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Introduction

This work is a state-of-the-art survey of some theoretical and numerical studies related to the constitutive law error functional often used to solve a large class of inverse problems. These problems play a preeminent role in various fields of applied science and engineering [START_REF] Kern | Numerical Methods for Inverse Problems[END_REF]. They have been extensively investigated over the last two decades with numerous successful applications that range from manufacturing engineering (non-destructive testing, fracture, fatigue), geophysics explorations (detection of anti-personnel landmines, aquifers) to medical imaging (location of tumors, clots). The list of applications is not exhaustive. Bonnet and Constantinescu [START_REF] Bonnet | Inverse problems in elasticity[END_REF] gave an overview of some inverse problems arising in the context of linear elasticity, namely the identification of distributions of elastic moduli, model parameters or buried objects such as cracks. Indeed, the inverse problems are usually motivated by the need to overcome a lack of information. In order to solve such kind of problems, often ill-posed [START_REF] Hadamard | Lectures on the Cauchy problem in linear partial differential equations[END_REF], one usually transforms it into an optimization one by minimizing some functional. A highly investigated one is the energy-gap functional. This retrospective study is devoted to a concise overview about the history of this functional from an impedance-computed tomography algorithm to the construction of an energy-gap functional, known as the Kohn-Vogelius functional. This functional has been successfully used within the inverse problem community in wide applications.

The outline of this review is as follows. In the forthcoming, we briefly survey the theory and the history of the Wexler algorithm. The third section is devoted to the construction of the constitutive law error functional and we discuss some of its basic properties. The application to a wide variety of problems of recent interest is the core of Section 4, checking the effectiveness of the functional. While, in the fifth section, we focus on the application of the energy gap functional to the system's case. Numerous references are made.

Impedance computed tomography algorithm

The "Electrical Impedance Tomography" (EIT) [START_REF] Cheney | Electrical impedance tomography[END_REF] is used in medical imaging to determine the electrical conductivity of a part of the body by measuring the currents and voltages at a finite number of electrodes at the surface [START_REF] Lionheart | Electrical Impedance Tomography: Methods, History and Applications[END_REF]. This inverse problem has attracted great attention in recent years due to the numerous applications from biomedical to geophysical [START_REF] Adler | Electrical Impedance Tomography: Tissue Properties to Image Measures[END_REF][START_REF] Barth | Detecting stochastic inclusions in electrical impedance tomography[END_REF][START_REF] Borcea | Electrical impedance tomography[END_REF][START_REF] Yorkey | Comparing reconstruction algorithms for electrical impedance tomography[END_REF]. Indeed, in biomedical community, EIT can be used to the monitoring of breast cancer detection. In geophysical area, it can be useful for locating of seepage from a toxic waste dump site. Finally, EIT can also be used in nondestructive testing, e.g. the detection of small defects such as cracks, cavities and inclusions (see [START_REF] Barth | Detecting stochastic inclusions in electrical impedance tomography[END_REF][START_REF] Borcea | Electrical impedance tomography[END_REF][START_REF] Gong | A fast solver for an inverse problem arising in bioluminescence tomography[END_REF] and the references provided therein).

In 1985, Wexler et al. [START_REF] Wexler | Impedance-computed tomography algorithm and system[END_REF] pioneered a double constraint method to recover an unknown impedance distribution by the impedance computed tomography reconstruction process, that is by means of steady-state voltage and current flux measurements at the boundary, governed by the following Poisson equation

∇ (κ∇u) = 0 in Ω ⊂ R n , for n ≥ 2,
where u is the voltage, κ the positive and real valued conductivity to be determined and σ = κ∇u the current flow vector, combined with information about the Cauchy data of finitely many solutions. The method relies on an iterative algorithm involving successive estimates of potential-conductivity-potential, etc. until the correct conductivity is reached.

Given N several pairs of measurements {T i , φ i } N i=1 , namely Cauchy data, a single cycle of the process can be resumed in the following sequences of events i) Solve N Neumann problems (related to the Neumann data φ i )

∇ (κ∇v i ) = 0 in Ω, κ∇v i • ν = φ i on ∂Ω,
i.e. compute the potential v i with Neumann boundary conditions and set σ i = κ∇v i . ν is the normal vector to ∂Ω.

The electric field intensity E is then given by the negative gradient of the potential, i.e. E = -∇v i . As a consequence, the electrical current density distribution is given by J = κE = -κ∇v i which is Ohm's law.

ii) Solve N Dirichlet problems (related to the Dirichlet data T i )

∇ (κ∇u i ) = 0 in Ω, u i = T i on ∂Ω,
i.e. compute the potential u i with Dirichlet boundary conditions.

iii) Calculation of the conductivity: A unique relationship between the pair (Neumann, Dirichlet) exists when the boundary conditions are compatible for a given conductivity κ. To this end, a least square technique is employed to produce an estimate of the conductivity profile in an average sense. Indeed, with {σ i } N i=1 and {u i } N i=1 fixed as obtained by i) and ii), update κ(x) by minimizing the corresponding "residual fluxes"

{σ i -κ∇u i } N i=1 E(κ) = Ω N i=1 |σ i -κ∇u i | 2 dx over κ ∈ A ad , with A ad = {κ ∈ L ∞ (Ω) : 0 < κ 1 ≤ κ(x) ≤ κ 2 in Ω}.
The basic idea herein is that E is a non-negative form and that E ≡ 0 exactly when u i = v i solves the following problem It should be noted that in [START_REF] Wexler | Impedance-computed tomography algorithm and system[END_REF] the last function was defined by the square of the residual

     ∇ (κ∇u i ) = 0 in Ω, u i = T i on ∂Ω, κ∇u i • ν = φ i on ∂Ω, for each i, 1 ≤ i ≤ N . So, κ is consistent
r = Ω N i=1 J + κ∇u i • J + κ∇u i dx,
where {u i } N i=1 are the potentials. To soothe the disgruntled of Ohm's law, the minimization of the function r is sought with the calculated data J (Step i) and u (Step ii).

Many approaches had been proposed in literature without mathematical analysis in that time 1987 s until that Kohn and Vogelius focus their attention to the Wexler approach. The performance of Wexler's algorithm is reported in [START_REF] Wexler | Impedance-computed tomography algorithm and system[END_REF]. However, since the functionals are not lower semi-continuous [START_REF] Kohn | Relaxation of a variational method for impedance computed tomography[END_REF], the solution may have spatial oscillations. To overcome this difficulty, Kohn and Vogelius proposed either follow the traditional way and add a regularizing term ε|∇κ| 2 to the functional or propose an alternative approach based on relaxation that we will expose in the next section.

Constitutive Law Misfit (CLM) functional

The numerical solution of the EIT problem has received a lot of attention in the literature and many algorithms, which can be classified as iterative [START_REF] Borcea | Electrical impedance tomography[END_REF] and noniterative [START_REF] Borcea | Electrical impedance tomography[END_REF][START_REF] Siltanen | A direct reconstruction algorithm for electrical impedance tomography[END_REF], have been proposed. The iterative methods can themselves be classified as output least squares [START_REF] Borcea | Electrical impedance tomography[END_REF][START_REF] Yorkey | Comparing reconstruction algorithms for electrical impedance tomography[END_REF] and variational ones [START_REF] Borcea | Electrical impedance tomography[END_REF][START_REF] Wexler | Impedance-computed tomography algorithm and system[END_REF]. In this review, we shall focus our attention on the variational approach, also known as the equation-error formulation [START_REF] Kohn | Numerical implementation of a variational method for electrical impedance tomography[END_REF][START_REF] Kohn | Relaxation of a variational method for impedance computed tomography[END_REF][START_REF] Wexler | Impedance-computed tomography algorithm and system[END_REF]. For non-iterative algorithms as well as for output least squares, we refer the reader to [START_REF] Borcea | Electrical impedance tomography[END_REF]. In this section, the philosophy behind the Constitutive law misfit functional is presented.

With the disadvantages of Wexler's algorithm in mind, Kohn and Vogelius proposed and analyzed a variational approach [START_REF] Kohn | Relaxation of a variational method for impedance computed tomography[END_REF] closely related to that proposed originally by Wexler et al. [START_REF] Wexler | Impedance-computed tomography algorithm and system[END_REF] to impedance computed tomography. Firstly, they suggested [START_REF] Kohn | Relaxation of a variational method for impedance computed tomography[END_REF] a reconstruction algorithm which is a modification of the Wexler algorithm to make it "an alternating direction" one. Indeed, they discussed the minimization of

J (κ) = Ω N i=1 1 √ κ σ i - √ κ∇u i 2 dx over κ ∈ A ad subject to div σ i = 0, u i| ∂Ω = T i , σ i • ν | ∂Ω = φ i 1 ≤ i ≤ N.
Then, they keep Steps (i and ii) of the Wexler process, described in the previous Section, unchanged and instead of Step (iii) they suggested iii) With {σ i } N i=1 and {u i } N i=1 fixed as determined by the first two steps of the Wexler algorithm, update κ(x) so as to minimize

J (κ) = Ω N i=1 1 √ κ σ i - √ κ∇u i 2 dx over κ ∈ A ad subject to the point-wise constraint κ(x) ∈ K (κ 1 , κ 2 ) defined by K (κ 1 , κ 2 ) = {κ : the eigenvalues k 1 ≤ k 2 of κ satisfy κ 1 ≤ k 1 , k 2 ≤ κ 2 , κ 1 κ 2 ≤ (κ 1 + κ 2 -k 2 ) k 1 },
i.e. the minimum of J is over an appropriate family of symmetric matrix (Theorem 3.1 [START_REF] Kohn | Relaxation of a variational method for impedance computed tomography[END_REF]).

One of the advantages of this new technique, based in relaxation, is that it offers an alternative approach by identifying the oscillations and building them into the functional. So, the unknown parameter can be stably predicted by boundary measurements as the "relaxed problem" is lower semi-continuous [START_REF] Kohn | Relaxation of a variational method for impedance computed tomography[END_REF]. It is important to note that the "relaxed problem" generally has fewer local minimum than the original one. The second advantage concerns the behavior of the discretized relaxed problem under mesh refinement. Indeed, the minimization of the relaxed functional on a coarse mesh is roughly equivalent to the minimization of the original one on a finer mesh. This new variational method had been implemented by Kohn and McKenney [44].

In the rest of the paper, we review some applications of CLM functional according to two classifications: scalar case and system case. For the discussion by scalar, free boundary problems, domain identification problems, data completion problems and parameters estimation problems are studied. Regarding the classification by system; Stokes flow, Navier-Stokes flow, Darcy equations and Elasticity systems are discussed. A comparison of CLM functional with other ones is presented in the case of parameters estimation, thus enriching our review.

CLM functional applications: Scalar case

In this section, we intend to show the trends of the constitutive law misfit functional allowing the reader to have then an insight on its effectiveness. The range of the energy-like error functional applications is very broad. The approach is especially attractive for free boundary problems and inverse problems such as domain identification, data completion and parameters estimation. In the sequel, some theoretical and numerical problems solved by means of the constitutive law error approach are presented.

Free boundary problems

Due to the remarkably wide range of challenging applications in real life of the Bernoulli problem, it is extensively studied [START_REF] Ben Abda | A Dirichlet-Neumann cost functional approach for the Bernoulli problem[END_REF][START_REF] Bacani | On the first-order shape derivative of Kohn-Vogelius cost functional of the Bernoulli problem[END_REF][START_REF] Bacani | The second-order shape derivative of Kohn-Vogelius-type cost functional using the boundary diferentiation approach[END_REF][START_REF] Bacani | Solving the exterior Bernoulli problem using the shape derivative approach[END_REF][START_REF] Bacani | The second-order Eulerian derivative of a shape functional of a free Bernoulli problem[END_REF][START_REF] Eppler | A regularized Newton method in electrical impedance tomography using shape Hessian information[END_REF] and particularly solved by minimizing the energy-like error functional over a class of admissible domains subject to two boundary value problems. To this end, two state functions are introduced. Indeed, one satisfies the mixed boundary value problem and the second one satisfies the pure Dirichlet problem. Thus, the shape optimization problem under consideration is the minimization of the L 2 -distance of the gradients of the state functions.

It is important to note that minimizing a shape functional often requires some gradient information and Hessian. Indeed, the first-order shape derivative of the energy-like error functional has already been carried out by using both shape and material derivatives of the states in [START_REF] Ben Abda | A Dirichlet-Neumann cost functional approach for the Bernoulli problem[END_REF] for both exterior and interior Bernoulli problem and in [START_REF] Bacani | Solving the exterior Bernoulli problem using the shape derivative approach[END_REF] for only the exterior Bernoulli problem and by using the Hölder continuity of the state variables satisfying the Dirichlet and Neumann problems in [START_REF] Bacani | On the first-order shape derivative of Kohn-Vogelius cost functional of the Bernoulli problem[END_REF] but without introducing any adjoint variables. In [START_REF] Eppler | A regularized Newton method in electrical impedance tomography using shape Hessian information[END_REF], to numerically solve the exterior Bernoulli problem, the authors also used the energy-like error functional but restricted to starlike domains, while in [START_REF] Ben Abda | A Dirichlet-Neumann cost functional approach for the Bernoulli problem[END_REF] the obtained optimization problem is solved by a steepest descent algorithm using the gradient information combined with the level set method for general domains and for both exterior and interior Bernoulli problems.

Moreover, the second-order shape derivative was computed via two different ways. One [START_REF] Bacani | The second-order Eulerian derivative of a shape functional of a free Bernoulli problem[END_REF] is through the approach of Sokolowski and Zolesio [START_REF] Sokolowski | On the topological derivative in shape optimization[END_REF] by domain differentiation technique. The other way is based on the boundary differentiation scheme [START_REF] Bacani | The second-order shape derivative of Kohn-Vogelius-type cost functional using the boundary diferentiation approach[END_REF]. Furthermore, the second-order shape derivative of the energy-like error functional for Bernoulli problem is computed using Tiihnen's approach [START_REF] Bacani | The second-order shape derivative of Kohn-Vogelius-type cost functional using the boundary diferentiation approach[END_REF].

Domain identification problems

The domain identification problem has been an important topic and remains an area of active research since it arises in many industrial and engineer applications. Based on the functional exposed in the previous section and introduced by Kohn and Vogelius for parameters identification via linear elliptic problems, a new functional is derived for geometrical inverse problems. Indeed, an equivalent form of the energy-like error functional is given.

The constitutive law misfit functional has been used with considerable success in a wide collection of models. For instance, in the framework of shape optimization problems, the connection of the energy-like error functional with the shape optimization theory enables to solve various types of problems by the means of gradient method. This method turns out be the keystone of the analysis behind the domain identification problem. This part is concerned with the identification of unknown domains governed by elliptic partial differential equations.

Typically, many physical problems [START_REF] Jaïem | An energy-gap cost functional for cavities identification[END_REF] governed by partial differential equa-tion with overdetermined data lead to an optimization problem of the form

(OP) min Ω J (u Ω , Ω), subject to e(u Ω ) = 0,
where J denotes the functional that depends on a domain Ω as well as on a function u Ω which is the solution of a partial differential equation e(u Ω ) = 0 posed on Ω. We will denote by Θ a family of sets with a common part of the boundary ∂Ω c . We are interested in finding the unknown part ∂Ω i from overdetermined data, namely temperature and "flux" on ∂Ω c . We assume that the boundary

∂Ω i satisfies σ • ν = 0 on ∂Ω i , ∀Ω ∈ Θ.
For Ω ∈ Θ, let us introduce the following sets

T (Ω) = u ∈ H 1 (Ω); u |∂Ωc = T and Φ(Ω) = σ ∈ L 2 (Ω); div σ = 0, σ • ν |∂Ω i = 0, σ • ν |∂Ωc = φ .
For k a strictly positive function, the energy-like error functional is then defined by

F(Ω, u, σ) = 1 2 Ω 1 √ k σ - √ k∇u 2 , ∀(u, σ) ∈ T (Ω) × Φ(Ω).
One can get

F(Ω, u, σ) = 1 2 Ω k∇u 2 + 1 2 Ω σ 2 k + ∂Ωc φ T.
It is easy to check that the last term is known and independent of Ω.

A positive functional can therefore be derived

F(Ω) = min (u,σ)∈T (Ω)×Φ(Ω) F(Ω, u, σ).
Let Ω 0 be the domain to identify, (T 0 , φ 0 ) the "real" couple correspondent to Ω 0 and (T, φ) the overdetermined boundary data. So, we get

F(Ω 0 ) = 0, T 0 = Arg min T (Ω 0 ) 1 2 Ω 0 k ∇u 2 and φ 0 = Arg min Φ(Ω 0 ) 1 2 Ω 0 1 k σ 2 .
So, the identification problem of Ω is transformed into an optimization one, namely the minimization of F over the set of admissible domains Θ.

The following property will be needed to provide a new interesting expression for the functional F in order to numerically resolve the optimization problem.

Proposition 4.1.

∀Ω ∈ Θ min σ∈Φ(Ω) 1 2 Ω σ 2 k = -min u∈H 1 (Ω) 1 2 Ω k ∇u 2 + ∂Ωc φ u .
Proof. Let u be the argument (defined up to a constant) of the minimum in H 1 (Ω) of the functional

J (Ω) = 1 2 Ω k ∇u 2 + ∂Ωc φ u, u ∈ H 1 (Ω).
u exists due to the coercivity and the convexity of J . Then, for ϕ ∈ H 1 (Ω), we get

Ω k∇u ∇ϕ = - ∂Ωc φ ϕ. (1) 
Moreover, the argument σ of the minimum on Φ(Ω) of the functional

j(σ) = 1 2 Ω σ 2 k , satisfies Ω 1 k σ • (α -σ) = 0, ∀α ∈ Φ(Ω).
Then, we shall prove that σ = -k ∇u. Let's denote

A = Ω 1 k (-k ∇u) • (α -σ) α ∈ Φ(Ω),
One gets

A = Ω (σ -α) • ∇u, = ∂Ω (σ -α) • ν u - Ω div (σ -α) u, = 0.
Furthermore, we get div (-k ∇u) = 0 deduced from [START_REF] Ben Abda | A Dirichlet-Neumann cost functional approach for the Bernoulli problem[END_REF]. From the unicity of σ, we deduce σ = -k ∇u and form (1), we get min

Φ j(σ) = j(σ) = 1 2 Ω σ 2 k = 1 2 Ω k ∇u 2 .
min

H 1 (Ω) J (u) = J (u) = 1 2 ∂Ω k∇u 2 + ∂Ωc φ u = - 1 2 Ω k∇u 2 .
Thanks to the established property, the function F is rewritten as

F(Ω) = min u∈T (Ω) 1 2 Ω k∇u 2 -min u∈H 1 (Ω) 1 2 Ω k∇u 2 + ∂Ωc φ u + ∂Ωc φ T.
This new expansion of F is much more manageable numerically since it removes the condition div σ = 0, a numerical difficulty. Moreover, it only involves two problems depending on u, formulated on the same open domain with different boundary conditions, this feature can also be exploited in digital applications. Denoting u D the solution of a Dirichlet problem with a Dirichlet data T and u N the solution of a Neumann problem with a Neumann data φ. The function F in terms of boundary integrals involving only the boundary data is then

F(Ω) = 1 2 ∂Ωc φ (T -u N ) ds + 1 2 ∂Ωc T (φ -σ D • ν)ds.

Some examples of geometric inverse problems solved by CLM functional

To solve a geometric inverse problem, one method is to transform it into a topological optimization one by minimizing a cost-functional. The following references highlight the use of the constitutive law error functional for this issue. Indeed, in [START_REF] Bonnet | Topological sensitivity of energy cost functional for wave-based defect identification[END_REF], an inclusion identification problem related to 2D acoustic configuration is treated. In order to solve this scalar linear acoustic problem, a heuristic identification method based on the computation of the topological sensitivity (TS) of an energy-like functional is considered. This method consists in considering locations where TS attains its lowest negative values as the most likely sites for a defect.

In [START_REF] Hassine | One-iteration reconstruction algorithm for geometric inverse problems[END_REF], Hassine et al. focus on the detection of objects immersed in an isotropic media from overdetermined boundary data. To avoid regularization needed to solve ill-posed shape optimization problems, they transform the geometric inverse problem to a topological one by minimizing the constitutive law error functional since it is a self-regularization technique. A topological sensitivity analysis is derived for this functional. To solve numerically the inverse problem, a one-iteration and accurate algorithm was proposed.

One can remark that the previous works are based on the first-order asymptotic expansion of the constitutive law error functional. Since this approach is sufficient only for small unknown objects, some researchers focus recently their attention to high-order terms in the asymptotic expansion of the constitutive law error functional formula to deal with the general case of objects to detect with finite size.

In [START_REF] Khelifi | Asymptotic formula for detecting inclusions via boundary measurements[END_REF], authors were concentrated with a geometric inverse problem related to the detection of objects from boundary measurements, for Laplace operator in a three-dimensional domain. Following the previously mentioned works, they propose to change the inverse problem to the minimization of a function measuring the difference between the Dirichlet and Neumann solutions. Then, they derive a high-order topological asymptotic expansion of the semi-norm constitutive law error functional, when a Dirichlet perturbation is introduced in the initial domain. The obtained expansion is of higher interest since it allows the detection of objects with any size of perturbation. Moreover, this expansion is especially crucial when the topological derivative of order one is equal to zero for some critical points in the initial domain.

The second class of methods developed to solve a geometric inverse problem is to transform it into a shape optimization one again by minimizing a CLM functional. In fact, in [START_REF] Jaïem | An energy-gap cost functional for cavities identification[END_REF], Jaïem et al. focus on an ill-posed cavities identification problem governed by Laplace equation with overdetermined boundary data. They rephrase the inverse problem to a shape optimization one through a Dirichlet-Neumann misfit function. The shape derivative of this functional was derived. Using this gradient information combined with the level set method, a steepest descent algorithm was performed to identify cavities.

Data completion problems

In this section, we review data completion problem associated with the Laplace system [START_REF] Andrieux | Solving Cauchy problems by minimizing an energy-like functional[END_REF]. More precisely, the ill-posed Cauchy problem considered is the reconstruction of unreachable boundary data from overdetermined boundary data available over the accessible part of the boundary.

Given a flux φ and the corresponding temperature T on Γ c , one wants to recover the corresponding flux and temperature on the remaining part of the boundary Γ i , where Γ c and Γ i constitute a partition of the whole boundary ∂Ω of the domain of interest Ω. The problem is therefore set as follows.

Find (ϕ, t) on Γ i such that there exists a temperature field u satisfying

     ∇ (κ∇u) =0 in Ω, κ∇u. ν =φ on Γ c , u =T on Γ c ,
where the conductivity field κ is real analytic in L ∞ (Ω) and ν is the normal vector to Γ c . Let us consider, for a given pair (η, τ

) ∈ H -1/2 (Γ i ) × H 1/2 (Γ i ), the two fol- lowing mixed well-posed problems      ∇ (κ∇u 1 ) =0 in Ω, u 1 =T on Γ c , κ∇u 1 . ν + αu 1 =η + ατ on Γ i , and      ∇ (κ∇u 2 ) =0 in Ω, κ∇u 2 . ν =φ on Γ c , κ∇u 2 + βu 2 =η + βτ on Γ i ,
for α and β are non-negative real coefficients. Herein, we restrict to the second case (ii) which is represented as follows

     ∇ (κ∇u 1 ) =0 in Ω, u 1 =T on Γ c , u 1 =τ on Γ i ,      ∇ (κ∇u 2 ) =0 in Ω, κ∇u 2 . ν =φ on Γ c , u 2 =τ on Γ i .
The solutions u 1 and u 2 are functions of τ such that u 1 = u 1 (τ ) and u 2 = u 2 (τ ).

The next step is to build an error functional on τ using a semi-norm J . Indeed, we propose to solve the data completion problem via the following minimization problem (ϕ, t) = arg min

τ ∈H 1/2 (Γ i ) J (τ ). (2) 
where

J (τ ) = Ω (κ∇u 1 -κ∇u 2 ) • (∇u 1 -∇u 2 ) dx, = Γc (κ∇u 1 -φ) (T -u 2 ) ds, with τ ∈ H 1/2 (Γ i ).
We remark that the cost functional is a convex, quadratic and positive form which reaches its zero minimum for u 1 = u 2 + const. Furthermore, this function is expressed in terms of boundary integrals which involves the inaccessible boundary data, as it evaluates the energy of the gap between Neumann and Dirichlet solutions.

The solution u 1 , respectively u 2 can be written as the sum of two solutions u 0 1 and u * 1 , respectively u 0 2 and u * 2 as following

       ∇ κ∇u 0 1 =0 in Ω, u 0 1 =T on Γ c , u 0 1 =0 on Γ i ,      ∇ (κ∇u * 1 ) =0 in Ω, u * 1 =0 on Γ c , u * 1 =τ on Γ i , and 
       ∇ κ∇u 0 2 =0 in Ω, κ∇u 0 2 . ν =φ on Γ c , u 0 2 =0 on Γ i ,      ∇ (κ∇u * 2 ) =0 in Ω, κ∇u * 2 . ν =0 on Γ c , u * 2 =τ on Γ i .
The solution of the problem (2) is recovered if and only if

κ∇u 1 . ν = κ∇u 2 . ν on Γ i .
The last equation is nothing but a paraphrase of the first order optimality condition in terms of an interfacial operator. The last Condition leads to the following boundary equation

∇u * 1 . ν -∇u * 2 . ν = -∇u 0 1 . ν -∇u 0 2 . ν on Γ i . (3) 
We introduce the Steklov-Poincaré operator 

S(τ ) = ∇u * 1 . ν -∇u * 2 . ν on Γ i .

Some examples of data completion problems solved by CLM functional

In [START_REF] Caubet | A new method for the data completion problem and application to obstacle detection[END_REF], the data completion problem is studied through the minimization of a regularized constitutive law error functional for Laplace's equation. Since this functional to be minimized is quadratic, they computed its minimum by solving the linearized equation. Moreover, the main goal of their paper was to solve an inverse obstacle problem. To this end, they use the previous data completion step to reconstruct Dirichlet and Neumann boundary data on the boundary of the real inclusion and then use the so-called trial method in order to update the shape of the inclusion.

Parameters estimation problems

Robin coefficient identification

Robin inverse problems have been extensively studied by many authors in order to identify the Robin coefficient from over-specified boundary data. Moreover, the identification method is established for a vast class of cost functionals, which includes the usual least squares misfit functionals often used for identification. In [START_REF] Jin | Conjugate gradient method for the Robin inverse problem associated with the Laplace equation[END_REF], this kind of functional is employed and the optimization problem is solved using the adjoint method and the conjugate gradient method. Furthermore, Chaabane et al. [START_REF] Chaabane | Identification of Robin coefficients by the means of boundary measurements[END_REF] have investigated an energy-like error functional combined with the gradient method for the parameters identification. This section contains a comparison of both functionals for the Robin inverse problems. To address this issue, we introduce the Robin boundary value problem for the Laplace equation. Let Ω be an open bounded set of R 2 with a piece-wise smooth boundary Γ divided into two disjoint parts Γ c and Γ i (see Figure 2). The problem can be modeled as follows

     ∆u = 0 in Ω, ∇u. ν = f on Γ c , ∇u. ν + γu = 0 on Γ i ,
where ν is the outward normal vector of Γ.

Γc

Γi Ω ν The inverse problem under consideration can be stated as follows: Given the loads f on Γ c and measuring the field g on Γ c , one wants to recover the Robin coefficient γ. On the exterior boundary Γ c , there are twice too many prescribed data. To address this issue, it is convenient to reformulate the inverse problem by introducing two different well-posed problems, with a couple of solutions u D and u N defined in Ω. Each of them satisfy the Laplace equations in Ω as well as the Robin boundary conditions on Γ i . On the boundary Γ c , we attribute to the first problem, a Dirichlet condition and to the second one a Neumann boundary conditions as follows

(P D )      ∆u D = 0 in Ω, u D = g on Γ c , ∇u D . ν + γu D = 0 on Γ i and 
(P N )      ∆u N =0 in Ω, ∇u N . ν =f on Γ c , ∇u N . ν + γu N =0 on Γ i .
There are several ways to transform the inverse problem into a shape optimization problem. In this context, we will consider the following three formulations

• L 2 -gap functional J 0 (γ) = Ω |u D -u N | 2 dx.
• Energy gap functional

J 1 (γ) = Ω |∇(u D -u N )| 2 dx.
• Energy gap functional with a penalty term

J 2 (γ) = Ω |∇(u D -u N )| 2 dx + Γ i γ |u D -u N | 2 ds.
Remark 4.3. The L 2 -gap functional measures the discrepancy between a Dirichlet solution based on the measurements and a Neumann one based on the prescribed loads. However, the energy gap functional is based on an appropriate norm between both solutions, as the energy of their difference. The energy-gap functional with a penalty term is exactly the variational form of the Robin boundary value problem.

In order to give the analytic expressions of these three functionals, one considers the explicit solution u defined in the domain Ω bounded by two concentric circles Γ i and Γ c centered at the origin, of radius R 1 = 1 and R 2 = 2 (see Figure 2) given by u(r, θ) = α ln(r) + β and such that 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.

with f = λ ∈ R and g = 1.

The Dirichlet and the Neumann solutions are explicitly given by

u D (r, θ) = 1 -γ ln(r) 1 -γ ln(2) , u N (r, θ) = 2λ ln(r) - 1 γ .
We write the gap between both solutions in function of two constants A and B as follows

u D -u N = A ln(r) + B,
where

A = -2λ (1-γ ln(2))-γ 1-γ ln(2)
and B = γ+2λ-2λγ ln( 2) γ(1-γ ln( 2)) . The explicit form of the L 2 -gap functional is

J 0 (γ) = 2π 2 ln 2 (2) -2 ln(2) + 3 4 A 2 + 4π 2 ln(2) - 3 4 AB + 2πB 2 .
The explicit form of the energy error functional is

J 1 (γ) = 2π ln(2)A 2 .
The energy error functional with a penalty term is given by

J 2 (γ) = 2π ln(2)A 2 + γB 2 .
We remark that there is a considerable difference between the behavior of the three functionals as depicted in Figure 3. The L 2 -gap functional is flattened and so it will be difficult to determine the minimum value, in contrast to both energy-gap error functional J 1 and J 2 which are a convex function. Moreover, the energy error functional J 2 is better than J 1 since we use a penalty term.

CLM functional applications: System case

This section enumerates various applications of the constitutive law misfit functional for the system cases: Stokes flow, Navier-Stokes flow, Darcy equations, elasticity systems.

Stokes flow

Alvarez et al. [START_REF] Alvarez | Identification of immersed obstacles via boundary measurements[END_REF] considered the problem of the identification of an inaccessible rigid body in a viscous fluid via boundary measurements on the exterior boundary for the case of steady-state and unsteady state Stokes flow. An important identifiability result via the measurement of both the velocity of the fluid and the Cauchy forces on some part of the boundary is proved by a suitable application of the unique continuation property for the Stokes equations. This result ensures that the energy-like misfit functional has a unique global minimum. The first derivative of this mapping, which is necessary in order to apply an optimization algorithm studied in an optimal control approach is computed.

Ben Abda et al. [START_REF] Ben Abda | Topological sensitivity analysis for the location of small cavities in Stokes flow[END_REF] considered the inverse problem of determining small flaws immersed in fluid from velocities boundary measurements. It is a classical geometric inverse problem that arises in several applications such as nondestructive material testing. The geometrical inverse problem was rephrased into an optimal design one. The optimal design functional to minimize in order to find out the flaws is the misfit, with respect to some appropriate norm, between a Dirichlet solution based on the measurements and a Neumann one based on the prescribed loads. To minimize this misfit functional, they resort to the topological sensitivity analysis. Indeed, the sensitivity of the misfit functional with respect to the presence of a small flaw is computed and a one-shot algorithm was proposed to numerically solve the inverse problem. The efficiency of the proposed method was illustrated by several numerical experiments.

Inspired by the work of Ben Abda et al. [START_REF] Ben Abda | Topological sensitivity analysis for the location of small cavities in Stokes flow[END_REF], Caubet and Dambrine [START_REF] Caubet | Localization of small obstacles in Stokes fow[END_REF] considered too the problem of the localisation of small obstacles in Stokes flow in three dimensional case. As in [START_REF] Ben Abda | Topological sensitivity analysis for the location of small cavities in Stokes flow[END_REF], the geometric inverse problem was rephrased to a topological optimization one using the constitutive law error approach. However, contrary to the problem studied in [START_REF] Ben Abda | Topological sensitivity analysis for the location of small cavities in Stokes flow[END_REF] where Neumann Boundary conditions on the boundary of objects are considered, Caubet and Dambrine [START_REF] Caubet | Localization of small obstacles in Stokes fow[END_REF] impose Dirichlet Boundary conditions on the inclusions boundaries. Moreover, the constitutive law error approach leads to consider Dirichlet and mixed boundary conditions on the exterior boundary. These modifications lead additional difficulties comparing to the work of Ben Abda et al. [START_REF] Ben Abda | Topological sensitivity analysis for the location of small cavities in Stokes flow[END_REF].

Caubet et al. [START_REF] Caubet | A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid[END_REF] studied the problem of the reconstruction of an inclusion immersed in a fluid. It is a geometric inverse problem where the fluid motion is governed by the classical Stokes equations with non-homogeneous Dirichlet boundary condition on the exterior boundary and homogeneous Dirichlet boundary condition on the interior boundary. To solve this inverse problem, the authors resort to the tools of shape optimization by minimizing a constitutive law error functional. In order to study the stability of the inverse problem, the shape Hessian of the functional was computed. Moreover, the compactness of the Riesz operator corresponding to this shape Hessian at a critical point is shown which explains why the problem is ill-posed. Some numerical simulations were presented in the bidimensional which highlight the efficiency of the approach. An adaptative method is proposed in the case of high frequencies to remove the appeared oscillations.

Caubet et al. [START_REF] Caubet | On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives[END_REF] considered the inverse problem of detecting the location and the shape of several obstacles immersed in a fluid flowing in a larger bounded domain from partial boundary measurements in the two dimensional case. The fluid flow is governed by the steady-state Stokes equations. In contrast to closer works made by Ben Abda et al. [START_REF] Ben Abda | Topological sensitivity analysis for the location of small cavities in Stokes flow[END_REF] and Caubet et al. [START_REF] Caubet | Localization of small obstacles in Stokes fow[END_REF] mentioned above where the complete developments of the theory have been made only on the three dimensional case, Caubet et al. [START_REF] Caubet | On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives[END_REF] consider the two dimensional case where it is impossible to have an asymptotic expansion of the solution of Stokes equations by means of an exterior problem (phenomena which is related to the Stokes paradox). To solve this problem, influenced by the work of Bonnaillie-Noël et al. [START_REF] Bonnaillie-Noël | Interactions between moderately close circular inclusions: The Dirichlet-Laplace equation in the plane[END_REF], Caubet et al. [START_REF] Caubet | On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives[END_REF] approximate it by means of a different problem. Then, they use a topological sensitivity analysis for the constitutive law error functional in order to find the number and the qualitative location of the objects. In order to numerically solve the inverse problem, Caubet et al. [START_REF] Caubet | On the detection of several obstacles in 2D Stokes flow: topological sensitivity and combination with shape derivatives[END_REF] propose an algorithm which joins the topological optimization procedure with the classical shape optimization method using the previous computation of the shape gradient for the constitutive law error functional [START_REF] Caubet | A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid[END_REF]. This blending method allows to find the number of objects using a topological step and, if this first step actually gives the total number of obstacles, a geometrical shape optimization step detects their approximate location and approximate shape from only the boundary measurements.

Kasumba [START_REF] Kasumba | Shape optimization approaches to free-surface problems[END_REF] considered three different reformulations of a free-surface prob-lem as shape optimization problems. This gives rise to three different cost functionals, namely a least-squares energy variational functional (which is the analogue of the constitutive law error functional), a Dirichlet data tracking functional, and a Neumann data tracking functional. The shape derivatives of these functionals were computed and the gradient information is combined with the boundary variation method in a preconditioned steepest descent algorithm to solve the shape optimization problems. Numerical results compare the performance of the proposed cost functionals. It is found that the normal stress cost functional is insensitive with respect to geometric perturbations, while the normal velocity converges slightly faster than the energy gap functional at the expense of computing the mean curvature of the free surface, to evaluate its shape gradient. Bouchon et al. [START_REF] Bouchon | A free boundary problem for the Stokes equations[END_REF] investigated a free boundary problem for the Stokes equations governing a viscous flow with overdetermined condition on the free boundary. This free boundary problem is transformed into a shape optimization one by minimizing an energy-like cost functional. To quantify the sensitivity of the energy gap-misfit functional, the existence of the shape derivative is proven via the material derivatives of the forward solutions and its analytic expression is given in the Hadamard structure form. This information can be combined with a level set technique to construct an efficient numerical iterative scheme to solve the free boundary Stokes problem.

Ben Abda et al. [START_REF] Ben Abda | Recovering boundary data: The Cauchy Stokes system[END_REF] investigated the Cauchy problem for the viscous stationary Stokes-system. It is an ill-posed problem of recovering boundary data. This inverse problem is rephrased into an optimization one via an energy-like error functional. The minimisation process is achieved through the resolution of the first optimality condition which relies on solving an interfacial equation using the Steklov-Poincaré operator. The efficiency of the proposed method was highlighted by numerical trials.

This last ill-posed Cauchy Stokes problem [START_REF] Ben Abda | Recovering boundary data: The Cauchy Stokes system[END_REF] was extended in [START_REF] Ben Abda | Reconstruction of missing boundary conditions from partially overspecified data : the Stokes system[END_REF] to the partially overdetermined Cauchy problem. Indeed, Ben Abda and Khayat [START_REF] Ben Abda | Reconstruction of missing boundary conditions from partially overspecified data : the Stokes system[END_REF] aim recovering lacking data on some part of a domain boundary from the knowledge of only one component of the stress tensor on the accessible part of the boundary. As in [START_REF] Ben Abda | Recovering boundary data: The Cauchy Stokes system[END_REF], the inverse problem was formulated as an optimization one using an energy-like misfit functional.

Ben Abda and Khayat remain interested in the scope of the data completion problem related to the sub-Cauchy-Stokes system. In fact, they proposed an original method [START_REF] Ben Abda | Missing boundary data recovery using Nash games: the Stokes system[END_REF] based on Nash game theory to recover the missing velocity and normal stress on some inaccessible part of the boundary. The originality of their work lies not only on the use of energy-type cost functional but also in the fact that the over-determined data are distributed on two players: each player processes only one component of the normal stress and therefore solves a sub-Cauchy Stokes problem. The Nash game method was applied in two ways (first strategy and second strategy) that differ by the definition of the variables of each player and by the expression of the cost functional. For both strategies, Ben Abda et al. [START_REF] Ben Abda | Missing boundary data recovery using Nash games: the Stokes system[END_REF] proved the existence of a unique Nash equilibrium which turns to be the solution of the inverse problem. The numerical study attests the efficiency of both strategies giving better results than the classical method based on the minimization of an energy-like functional used in [START_REF] Ben Abda | Reconstruction of missing boundary conditions from partially overspecified data : the Stokes system[END_REF][START_REF] Ben Abda | Recovering boundary data: The Cauchy Stokes system[END_REF].

Ahmed and al. [START_REF] Ahmed | The sub-Cauchy-Stokes problem: Solvability issues and Lagrange multiplier methods with artificial boundary conditions[END_REF] proposed new Lagrange multiplier methods to solve the sub-Cauchy-Stokes problem. These methods consist in recasting the problem in terms of interfacial equations, by equalizing two solutions of the sub-Cauchy-Stokes problem using matching conditions defined on the inaccessible boundary. The matching is based on second order conditions and the types of the interfacial equations depend on the equations used to match the values of the unknowns on the inaccessible boundary. The interfacial problems are then solved by iterative procedures in which coefficients can be optimized to improve convergence rates.

Navier-Stokes flow

Badra et al. [START_REF] Badra | Stability estimates for Navier-Stokes equations and application to inverse problems[END_REF] used Carleman estimates to deduce the rate of convergence of two reconstruction methods of the Stokes solution from the measurement of Cauchy data. The first method is the quasi-reversibility method which consists in the regularization of the data completion problem. The penalized constitutive law error approach is the second one which is a symmetric method, in the sense that it solves exactly the problem considered with approximated boundary conditions.

Darcy equations

Escriva et al. [START_REF] Escriva | Leak identification in porous media by solving the Cauchy problem[END_REF] considered a leakage identification problem by solving a Cauchy problem derived from the Darcy equations. The Cauchy problem is solved by minimizing an energy-like error functional. Indeed, the identification of leaks on an inaccessible part of the boundary is performed by exploiting over-specified measurements on the remaining parts: the pressure and the pressure gradient. The method is applied to a hydrogeology problem. An underground aquifer where there flows a liquid saturating a porous media is considered. The identification of leaks is satisfactory against different influences: leak size, position and multiplicity, in comparison to the direct problem. Analysis of results allows leak identification by means of the pressure fingerprint (size and position) and its intensity through the normal pressure gradient or volumic flow rate.

Mansouri et al. [START_REF] Mansouri | Identification of injection and extraction wells from overspecified boundary data[END_REF] considered the problem of identification of well's positions and flux/flows from the knowledge of over-specified data: hydraulic head and flux, on a part of the domain boundary. The problem is governed by incompressible Darcy equations and two situations are considered. In the first one, boundary conditions on all the domain boundary are available; while in the second situation, besides the unknown wells, boundary conditions are also missing on an inaccessible part of the domain boundary. The algorithms considered rely on the minimization of a constitutive law gap functional. Indeed, the idea is to minimize the gap between the solutions of two well-posed problems such that each one uses only one type of the over-specified data: the Dirichlet boundary data or the Neumann one. To solve the minimization problem, the adjoint method was used to compute the functional derivative.

Elasticity systems

During the past few decades, special attention has been given to inverse problems in elasticity framework [START_REF] Bonnet | Inverse problems in elasticity[END_REF]. These problems can be classified as the reconstruction of buried flaws such as cracks, voids or inhomogeneities or the reconstruction of lacking boundary data, among others. This part highlights the efficiency of the use of the constitutive law error functional to solve such problems.

Schnack et al. [START_REF] Schnack | Computational identification of interface delaminations in layered composites based on surface measurements[END_REF] addressed the identification problem of a single delamination in a layered composite specimen from overdetermined boundary measurements on the exterior boundary. They solved the nonlinear semi-inverse problem by the minimization of an energy-like misfit functional with respect to some set of design variables parameterizing the delamination region. The approach proposed is a gradient-based technique known as SQP. Based on an appropriate split of the energy-like misfit functional, the ill-posed local inverse problem is transformed into a coupled system of elliptic well-posed Euler-Lagrange equations. The strategy proposed leads to a semi-empirical reconstruction method for finding isolated inter-laminar cavities from the measurement of the displacement field performed on the surface of the specimen.

In order to identify inclusions for 3D time-harmonic elastodynamics, Bonnet [START_REF] Bonnet | Topological sensitivity of energy cost functional for wave-based defect identification[END_REF] established the topological sensitivity of an energy-like cost functional. This latter measures the discrepancy between two time-harmonic elastodynamic states related to the available Dirichlet or Neumann boundary data as the strain energy of their difference. The topological sensitivity field is expressed as a combination of four elastodynamic fields , namely the free and adjoint solutions for Dirichlet or Neumann data. Examination of this field permits a qualitative identification of defects in a non-iterative way.

In linear elasticity framework, Ben Abda et al. [START_REF] Ben Abda | An energy gap functional: Cavity identification in linear elasticity[END_REF] treated a geometric inverse problem related to the identification of voids under Neumann's boundary conditions from overdetermined boundary data. To recover these cavities, an energetic least-squares functional is investigated to rephrase this inverse problem to an optimization one. The shape derivative of this cost functional was combined with the level set method in a steepest descent algorithm to solve the shape optimization problem. Moreover, in [START_REF] Jaïem | Shape derivative of an energy error functional for voids detection from sub-Cauchy data[END_REF] the shape derivative analysis has been extended to cavity identification problems from partially overdetermined boundary data. In this case, only the normal component of the normal stress and the displacement field are available for the reconstruction. For the last mentioned inverse problem, also known as sub-Cauchy problem, Ben Abda et al. [START_REF] Ben Abda | Cavities identification from partially overdetermined boundary data in linear elasticity[END_REF] proposed an identification method based on the constitutive law error formulation combined with the topological gradient method. An asymptotic expansion for the energy function was derived with respect to the creation of a small hole. A one-shot reconstruction algorithm based on the topological sensitivity analysis was implemented.

Ben Abda et al. [START_REF] Ben Abda | Lacking data recovery via partially overdetermined boundary conditions in linear elasticity[END_REF] considered the data completion problem associated with the elasticity equations in two dimensional case. The aim of their work was the identification of the shear stress, namely the tangential component of the normal stress from partially overdetermined boundary conditions. This sub-Cauchy problem was solved by means of the minimization of an energy-like functional via the Steklov-Poincaré operator.

In [START_REF] Ben Abda | Voids identification from partially overspecified boundary data[END_REF], the same sub-Cauchy problem related to voids identification described above was investigated. Ben Abda et al. [START_REF] Ben Abda | Voids identification from partially overspecified boundary data[END_REF] propose an iterative method based on the coupling of the data completion process and a cavity identification one. Indeed, the first step is to reconstruct the shear stress via the Steklov-Poincaré operator [START_REF] Ben Abda | Lacking data recovery via partially overdetermined boundary conditions in linear elasticity[END_REF] from partially overdetermined boundary data; while the second one is to identify cavities by the shape gradient method combined with the level set method [START_REF] Ben Abda | An energy gap functional: Cavity identification in linear elasticity[END_REF] from overdetermined boundary data. The same energy gap-cost functional was introduced to solve both steps through an optimization problem.

Méjri [START_REF] Méjri | Shape sensitivity analysis for identification of voids under Navier's boundary conditions in linear elasticity[END_REF] studied the void identification problem under Navier's boundary conditions from partially overdetermined boundary data in the 2D elastostatic case. This geometric inverse problem is tackled by the minimization of two cost functionals : an energy gap functional and a L 2 -gap functional. It is demonstrated that, for the first functional, the first order of the shape derivative can be obtained without need to the adjoint-based form in contrast to the case of L 2 -gap functional. Indeed, the shape gradient of the last functional is numerically expensive to evaluate since one needs to solve four partial differential equations, namely two state equations and two adjoint ones.

Eberle et al. [START_REF] Eberle | Lipschitz stability estimate and reconstruction of Lamé parameters in linear elasticity[END_REF] consider the inverse problem of recovering an isotropic elastic tensor namely Lamé coefficients from the Neumann-to Dirichlet map for linear elasticity framework. This kind of inverse problems arises in many applications such as non-destructive testing of elastic structures for material impurities, exploration geophysics and detection of potential tumors. The inverse problem was transformed into a minimization one via a constitutive law error functional whose Fréchet derivative was computed. The reconstruction was performed via an iterative algorithm based on a quasi-Newton method.

Conclusion

Inverse problems are generally transformed into an optimization one involving a cost functional that exploits boundary measurements. They are inherently illposed in Hadamard's sense and have impediments in their analyses (e.g. noguarantee for the existence, non-uniqueness and ill-condition of an inverse solution). The last issue is explained by the instability of numerical algorithms due to the errors of experimental measurements which explain the reconstruction of cost functionals with regularization terms. The constitutive law error functional is a self-regularized one because it is a convex, quadratic and positive function. Furthermore, the energy-like error functional is interpreted as an energetic leastsquares one based on fields computed from the measured and the prescribed data. Hence, it is expected to be more sensitive to boundary oscillations if any. From the innumerable cited applications, it can be easily seen that the described functional is effective and well-suited to large scale of problems. This work can provide a helpful reference to the ones who want to apply constitutive law error functional.
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 42 (i) The case of α = 0 and β = +∞ corresponds to the problem of Neumann-Dirichlet on Γ i . (ii) When α = β = +∞ the condition of optimization process leads to the variational form of the Steklov-Poincaré and this condition corresponds to the problem of Dirichlet-Dirichlet on Γ i . (iii) When α = β = 0 we retrieve the so-called dual Steklov-Poincaré operator which corresponds to the problem of Neumann-Neumann on Γ i .
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