in the terms that involve nonlinear convection operators. Let us begin with an example. Consider the
barotropic Euler equations, which read:

∂tρ̄+ div(ρ̄ū) = 0, (1a)

∂t(ρ̄ū) + div(ρ̄ū⊗ ū) +∇p̄ = 0, (1b)

where ρ̄ is the density, ū the velocity and p the pressure, which, for barotropic flows, is a function of ρ̄
only: p̄ = p(ρ̄). Here and in the remainder of the paper, we use overlined letters when referring to the
solution of the continuous problem, while non overlined letters will be used for discrete unknowns. This
system of equations is supplemented by an initial condition and suitable boundary conditions. An entropy
weak solution of the system satisfies the equations (1) and also satisfies (in a weak sense, which includes the
initial condition) the following entropy condition:

∂tĒ + div((Ē + p̄)ū) ≤ 0, with Ē =
1

2
ρ̄|ū|2 +H(ρ̄) and H(s) = s

∫
p(s)

s2
ds. (2)

The weak consistency of staggered finite volume schemes for this system of equations discretised on multi-
dimensional Cartesian or unstructured meshes has been the object of several recent papers, see e.g. [7, 8].
The system (1)-(2) may be written as

C̄1(ρ̄, ū) = 0, (3)

C̄2(ρ̄, ū) +∇p̄ = 0, (4)

C̄3(Ē, ū) + div(p̄ū) ≤ 0, (5)

with C̄1(ρ̄, ū) = ∂tρ̄ + div(ρ̄ū), C̄2(ρ̄, ū) = ∂t(ρ̄ū) + div(ρ̄ū ⊗ ū), and C̄3(Ē, ū) = ∂tĒ + div(Ēū). In the
above cited works, the system is discretised with an explicit or implicit in time scheme, and the convection
operators C1 and C2 by a first or second order finite volume scheme. In fact, the system of the barotropic
equations can be discretised by different schemes: explicit or implicit, colocated meshes or staggered meshes,
using a Riemann solver or using an equation-by- equation procedure. In all cases, the consistency study will
have to deal with each of the discrete non linear convection operator Ci corresponding to C̄i. The present
work aims at simplifying the proofs of consistency by giving a general result for any nonlinear convection
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term, discretised on colocated or staggered mesh, thereby extending our previous result of [4] to staggered
meshes. Theorem 2.1 below is an efficient tool to this purpose. We emphasize that both implicit or explicit
schemes may be addressed, since the proof deals separately with the discrete time operator and the discrete
space divergence operator.

Let us then turn to the general setting; we suppose that:

Ω ⊂ R
d, d = 1, 2, 3, T ∈ (0,+∞), p ∈ N

∗, β ∈ C0(Rp,R), f ∈ C0(Rp,Rd). (6)

We consider the conservative convection operator C̄(Ū) acting on a vector Ū ∈ Rp of functions, real-valued,
and defined (in the distributional sense), for Ū ∈ L∞(Ω× (0, T ),Rp), by:

C̄(Ū) : Ω× (0, T ) → R,

(x, t) 7→ ∂t(β(Ū))(x, t) + div(f(Ū))(x, t). (7)

Note that, here and throughout the paper, we use β(Ū) (resp. f (Ū) to denote the function β ◦ Ū obtained
by composition of β and Ū (resp. f and Ū), so, for instance, β(Ū)(x, t) stands for β(Ū(x, t)). In the above
example of the barotropic Euler equations (1), we have, for i = 1, 2, C̄i(Ū) = ∂t(βi(Ū)) + div(f i(Ū)), with
Ū = (ρ̄, ū), β1(Ū) = ρ̄, β2(Ū) = ρ̄ū, f1(Ū) = ρ̄ū and f2(Ū) = ρ̄ū⊗ ū.

Let us denote by P a mesh of the domain, Ω, consisting of a set of disjoint open polyhedral or polygonal
open subsets of Ω, whose union of closures is Ω̄. To avoid cumbersome notations, we assume that any pair
of adjacent cells shares a whole face, and not only a part of it; however this assumption is not necessary for
the result of Theorem 2.1 to hold. We denote by δ(P) the space step, defined by

δ(P) = max
P∈P

diam(P ).

Let F denote the set of faces (in 3D, or edges in 2D) of the mesh, and Fint denote the set of faces that are
not located on the boundary ∂Ω; for a given polyhedron (or polygon) P ∈ P, also called a cell, let F(P ) be
the set of faces (or edges) of P . Let t0 = 0 < t1 < . . . < tN = T be a partition of (0, T ), denoted by T;
for such a partition T, we define the time step by δt = max {tn+1 − tn, n ∈ J0, N − 1K}, where J0, N − 1K
denotes the set of integers n such that 0 ≤ n ≤ N − 1. The unknown is supposed to be represented by a

function U ∈ L∞(Ω × (0, T ),Rp); we emphasize that for non colocated schemes, some unknowns are not
piecewise-constant over the cells of the mesh and over the time steps. For instance, when using staggered
discretisations in fluid flow simulations, the velocity is discontinuous along surfaces or lines included in P
(see the example developed in Section 3). The discrete convection operator that we consider here takes the
following form:

C(U) : Ω× (0, T ) → R,

(x, t) 7→ C(U)nP , for x ∈ P, P ∈ P, and t ∈ (tn, tn+1), n ∈ J0, N − 1K,

with

C(U)nP = (ðtβ)
n
P +

1

|P |

∑

ζ∈F(P )

|ζ| F n
ζ · nP,ζ ,

where
{
βn
P , P ∈ P, n ∈ J0, NK

}
is a family of real numbers,

(ðtβ)
n
P =

βn+1
P − βn

P

tn+1 − tn
, n ∈ J0, N − 1K, (8)

and
{
F n

ζ , ζ ∈ F, n ∈ J0, N − 1K
}

is a family of real vectors of Rd. Note that this form of the flux

implies that the scheme is conservative. Of course, the real numbers
{
βn
P , P ∈ P, n ∈ J0, NK

}
and{

F n
ζ , ζ ∈ F, n ∈ J0, N − 1K

}
are related to the unknown U ; it is the object of Theorem 2.1 below to state

precisely the assumptions that must be satisfied by these quantities to ensure the consistency of the discrete
convection operator.
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Theorem 2.1 (Weak consistency for a multi-dimensional conservative convection operator). Under the

assumptions (6), let (P(m),T(m))m∈N be a sequence of possibly non uniform space-time discretisations, with

δ(P(m)) and δt(m) tending to zero as m → +∞, and let (U (m))m∈N be the associated sequence of discrete

functions. We suppose that the sequence (U (m))m∈N is bounded and converges to a limit:

∃ Cu ∈ R
∗
+ s.t. ‖U (m)‖∞ ≤ Cu, ∀m ∈ N, (9)

∃ Ū ∈ L∞(Ω× (0, T ),Rp) s.t. ‖U (m) − Ū‖L1(Ω×(0,T ),Rp) → 0 as m → +∞. (10)

We also assume that the family {(β(m))nP , P ∈ P(m), n ∈ J0, N (m) − 1K, m ∈ N} is bounded. In addition,

let U0 ∈ L∞(Ω,Rp) and let us suppose that, as m → +∞,

∑

P∈P
(m)
int

∫

P

(
(β(m))0P − β(U0)(x)

)
ϕ(x) dx → 0, for any ϕ ∈ C∞

c (Ω), (11)

N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
(β(m))nP − β(U (m))(x, t)

)
ϕ(x, t) dx dt → 0, for any ϕ ∈ C∞

c

(
Ω× [0, T )

)
, (12)

N(m)−1∑

n=0

∑

P∈P
(m)
int

diam(P )

|P |

∑

ζ∈F(P )

|ζ|

∫ tn+1

tn

∫

P

∣∣∣
(
(F (m))nζ − f(Um)(x, t)

)
· nP,ζ

∣∣∣ dx dt → 0, (13)

where P
(m)
int denotes the set of cells of P(m) that have no face or edge on the boundary ∂Ω. Then, for any

ϕ ∈ C∞
c (Ω× [0, T )),

∫ T

0

∫

Ω

C
(m)(U (m)) I(m)(ϕ)(x, t) dx dt → −

∫

Ω

β(U0)(x) ϕ(x, 0) dx

−

∫ T

0

∫

Ω

(
β(Ū)(x, t) ∂tϕ(x, t) + f(Ū)(x, t) ·∇ϕ(x, t)

)
dx dt as m → +∞, (14)

where I
(m)(ϕ) is an interpolate of ϕ defined a.e. by

I
(m)(ϕ)(x, t) = ϕn

P for x ∈ P and t ∈ (tn, tn+1),

with ϕn
P =

1

|P |

∫

P

ϕ(x, tn) dx, for P ∈ P and n ∈ J0, NK. (15)

Before we give the proof of Theorem 2.1, let us first briefly comment on its assumptions.

Remark 2.2 (Flux consistency). The required flux consistency is stated by Equation (13), which requires

for the flux (F (m))nζ through a face ζ of a cell P to be close to the mean value over P of the actual flux
function f applied to the unknown. For a scheme involving only cell unknowns, for instance, the quantity

(F (m))nζ is generally a function of the unknowns in the cell P and in the neighbouring cells, and checking the

assumption (13) amounts to bound the difference between the unknowns and their translates. Note that,
while Theorem 2.1 holds for very general meshes, as we have already mentioned in the introduction, some
regularity assumptions on the sequence of meshes may be required at this step.
To clarify this point, let us consider a simple one-dimensional problem for the scalar unknown u, with β(u) =
f(u) = u, leading to the linear convection operator C(u) = ∂tu+∂xu, which we discretise with the first-order

upwind scheme. Then, for x ∈ P and t ∈ (tn, tn+1), |((F
(m))nζ − f(Um)(x, t)) ·nP,ζ | = |(u(m))nP− − (u(m))nP |

where P− is the left cell to P when ζ is its left face, and |((F (m))nζ − f (Um)(x, t)) · nP,ζ | = 0 otherwise

(disregarding the boundary cells thanks to Remark 2.3 below). Checking Assumption (13) thus consists in
4



proving that the term R(m) defined by

R(m) =

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P ) |un
P − un

P− |

tends to zero as m tends to +∞. This is implied by the convergence in L1(Ω × (0, T )) of the sequence
of discrete solutions provided that the ratio |P |/|P−| is bounded independently of m for the sequence of
meshes under consideration [4, Section 4]. A more elaborate example of application, using a staggered grid,
is provided in Section 3 below.

Remark 2.3 (Disregarding boundary cells in Assumption (13)). Since the support of the test function ϕ
is compact in Ω × [0, T ), for δ(P(m)) small enough, ϕ vanishes in the boundary cells. Consequently, it is

clear from the proof of the theorem below (see the expression (17) of the term X
(m)
2 ) that boundary cells

may be excluded in the sum in Assertion (13). This is the reason why only the cells in P
(m)
int are considered

in Assumption (13). For numerical fluxes involving wider stencils (for instance in the case of higher order
schemes), one could in fact reduce the set of cells involved furthermore.

Remark 2.4 (Regularity of β and f). The proof of Theorem 2.1 holds if β and f are only continuous functions,
which is the assumption made in the present section; however, to prove Assertions (12) and (13), a locally
Lipschitz continuity is often required, as in Section 3.

Remark 2.5 (Stronger convergence assumptions on {(β(m))m∈N}). In most situations, stronger convergence
properties hold for (β(m))m∈N, namely the weak convergence assumptions (11) and (12) are implied by the
following stronger asssumptions:

∑

P∈P
(m)
int

∫

P

|(β(m))0P − β(U0(x))| dx → 0 as m → +∞, with U0 ∈ L∞(Ω,Rp),

Nm−1∑

n=0

∑

P∈P
(m)
int

∫ tn+1

tn

∫

P

|(β(m))nP − β(U (m)(x, t))| dx dt → 0 as m → +∞.

This is the case, for instance, for the convection operator considered in Section 3 below. However, there are
cases where the convergence of β is only weak, see for instance the reconstructed kinetic energy for the full
compressible Euler equations in [7].

Remark 2.6 (On the interpolate of the test function). Note that in the definition (15) of I(m)(ϕ) in (14), the
quantities ϕn

P , n ∈ J0, NK, may be also defined as

ϕn
P =

1

|P |

∫

P

ϕ(x, tn+1) dx,

with minor changes in the arguments of the present section, essentially a slightly different assumption (12),
which reads:

N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
(β(m))n−1

P − β(U (m))(x, t)
)
ϕ(x, t) dx dt → 0, for any ϕ ∈ C∞

c

(
Ω× [0, T )

)
.

For instance, for a scalar problem, if the discrete function is defined as u(x, t) = un−1
P for x ∈ P and

t ∈ [tn−1, tn) (choice often used in explicit schemes) and βn−1
P is defined in the scheme as β(un−1

P ), this

assumption is trivially satisfied, since(β(m))n−1
P = β(U (m))(x, t) in P × (tn−1, tn), while checking the original

assumption (12) needs to bound the time translates of the discrete solution. This is however an easy task,
under a very mild regularity assumption for the time discretisation (see Section 3 below). The opposite
situation occurs (i.e. this is Assumption (12) which is now trivially satisfied) if the discrete function is
defined as u(x, t) = un

P for x ∈ P and t ∈ [tn−1, tn), which is often done for implicit schemes.
5



Proof of Theorem 2.1. Theorem 2.1 is the consequence of the two following lemmas, which prove respectively
the convergence of the time derivative part and the space derivative part. Let us decompose

∫ T

0

∫

Ω

C
(m)(U (m)) I(m)(ϕ)(x, t) dx dt = X

(m)
1 +X

(m)
2 , with

X
(m)
1 =

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

(ðtβ
(m))nP ϕn

P , (16)

X
(m)
2 =

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

∑

ζ∈F(P )

|ζ| (F (m))nζ · nP,ζ ϕn
P . (17)

Then, by Lemma 2.7 below,

X
(m)
1 → −

∫

Ω

β(U0)(x) dx−

∫ T

0

∫

Ω

β(Ū)(x, t) ∂tϕ(x, t) dx dt as m → +∞,

and by Lemma 2.8 below,

X
(m)
2 → −

∫ T

0

∫

Ω

f(Ū)(x, t) ·∇ϕ(x, t) dx dt as m → +∞,

which concludes the proof. �

Lemma 2.7 (Weak consistency, time derivative). Let the sequence (X
(m)
1 )m∈N be defined by (16). Then,

under the assumptions and notations of Theorem 2.1,

X
(m)
1 → −

∫

Ω

β(U0)(x) ϕ(x, 0) dx−

∫ T

0

∫

Ω

β(Ū)(x, t) ∂tϕ(x, t) dx dt as m → +∞.

Proof. By the definition (8) of ðnt β
(m)
P (x, t) and thanks to a discrete integration by parts, we get that

X
(m)
1 = −

∑

P∈P(m)

|P | (β(m))0P ϕ0
P −

N(m)∑

n=1

(tn − tn−1)
∑

P∈P(m)

|P | (β(m))nP
ϕn
P − ϕn−1

P

tn − tn−1
.

On the one hand, the piecewise-constant function equal to ϕ0
P on each cell P ∈ P(m) converges to ϕ(x, 0)

in L∞(Ω) as m tends to +∞. On the other hand, assumption (11) states the weak convergence, in the
distributional sense, of the function (β(m))0 defined by (β(m))0(x) = (β(m))0 for x ∈ P, P ∈ P(m) to the
function β(U0). In addition, (β(m))0 is supposed to be bounded. We thus have:

−
∑

P∈P(m)

|P | (β(m))0P ϕ0
P → −

∫

Ω

β(U0)(x) ϕ(x, 0) dx as m → +∞.

Let the piecewise constant function ð
(m)
t ϕ : Ω× (0, T ) → Rd be defined by

ð
(m)
t ϕ(x, t) =

ϕn+1
P − ϕn

P

tn+1 − tn
for (x, t) ∈ P × (tn, tn+1).

The function ð
(m)
t ϕ converges uniformly to ∂tϕ in L∞(Ω × (0, T )). The second term of X

(m)
1 may be

decomposed as

−

N(m)∑

n=1

(tn − tn−1)
∑

P∈P(m)

|P | (β(m))nP
ϕn
P − ϕn−1

P

tn − tn−1
= Y

(m)
1 + Y

(m)
2

6



with

Y
(m)
1 = −

N(m)∑

n=1

∑

P∈P(m)

∫ tn

tn−1

∫

P

(
(β(m))nP − β(U (m))(x, t)

)
ð
(m)
t ϕ(x, t) dx dt,

Y
(m)
2 = −

∫ T

0

∫

Ω

β(U (m))(x, t) ð
(m)
t ϕ(x, t) dx dt.

Invoking the assumption (12) and the uniform convergence of ð
(m)
t ϕ to ∂tϕ , we thus get that the sequence

(Y
(m)
1 )m∈N tends to zero. On the other hand, thanks to the assumptions (9), (10) and the regularity of β,

we get that

lim
m→+∞

X
(m)
1 = lim

m→+∞
Y

(m)
2 = −

∫ T

0

∫

Ω

β(Ū)(x, t) ∂tϕ(x, t) dx dt.

�

Lemma 2.8 (Weak consistency, space derivative). Let the sequence (X
(m)
2 )m∈N be defined by (17). Then,

under the assumptions and notations of Theorem 2.1,

X
(m)
2 → −

∫ T

0

∫

Ω

f(Ū)(x, t) ·∇ϕ(x, t) dx dt as m → +∞.

Proof. Since ϕ is compactly supported and since δ(P(m)) → 0 as m → 0, there exists M ∈ N such that

for m ≥ M , ϕn
P = 0 for all x ∈ P(m) \ P

(m)
int . Moreover, since for a face ζ separating P and P ′, one has

nP,ζ = −nP ′,ζ , we get that

X
(m)
2 =

N(m)−1∑

n=0

(tn − tn−1)
∑

P∈P
(m)
int

∑

ζ∈F(P )

|ζ| (F (m))nζ · nP,ζ ϕn
P =

N(m)−1∑

n=0

(tn − tn−1)
∑

Pint∈P(m)

An
P

with
An

P =
∑

ζ∈F(P )

|ζ| (F (m))nζ · nP,ζ (ϕn
P − ϕn

ζ ),

where ϕn
ζ denotes the mean value of ϕ(x, tn) over ζ. Now, for any x ∈ P , t ∈ [tn, tn+1), we can decompose

An
P as An

P = Bn
P (x, t) + Rn

P (x, t) with

Bn
P (x, t) =

∑

ζ∈F(P )

|ζ| f(U (m))(x, t) · nP,ζ (ϕn
P − ϕn

ζ ),

Rn
P (x, t) =

∑

ζ∈F(P )

|ζ|
(
(F (m))nζ − f (U (m))(x, t)

)
· nP,ζ (ϕn

P − ϕn
ζ ).

Since
∑

ζ∈F(P )

|ζ| nP,ζ = 0, we have

Bn
P (x, t) = −

∑

ζ∈F(P )

|ζ| f (U (m))(x, t) · nP,ζ ϕn
ζ = −|P | f (U (m))(x, t) · (∇ϕ)nP ,

with (∇ϕ)nP =
1

|P |

∑

ζ∈F(P )

|ζ| ϕn
ζ nP,ζ =

1

|P |

∫

P

∇ϕ(x, tn) dx. (18)

Note that the piecewise constant function ∇
(m)ϕ : Ω× (0, T ) → Rd defined by

∇
(m)ϕ(x, t) = (∇ϕ)nP for (x, t) ∈ P × (tn, tn+1)
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converges uniformly to ∇ϕ in L∞(Ω× (0, T ))d. Since, by definition of Bn
P (x, t) and Rn

P (x, t),

An
P =

1

(tn+1 − tn) |P |

(∫ tn+1

tn

∫

P

Bn
P (x, t) dx dt+

∫ tn+1

tn

∫

P

Rn
P (x, t) dx dt

)
,

we get

X
(m)
2 =

N(m)−1∑

n=0

∑

P∈P
(m)
int

1

|P |

(∫ tn+1

tn

∫

P

Bn
P (x, t) dx dt+

∫ tn+1

tn

∫

P

Rn
P (x, t) dx dt

)

= −

∫ T

0

∫

Ω

f(U (m))(x, t) ·∇(m)ϕ(x, t) dx dt+

N(m)−1∑

n=0

∑

P∈P
(m)
int

1

|P |

∫ tn+1

tn

∫

P

Rn
P (x, t) dx dt. (19)

Owing to the boundedness and convergence assumptions on U (m) and to the uniform convergence of∇(m)ϕ to

∇ϕ, the first term tends to −

∫ T

0

∫

Ω

f(Ū)(x, t)·∇ϕ(x, t) dx dt as m → +∞. Since |ϕn
ζ −ϕn

P | ≤ Cϕ diam(P ),

with Cϕ depending only on ϕ, we get, for any x ∈ P and t ∈ (tn, tn+1),

|Rn
P (x, t)| ≤ Cϕ

∑

ζ∈F(P )

|ζ|
∣∣∣
(
(F (m))nζ − f(U (m))(x, t)

)
· nP,ζ

∣∣∣ diam(P ).

The second term of the right-hand side of Relation (19) thus tends to 0 asm → +∞ thanks to the assumption
(13), which concludes the proof. �

3. An example of application for staggered discretisations

The interest of Theorem 2.1 lies in the fact that it may deal with terms combining several variables,
associated to different meshes and time discretisations. A typical exemple of a such a case is the balance
equation for the entropy in barotropic compressible flows (2), where the entropy E is a nonlinear function
of the density ρ and the velocity u which, in staggered discretisation, are approximated on different meshes,
and may also be evaluated at different time levels. Hence, Theorem 2.1 is a suitable tool to prove the
consistency of this equation. In this section, we focuss on a similar but simpler problem, namely a staggered
discretisation of a convection operator combining the time derivative of the function of a single scalar variable
and a space divergence term, with a flux obtained as the product of another function of this scalar variable
with the velocity.

We suppose that Ω is an open bounded polyhedral set of R2, and consider the following convection
operator:

C(Ū) : Ω× (0, T ) → R,

(x, t) 7→ ∂t(β(q̄))(x, t) + div
(
g(q̄) v̄

)
(x, t), (20)

with Ū = (q̄, v̄) : Ω × (0, T ) → R × R2, f (Ū) = f(q̄, v̄) = g(q̄) v̄, where β : R → R and g : R → R are
locally Lipschitz-continuous real functions. Note that, for instance, the convection term of Equation (1a)
may be written as (20) with Ū = (ρ̄, ū), β(s) = s and g(s) = s.

In order to discretise this convection operator, we consider two types of staggered arrangements. In both
arrangements, the scalar unknowns are located at the center of the cells. However, they differ in the use of the
vector unknowns. The first discretisation uses the whole velocity vector unknown on each edge of the mesh;
this corresponds to the Rannacher-Turek (RT) discrete unknowns in the finite element setting [12]. The
second discretisation uses only the normal component of the velocity on each edge; this latter arrangement
of the discrete unknowns is very often referred to as the Marker-and-Cell (MAC) scheme [6]. Hence we will
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refer to the first arrangement as the RT case, and the second as the MAC case. Such discretisations are
called staggered and are widely used in computational fluid dynamics; an example of the implementation
of a staggered discretisation for the solution of the barotropic and full Euler equations may be found e.g.

in [7, 8].

We suppose that the mesh is composed either of general quadrangles (RT case), or of rectangles (MAC
case). We recall that F stands for the set of edges of the mesh, and the internal edge separating the cells P
and Q is denoted by ζ = P |Q. This mesh will be referred to in the following as the primal mesh.

We also introduce now one or two dual meshes, depending on the case.

- RT case - In this case, the (unique) dual mesh consists in a new partition of Ω indexed by the
elements of F, i.e. Ω = ∪ζ∈FDζ . For an internal edge ζ = P |Q, the set Dζ is supposed to be a subset
of P ∪Q and we define DP,ζ = Dζ ∩P , so that Dζ = DP,ζ ∪DQ,ζ (see Figure 1); for an external edge
ζ of a cell P , Dζ is a subset of P , and Dζ = DP,ζ . The cells (Dζ)ζ∈F are referred to as the dual or
diamond cells, and DP,ζ as half dual cells or half diamond cells. For a rectangular cell P , we define
DP,ζ as the simplex having the mass center of P as vertex and the edge ζ as basis; this definition
is extended to general primal meshes by supposing that |DP,ζ| is still equal to |P |/4 and that the
sub-cells connectivities (i.e. the way the half-dual cells share a common edge) is left unchanged. Note
that the actual geometry of the dual cells does not need to be specified (and a dual cell may not be a
polytope, a dual edge being possibly curved).

P

Q

P

Q

ζ = P |Q
D
Q,ζ

D
P,ζ

Figure 1. Primal and dual meshes and associated notations for the quadrangular mesh
and Rannacher-Turek like unknowns.

- MAC case - In this case, two dual meshes are considered, each consisting in a partition of Ω indexed
by the vertical and horizontal elements of F, i.e. Ω = ∪ζ∈F(i)Dζ , i = 1, 2, where F(1) (resp. F(2))
denotes the set of vertical (resp. horizontal) edges. The cells (Dζ)ζ∈F are still referred to as the dual
cells. They are no longer diamond shaped; indeed, a half dual cell DP,ζ is now half of the rectangle
P with side ζ (see Figure 2). As in the former case, for an internal edge ζ = P |Q, the dual cell Dζ is
the subset of P ∪Q defined as Dζ = DP,ζ ∪DQ,ζ ; for an external edge ζ of a cell P , Dζ is a subset of
P , and Dζ = DP,ζ.

The scalar unknown q is associated to the primal cells:

q(x, t) = qnP for x ∈ P, P ∈ P, t ∈ [tn, tn+1), n ∈ J0, N − 1K.

The unknowns corresponding to the vector-valued unknown v are located at the center of the edges in the
RT case; in the MAC case, the unknowns associated to the i-th component of v are located at the center of
the edges of the i-th dual mesh. Hence the associated approximate vector function reads:
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M

N P

Q

ζ = M|Q

ζ′ = N|P

κ = M|N κ′ = P|Q

Dζ

D′
ζ

M

N P

Q

ζ′

ζ

Dκ Dκ′

M

N P

Q

κ κ′

Figure 2. Primal and dual meshes and associated notations for the MAC case. - Left: the
primal cells; the edges ζ and ζ′ belong to F(1) and the edges κ and κ′ to F(2). - Center: the
dual cells associated to F(1). - Right: the dual cells associated to F(2).

- RT case – the whole vector unknown is associated to each dual cell :

v(x, t) = vn
ζ for x ∈ Dζ , ζ ∈ F, t ∈ [tn, tn+1), n ∈ J0, N − 1K.

- MAC case – The i-th component of the vector unknown is associated to the cells of the i-th dual
mesh, so that v(x, t) = (v1(x, t), v2(x, t))

t where, for i = 1, 2,

vi(x, t) = vnζ , for x ∈ Dζ, ζ ∈ F(i) and t ∈ [tn, tn+1), n ∈ J0, N − 1K.

Let e(i) denote the i-th unit vector; with the notations of the previous section, the considered discrete
convection operator reads:

CP(q,v)
n
P = (ðtβ)

n
P +

1

|P |

∑

ζ∈F(P )

|ζ| F n
ζ · nP,ζ , with βn

P = β(qnP ) and F n
ζ = f (qnζ ,v

n
ζ ) = g(qnζ ) v

n
ζ

where vn
ζ is

{
the vector of discrete unknowns in the RT case,

defined as vnζ e(i) for ζ ∈ F(i), i = 1 or 2, in the MAC case,

and, for ζ = P |Q, qnζ stands for a convex combination of qnP and qnQ. The initial value for the scalar unknowm
q is defined by

q0P =
1

|P |

∫

P

q0(x) dx. (21)

The consistency result for the discrete convection operator is given in the next lemma; it uses the following
regularity parameters of the mesh:

θ1(P) = max
P∈P

diam(P )2

|P |
, θ2(P) = max

{ |P |

|Q|
, P and Q adjacent cells of ∈ P

}
.

Note that in the MAC case (in fact, for a Cartesian grid), the regularity parameter θ1(P) controls the ratio
between the two dimensions (i.e. the height and the width) of a cell. For a rectangular computational
domain, with thus observe that the ratio |ζ|/|ζ′|, for (ζ, ζ′) ∈ (F(i))2, i = 1, 2, is bounded by θ1(P)

2, which is
a quasi-uniformity property of the mesh. This also implies that θ2(P) ≤ θ1(P)

2, and so the second regularity
parameter is useless. It may easily be checked that similar relations holds for a general MAC scheme, i.e. a
union of matching Cartesian grids, with powers of θ1(P) possibly higher than 2. Hence, the regularity of a
MAC mesh (or of a Cartesian grid) may be equivalently measured by

θ(P) = max
{ h̄(1)

h(2)
,
h̄(2)

h(1)

}
,
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with, for i = 1, 2, h̄(i) = max{|ζ|, ζ ∈ F(i)} and h(i) = min{|ζ|, ζ ∈ F(i)}.

We also measure the regularity of the time discretisation by the parameter θ3(T) defined by

θ3(T) = max
1≤n≤N−1

{ tn+1 − tn
tn − tn−1

,
tn − tn−1

tn+1 − tn

}
.

Lemma 3.1 (Consistency). Let a sequence of discretisations (P(m))m∈N and (T(m))m∈N be given, with

δ(P(m)) and δt(m) tending to zero, and let (q(m),v(m))m∈N be the associated sequence of discrete functions.

We suppose that

∃ θ ∈ R such that max{θ1(P
(m)), θ2(P

(m)), θ3(T
(m)), m ∈ N} ≤ θ. (22)

We suppose that the sequences (q(m))m∈N and (v(m))m∈N are bounded in L∞(Ω×(0, T )) and L∞(Ω×(0, T ))2

respectively, and that, when m tends to +∞, they converge in Lp(Ω×(0, T )) and Lp(Ω×(0, T ))2, 1 ≤ p < +∞,

to q̄ ∈ L∞(Ω× (0, T )) and v̄ ∈ L∞(Ω× (0, T ))2 respectively. Then, for any function ϕ ∈ C∞
c (Ω× [0, T )),

∫ T

0

∫

Ω

C
(m)(U (m))(x, t) I(m)(ϕ) dx dt → −

∫

Ω

β(q0)(x) ϕ(x, 0) dx

−

∫ T

0

∫

Ω

(
β(q̄)(x, t) ∂tϕ(x, t) +

(
g(q̄) v̄)

)
(x, t) ·∇ϕ(x, t)

)
dx dt as m → +∞. (23)

Proof. In this proof, we denote by Cβ and Cg the Lipschitz modulus of β and g respectively on the interval
[q, q̄], where q ∈ R and q̄ ∈ R are such that

q ≤ (q(m))nP ≤ q̄, ∀P ∈ P
(m), n ∈ J0, N (m)K, ∀m ∈ N.

The proof of this lemma relies on Theorem 2.1. The consistency of the initialization with the initial
condition (Assumption (11)) follows from its definition (21); indeed, for any ϕ ∈ C∞

c (Ω),

∣∣∣
∑

P∈P(m)

∫

P

(
(β(m))0P − β(q0)(x)

)
ϕ(x) dx

∣∣∣ ≤ Cβ ‖ϕ‖L∞(Ω)

∑

P∈P(m)

∫

P

|q0(x)− q0P |,

and thus tends to zero for any function q0 ∈ L1(Ω). Since (β(m))nP = β((q(m))nP ), the left-hand side of
Assertion (12) reads, with ϕ ∈ C∞

c (Ω× [0, T )):

R
(m)
t =

N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
(β(m))nP − β(U (m))(x, t)

)
ϕ(x, t) dx dt

=

N(m)∑

n=1

∑

P∈P
(m)
int

∫ tn

tn−1

∫

P

(
β
(
(q(m))nP

)
− β

(
(q(m))n−1

P

))
ϕ(x, t) dx dt.

We thus have

|R
(m)
t | ≤ Cβ ‖ϕ‖L∞(Ω×[0,T ))

N(m)∑

n=1

(tn − tn−1)
∑

P∈P
(m)
int

|(q(m))nP − (q(m))n−1
P |,

and thus R
(m)
t tends to zero thanks to the assumed regularity of the sequence of time discretisations, invoking

the bound of the time-translates of a converging sequence of functions of L1(Ω × (0, T )) stated by Lemma
A.1 in Appendix.
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We now check Assumption (13). For n ∈ J0, N (m)K, P ∈ P
(m)
int and ζ ∈ F(P ), let

Rn
P,ζ =

1

|P |

∫ tn+1

tn

∫

P

∣∣∣
(
(F (m))nζ − f (q(m),v(m))(x, t)

)
· nP,ζ

∣∣∣ dx dt

and let

R(m) =

N(m)−1∑

n=0

∑

P∈P
(m)
int

diam(P )
∑

ζ∈F

|ζ| Rn
P,ζ .

We now express Rn
P,ζ , for the RT and MAC discretisations successively.

- RT case – In the case of general quadrangular meshes with the whole vector unknowns located on the
edges, we have

F (m))nζ = g(qnζ )v
n
ζ and f(q(m),v(m))(x, t) = g(qnP ) v

n
ζ′ for x ∈ DP,ζ′ , ζ′ ∈ F(P ).

We thus get, denoting by |a| the Euclidean norm of any vector a ∈ R2,

∣∣∣
(
(F (m))nζ − f(U (m))(x, t)

)
· nP,ζ

∣∣∣ =
∣∣g(qnζ )vn

ζ − g(qnP ) v
n
ζ′

∣∣ for x ∈ DP,ζ′ , ζ′ ∈ F(P ).

Let Q the primal cell such that ζ = P |Q. Since qnζ is a convex combination of qnP and qnQ, we thus get,

for x ∈ P , and t ∈ [tntn+1),

∣∣∣
(
(F (m))nζ − f(U (m))(x, t)

)
· nP,ζ

∣∣∣ ≤ C
(
|qnP − qnQ|+

∑

ζ′∈F(P )

|vn
ζ − vn

ζ′ |
)
,

where C only depends on ‖q(m)‖L∞(Ω×(0,T )), ‖v(m)‖L∞(Ω×(0,T ))2 and Cg. Integrating over P ×
(tn, tn+1), we obtain

Rn
P,ζ ≤ C (tn+1 − tn)

(
|qnP − qnQ|+

∑

ζ′∈F(P )

|vn
ζ − vn

ζ′ |
)
.

- MAC case – In this case, the velocity components are piecewise constant on different grids. Let i be
the index such that ζ ∈ F(i), and let ζ′ be the other edge of P normal to e(i), i.e. the opposite of ζ in
P . We have

F (m))nζ · nP,ζ = g(qnζ ) v
n
ζ δζ and f(q(m),v(m))(x, t) =

{
g(qnP ) v

n
ζ δζ if x ∈ DP,ζ ,

g(qnP ) v
n
ζ′ δζ if x ∈ DP,ζ′ ,

with δζ = nP,ζ · e
(i). We thus get

∣∣∣
(
(F (m))nζ − f (U (m))(x, t)

)
· nP,ζ

∣∣∣ =
{∣∣g(qnζ )vn

ζ − g(qnP ) v
n
ζ

∣∣ if x ∈ DP,ζ ,
∣∣g(qnζ )vn

ζ − g(qnP ) v
n
ζ′

∣∣ if x ∈ DP,ζ′ ,

and hence, for x ∈ P , and t ∈ [tntn+1), denoting by Q the primal cell such that ζ = P |Q,

∣∣∣
(
(F (m))nζ − f(U (m))(x, t)

)
· nP,ζ

∣∣∣ ≤ C
(
|qnP − qnQ|+ |vnζ − vnζ′ |

)
,

where C only depends on ‖q(m)‖L∞(Ω×(0,T )), ‖v
(m)‖L∞(Ω×(0,T ))2 and Cg. Therefore, integrating over

P × (tn, tn+1), we finally get

Rn
P,ζ ≤ C (tn+1 − tn)

(
|qnP − qnQ|+ |vn

ζ − vn
ζ′ |

)
.
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ζ

ζ′

η
=
ζ|
ζ
′

ζ

ζ′′

ζ ′

η
=
ζ|
ζ
′′

η ′
=
ζ ′|ζ ′′

Figure 3. Left: the primal edges ζ and ζ′ are adjacent. Right: the primal edges ζ and ζ′ are opposite.

Note that, in these computations, we have not addressed the case where ζ is an external edge, taking benefit
of the fact that, in the expression of R(m), the sum is retricted to the internal cells.

From the definition of R(m), we thus get that, for both cases, it satisfies the following inequality:

R(m) ≤ C
(
R

(m)
1 +R

(m)
2

)
,

with

R
(m)
1 =

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P )
∑

ζ∈F(P ),
ζ=P |Q

|ζ| |qnP − qnQ|,

and

R
(m)
2 =





N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P )
∑

(ζ,ζ′)∈F(P )2

(|ζ|+ |ζ′|) |vn
ζ − vn

ζ′ | in the RT case,

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

diam(P )
∑

i=1,2,

(ζ,ζ′)∈F
(i)(P )2

(|ζ|+ |ζ′|) |vnζ − vnζ′ | in the MAC case.

There only remains to prove that R
(m)
1 and R

(m)
2 tend to zero as m tends to +∞. Reordering the summation

in R
(m)
1 , we get that

R
(m)
1 =

N(m)−1∑

n=0

(tn+1 − tn)
∑

P∈P(m)

∑

ζ∈F(P ),
ζ=P |Q

ωζ |qnP − qnQ|, with ωζ =
(
diam(P ) + diam(Q)

)
|ζ|.

Lemma A.1 states that R
(m)
1 tends to zero if the weight ωζ is controlled by both |P | and |Q|; since we have

ωζ ≤ 2
(
max(diam(P ), diam(Q))

)2
, this is easily obtained using Assumption (22).

As to the term R
(m)
2 , let us start by the RT case. We distinguish two cases for the pairs (ζ, ζ′) ∈ F(P )2

that appear in the summation: either the dual cells Dζ and D′
ζ share a common (dual) edge η = ζ|ζ′ ∈ F∗,

where F∗ denotes the set of edges of the dual mesh, or they are opposite edges in the quadrilateral cell P ; in
this latter case, we may write that

|vn
ζ − vn

ζ′ | ≤ |vn
ζ − vn

ζ′′ |+ |vn
ζ′′ − vn

ζ′ |,
13



where ζ′′ ∈ F(P ) is such that the dual cell Dζ′′ shares a common (dual) edge η (resp. η′) ∈ F∗ with Dζ

(resp. Dζ′) as shown in Figure 3. We have:

∑

(ζ,ζ′)∈F(P )2

(|ζ| + |ζ′|) |vn
ζ − vn

ζ′ | ≤ 2 diam(P )
∑

(ζ,ζ′)∈F(P )2

|vn
ζ − vn

ζ′ |,

and, since the decompositions of the jumps needed for pairs of opposite edges make the jump between two
adjacent faces appears only a bounded number of times,

∑

(ζ,ζ′)∈F(P )2

(|ζ|+ |ζ′|) |vn
ζ − vn

ζ′ | ≤ C diam(P )
∑

η=ζ|ζ′∈F∗(P )

|vn
ζ − vn

ζ′ |,

with C a given integer number and F∗(P ) the edges of the dual mesh included in P . We thus get

R
(m)
2 ≤ C

N(m)−1∑

n=0

(tn+1 − tn)
∑

η=ζ|ζ′∈F∗

diam(Pη)
2 |vn

ζ − vn
ζ′ |,

where Pη stands for the primal cell in which η is included. The right-hand side of this inequality is thus a
collection of jumps across the dual edges, with, for an edge η, a weight given by

ωη = C diam(Pη)
2.

Thanks to Lemma A.1, R
(m)
2 tends to zero when m tends to +∞ if ωη is controlled by both |Dζ | and |Dζ′ |;

this is indeed the case thanks to Assumption (22), since |Dζ | ≥ |Pη|/4 and |Dζ′ | ≥ |Pη|/4.

Let us now turn to the MAC case, which is in fact simpler; indeed, the differences of velocities appearing

in the expression of R
(m)
2 are all jumps across dual edges, and we may thus recast R

(m)
2 as

R
(m)
2 =

N(m)−1∑

n=0

(tn+1 − tn)
2∑

i=1

∑

η=ζ|ζ′∈(F(i))∗

diam(Pη) (|ζ| + |ζ′|) |vnζ − vnζ′ |,

where (F(i))∗ denotes the set of edges of the i-th dual mesh and Pη is the primal cell in which lies η. We
thus again have a collection of jumps across the dual edges, with, for an edge η included in a primal cell Pη

and separating the dual cells Dζ and Dζ′ , a weight given by

ωη = diam(Pη)
(
|ζ|+ |ζ′|

)
.

Thus, again thanks to Lemma A.1, R
(m)
2 tends to zero when m tends to +∞ since, remarking that |Dζ | ≥

|Pη|/2, |Dζ′ | ≥ |Pη|/2 and ωη ≤ 2diam(Pη)
2, the weight ωη is controlled by both |Dζ | and |Dζ′ | thanks to

Assumption (22). �

Remark 3.2 (On the required regularity of the time discretisation). The assumption θ3(T
(m)) ≤ θ, for

m ∈ N, may be avoided thanks to a different choice of the interpolation of the test function (see Remark
2.6). However, this assumption is very mild (in fact, we do not have in mind any scheme where the ratio
between two consecutive time-steps is likely to blow up when refining the discretisation).

Appendix A. Convergence of discrete functions in L
1

We recall a result proven in [4, Lemma 4.3]. To facilitate its use in the proof of Lemma 3.1, it is rephrased
here under a slightly general form than in [4] (see Remark A.2 below for the differences).

Let M be a conforming mesh of the domain Ω of Rd, d = 1, 2, 3, in polygonal or polyhedral subsets,
and T = (ti)i∈J0,NK be a time discretisation of the interval (0, T ), i.e. a sequence of real numbers such that
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0 = t0 < · · · < tn < . . . tN = T . We denote by δtT the time step, defined by δtT = max{tn+1 − tn, n ∈
J0, N − 1K}. For u ∈ L1(Ω× (0, T )), K ∈ M and n such that n ∈ J0, N − 1K, let un

K be the mean value of u
over K × (tn, tn+1). We denote by Eint the internal faces of the mesh and the face σ ∈ Eint separating the
cells K and L is denoted by σ = K|L. We define the following quantity:

TM,T u =

N−1∑

n=0

(tn+1 − tn)
∑

σ∈Eint

σ=K|L

ωσ |un
K − un

L|+

N−2∑

n=0

δn+1/2

∑

K∈M

|K| |un+1
K − un

K |, (24)

where (ωσ)σ∈Eint and (δn+1/2)n∈J0,N−2K are two sets of non-negative weights. We introduce the two following
parameters:

θM = max
K∈M

max
σ∈Eint(K)

ωσ

|K|
, θT = max

n∈J0,N−2K

{ δn+1/2

tn+1 − tn
,

δn+1/2

tn+2 − tn+1

}
, (25)

with Eint(K) the set of internal faces of K. We denote by δ(M) the space step characterizing M, i.e.

δ(M) = maxK∈M diam(K). Then the following convergence result holds.

Lemma A.1. Let θ > 0 and (M(m))m∈N be a sequence of meshes and for each m ∈ N, θM(m) defined by

(25). We assume that θM(m) ≤ θ for all m ∈ N and limm→+∞ δ(M(m)) = 0. We suppose that the number

of faces of a cell K ∈ M(m) is bounded by NE, for any m ∈ N. For m ∈ N, we suppose given a time

discretisation T(m), and suppose that δtT(m) also tends to zero when m tends to +∞, and that θT(m) ≤ θ for

all m ∈ N. Let u ∈ L1(Ω× (0, T )) and (up)p∈N be a sequence of functions of L1(Ω× (0, T )) such that up → u
in L1(Ω× (0, T )) as p → +∞.

Then TM(m),T(m) up defined by (24) tends to zero when m tends to +∞ uniformly with respect to p ∈ N.

Remark A.2. The difference between Lemma A.1 and the formulation of the same convergence result in [4]
lies in the definition of the weight of the jumps, which is more general in Lemma A.1. In fact, even though
the volume of the dual cells are present in the quantity of interest in [4, Lemma 4.3], the proof itself does
not require the introduction of a dual mesh to define the weight of the jumps through the faces featured in
the definition of TM,T u. Therefore, Lemma [4, Lemma 4.3] readily extends to the framework of Lemma A.1.

This generalization is in most cases sufficient. However, we may go one step further, still with minor
modifications of the proof of [4], as follows. Let Sx be a set of cardinal 2 - subsets of M, and St be a set of

cardinal 2 - subsets of J0, NK. Let T̃M,T u be defined by

T̃M,T u =

N−1∑

n=0

(tn+1 − tn)
∑

{K,L}∈Sx

ωK,L |un+1
L − un+1

K |+
∑

{p,q}∈St

δp,q
∑

K∈M

|K| |up
K − uq

K |, (26)

where (ωK,L){K,L}∈Sx
and (δp,q){p,q}∈St

are two sets of non-negative weights. We introduce the two following
parameters:

θM = max
K∈M

1

|K|

∑

L∈M

{K,L}∈Sx

ωK,L, θT = max
n∈J0,N−1K

1

tn+1 − tn

∑

p∈J0,NK
{n,p}∈St

δn,p.
(27)

For {K,L} ∈ Sx and {p, q} ∈ St, let

d({K,L}) = max
(x,y)∈K×L

|y − x|, d({p, q}) =

{
tq+1 − tp if q > p,

tp+1 − tq otherwise

and let
d(M) = max

{K,L}∈Sx

d({K,L}), d(T) = max
{p,q}∈St

d({p, q}).

Then the following convergence result holds.
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Lemma A.3. Let (M(m))m∈N and (T(m))m∈N be a given sequence of meshes and time discretisations. Let

us suppose there exists θ > 0 such that θM(m) ≤ θ and θT(m) ≤ θ for all m ∈ N, with θM(m) and θT(m)

given by Equation (27). Let us assume that d(M(m)) and d(T(m)) tend to zero when m tends to +∞. Let

u ∈ L1(Ω×(0, T )) and (up)p∈N be a sequence of functions of L1(Ω×(0, T )) such that up → u in L1(Ω×(0, T ))
as p → +∞.

Then T̃M(m),T(m) up defined by (26) tends to zero when m tends to +∞ uniformly with respect to p ∈ N.
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