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A GENERAL STOCHASTIC MATCHING MODEL ON

MULTIGRAPHS

JOCELYN BEGEOT, IRÈNE MARCOVICI, PASCAL MOYAL, AND YOUSSEF RAHME

Abstract. We extend the general stochastic matching model on graphs in-
troduced in [13], to matching models on multigraphs, that is, graphs with

self-loops. The evolution of the model can be described by a discrete time

Markov chain whose positive recurrence is investigated. Necessary and suffi-
cient stability conditions are provided, together with the explicit form of the

stationary probability in the case where the matching policy is ‘First Come,

First Matched’.

1. introduction

Over the past decade, an increasing interest has been dedicated to stochastic sys-
tems in which incoming elements are matched according to specified compatibility
rules. This is, first, a natural representation of service systems in which customers
and servers are of different classes, and where designated classes of servers can serve
designated classes of customers. For this general class of queueing models, termed
skill-based queueing systems, it is then natural to investigate the conditions for the
existence of a stationary state, and under these conditions, to design and control
the model at best, for given performance metrics (end-to-end delay, matching rates,
fairness, etc.). Such models are classical queueing systems, in the sense that there
is a dissymmetry between customers and servers: customers come and depart the
system, whereas servers are part of the ‘hardware’, remain in the system, and switch
to the service of another customer when they have completed one (with possible
vacation times in-between services).

In [10] (see also [1]), a variant of such skill-based systems was introduced, which
are now commonly referred to as ‘Bipartite matching models’ (BM): couples cus-
tomer/server enter the system at each time point, and customers and servers play
symmetric roles: exactly like customers, servers come and go into the system. Upon
arrival, they wait for a compatible customer, and as soon as they find one, leave
the system together with it. These settings are suitable to various fields of ap-
plications, among which, blood banks, organ transplants, housing allocation, job
search, dating websites, and so on. In both references, compatible customers and
servers are matched according to the FCFS (‘First Come, First Served’) service dis-
cipline. In [3], a subtle dynamic reversibility property is shown, entailing that the
stationary state of such systems under FCFS, can be obtained in a product form.
Moreover, a sub-additivity property is proved, allowing (under stability conditions)
the construction of a unique stationary bi-infinite matching of the customers and
servers, by a coupling-from-the-past (CFTP) technique. Interestingly, the product-
form of the stationary state can then be adapted to various skill-based queueing
models as well, and in particular those applying (various declinations of) the so-
called FCFM-ALIS (Assign the Longest Idling Server) service discipline - see e.g.
[2], and various extensions of BM models in [4, 7, 8]. In [9], the settings of [10, 1]
are generalized to more general service disciplines (termed ‘matching policies’ in
this context), and necessary and sufficient conditions for the stability of the system
are introduced, which are functions of the compatibility graph and of the matching
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policy. Moreover, as opposed to the previously cited references, the results in [9]
do not assume the independence between the types of the entering customer and
the entering server. The system is then called Extended Bipartite Matching Model
(EBM, for short), and suits applications in which independence between the classes
of the customers and servers entering simultaneously cannot be assumed. In [15],
a CFTP result is obtained, showing the existence of a unique bi-infinite matching
in various cases for EBM models, and for a broader class of matching policies than
FCFS, thereby generalizing the results of [3].

For the purpose of modeling concrete systems, the need then arose to extend
these different models. Indeed, in many applications the assumption of pairwise ar-
rivals may appear somewhat artificial, and it is more realistic to assume that arrivals
are simple. In addition, all the aforementioned references assume that the compat-
ibility graph is bipartite, namely there are easily identifiable classes of servers and
classes of customers, whatever these mean: donors/receivers, houses/applicants,
jobs/applicants, and so on. However, in many cases the context requires that the
compatibility graph take a general (i.e., not necessarily bipartite) form. For in-
stance, in dating websites, it is a priori not possible to split items into two sets of
classes (customers and servers) with no possible matches within those sets. Simi-
larly, in kidney exchange programs, intra-incompatible couples donor/receiver enter
the system, looking for a compatible couple to perform a ‘crossed’ transplant. Then,
it is convenient to represent couples donor/receiver as single items, and compatibil-
ity between couples means that a kidney exchange can be performed between the
two couples (the donor of the first couple can give to the receiver of the second,
and the donor of the second can give to the receiver of the first). In particular,
if one consider blood types as a primary compatibility criterion, the compatibility
graph between couples is naturally non-bipartite. Motivated by these observations,
a variant model was introduced in [13], in which items arrive one by one and the
compatibility graph is general, i.e., not necessarily bipartite: specifically, in this
so-called General stochastic Matching model (GM for short), items enter one by
one in discrete time in a buffer, and belong to determinate classes in a finite set
V. Upon each arrival, the class of the incoming item is drawn independently of
everything else, from a distribution µ having full support V. A connected graph
G whose set of nodes is precisely V, determines the compatibility among classes.
Then, an incoming item is either immediately matched, if there is a compatible
item in line, or else stored in a buffer. It is the role of the matching policy Φ to
determine the match of the incoming item in case of a multiple choice. Then, the
two matched items immediately leave the system forever. The stability region of
the model, given G and Φ, is then defined as the set of measures µ such that the
model is positive recurrent. A necessary condition for the stability of GM models is
provided in [13] (see (9) below). In particular, the latter condition is empty if and
only the compatibility graph is bipartite (which partly justifies why items enter by
pairs in BM and EBM models - otherwise the model could not be stabilizable). On
another hand, it is proven in [13] that the matching policy ‘Match the Longest’ has
a maximal stability region, that is, the latter necessary condition is also sufficient
(we then say that the latter policy is maximal). However, [16] shows that in fact,
aside for a particular class of graphs, random policies are never maximal, and that
there always exists a strict priority policy that isn’t maximal either. Then, by
adapting the dynamic reversibility argument of [3] to the GM models, [14] shows
that the matching policy First Come, First Matched (FCFM) is also maximal, and
derives the stationary probability in a product form. More recently, following the
work of [17], matching policies of the broader Max-Weight type (including ‘Match
the Longest’) are shown to be maximal, and drift inequalities allow to bound the
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speed of convergence to the equilibrium, and the first two moments of the stationary
state. Variants of the GM model to the case of (i) hypergraphical structures (i.e.
matching items by groups of two or more) and (ii) graphical systems with reneging
are investigated, respectively in [11, 17, 18] and [12] (see also [5]).

Motivated again by concrete applications, in the present article we present a
further extension of the GM model. Indeed, in various contexts, among which
dating websites and peer-to-peer interfaces, it is natural to assume that items of
the same class can be matched together. Hence, the need to generalize the previous
line of research to the case where the matching architecture is a multigraph (a
graph admitting self-loops, that is, edges connecting nodes to themselves), rather
than just a graph. This generalization is the core subject of the present paper. We
show how several stability results of [13, 14, 12] can be generalized to the case of a
multigraphical matching structure. As is easily seen, the buffer of a matching model
on a multigraph is hybrid by essence: nodes admitting self-loops (if any) admit at
most one item in line, whereas nodes with no self-loops (if any) have unbounded
queues. A matching model on a multigraph typically has a larger stability region
than the corresponding model on a graph on which all self-loops are erased (the
maximal subgraph of the latter - see Definition 2), but the interplay between self-
looped nodes and their non-self-looped neighbors needs to be clearly understood:
intuitively, the arrival flows to self-looped nodes appear as auxiliary flows helping
their neighboring non-self-looped nodes to stabilize their own queues - provided
that the arrivals to self-looped nodes don’t match too often with one another. On
another hand, in the extreme case where all nodes are self-looped, the model is finite
and has a flavor of statistical-physical system: it is an irreducible Markov chain on
{0, 1}|V| with local interactions - see Example 1 below. En route, by showing results
for stochastic matching models on multigraphs, we show various results that have
their own inner interest for GM models on graphs - see in particular Propositions
1 and 3 and Sub-section 7.5 below.

This paper is organized as follows: we start by some preliminary in Section 2,
and in particular by introducing the main definitions and properties of multigraphs.
In Section 3, we formally introduce the present model. In Section 4, we present our
main results for GM models on multigraphs, among which, the maximality and the
explicit product form of the stationary probability for the FCFM policy, and the
maximality of Max-Weight policies. To illustrate these results, several examples
are presented in Section 5. The proofs of our main results are then presented in
Sections 6, 7 and 8.

2. Preliminary

General notation. We denote by R the set of real numbers, by N the set of non-
negative integers and by N+ the subset of positive integers. For any p, q ∈ N+, we
denote by Jp, qK the integer interval [p, q] ∩ N+.

We let Sn denote the symmetric group on the set J1, nK, i.e. the set of permu-
tations of J1, nK.

For any finite set A, we denote by |A| the cardinality of A. The set A is often
implicitly ordered, and identified with J1, |A|K. The set of probability measures
having full support on A is denoted by M (A).

Words. For k ∈ N+ and k finite sets A1, . . . , Ak, we identify the cartesian product
A1×A2×· · ·×Ak with the set, denoted by A1A2 . . . Ak, of words of length k whose
i-th letter is an element of Ai, for all i ∈ J1, kK. In particular, Ak is identified with

the set of words of length k over the alphabet A. We then denote by A∗ , ∪k∈NAk
the set of finite words over the alphabet A. We denote the length of w ∈ A∗ by |w|,
so that if w ∈ Ak, |w| = k.
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For w ∈ A∗ and B ⊂ A, we introduce the notation |w|B , Card{i ∈ {1, . . . , |w|} :

wi ∈ B}. For a letter a ∈ A, we denote simply by |w|a , |w|{a} the number of
occurrences of the letter a in the word w.

The concatenation of k words w1, w2, . . . , wk of A∗, that is, the word w in which
appear successively from left to right, the words w1, w2, . . . , wk, is denoted by
w = w1w2 . . . wk. In particular, for a word w and a letter i, the word wi denotes
the concatenation of the word w with the single-letter word i, in that order. Any
word w ∈ A∗ of length |w| = q is written w = w1w2 . . . wq, and for any i ∈ J1, nK, we
denote by w[i] the word of length |w| − 1 obtained from w by deleting its i-th letter
wi. The empty word (i.e. the unique word of A∗ of length 0) is denoted ε. For any
word w = w1w2...wq, the prefix of w of length k ≤ q is the word w′ = w1w2...wk.

For any w ∈ A∗, we let [w] , (|w|a)a∈A ∈ N|A| be the commutative image of w.

For any integer q, the vectors of Nq are denoted as w , (w(1), . . . , w(q)). We let,
for any i ∈ J1, qK, ei be the i-th vector of the canonical basis of Rq.

Multigraphs. Hereafter, a multigraph is given by a couple G = (V, E), where V is
the (finite) set of nodes and E ⊂ V × V is the set of edges. All graphs considered
hereafter are undirected, that is, (u, v) ∈ E =⇒ (v, u) ∈ E , for all u, v ∈ V. We
write u−v or v−u for (u, v) ∈ E , and u6−v (or v 6−u) else. Elements of the form
(v, v) ∈ E , for v ∈ V, are called self-loops. For any multigraph G = (V, E) and any
U ⊂ V, we denote

E(U) , {v ∈ V : ∃u ∈ U, u− v}
the neighborhood of U , and for u ∈ V, we write for short E(u) , E({u}). The

set V can then be partitioned in V = V1 ∪ V2, where V1 , {u ∈ V : u−u} and

V2 , {u ∈ V : u6−u}, i.e., V1 contains all nodes from which a self-loop emanates, if
any, and V2 is the complement set of V1 in V. A multigraph having no self-loop,
that is, a couple G = (V, E) such that V1 = ∅, is simply a graph. Observe that, with
respect to the classical notion of multigraphs, we assume hereafter that all edges
are simple. For any node i ∈ V, we denote by

deg(i) = |E(i)|,
the degree of node i, that is, the number of neighbors of i (possibly including i itself
if i ∈ V1). Notice that, by defining E as a set of (ordered) couples as we did above,
for any i, j such that i−j, (i, j) appears in E together with (j, i). In particular we
get that

(1)
∑
i∈V

deg(i) = |E|.

For any multigraph G = (V, E) and any U ⊂ V, the subgraph induced by U in G
is the multigraph (U, E ∩ (U ×U)). An independent set of G is a non-empty subset
I ⊂ V which does not include any pair of neighbors, i.e. :

(
∀(i, j) ∈ I2, i6−j

)
. We

let I(G) be the set of independent sets of G. Then, observe that ∀I ∈ I(G), I∩V1 =
∅, i.e. I ⊂ V2. An independent set is said maximal, if it is not strictly included in
another independent set.

Let us now recall and introduce the following definitions:

Definition 1. A graph G = (V, E) is said to be complete q-partite (or blow-up graph
of order q) if V can be partitioned into q maximal independent sets I1, . . . , Iq, such
that for any k, ` ∈ J1, qK, k 6= ` and any ik ∈ Ik and i` ∈ I`, we have that ik−i`.

In other words, a complete q-partite graph is a blow-up of the complete graph
of size q, in the sense that all nodes are duplicated into one, or several distinct and
unconnected nodes having the same neighbors as the original node. See an example
on Figure 1.
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Figure 1. Complete 3-partite subgraph (left), complete graph of
order 3 (right).

Definition 2. Let G = (V, E) be a multigraph. The maximal subgraph of G is the
graph Ǧ = (V, Ě) obtained by deleting all self-loops in G, that is

(2) Ě , E \ {(i, i) : i ∈ V1} .

See an example on Figure 2.

Definition 3. Let G = (V1 ∪ V2, E) be a multigraph. The minimal blow-up graph

of G is the graph Ĝ = (V̂, Ê) defined as follows:

(3) V̂ , V ∪ V1 and Ê , Ě ∪ E1,

where V1 is a disjoint copy of V1, Ě is defined by (2) and

E1 , {(i, j) : (i, j) ∈ E , i ∈ V1, j ∈ V}.

In other words, Ĝ is obtained from G by duplicating each node having a self-loop
by two nodes having the same neighborhood and replacing each self-loop by an edge
between the node and its copy. See an example in Figure 2. For any set A ⊂ V1,
we denote by A the set of all copies of elements of A, that is

A , {i : i ∈ A} .

For any element j ∈ A, we will also denote by j the unique element i ∈ A such

that j = i. The maximal subgraph Ǧ of G is then called reduced graph of Ĝ.

1

2

3 4

1

2

3 4

1

2

3 4

2

Figure 2. A multigraph G (middle), its maximal subgraph Ǧ

(left) and its minimal blow-up graph Ĝ (right).

Throughout this paper, all considered multigraphs are connected, that is, for any
u, v ∈ V, there exists a subset {v0 , u, v1, v2, . . . , vp , v} ⊂ V such that vi−vi+1,
for any i ∈ J0, p− 1K.

3. The model

All the random variables (r.v., for short) hereafter are defined on a common
probability space (Ω,F ,P).
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3.1. Stochastic matching model on a multigraph. Generalizing the model
introduced in [13] to multigraphs (rather than only graphs), a matching model is
formally specified by the triple (G,Φ, µ), where

(1) G = (V, E) is a connected multigraph having at least two nodes;
(2) Φ is the matching policy, to be properly defined later;
(3) µ is an element of M (V), i.e. a probability measure having full support V.

The dynamics of the matching model associated to (G,Φ, µ) is then similar to
that of stochastic matching models on general graphs, as in [13]: start with an
empty “buffer” and, for any n ∈ N+, draw an element Vn of V from the probability
measure µ, independently of σ ({V1, V2, . . . , Vn−1}), and apply the following rules:

• if there is no element of class i in the buffer such that Vn − i, then add an
item of class Vn to the buffer;
• otherwise, do not add Vn and remove from the buffer an element of class
i such that Vn − i (we say that Vn and i are matched together). If several
elements i of the buffer are such that Vn− i, the one to be removed depends
on a matching policy to be specified for the considered model.

3.2. State spaces. We reproduce here the state description of the model intro-
duced in [13] for the stochastic model on general graphs, and then [15] for the same
model under fcfm. Fix a connected multigraph G = (V, E), in the sense specified
above, until the end of this section. Fix an integer n0 ≥ 1, a realization v1, . . . , vn0

of V1, . . . , Vn0
, and define the word z , v1 . . . vn0

∈ V∗. Then, for any matching
policy Φ, there exists a unique matching of the word z, that is, a graph on the set
of nodes {v1, . . . , vn0

}, whose edges represent the matches performed in the system
until time n0, if the successive arrivals are given by z. This matching is denoted by
MΦ(z). The state of the system is then defined as the word WΦ(z) ∈ V∗, whose
letters are the classes of the unmatched items at time n0, i.e. the isolated vertices
in the matching MΦ(z), in their order of arrivals. The word WΦ(z) is called queue
detail at time n0. Then, any admissible queue detail belongs to the set

(4) W ,
{
w ∈ V∗ : ∀i 6= j s.t. (i, j) ∈ E , |w|i|w|j = 0 and ∀i ∈ V1, |w|i ≤ 1

}
.

As will be seen below, depending on the service discipline Φ, we can also restrict
the available information on the state of the system at time n0, to a vector only
keeping track of the number of items of the various classes remaining unmatched
at n0, that is, of the number of occurrences of the various letters of the alphabet
V in the word WΦ(z). This restricted state thus equals the commutative image of
WΦ(z) and is called class detail of the system. It takes values in the set

X ,
{
x ∈ N|V| : ∀i 6= j s.t. (i, j) ∈ E , x(i)x(j) = 0 and ∀i ∈ V1, x(i) ≤ 1

}
=
{

[w] : w ∈W
}
.

3.3. Matching policies. We now present and formally define the set of usual
matching policies that can be considered,

Definition 4. A matching policy Φ is said admissible if the choice of the match of
an incoming item depends solely on the queue detail upon the arrival (and possibly
on an independent uniform draw, in case of a tie).

An admissible matching policy can be formally characterized by an action �Φ of
V on W, defined as follows: if w is the queue detail at a given time and the input is
augmented by the arrival of v ∈ V at that time, then the new queue detail w′ and
w satisfy the relation

(5) w′ = w �Φ v.
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Notice that the action �Φ is possibly random. See below.

3.3.1. Matching policies that depend on the arrival times. In ’First Come, First
Matched’ (fcfm), the oldest item in line is chosen, so the map �fcfm is given, for
all w ∈W and all v ∈ V, by

w �fcfm v ,

{
wv if |w|E(v) = 0,
w[Φ(w,v)] else, where Φ(w, v) = min{k ∈ [[1; |w|]] : wk ∈ E(v)}.

In ‘Last Come, First Matched’ (lcfm), the updating map �lcfm is analog to �fcfm,
for Φ(w, v) = max{k ∈ [[1; |w|]] : wk ∈ E(v)}.

3.3.2. Class-admissible matching policies. A matching policy Φ is said to be class-
admissible if it can be implemented upon the sole knowledge of the class-detail of
the system. Let us define, for any x ∈ X and any v ∈ V,

P(x, v) ,
{
j ∈ E(v) : x (j) > 0

}
,

the set of classes of available compatible items with the entering class v-item, if the
class-detail of the system is given by x. Then, a class-admissible policy Φ is fully
characterized by a (possibly random) mapping pΦ, such that pΦ(x, v) denotes the
class of the match chosen by the entering v-item under Φ, in a system of class-detail
x, such that P(x, v) is non-empty. Then, the arrival of v entails the following action
on the class-detail:

(6) x}Φ v ,

{
x+ ev if P(x, v) = ∅,
x− epΦ(x,v) else.

Remark 1. As is easily seen, to any class-admissible policy Φ corresponds an
admissible policy, if one makes precise the rule of choice of match for the incoming
items within the class that is chosen by Φ, in the case where more than one item
of that class is present in the system. In this paper, we always assume that within
classes, the item chosen is always the oldest in line, i.e. we always apply the
fcfm policy within classes. Under this convention, any class-admissible policy Φ is
admissible, that is, the mapping }Φ from X × V to X can be detailed into a map
�Φ from W× V to W, as in (5), such that for any queue detail w and any v,

[w �Φ v] = [w]}Φ v.

Class-admissible random policies. In a random policy, the only information that is
needed to determine the choice of the match of an incoming item is whether its
various compatible classes have an empty queue or not. Specifically, the order of
preference of each incoming item is drawn upon the arrival following a given prob-
ability distribution; then, the considered item investigates its compatible classes in
that order, until it finds one having a non-empty buffer, if any. The incoming item
is then matched with an item of the latter class. In other words, upon each arrival
of an item of class v, a permutation σ = (σ(1), . . . , σ (|E(v)|)) is drawn from a given
probability distribution on SE(v), and we set

(7) pΦ(x, v) , σ(k), where k = min
{
i ∈ E(v) : σ(i) ∈ P(x, v)

}
.

In particular, the uniform policy u corresponds to the uniform distribution on SE(v).

Priority policies. In a priority policy, for any v ∈ V, the order of preference of v in
E(v) is fixed beforehand. In other words, upon the arrival of an item of class v, the
permutation σ of SE(v) is deterministic and corresponds to the order of preference
of class v-item in E(v). This is thus a particular case of random policy.
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Max-Weight policies. The Max-Weight (mw) policies are an important class of class-
admissible policies, in which matches are based upon the queue length and a fixed
reward that is associated to each match. Formally, for any (i, j) ∈ E , we let wi,j
be the reward associated to the match of an i-item with a j-item, and fix a real
parameter β.

Then, in a system of class-detail x, the match of the incoming v-item is given by

pΦ(x, v) , argmax {βx(j) + wv,j : j ∈ P(x, v)} ,

where ties are broken uniformly at random whenever the above is non-unique. In
other words, j maximizes a linear combination of the queue-size and the rewards.
Several particular cases are to be mentioned:

(i) If β > 0 and the rewards are constant (i.e. wi,j = wi′,j′ , for any (i, j)
and (i′, j′) ∈ E), then the matching policy is ‘Match the Longest’ (ml),
i.e., the incoming v-item is matched upon the arrival with an item of the
compatible class having the longest queue size (ties being broken uniformly
at random).

(ii) If β < 0 and the rewards are constant, then the matching policy is ‘Match
the Shortest’ (ms), i.e., the incoming v-item is matched upon the arrival
with an item of the compatible class having the shortest queue size (ties
being broken uniformly at random).

(iii) If β = 0 and wi,j 6= wi,j′ for any i ∈ V and any j 6= j′ ∈ E(i) (implying that
there is a strict ordering of rewards for all possible matches of any given
class), then the matching policy is of a priority type, defined above.

3.3.3. V2-favorable policies. An important class of matching policies is given by the
following:

Definition 5. We say that an admissible matching policy Φ on G is V2-favorable if
any incoming item always prioritizes a match with a compatible item of class in V2

over a compatible item of class in V1, whenever it has the choice. Formally, if the
class-detail is given by x ∈ X and the arrival is of class v, it never occurs that the
incoming v-item is matched with a j-item, for some j ∈ V1, while P(x, v)∩V2 6= ∅.

3.4. Primary Markov representation. The Markov representation of the model
is similar to that of general matching models on graphs. Denote, for all w ∈W and

all n ≥ 1, by W
{w}
n , the buffer-content at time n (i.e. just after the arrival of the

item Vn) if the buffer-content at time 0 was set to w. In other words,{
W
{w}
0 = 0,

W
{w}
n = WΦ (wV1 . . . Vn) , n ∈ N+.

It readily follows from (5) and Remark 1 that the buffer-content sequence
{
W
{w}
n

}
n∈N

is a Markov chain. Indeed, for any w ∈W, we have

W
{w}
n+1 = W {w}n �Φ Vn+1, ∀n ∈ N.

For a fixed initial condition and for all n ∈ N, we denote, for all B ⊂ V, by
Wn(B), the number of items in line of classes in B at time n, and by |Wn|, the
total number of items in the system at time n. In other words,

Wn(B) ,
∑
i∈B

Wn(i),

|Wn| ,Wn(V) =
∑
i∈V

Wn(i).
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In line with [13], for any admissible matching policy Φ, we define the stability
region associated to G and Φ as the set of measures

(8) stab(G,Φ) ,
{
µ ∈M (V) : {Wn}n∈N is positive recurrent

}
.

Definition 6. We say that a multigraph G is stabilizable if stab(G,Φ) 6= ∅, for
some matching policy Φ. If not, G is said non-stabilizable.

Remark 2. If G is such that V = V1, i.e. all nodes of the multigraph have a self-
loop, we say, for obvious reasons, that the considered matching models are finite.
Then any matching model on G is necessarily stable, that is, for any admissible Φ
we have that

stab(G,Φ) = M (V).

Indeed, the Markov chain {Wn}n∈N is irreducible on the finite state space W,
containing only words having size less or equal to the cardinality of the largest
independent set of G.

4. Main results

We now state the main results of this paper. Similarly to [13], we will be led to
consider the set

(9) Ncond(G) , {µ ∈M (V) : ∀I ∈ I(G), µ (I) < µ (E (I))} .
Let us immediately observe that

Lemma 1. For any connected multigraph G, we have that

Ncond
(
Ǧ
)
⊆ Ncond(G).

Proof. Let µ ∈ Ncond
(
Ǧ
)

and I ∈ I(G). Plainly, I is then also an element

of I(Ǧ), so we have that µ(I) < µ
(
Ě(I)

)
. But as I ⊂ V2 we also have that

Ě(I) = E(I), which concludes the proof. �

It is stated in Theorem 1 of [13] that, if G is a graph, the set Ncond(G) is
non-empty if and only if G is not a bipartite graph. This result can be generalized
to multigraphs, and completed as follows,

Proposition 1. For any connected multigraph G, we have that

Ncond(G) 6= ∅ ⇐⇒ G is not a bipartite graph.

In that case, recalling (1), the probability measure µdeg defined by

(10) µdeg(i) =
deg(i)

|E|
, i ∈ V,

is always an element of Ncond(G).

Proposition 1 is proven in Section 6. From Proposition 2 in [13], whenever G is a
graph (i.e., V1 = ∅), the set stab(G,Φ) is included in Ncond(G) for any admissible
policy Φ. In other words, for any measure µ, belonging to Ncond(G) is necessary
for the stability of the system (G,Φ, µ), for any Φ. A similar result holds for any
multigraph G:

Proposition 2. For any connected multigraph G = (V, E) and any admissible
matching policy Φ, we have that

stab(G,Φ) ⊂ Ncond(G).

Proof. The proof is analog to that of Proposition 2 in [13]. �

Hence, the notion of maximality of a matching policy:
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Definition 7. For any connected multigraph G that is not a bipartite graph, a
matching policy Φ is said maximal if the sets stab(G,Φ) and Ncond(G) coincide.

Whenever G is a graph, Theorem 1 of [14] shows, first, that the policy ‘First
Come, First Matched’ (fcfm) is maximal, and second, that the stationary proba-
bility of the chain {Wn}n∈N can be expressed in a remarkable product form. We
generalize this result to multigraphs:

Theorem 1. The matching policy ‘First Come, First Matched’ is maximal: for any
connected multigraph G that is not a bipartite graph, we have that Stab(G, fcfm) =
Ncond(G). Moreover, for any µ ∈ Ncond(G) the unique stationary probability
ΠW of the chain (Wn)n∈N is defined by

ΠW (ε) = α;

ΠW (w) = α

q∏
l=1

µ(wl)

µ(E({w1, . . . , wl}))
, for all w = w1 . . . wq ∈W \ {ε},

where

(11) α−1=1+
∑
I∈I(Ǧ)

∑
σ∈S|I|

|I|∏
i=1

µ
(
eσ(i)

)
µ(E({eσ(1), . . . , eσ(i)}))− µ({eσ(1), . . . , eσ(i)} ∩ V2)

,

and where we denote I = {e1, . . . , e|I|} for any I ∈ I
(
Ǧ
)
.

Theorem 1 is proven in section 7.

Remark 3. If the model is finite, i.e. all nodes of G have self-loops or in other
words, V2 = ∅, then it readily follows from Theorem 1 that the unique stationary
probability on the finite state space W, is given by

ΠW (ε) = α;

ΠW

(
eσ(1) · · · eσ(|I|)

)
= α

|I|∏
i=1

µ
(
eσ(i)

)
µ(E({eσ(1), . . . , eσ(i)}))

, for all I ∈ I(Ǧ), σ ∈ S|I|,

with the normalizing constant

α =

1 +
∑
I∈I(Ǧ)

∑
σ∈S|I|

|I|∏
i=1

µ
(
eσ(i)

)
µ(E({eσ(1), . . . , eσ(i)}))


−1

·

On another hand, as is shown in Theorem 3.2 of [12], all Max-Weight matching
policies such that β > 0 are maximal whenever G is a graph. (Notice that Theorem
3.2 in [12] is in fact shown only for β = 1, however a generalization to any β >
0 is straightforward, by modifying the rewards accordingly.) In particular, the
maximality of ‘Match the Longest’ (ml) for GM models was first proven in Theorem
2 of [13], as a consequence of the corresponding result for EBM models, see Theorem
7.1 of [9]. This result can also be generalized to multigraphs:

Theorem 2. Any Max-Weight policy Φ such that β > 0 is maximal: for any
multigraph G that is not a bipartite graph, we have that stab(G,Φ) = Ncond(G).

Aside from fcfm and Max-Weight policies, we can determine, or lower-bound, the
stability region of the model for particular classes of multigraphs.

Definition 8. Let G be a connected multigraph. We say that G is complete p-
partite, p ≥ 2, if its maximal subgraph Ǧ is complete p-partite. Then, the minimal
blow-up graph Ĝ is itself called an extended complete p-partite graph.
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Observe that an extended complete p-partite graph is not complete p-partite
whenever the construction above is non-trivial, i.e. the multigraph in the above
definition is not a graph, see an example on Figure 3.

1

4 5

2
3

1

4 5

2
3

1

4

2

5

3

5

Figure 3. A multigraph G (middle), its maximal complete 3-
partite subgraph Ǧ (left), and extended complete p-partite graph

Ĝ (right).

Theorem 3. Let G be a complete p-partite multigraph, p ≥ 2. Then,

(i) If p ≥ 3 or V1 6= ∅, then any V2-favorable matching policy Φ is maximal,
that is, stab(G,Φ) = Ncond(G).

(ii) If p ≥ 3, then Ncond
(
Ǧ
)
⊂ stab(G,Φ), for any admissible matching

policy Φ.

With the above results in hands, we have the following panorama regarding the
stability region of a matching model on a connected multigraph G:

(i) Any measure µ that does not belong to the set Ncond(G) makes the system
unstable;

(ii) If G is a bipartite graph, then the model cannot be stable;
(iii) Otherwise, the region Ncond(G) is necessarily non-empty, and the models

(G, fcfm, µ) and (G,Φ, µ) for any Max-Weight policy Φ with β > 0, are
stable for any µ ∈ Ncond(G). In particular, in that case Ncond(G) neces-
sarily includes the measure µdeg defined by (10), so any model (G,Φ, µdeg),
for Φ = fcfm or Φ = mw with β > 0, is stable.

(iv) For any complete p-partite multigraph (p ≥ 2) that is not a bipartite graph
and any µ ∈ Ncond (G), any model (G,Φ, µ) such that µ ∈ Ncond

(
Ǧ
)

or
Φ is V2-favorable, is stable.

As a by-product of Theorem 3 we can determine, or lower-bound, the stability
region of GM models on extended complete p-partite graphs.

Definition 9. For any measures µ ∈M (V) and µ̂ ∈M (V̂), we say that µ̂ extends

µ on Ĝ, and that µ reduces µ̂ on G, if{
µ̂(i) = µ(i), for all i ∈ V2 ;
µ̂(i) + µ̂(i) = µ(i), for all i ∈ V1.

Definition 10. Let Φ and Φ̂ be two admissible matching policies, respectively on

G and Ĝ. We say that Φ̂ extends Φ on Ĝ if, for any µ ∈M (V) and µ̂ ∈M
(
V̂
)

,

whenever both systems (G,Φ, µ) and
(
Ĝ, Φ̂, µ̂

)
are in the same state w ∈ W and

welcome the same arrival, Φ and Φ̂ induce the same choice of match, if any.

Proposition 3. Let Ĝ be an extended complete p-partite graph, p ≥ 2, and Ǧ be
its reduced graph.
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(i) If p ≥ 3 or V1 6= ∅, then for any matching policy Φ̂ on Ĝ that extends a

V2-favorable policy on G, stab(Ĝ, Φ̂) = Ncond(Ĝ).

(ii) If p ≥ 3, then for any measure µ̂ on Ĝ whose reduced measure µ is an

element of Ncond(Ǧ), and any matching policy Φ̂ on Ĝ, the model (Ĝ, Φ̂, µ̂)
is stable.

The proofs of Theorem 2, Theorem 3 and Proposition 3 are given in section 8.

5. A few examples

In this section, we illustrate our main results by different examples.

Example 1. Consider the multigraph G of Figure 4, made of four nodes arranged
in a square, wit a self-loop at each node. Since all nodes have a self-loop, it follows

1 2

34

Figure 4. Multigraph G of Example 1.

from Remark 2 that any matching model on G is necessarily stable, that is, for any
admissible Φ, we have that stab(G,Φ) = M (V). Let us focus on the fcfm policy.
The set of admissible queue details is given by W = {ε, 1, 2, 3, 4, 13, 24, 31, 42},
and as a consequence of Remark 3, we can compute explicitly ΠW , obtaining the
following values:

ΠW (ε) = α

ΠW (1) = α µ(1)
1−µ(3) ΠW (2) = α µ(2)

1−µ(4)

ΠW (3) = α µ(3)
1−µ(1) ΠW (4) = α µ(4)

1−µ(2)

ΠW (13) = α µ(1)
1−µ(3)µ(3) ΠW (24) = α µ(2)

1−µ(4)µ(4)

ΠW (31) = α µ(3)
1−µ(1)µ(1) ΠW (42) = α µ(4)

1−µ(2)µ(2),

with

α =

[
1 + µ(1)

1 + µ(3)

1− µ(3)
+ µ(2)

1 + µ(4)

1− µ(4)
+ µ(3)

1 + µ(1)

1− µ(1)
+ µ(4)

1 + µ(2)

1− µ(2)

]−1

,

using the fact that I
(
Ǧ
)

= {{1}, {2}, {3}, {4}, {1, 3}, {2, 4}}.

Example 2. Consider the multigraph G (at the middle) of Figure 2. From The-
orems 1 and 2, both the stability region stab(G, fcfm) under First Come, First
Matched, and the stability region stab(G,mw) under any Max-Weight policy, co-
incide with the set

Ncond(G) =

{
µ ∈M (V) : µ(1) < µ(2), µ({1, 3}) ∨ µ({1, 4}) < 1

2

}
.
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1

2

3

1

2

3

1

2

3 3

Figure 5. A multigraph on the complete 2-partite graph of size
3 (left), and its minimal blow-up graph (right).

Example 3. Consider now the multigraph G of Figure 5, whose maximal subgraph
is a complete 2-partite graph of order 3 (i.e., a string of 3 nodes).
We easily obtain that

Ncond(G) =

{
µ ∈M (V) : µ(1) < µ(2) <

1

2

}
,

Ncond(Ĝ) =

{
µ ∈M (V̂) : µ(1) < µ(2), µ(2) ∨ µ({1, 3}) ∨ µ({1, 3}) < 1

2

}
.

In view of Theorems 1 and 2, the respective stability regions stab(G, fcfm) and
stab(G,mw) under First Come, First Matched, or any Max-Weight policy, coincide
with Ncond(G).

Let us first focus on the fcfm policy. The set of admissible queue details is given
by

W = {ε} ∪
{

1k : k ≥ 1
}
∪
{

2k : k ≥ 1
}
∪
{

1r31k−r : k ≥ 0, 0 ≤ r ≤ k
}
.

By Theorem 1, we have that
ΠW (ε) = α

ΠW (1k) = α
(
µ(1)
µ(2)

)k
ΠW (2k) = α

(
µ(2)

1−µ(2)

)k
ΠW

(
1r31k−r

)
= α

(
µ(1)
µ(2)

)r
× µ(3)

1−µ(1) ×
(

µ(1)
1−µ(1)

)k−r
,

and since I
(
Ǧ
)

= {{1}, {2}, {3}, {1, 3}}, we can express α as follows,

α =

[
1 +

µ(1)

µ(2)− µ(1)
+

µ(2)

1− 2µ(2)
+

µ(3)

1− µ(1)

+
µ(1)

µ(2)− µ(1)

µ(3)

1− 2µ(1)
+

µ(3)

1− µ(1)

µ(1)

1− 2µ(1)

]−1

.

Second, consider a matching policy Φ̂ such that a 2-item always prioritizes a
1-item over a 3 or a 3-item. Then Φ̂ extends a V2-favorable policy Φ on Ĝ. Thus,
from Proposition 3(i), the stability region of the system is Ncond(Ĝ), in other

words Φ̂ is maximal on Ĝ. We thereby generalize with a very simple proof, the
result of Lemma 3 of [13] to the case where µ(3) 6= µ(3). Last, in view of Theorem
3(i), any V2-favorable matching policy Φ on G (i.e., such that 2 prioritizes 1 over
3) is maximal, that is, the two sets stab(G) and Ncond(G) coincide.
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Example 4. Last, consider the multigraph G represented in (the middle figure of)
Figure 3. The maximal subgraph is 3-partite complete, and we readily obtain that

Ncond(Ǧ) =

{
µ ∈M (V) : µ(1) ∨ µ({2, 4}) ∨ µ({3, 5}) < 1

2

}
;

Ncond(G) =

{
µ ∈M (V) : µ(1) ∨ µ({2, 4}) < 1

2
, µ(3) < µ({1, 2, 4})

}
;

Ncond(Ĝ) =

{
µ ∈M (V) : µ(1) ∨ µ({2, 4}) ∨ µ({3, 5}) ∨ µ({3, 5}) < 1

2

}
.

Then, from Theorems 1 and 2, the respective stability regions stab(G, fcfm) and
stab(G,mw) under First Come, First Matched, or any Max-Weight policy coincide
with the set Ncond(G). From Theorem 3(i), for any policy Φ on G according
to which all items prioritize 3-items over 5 items is maximal, i.e. stab(G,Φ) =
Ncond(G). From Theorem 3(ii), any policy Φ on G is such that Ncond(Ǧ) ⊂
stab(G,Φ). Last, from Proposition 3, any policy Φ̂ on Ĝ giving priority to 3-items

over 5 and 5-items is maximal, whereas for any matching policy Φ̂ and any measure
µ̂ on V̂ extending a measure of Ncond(Ǧ), the model (Ĝ, Φ̂, µ̂) is stable.

6. Proof of Proposition 1

The proof of the fact that Ncond(G) = ∅ whenever G is a bipartite graph was
given in Theorem 1 of [13]. We reproduce it hereafter for easy reference: Let us
assume that G is a connected bipartite graph, and let (A,B) be a bipartition of V
such that if i−j, then (i, j) ∈ (A×B) ∪ (B × A). Then, A,B ∈ I(G), and E(A) =
B, E(B) = A. So, for any measure µ ∈ M (V), we have either µ(A) ≥ µ(E(A)) or
µ(B) ≥ µ(E(B)), meaning that Ncond(G) = ∅.

In order to prove the converse statement, we show that if G is a connected
multigraph such that µdeg 6∈ Ncond(G), then G is a bipartite graph.

For a subset A of V, let us denote by S(A) the set of edges having at least one
extremity in A, where we identify the edges (i, j) and (j, i), and where we include
self-loops. Formally,

S(A) , {{i, j} ⊂ V : i 6= j, i−j and {i, j} ∩A 6= ∅} ∪ {(i, i), i ∈ V1 ∩A}.

Observe that we have the following properties.

(1) For any A ⊂ V, S(A) ⊂ S(E(A)).
(2) For any A ⊂ V,

∑
i∈A deg(i) ≥ CardS(A), so that µdeg(A) ≥ 1

|E| CardS(A),

with equality if A ∈ I(G).

Let us assume that µdeg 6∈ Ncond(G), meaning that there exists I ∈ I(G) with
µdeg(I) ≥ µdeg(E(I)). By the property (2) above, we have µdeg(I) = 1

|E| CardS(I)

and µdeg(E(I)) ≥ 1
|E| CardS(E(I)), so that CardS(I) ≥ CardS(E(I)). But by

property (1), S(I) ⊂ S(E(I)), which implies that S(I) = S(E(I)).
Let us prove that (I, E(I)) is a bipartition of V such that if i−j, then (i, j) ∈

(I × E(I)) ∪ (E(I)× I).

• Since I ∈ I(G), I ∩ E(I) = ∅.
• Using that S(I) = S(E(I)), we deduce that E(E(I)) = I. So, the vertices

reachable from I all belong to I∪E(I). The multigraph G being connected,
this implies that I ∪ E(I) = V.

• Since I ∈ I(G), there is no edge between vertices of I. Furthermore, since
S(I) = S(E(I)), there is no edge between vertices of E(I).

Consequently, G is a bipartite graph, which ends the proof.
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7. Proof of Theorem 1

Let us recall that the multigraph G = (V, E) is connected but is not a bipartite
graph, with |V| ≥ 2. Then, in particular, Ncond(G) 6= ∅ (cf. Proposition 1). Our
product form result, Theorem 1, follows from a reversibility scheme that generalizes
to the case of multigraphs, the one constructed in [14]. In fact, we propose a proof
that is simpler, at some points, than the one in [14]. We reproduce hereafter the
main steps of this construction for easy reference, and only develop exhaustively
the points that are specific to the present context, or based on different arguments.

Hereafter, we denote by PW , the transition operator of the buffer-content Markov
chain, that is, for all w,w′ ∈ W, we write PW (w,w′) = P [Wn+1 = w′ |Wn = w] ,
for any n ∈ N.

7.1. Two auxiliary chains. As in section 3.2 of [14], we first need to define two
auxiliary Markov chains. For this, let us denote by V an independent copy of V,
i.e. a set with the same cardinal formed with copies of elements of V. We set
V , V ∪ V, and we define, for w ∈ V∗,

V(w) , {a ∈ V : |w|a > 0},

V(w) , {a ∈ V : |w|a > 0}.

For a ∈ V, we will use the notation a = a.

Definition 11. We define the backward detailed chain as the process (Bn)n∈N with
values in V∗ given by B0 = ε and, for any n ≥ 1,

• if Wn = ε (i.e. all the items arrived up to time n are matched at time n),
then Bn = ε,
• otherwise, let i(n) ∈ [[1, n]] be the arrival time of the oldest item still in the

buffer, then, the word Bn is the word of length n − i(n) + 1, defined, for
any ` ∈ [[1, n− i(n) + 1]], by

(Bn)` =


Vi(n)+`−1 if Vi(n)+`−1 has not been matched up to time n;
Vk if Vi(n)+`−1 is matched at or before time n, with item Vk

(where 1 ≤ k ≤ n).

In other words, the word Bn gathers the class indexes of all unmatched items
entered up to n, at the places corresponding to their arrival times, and the copies
of the class indexes of the items matched before n, but after the arrival of the
oldest unmatched item at n, at the place corresponding to the arrival time of their
respective match.

Observe that by construction of (Bn)n∈N, for all n ∈ N, the word Bn necessarily
contains all the letters of Wn. More precisely, for any n ∈ N, Wn is the restriction
of the word Bn to its letters in V. Furthermore, (Bn)n∈N is also a Markov chain,
since for any n ≥ 0, the value of Bn+1 can be deduced from that of Bn and from
the class Vn+1 of the item entered at time n+ 1.

A state w ∈ V∗ is said to be admissible for (Bn)n∈N if it can be reached by the
chain (Bn)n∈N, under the fcfm policy. We set

B , {w ∈ V∗ : w is admissible for (Bn)n∈N}.

The following result can be proven exactly as Lemma 1 in [14].

Lemma 2. Let w = w1 . . .wq ∈ V∗. Then, w ∈ B if and only if w1 ∈ V and for
1 ≤ i < j ≤ q,

• if (wi,wj) ∈ V2, then wi 6−wj,

• if (wi,wj) ∈ V × V, then wi 6−wj.
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As a consequence of Lemma 2, any word w ∈ B can be written as

w = b1a11a12 . . . a1k1b2a21a22 . . . a2k2b3 . . . bqaq1 . . . aqkq ,

where q, k1, . . . , kq ∈ N, b1, . . . , bq ∈ V, aij ∈ V for 1 ≤ i ≤ q, 1 ≤ j ≤ ki, and {b1, . . . , bq} = V(w) ∈ I
(
Ǧ
)
,

∀i ∈ [[1, q]], bi ∈ V1 ⇒ [∀j 6= i, bi 6= bj ] ,
∀i ∈ [[1, q]], ∀j ∈ [[1, ki]], aij ∈ E({b1, . . . , bi})c.

The transition operator of the chain {Bn}n∈N is denoted by PB , that is, for all
w,w′ ∈ B, we write PB(w,w′) = P [Bn+1 = w′ | Bn = w], for all n ∈ N.

Definition 12. We define the forward detailed chain as the process (Fn)n∈N with
values in V∗ given by F0 = ε (the empty word) and, for any n ≥ 1,

• if Wn = ε (i.e. all the items arrived up to time n are matched at time n),
then Fn = ε,
• otherwise, let Un be the set of items arrived before time n that are not

matched at time n (note that Un is non-empty, since Wn 6= ε). Also, set

j(n) , sup {m ≥ n+ 1 : Vm is matched with an element of Un} .

Observe that j(n) is possibly infinite. Then, if j(n) is finite, Fn is the word
of V∗ of length j(n)− n (respectively of AN of length +∞, if j(n) = +∞),
such that for any ` ∈ [[1, j(n)− n]] (respectively ` ∈ N+),

(Fn)` =

{
Vn+` if Vn+` is not matched with an item arrived up to n;
Vk if Vn+` is matched with item Vk, where 1 ≤ k ≤ n.

In other words, the word Fn contains the copies of all the class indexes of the
items entered up to time n and matched after n, at the place corresponding to the
arrival time of their respective match, together with the class indexes of all items
entered after n and before the last item matched with an item entered up to n, and
not matched with an element entered before n, if any, at the place corresponding to
their arrival time. Similarly to [14], we make the three following simple observations:

• If Fn ∈ V∗ is finite, then (Fn)j(n)−n ∈ V;
• {Fn}n∈N is a Markov chain;
• If Fn is a.s. an element of V∗ for all n ∈ N.

As for the backward chain, we say that a state w ∈ V∗ is admissible for (Fn)n∈N
if it can be reached by the chain (Fn)n∈N, under the fcfm policy. Then, we set

F , {w ∈ V∗ : w is admissible for {Fn}n∈N
and we denote by PF the transition operator of the chain {Fn}n∈N on F. For any

word w = w1 . . .wn ∈ V∗, let us define its reversed-copy by
←−
w , wn . . .w1 ∈ V∗.

Note that the map Ψ : V∗ → V∗,w 7→ ←−w satisfies Ψ ◦ Ψ = IdV∗ . Thus, Ψ is a
bijection and its inverse function is Ψ−1 = Ψ.

Lemma 3. The map

Φ :

{
B −→ F
w 7−→ Ψ(w) =

←−
w

is well-defined and bijective.

Proof. Exactly as in Lemma 2 in [14], it can be proven that w ∈ F if and only if
Ψ(w) ∈ B. This guarantees that the mapping Φ is well-defined and surjective. It
is injective because Ψ clearly is so. �
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Let us define a measure ν on V∗ by ν(ε) , 1 and

(12) ∀w ∈ V∗ \ {ε}, ν(w) ,
|V|∏
i=1

µ(i)|w|i+|w|i .

We can use the measure ν defined above to establish the following link between
the dynamics of the chains (Bn)n∈N and (Fn)n∈N. The following result can be
established exactly as Lemma 3 in [14],

Proposition 4. For any (w,w′) ∈ B2, we have that

ν(w)PB(w,w′) = ν
(←−
w′
)
PF
(←−
w′,
←−
w
)
.

7.2. Positive recurrence of (Bn)n∈N and (Fn)n∈N. We will exploit the local
balance equations of Proposition 4 to derive stationary distributions of these two
Markov chains. To this end, the following technical lemma will simplify the proofs.

Lemma 4. The measure ν defined by (12) satisfies the following properties:

(1) For any A ⊂ V = V ∪ V, we have ν(A) = µ(V(A)) + µ
(
V(A)

)
.

(2) For any A1, . . . ,An ⊂ V, ν(A1 . . .An) = ν(A1) . . . ν(An). In particular,
ν(Ak) = ν(A)k.

(3) If A ⊂ V is such that ν(A) < 1, then ν(A∗) = 1
1−ν(A) .

Proof. The first point follows from the definition of ν and the second point is a direct
consequence of its multiplicative structure. Regarding the third point, observe that
A∗ = ∪k∈NAk, so that

ν(A∗) =
∑
k∈N

ν
(
Ak
)

=
∑
k∈N

ν(A)k.

�

We can now state the following result,

Proposition 5. Suppose that µ ∈ Ncond(G). Then, the chains (Bn)n∈N and
(Fn)n∈N are positively recurrent and admit respectively the restrictions on B and on
F of ν (that is, νB(w) = νF (Φ(w)) = ν(w), for any w ∈ B) as unique stationary
measure (up to a multiplicative constant), respectively on B and F.

Proof. Let µ ∈ Ncond(G).
Step 1: we first prove that νB is a stationary measure for the chain (Bn)n∈N.
For this, let us fix w′ ∈ B. Then we have that

∑
w∈B

PB(w,w′)νB(w)

νB(w′)
=
∑
w∈B

PF
(←−
w′,
←−
w
)
νB

(←−
w′
)

νB(w′)

=
∑
w∈B

PF
(←−
w′,
←−
w
)

= 1,

where the first equality follows from Proposition 4, the second from the fact that

νB

(←−
w′
)

= νB(w′) and the last, from Lemma 3. Thus, for all w′ ∈ B, we have that

νB(w′) =
∑
w∈B

PB(w,w′)νB(w),

which means exactly that νB is a stationary measure for the chain (Bn)n∈N.

Step 2: we now prove that νB(B) <∞.
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By Lemma 2, we know that w ∈ B \ {ε} if and only if w belongs to a set

(13) b1A∗1 b2A∗2 . . . bq A∗q
,
{
w ∈ V∗ : w = b1w

1b2w
2 . . . bqw

q; wi ∈ A∗i , for all i ∈ J1, qK
}
, q ≥ 1,

where b1, . . . , bq are elements of V such that {b1, . . . , bq} ∈ I
(
Ǧ
)

and such that for
all distinct i, j in J1, qK, bi ∈ V1 implies that bi 6= bj , and where we denote

Ai , E({b1, . . . , bi})c, i ∈ J1, qK.

Equivalently, by highlighting only the first occurence of each letter of V appearing
in w and employing a similar notation to (13) we obtain that w ∈ B \ {ε} if and
only if w belongs to some set of the form

CI,σ , eσ(1) B∗σ(1) eσ(2) B∗σ(2) . . . eσ(|I|) B∗σ(|I|),

where I =
{
e1, ..., e|I|

}
∈ I
(
Ǧ
)
, σ ∈ S|I|, and where we denote

Bσ(i) , E({eσ(1), . . . , eσ(i)})c ∪ ({eσ(1), . . . , eσ(i)} ∩ V2), i ∈ J1, |I|K.
In view of assertion (1) of Lemma 4, we have that for all i ∈ J1, kK,

νB(Bσ(i)) = µ(E({eσ(1), . . . , eσ(i)}c) + µ({eσ(1), . . . , eσ(i)} ∩ V2)

= 1− µ(E({eσ(1), . . . , eσ(i)})) + µ({eσ(1), . . . , eσ(i)} ∩ V2).

Since {eσ(1), . . . , eσ(i)} ∈ I(Ǧ), we have, by definition, that {eσ(1), . . . , eσ(i)} ∩ V2 ∈
I(G) and since the measure µ satisfies Ncond(G), it follows that

µ
(
{eσ(1), . . . , eσ(i)} ∩ V2

)
< µ

(
E
(
{eσ(1), . . . , eσ(i)} ∩ V2

))
≤ µ

(
E
(
{eσ(1), . . . , eσ(i)}

))
and thereby, that νB(Bi) < 1. As a conclusion, applying successively all assertions
of Lemma 4, we obtain that for all such I and σ,

νB(CI,σ) =

|I|∏
i=1

µ(eσ(i))

µ(E({eσ(1), . . . , eσ(i)}))− µ({eσ(1), . . . , eσ(i)} ∩ V2)
.

The set B is the disjoint union of the sets CI,σ, for I in the finite set I
(
Ǧ
)
, and

σ in the finite set S|I|. It follows that νB(B) is finite, and given by

νB(B) = νB(ε) +
∑
I∈I(Ǧ)

∑
σ∈S|I|

νB(CI,σ)

= 1 +
∑
I∈I(Ǧ)

∑
σ∈S|I|

|I|∏
i=1

µ(eσ(i))

µ(E({eσ(1), . . . , eσ(i)}))− µ({eσ(1), . . . , eσ(i)} ∩ V2)
.(14)

Step 3: we conclude with the positive recurrence of the two chains.
By the results above, the chain (Bn)n∈N has a stationary probability distribution

on B, which is given by the measure νB normalized by νB(B).
Observe that the chain is irreducible on B. To see this, let w ∈ B and first observe

that the empty word ε leads to w with positive probability for the transitions of
{Bn}n∈N (this is the constructive argument proving Lemma 2 - see the proof of
Lemma 1 in [14]). Conversely, denoting by b1, . . . , bq the elements of V(w), it is
easy to see that the word w leads to the empty word with positive probability for the
transitions of {Bn}n∈N : indeed, by the definition of the policy fcfm, if the chain
is in the state w, then it will reach the empty state after exactly q steps, by seeing
the successive arrivals of q elements of respective classes in E(b1), E(b2), . . . , E(bq),
which concludes the proof of irreducibility.
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It then follows that the chain {Bn}n∈N is positively recurrent on B and that
its stationary probability distribution is unique. Consequently, νB is the unique
stationary measure (up to a multiplicative constant) of the chain (Bn)n∈N.

Now, as in step 1, we obtain that for all w′ ∈ B,

νF (Φ(w′)) =
∑
w∈B

PF (Φ(w),Φ(w′))νF (Φ(w)).

Using Lemma 3, we deduce that νF is a stationary measure for the chain (Fn)n∈N.
Then, step 2 shows equivalently that νF (F) <∞. So, the chain (Fn)n∈N has a sta-
tionary probability distribution on F, which is given by the measure νF normalized
by νF (F).

Similarly as above, we can check that the chain {Fn}n∈N is irreducible on F.
First, the empty word leads with positive probability to any element w ∈ F, as
can be checked using the same constructive argument as in the proof of Lemma 2
Conversely, suppose that the chain {Fn}n∈N is at time n in a state

w = aqkq . . . aq1aq . . . a3a2k2 . . . a21a2a1k1 . . . a11a1 ∈ F

and let r , q+
∑q
i=1 ki be the length of w. Then, going forward in time, perform the

fcfm-matching of the ‘unmatched’ elements of respective classes in V(w). Say there
remains in the system, at time n+r, ` unmatched elements denoted c1, c2, . . . , c` in
their order of arrivals. Then, the chain can return to the empty state in particular
if the first ` arrivals after time n + r (excluded) are of respective classes in E(c1),
E(c2), . . . , E(c`). This concludes the proof of irreducibility.

As a consequence, the chain {Fn}n∈N is positively recurrent on F and its station-
ary probability distribution is unique. Consequently, νF is the unique stationary
measure (up to a multiplicative constant) of the chain (Fn)n∈N, which concludes
the proof. �

7.3. Positive recurrence of {Wn}n∈N. The Markov chain (Wn)n∈N can be seen
as the projection of the chain (Bn)n∈N on V∗. In order to obtain the station-
ary probability distribution of (Wn)n∈N from the one of (Bn)n∈N, we will use the
following lemma:

Lemma 5. Let PY and PY ′ be the transition matrices of two homogeneous Markov
chains {Yn}n∈N and {Y ′n}n∈N with values in some countable sets S and S′ respec-
tively, and consider a map p : S → S′ satisfying

∀a′, b′ ∈ S′, ∀a ∈ p−1({a′}),PY (a, p−1({b′})) = PY ′(a′, b′).

Then, if a measure µ is invariant for PY , the measure µ′ defined by µ′(a′) ,
µ(p−1({a′})) for all a′ ∈ S′, is an invariant measure for PY ′ on S′.

Proof. Let µ be an invariant measure for PY , and let b′ ∈ S′. We have∑
a′∈S′

µ′(a′)PY ′(a′, b′) =
∑
a′∈S′

 ∑
a∈p−1({a′})

µ(a)

PY ′(a′, b′)
=
∑
a′∈S′

∑
a∈p−1({a′})

µ(a)PY (a, p−1({b′}))

=
∑
s∈S

µ(s)PY (s, p−1({b′})) = µ(p−1({b′})) = µ′(b′),

meaning that µ′ is invariant for PY ′ . �

For µ ∈ Ncond(G), let us denote by ΠB the unique stationary probability law
associed to the chain (Bn)n∈N (cf. Prop. 5). It is defined by

∀w ∈ B, ΠB(w) , ανB(w),
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where α , (νB(B))−1 is given by (11) in view of (14). Let us now introduce the
projection

p :

{
B −→W
w 7−→ w|V ,

which is well-defined from Lemma 2. We have the following result:

Proposition 6. Let µ ∈ Ncond(G). Then, the Markov chain (Wn)n∈N is pos-
itively recurrent, and its unique stationary probability distribution is the measure
ΠW defined on W by:

∀w ∈W, ΠW (w) , ΠB(p−1(w)) =
∑

w∈B : w|V=w

ΠB(w).

Proof. Let µ ∈ Ncond(G). We can apply Lemma 5 to PB and PW to prove that
ΠW is a stationary distribution for (Wn)n∈N. Indeed, using the fact that for any
n ∈ N, Wn is the restriction of the word Bn to its letters in V, we have that

∀w,w′ ∈W, ∀w ∈ p−1({w}), PB(w, p−1({w′})) = PW (w,w′).

The measure ΠW is a probability distribution onW, since ΠW (W) = ΠB(p−1(W)) =
ΠB(B) = 1. The chain (Wn)n∈N being irreducible on W, it follows that ΠW is its
unique stationary probability distribution. �

7.4. Concluding the proof. We first show that stab(G, fcfm) = Ncond(G).
First, we know from Proposition 2 that stab(G, fcfm) ⊂ Ncond(G). Also, from
Proposition 1, Ncond(G) 6= ∅, since G is not a bipartite graph. Then, for all
µ ∈ Ncond(G), by Proposition 6, the chain (Wn)n∈N is positively recurrent on W.
So, Ncond(G) ⊂ stab(G, fcfm), and therefore stab(G, fcfm) = Ncond(G).

We now fix µ ∈ Ncond(G), and compute explicitly the unique stationary prob-
ability distribution ΠW of the chain (Wn)n∈N. First, if w = ε, then p−1({w}) = ε
and ΠW (ε) = α, given by (11). Now, fix w 6= ε in W. By (13), we know that
if w = w1 . . . wq ∈ W, q ≥ 1, then p−1({w}) = w1A∗1 w2A∗2 . . . wq A∗q , with

Ai = E({w1, . . . , wi})c, for all i ∈ J1, qK. Applying Lemma 4 and observing that for
all i, µ

(
Ai
)
< 1 since Ai  V, it follows that

ΠW (w) = ΠB(w1A∗1 w2A∗2 . . . wq A∗q)
= ανB(w1A∗1 w2A∗2 . . . wq A∗q)

= α

q∏
i=1

µ(wi)

1− µ
(
Ai
) = α

q∏
i=1

µ(wi)

µ(E({w1, . . . , wi}))
·

The proof is complete.

7.5. Observation on the sequence of copied letters. As we will explain below,
observe that under the fcfm policy, the i.i.d. sequence of arrivals induces an i.i.d.
sequence for the copied letters, with the same distribution on V as on V. Notice
that a similar result was observed for the related construction in [3].

Let M ⊂ V∗ represent the set of words z ∈ V∗ \ {ε} such that W fcfm(z) = ε and
W fcfm(z′) 6= ε for any prefix z′ of z. In other words, a word z ∈ M represents a
sequence of arrivals leading to a first reset to zero of the buffer. The i.i.d. sequence of
letters of distribution µ can be uniquely decomposed into an i.i.d. sequence of words
of M of distribution µM, where for any w = w1 . . . wq ∈ M, µM(w) =

∏q
i=1 µ(wi).

Note also that the distribution µM characterizes µ. In particular, if we have an
i.i.d. sequence of words of M of law µM, then the sequence of letters out of which
the words are made is an i.i.d. sequence of law µ.



STOCHASTIC MATCHING MODEL WITH SELF-LOOPS 21

Let us denote by f : M → M the map that, to a word w = w1 . . . wq ∈ M,
associates the word v = v1 . . . vq, where vi is the class of the item with which wi is
matched. If follows from Prop. 3 of [14] that the map f is well-defined and bijective,

its inverse function being the function g : M → M, w 7→
←−−−
f(←−w ). Furthermore, by

definition of M, the action of f only consists in permuting letters. The measure
µM having a product structure, it follows that f preserves the distribution µM: for
any w ∈M, µM(w) = µM(f−1({w})). Consequently, if (Wi)i∈N is an i.i.d. sequence
of words distributed according to µM, then the sequence (f(Wi))i∈N is also an i.i.d.
sequence of words distributed according to µM, meaning that the sequence of letters
out of which the words f(Wi) are made is an i.i.d. sequence of law µ.

Thus, replacing each arrival by the class of the item with which it is matched
preserves the measure µ⊗N.

8. Remaining proofs

Throughout the section, G is a connected multigraph, Ǧ is its maximal subgraph
and Ĝ denotes its minimal blow-up graph. To simply compare a (G,Φ, µ) system

with the two corresponding matching models on graphs
(
Ĝ, Φ̂, µ̂

)
and

(
Ǧ, Φ̌, µ

)
,

let us add an “hat” (resp. a “check”) to all characteristics of the second (resp. the

third) system: in particular, we denote, for all n, by V̂n (resp. V̌n), the class of

the item entering in the
(
Ĝ, Φ̂, µ̂

)
(resp.

(
Ǧ, Φ̌, µ

)
) system at time n. The natural

Markov chain of the system is then denoted by
{
Ŵn

}
n∈N

(resp.
{
W̌n

}
n∈N) and

its state space, by Ŵ (resp. W̌). Specifically,

Ŵ =
{
w ∈

(
V ∪ V1

)∗
: ∀i 6= j s.t. (i, j) ∈ Ê , |w|i|w|j = 0

}
;

W̌ =
{
w ∈ V∗ : ∀i 6= j s.t. (i, j) ∈ Ě , |w|i|w|j = 0

}
.

Observe that we have W ⊂ W̌ ⊂ Ŵ.
For any measurable mapping F : W→ R (resp. W̌→ R, Ŵ→ R) and any given

w ∈ X (resp. ŵ ∈ Ŵ, w̌ ∈ W̌), we denote by ∆FΦ
µ (w) (resp. ∆̂F Φ̂

µ̂ (ŵ), ∆̌F Φ̌
µ̌ (w̌))

the drift of the chain {Wn}n∈N (resp.
{
Ŵn

}
n∈N

,
{
W̌n

}
n∈N) starting from w (resp.

ŵ, w̌) for a (G,Φ, µ) (resp. (Ĝ, Φ̂, µ̂), (Ǧ, Φ̌, µ̌)) system. In other words, for any
n ∈ N we denote

∆Φ
µF (w) = E

[
F (Wn+1)− F (Wn)

∣∣Wn = w
]

;

∆̂Φ̂
µ̂F (ŵ) = E

[
F (Ŵn+1)− F (Ŵn)

∣∣ Ŵn = ŵ
]

;

∆̌Φ̌
µ̌F (w̌) = E

[
F (W̌n+1)− F (W̌n)

∣∣ W̌n = w̌
]
.

8.1. Drift inequalities. Consider the following mappings,

(15) Q :


Ŵ −→ R+

ŵ 7−→
|V|∑
i=1

(|ŵ|i)2
+
|V1|∑
i=1

(
|ŵ|i

)2
;

(16) L :


Ŵ −→ R+

ŵ 7−→
|V|∑
i=1

|ŵ|i +
|V1|∑
i=1

|ŵ|i;

where it follows from the observation above that Q and L are well defined also on
W and W̌.
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We have the following result,

Proposition 7. Let Φ be an admissible policy on G and µ ∈ M (V). Let Φ̂ be a

matching policy extending Φ on Ĝ and µ̂ be a measure extending µ on V̂. Then,

for all w ∈W we have that ∆Φ
µQ(w) ≤ ∆̂Φ̂

µ̂Q(w).

Proof. Fix w ∈W throughout the proof. Recall that for all i ∈ V1 (if any), we have
that |w|i ∈ {0, 1}, and let us set

Ow , {i ∈ V1 : |w|i = 1},

Zw , {i ∈ V1 : |w|i = 0 and |w|j = 0, for any j ∈ E(i)}.

First, for any i ∈ V2, an incoming item of class i finding a system (G,Φ, µ) in
a state w finds the same possible matches (if any) as an incoming item of class

i finding the system
(
Ĝ, Φ̂, µ̂

)
in a state w. Likewise, if a system (G,Φ, µ) is in

state w, then, for any i ∈ V1 ∩ (Ow)c ∩ (Zw)c, an incoming of class i finds the
same possible matches (if any) as an incoming item of class i or of class i finding

the system
(
Ĝ, Φ̂, µ̂

)
in the state w. As Φ̂ extends Φ, in all cases the choice of

the match (if any) of the incoming item is then the same, or follows the same
distribution in case of a draw, in both systems. Therefore, as µ̂ extends µ, for all
n ∈ N we get that

(17) E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈V2∪V1∩(Ow)c∩(Zw)c}

∣∣Wn = w
]

= E

[(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈V2∪(V1∩(Ow)c∩(Zw)c)∪(V1∩(Ow)c∩(Zw)c)}

∣∣Ŵn = w

]
.

Now, if a system (G,Φ, µ) is in state w, then, for any i ∈ Zw, and incoming item of

class i finds no possible match. All the same, if the system
(
Ĝ, Φ̂, µ̂

)
is in the state

w and the entering item is of class i ∈ Zw or of class i ∈ Zw, then the entering item

does not find any possible match in
(
Ĝ, Φ̂, µ̂

)
. In all cases, one coordinate of the

Markov chain increases from zero to one, and thus for all n ∈ N,

(18) E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈Zw} |Wn = w

]
= µ(Zw)

= µ̂ (Zw) + µ̂
(
Zw
)

= E
[(
Q(Ŵn+1)−Q(Ŵn)

)
1l{V̂n+1∈Zw∪Zw} | Ŵn = w

]
.

Last, if the system (G,Φ, µ) is in the state w, then, the arrival of a class i-item,
for i ∈ Ow, leads to the matching of two items of class i. Therefore, as |w|i = 1 we
obtain

(19) (Q(Wn+1)−Q(Wn)) 1l{Vn+1∈Ow} = −1l{Vn+1∈Ow}.

Now, suppose that the system
(
Ĝ, Φ̂, µ̂

)
is in the state Ŵn = w. Then, if an item

of class i ∈ Ow enters in the system, the corresponding item is not matched and
the number of i-items in the system increases from 1 to 2. Therefore we get that

(20)
(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈Ow} = 31l{V̂n+1∈Ow}.
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If on the other hand, an item of class i ∈ Ow enters in the same system
(
Ĝ, Φ̂, µ̂

)
,

then, the corresponding item match with the stored class i-item and so the coordi-
nate i of the chain decreases to 0. Thus,(

Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈Ow} = −1l{V̂n+1∈Ow}.

Gathering this with (19) and (20) and then taking expectations, we obtain that

(21) E
[
(Q(Wn+1)−Q(Wn)) 1l{Vn+1∈Ow}

∣∣Wn = w
]

= E
[(
Q
(
Ŵn+1

)
−Q

(
Ŵn

))
1l{V̂n+1∈Ow∪Ow}

∣∣ Ŵn = w
]
− 4µ̂ (Ow) .

Finally, (17) together with (18) and (21) give that

(22) ∆Φ
µQ(w) = ∆̂Φ̂

µ̂Q(w)− 4µ̂ (Ow) ,

which concludes the proof. �

Definition 13. Let G be a connected multigraph and Φ be an admissible matching
policy on G. We say that Φ̌ reduces Φ if, for any µ ∈ M (V), whenever the two
systems (Ǧ, Φ̌, µ) and (G,Φ, µ) are in the same state w ∈W and welcome the same
arrival, then Φ̌ and Φ induce the same choice of match, if any.

Proposition 8. Let G = (V, E) be a connected multigraph and Φ be a class admis-

sible policy on G and µ ∈M (V). Let Φ̂ be a matching policy extending Φ on Ĝ, µ̂

a measure extending µ on V̂ and Φ̌ be a policy that reduces Φ on Ǧ. Then the drift
of the respective Markov chains are such that for all w ∈W,

(23) ∆Φ
µL(w) ≤ ∆̂Φ̂

µ̂L(w) ≤ ∆̌Φ̌
µL(w).

Proof. Fix w ∈ X. The only case in which the proof of the left inequality of (23)

differs from that of Proposition 7 is when an item of class i ∈ Ow enters the (Ĝ, Φ̂, µ̂)
system in a state w. Then, we now get that for all n,(

L(Ŵn+1)− L(Ŵn)
)

1l{V̂n+1∈Ow} =
∑
i∈Ow

1l{V̂n+1=i},

which, taking expectations and reasoning as in (22), leads to

∆Φ
µL(w) = ∆̂Φ̂

µ̂L(w)− 2µ̂ (Ow) .

We now turn to the proof of the right inequality of (23). Denote

Pw = {i ∈ V1 : |w|i > 0}.
Fix also n ∈ N, and denote by V̌n, the class of the incoming item at time n in the
(Ǧ, Φ̌, µ) system. First, similarly to (17) and (18) we clearly get that

(24) E
[(
L(W̌n+1)− L(W̌n)

)
1l{V̌n+1∈V2∪(V1∩(Pw)c)} | W̌n = w

]
= E

[(
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈V2∪(V1∩(Pw)c∪(V1∩(Pw)c))}|Ŵn = w

]
.

Now, we also clearly have that

E
[(
L(W̌n+1)− L(W̌n)

)
1l{V̌n+1∈Pw} | W̌n = w

]
= µ(Pw);

E
[(
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈Pw} | Ŵn = w

]
= µ̂(Pw);

E
[(
L(Ŵn+1)− L(Ŵn)

)
1l{V̂n+1∈Pw} | Ŵn = w

]
= −µ̂(Pw),

which, together with (24), implies that

∆̂Φ̂
µ̂L(w) = ∆̌Φ̌

µL(w)− 2µ̂(Pw).
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�

8.2. Proofs of the remaining main results. We are now in position to prove
Theorem 2, Theorem 3 and Proposition 3. Let us first observe the following result,

Lemma 6. For any µ ∈M(V) we have that

µ ∈ Ncond(G) ⇐⇒ µ̂1/2 ∈ Ncond
(
Ĝ
)
,

where µ̂1/2 is the extended measure of µ such that

µ̂1/2(i) = µ̂1/2(i) =
1

2
µ(i) for all i ∈ V1.

Proof. Let us first observe that

(25) For any A ⊂ V, µ(E(A)) = µ̂1/2

(
Ê(A)

)
.

Indeed we have that

µ(E(A)) = µ(E(A) ∩ V2) + µ(E(A) ∩ V1)

= µ̂1/2(E(A) ∩ V2) + µ̂1/2(E(A) ∩ V1) + µ̂1/2

(
E(A) ∩ V1

)
= µ̂1/2

(
(E(A) ∩ V2) ∪ (E(A) ∩ V1) ∪

(
E(A) ∩ V1

))
= µ̂1/2

(
Ê (A)

)
.

⇐: Let µ̂1/2 ∈ Ncond
(
Ĝ
)

and I ∈ I(G). As I ⊂ V2 and in view of (25), we get

that

µ(I) = µ̂1/2(I) < µ̂1/2

(
Ê(I)

)
= µ(E(I)).

⇒: Let us now fix µ ∈ Ncond(G) and Î ∈ I
(
Ĝ
)

. We reason by induction on the

number of elements of Î that belong to V1 ∪V1. First, observe that if Î ⊂ V2, then

Î is also an element of I(G). Thus, as µ ∈ Ncond(G) and in view of (25) we get
that

µ̂1/2(Î) = µ(Î) < µ(E(Î)) = µ̂1/2

(
Ê
(
Î
))

.

Second, assume that for a given Î ∈ I
(
Ĝ
)

, we have µ̂1/2(Î) < µ̂1/2(E(Î)), and let

u ∈ V1 ∪V1 be such that u 6∈ Î and Î ∪ {u} ∈ I
(
Ĝ
)

. Then, we have u /∈ Ê(Î), and

thus also u /∈ Ê(Î). Since u ∈ Ê(Î ∪ {u}), it follows that

µ̂1/2(Ê(Î ∪ {u})) ≥ µ̂1/2(Ê(Î)) + µ̂1/2(u) = µ̂1/2(Ê(Î)) + µ̂1/2(u)

> µ̂1/2(Î) + µ̂1/2(u) = µ̂1/2(Î ∪ {u}),
and we conclude by induction. �

Proof of Theorem 2. Let µ ∈ Ncond(G). From Lemma 6, the measure µ̂1/2 be-

longs to Ncond
(
Ĝ
)

. Let Φ be a matching policy of the Max-Weight class on G,

with β > 0. Clearly, its extension Φ̂ is also of the Max-Weight class on Ĝ. Then, we

know from Theorem 3.2 in [12] that the model
(
Ĝ, Φ̂, µ̂1/2

)
is stable. In particular,

we see in the proof of Theorem 3.2 in [12] that the Foster-Lyapunov Theorem ([6],

Theorem 5.1) can be applied to the chain
(
Ŵn

)
n∈N

for the quadratic function Q.

Specifically, there exist η > 0 and a finite set K̂ ⊂ Ŵ such that ∆̂Φ̂
µ̂Q(ŵ) < −η

for all ŵ 6∈ K̂. Thus, in view of Proposition 7, we have that ∆Φ
µQ(w) < −η for

any w that lies outside the finite subset K = K̂ ∩W. We conclude by applying the
Foster-Lyapunov Theorem to the mapping Q and the compact set K. �
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Proof of Theorem 3. (i) Fix µ ∈ Ncond(G). First, if G is a graph (V1 = ∅) and
G = Ǧ is p-partite complete for p ≥ 3, then the result follows from Theorem 2,
Assertion (16) in [13]: specifically, we have that for some η > 0, for any w ∈W\{ε},

(26) ∆Φ
µL(w) < −η,

and the Foster-Lyapunov criterion applies. Now, if G is not a graph, i.e. V1 6= ∅,
then let

δ = min {µ(E(I))− µ(I) : I ∈ I(G)} ,
which is strictly positive since µ ∈ Ncond(G), and the mapping

Lδ :


W −→ R+

w 7−→
∑
i∈V1

δ

2µ(V1)
|w|i +

∑
i∈V2

|w|i.

Then, for any w ∈ W the set Iw = {i ∈ V : |w|i > 0} is an independent set of
Ǧ, so by the very definition of a complete p-partite graph, there exists a unique
maximal independent set Ǐ of Ǧ such that Iw ⊂ Ǐ. Then, for all w ∈W such that
Iw ∩ V2 6= ∅, for any n, if {Wn = w} the Markov chain can make two types of
moves upon the arrival of Vn+1:

• either one coordinate of Wn decreases from 1 if Vn+1 is of a class in Ǐc =
Ě
(
Ǐ
)
, or of a class in Iw ∩ V1;

• or one coordinate of Wn increases from 1, if Vn+1 is of a class in Ǐ ∩
((Iw)c ∪ V2).

Therefore, for any V2-favorable matching policy Φ we have that

(27) ∆Φ
µLδ(w)

= − δ

2µ(V1)
µ (V1 ∩ Iw) 1l{V1∩Iw 6=∅}+

δ

2µ(V1)
µ
(
V1 ∩ Ǐ ∩ (Iw)c

)
+µ
(
Ǐ ∩ V2

)
−µ
(
Ǐc
)
.

Observe that Ǐ ∩ V2 is an independent set of G, and that Ǐc = E
(
Ǐ ∩ V2

)
. Hence

(27) implies that

∆Φ
µLδ(w) ≤ δ

2µ(V1)
µ
(
V1 ∩ Ǐ ∩ (Iw)c

)
+µ

(
Ǐ ∩ V2

)
−µ

(
E
(
Ǐ ∩ V2

))
≤ δ

2
−δ = −δ

2
.

As this is true for any w outside the finite set {w ∈W : Iw ∩V2 = ∅}, we conclude
again using the Lyapunov-Foster Theorem that stab(G,Φ) = Ncond(G).

(ii) Fix µ ∈ Ncond(Ǧ), and an admissible matching policy Φ. Applying (26) to

Ǧ, we obtain that for any Φ̌ that reduces Φ, for some η > 0 we have ∆̌Φ̌
µL(w̌) < −η

for all w̌ ∈ W̌\{ε}. Combining this with (23), and recalling that W ⊂ W̌ we obtain
that ∆Φ

µL(w) < −η for all w ∈W \ {ε}, which concludes the proof. �

Proof of Proposition 3. (i) Remark that for any ŵ ∈ Ŵ, the set {i ∈ V : |ŵ|i > 0}
is again an independent set of Ǧ. So we can apply, for any µ̂ ∈ Ncond(Ĝ), the
exact same argument as for assertion (i) in Theorem 3, by replacing V1 by V1 ∪V1.

(ii) Let µ̂ be a an element of M (V̂) whose reduced measure µ belongs to Ncond(Ǧ).

Let Φ̂ be an admissible policy on V̂, Φ be a policy on V such that Φ̂ extends Φ, and
Φ̌ be a policy reducing Φ on Ǧ.

First, as in (26) there exists η > 0 such that ∆̌Φ̌
µL(w) < −η for any w ∈W \{ε}.

Fix ŵ in Ŵ \ {ε}. Then define the permutation γ of V̂ by{
γ(i) = i and γ(i) = i if |ŵ|i > 0 and |ŵ|i = 0, i ∈ V1,

γ(j) = j else, for any j ∈ V̂.
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Let us also denote by γ(ŵ), the word obtained from w by replacing the letters of ŵ
by their image through γ, in other words for all i ∈ J1, |ŵ|K, γ(ŵ)i = γ(ŵi). Observe
that γ(ŵ) is clearly an element of W \ {ε}, so in view of the above observation we
have that

(28) ∆̌Φ̌
µL(γ(ŵ)) < −η.

Now, as i and i have the same connectivity in Ĝ for any i ∈ V1, for all n the
conditional distribution of Ŵn+1 given {Ŵn = ŵ} in the (Ĝ, Φ̂, µ̂) system equals

that of Ŵn+1 given {Ŵn = γ(ŵ)} in the (Ĝ, Φ̂, µ̂◦γ) system. In particular, we have
that

(29) ∆Φ̂
µ̂ (ŵ) = ∆Φ̂

µ̂◦γ(γ(ŵ)).

On the other hand, as γ(ŵ) is an element of W and the measure µ̂ ◦ γ ∈ M (V̂)
clearly extends the measure µ, the right inequality of (23) implies that

∆̂Φ̂
µ̂◦γL(γ(ŵ)) ≤ ∆̌Φ̌

µL(γ(ŵ)),

and it follows from (28-29) that ∆Φ̂
µ̂ (ŵ) < −η. As this is true for any ŵ in Ŵ \ {ε},

the proof is complete. �
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