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Abstract

Differential equations with random parameters have gained significant prominence in recent years
due to their importance in mathematical modelling and data assimilation. In many cases, random
ordinary differential equations (RODEs) are studied by using Monte-Carlo methods or by direct nu-
merical simulation techniques using polynomial chaos (PC), i.e., by a series expansion of the random
parameters in combination with forward integration. Here we take a dynamical systems viewpoint
and focus on the invariant sets of differential equations such as steady states, stable/unstable mani-
folds, periodic orbits, and heteroclinic orbits. We employ PC to compute representations of all these
different types of invariant sets for RODEs. This allows us to obtain fast sampling, geometric visu-
alization of distributional properties of invariants sets, and uncertainty quantification of dynamical
output such as periods or locations of orbits. We apply our techniques to a predator-prey model,
where we compute steady states and stable/unstable manifolds. We also include several benchmarks
to illustrate the numerical efficiency of adaptively chosen PC depending upon the random input.
Then we employ the methods for the Lorenz system, obtaining computational PC representations of
periodic orbits, stable/unstable manifolds and heteroclinic orbits.

Keywords: invariant manifold, periodic orbit, heteroclinic orbit, Lorenz system, polynomial

chaos, random differential equation.
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1 Introduction

In this work, we study random nonlinear dynamical systems. More precisely, we focus on nonlinear
random ordinary differential equations (RODEs) of the form

dx

dt
= ẋ = f(x, p), x = x(t) ∈ Rm, (1)

where f : Rm × Rd → Rm is a smooth vector field and p = p(ω) ∈ Rd denotes random parameters
with given distributions. From the viewpoint of applications, it is frequently natural to assume that
the parameters p are only known from measurements, which naturally carry an associated probability
distribution. Then the challenge is to quantify the uncertainty in the “output” of the RODE (1) based
upon the random input. Yet, we are still far way from fully understanding the nonlinear dynamics of
such RODEs. In classical uncertainty quantification problems [17, 27], one is often interested [29, 43] in
the moments as an output of the solution E[x(t)k] for k ≥ 1, where E denotes the expectation. Here we
take a dynamical systems perspective focusing on the invariant sets (e.g. steady states, periodic orbits,
invariant manifolds, connecting orbits, etc.) of (1), and especially in understanding their dependence on
the noisy parameters p. In this paper, we study the invariant sets from a numerical viewpoint. However,
the framework that we develop is well suited to the usage of rigorous numerics [39], and in particular of a-
posteriori validation techniques [42], which could applied to obtain rigorous results about these stochastic
invariant sets. This idea will be presented in a forthcoming work.

Let us start by mentioning that there exist many well developed techniques to numerically study
invariant sets of deterministic ODEs. Therefore, a natural way of studying the invariant sets of (1)
would be to use a Monte-Carlo type approach: consider a large sample of values pi taken according to the
distribution of p, and for each i study the invariant sets of the deterministic ODE ẋ = f(x, pi). However,
this approach is known to be very costly, because it requires a large sample to accurately represent the
statistics of the invariant sets [14]. In this work we make use of a different technique, namely polynomial
chaos (PC) expansions [45, 15], to accurately compute invariant sets of (1). Roughly speaking, we view
each invariant set of (1) as a curve parametrized by p (or as a manifold if p is more than one-dimensional),
and compute such parameterization explicitly via a PC expansion. This can be thought of as a parameter
continuation in p, but in an astute way that not only allows us to obtain the geometrical object (i.e. the
curve/manifold of invariant sets), but also to easily recover statistical properties or observables of this
object. Furthermore, our techniques naturally extend to numerical continuation algorithms [22, 23] if
the probability distributions of p contain further parameters, which is a direction we will pursue in
future work. Before proceeding further, let us mention the work [8], where the question of understanding
the global dynamics of RODEs is also studied, but with a different methodology, namely set-oriented
numerics.
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Let X = X(p) be an invariant set of (1), i.e., trajectories starting inside X remain in X for all
t ∈ R. In this work, we focus on the cases where X(p) represents a steady state, a stable/unstable
manifold, a periodic orbit or a heteroclinic orbit, which are among the most important objects in nonlinear
dynamics [26, 18]. One key observation is that PC expansions can be used to unify the computational
framework for invariant sets and that they provide a natural deterministic structure to view the dynamics
of nonlinear random ODEs. Our goal is to find a series expansion of X as a function of p:

X(p) =
∑
n∈Nd

Xnφn(p). (2)

Note that the coefficients Xn have to be found as solutions of suitable nonlinear problems to correctly
represent the different invariant sets; we develop the details for each type of invariant set in this work. In
practice, the choice of the expansion basis (φn)n∈Nd is of course also crucial, as it determines the number
N of coefficients required to obtain a good enough approximation. For the rest of this discussion, we
assume for simplicity that p is one-dimensional.

If f is analytic with respect to p, then we can expect X to also be analytic as a function of p,
at least around values of p that are not bifurcation values. Therefore, in many cases one could think
about writing X as a Taylor series by taking φn(p) = pn. However, it is well known in approximation
theory that faster convergence can be achieved by considering instead Chebyshev series or Legendre
series (i.e. taking φn(p) = Tn(p) or φn(p) = Ln(p), where Tn and Ln respectively denote Cheybshev and
Legendre orthogonal polynomials), mainly because these expansions are less sensitive to potential poles
of X in the complex plane; see e.g. [38]. Chebyshev or Legendre expansions also have the advantage of
being convergent even when X is only of class Ck, where the coefficients Xn decay at an algebraic rate,
rather than geometric in the analytic case. If p is deterministic, then looking at the decay rates of the
coefficients Xn is a relevant benchmark, because it is related to the error in C0-norm. For instance, if
XN is the truncated series given by

XN (p) =

N∑
n=0

Xnφn(p),

then for a Taylor expansion, a Chebyshev expansion or a Legendre expansion alike one has

sup
p∈[−1,1]

∥∥X(p)−XN (p)
∥∥ ≤ ∞∑

n=N+1

‖Xn‖ ,

because for each of these choices one has supp∈[−1,1] |φn(p)| ≤ 1. However, when p = p(ω) is a random
variable, one is more interested in controlling different quantities such as∥∥E (X(p))− E

(
XN (p)

)∥∥ or
∥∥V (X(p))− V

(
XN (p)

)∥∥ ,
where V denotes the variance. To minimize the error in the moments, the choice of the expansion is
critical not only because it influences the decay of the coefficients, but also because the φn themselves
appear in the error term. For instance, one has

∥∥E (X(p))− E
(
XN (p)

)∥∥ ≤ ∞∑
n=N+1

‖Xn‖ |E (φn(p))| .

Therefore, two different expansions leading to the same decay of the coefficients may not lead to an error
of the same order for the expectation or of the variance. Of course, one could change these weights
|E (φn(p))| by rescaling the φn, but this only shifts the problem because the rescaling would then affect
the decay of the coefficients.

In this work, we use the PC paradigm to minimize such quantities, by choosing an expansion basis
φn that is adapted to the distribution of the noisy parameter p. PC expansions have become a very
important tool in uncertainty quantification in the last decades, and a review of its many applications
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is far beyond the scope of the present work. We instead refer the interested reader to the survey [48]
and the book [27]. Let us mention that, while a geometric dynamical systems study of random invariant
sets using PC appears to be new, some specific cases have already be investigated. For instance, elliptic
equations with random parameters have been studied extensively using PC (see e.g. [50]), and they can be
seen as steady-state problems associated to parabolic equations. Eigenvalue problems [16], and periodic
orbits [28, 36] have also been considered. In this work, we consider more complicated invariant sets
such as stable/unstable manifolds and connecting orbits, and also propose a new strategy for computing
periodic orbits with PC (see Sections 4.1 and 6.1).

The paper is structured as follows. First, we review the PC methodology in Section 2. Next, we
discuss expectation and observables of random sets in Section 3, in order to put in perspective the
study of random invariant sets that we conduct in the rest of the paper. In Section 4 we introduce
some classical techniques to numerically study periodic orbits, invariant manifold and connecting orbits
of deterministic ODEs. Then we proceed to the main contributions of our work. We explain, how to
combine the numerical study of invariant sets with PC expansions to study the dynamics of nonlinear
RODEs. In Section 5 we focus on a relatively simple example, where many quantities can also be
computed analytically, which allows us to benchmark our numerical computations in the context of
steady states. Yet, we also go beyond explicit structures and compute the distribution of stable/unstable
manifolds using the “parameterization method” in combination with PC. Furthermore, we explain the
implications of the random structure of the invariant sets and how to gain information from the moments
of the invariants sets very efficiently. In Section 6 we then turn our attention to another example, where
analytic computations are no longer available, and showcase the potential of our approach on the Lorenz
system. For this system, we compute periodic orbits using a combined Fourier and PC ansatz, we compute
again invariant stable/unstable manifolds, as well as heteroclinic connections.

The Matlab code associated to this work can be found at [2]. The computation of connecting orbits
via Chebyshev series (see Sections 4.3 and 6.2), makes use of the Chebfun package [10].

2 A quick review on PC

Let ρ : R→ R be probability distribution function (PDF) having finite moments, i.e.∫
R
snρ(s) ds <∞ ∀ n ∈ N.

Given normalization constants (hn)n∈N, hn > 0 for all n ∈ N, there exists a unique family of orthogonal
polynomials (φn)n∈N associated to the weight ρ, i.e. satisfying

〈φn1
, φn2
〉ρ :=

∫
R
φn1

(s)φn2
(s)ρ(s) ds = hn1

δn1,n2
, ∀ n1, n2 ∈ N.

The most classical examples are:

• The Hermite polynomials Hn, which correspond to ρ(s) = 1√
2π

e−
s2

2 and hn = n!;

• The Laguerre polynomials Ln, which correspond to ρ(s) = 1s∈[0,+∞)e
−s and hn = 1;

• The Jacobi polynomials Pα,βn , α, β > −1, which correspond to ρ(s) = 1s∈(−1,1)
(1−s)α(1+s)β

2α+β+1B(α+1,β+1)
and

hn = B(n+α+1,n+β+1)
(2n+α+β+1)B(α+1,β+1)B(n+1,n+α+β+1) , where B(x, y) = Γ(x)Γ(y)

Γ(x+y) is the Euler beta function.

Within the class of the Jacobi polynomials, we list a few remarkable cases (sometimes having different
normalizations) that we make use of in this work:

• The Legendre polynomials Pn, which correspond to ρ(s) = 1
21s∈(−1,1) and hn = 1

2n+1 ;

4



• The Chebyshev polynomials of the first kind Tn, which correspond to ρ(s) = 1s∈(−1,1)
1

π
√

1−s2 and

h0 = 1, hn = 1
2 , for n ≥ 1;

• The Chebyshev polynomials of the second kind Un, which correspond to ρ(s) = 1s∈(−1,1)
2
π

√
1− s2

and hn = 1;

• The Gegenbauer or ultraspherical polynomials Cµn , µ > − 1
2 , µ 6= 0, which correspond to ρ(s) =

1s∈(−1,1)
22µ−1µB(µ,µ)

π (1− s2)µ−
1
2 and hn = µ

n(n+µ)B(n,2µ) .

For a more complete description of PC choices and their relations to the Askey scheme, see [49].

Remark 2.1. In this work, we only consider parameters having a PDF with bounded support. Indeed, in
most applications these parameters have a physical meaning, for instance they could represent a quantity
which must always be nonnegative, and having PDF with unbounded supports like Gaussian would mean
that said parameters would be negative with a positive probability, which is not realistic. However, many
sources of uncertainties are still expected to have a Gaussian-like behavior, in the sense that their PDF
should be concentrated around a point. In that case, a good compromise is to use Beta distributions,
which are the weights associated to the Gegenbauer polynomials and provide good bounded approximations
of Gaussian distributions, at least for small variances (see e.g. [46], or the comparison on Figure 1).
Another widely used option is to use truncated Gaussian distributions.

Figure 1: Comparison between the Gaussian probability distribution ρ(s) = 1
σ
√

2π
exp(− s2

2σ2 ), in blue,

and the symmetric Gamma probability distribution ρ(s) = 1s∈(−1,1)
22µ−1µB(µ,µ)

π (1 − s2)µ−
1
2 , in red, for

several values of σ, and with µ = 1
2

(
1 + 1

σ2

)
.

We recall that if ρ has compact support, or decays at least exponentially fast at infinity (see e.g. [12]),
then (φn)n∈N is a Hilbert basis of L2(ρds), i.e. any measurable function g such that∫

R
g2(s)ρ(s) ds <∞,

admits a unique series expansion of the form

g =
∑
n∈N

gnφn,
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where the series converges in L2(ρds).
Now, assume that the noisy parameter p = p(ω) (still assumed to be one dimensional for the moment)

has a PDF given by ρ. The PC paradigm then tells us that we should use the orthogonal polynomials
associated to ρ as a basis for the expansion (2) of X(p). Notice that with such a choice, the coefficients
Xn of the expansion directly provide us with the mean and variance of X(p). Indeed, by orthogonality
(and assuming hn = 1 for simplicity) we have

E (X(p)) =

∞∑
n=0

XnE (φn(p)) =

∞∑
n=0

Xn〈φn, 1〉ρ = X0,

and similarly

V (X(p)) = E
(
X(p)2

)
− E (X(p))

2
=

∞∑
m=0

∞∑
n=0

XnXm〈φm, φn〉ρ −X2
0 =

∞∑
n=1

X2
n.

If p = (p(1), . . . , p(d)) consists of several independent random variables, each with respective PDF ρ(j),
j = 1, . . . , d, one can consider the PC basis (φn)n∈Nd constructed as a tensor product of the univariate

bases. That is, for all n = (n1, . . . , nd) ∈ Nd and all s = (s1, . . . , sd) ∈ Rd,

φn(s) :=

d∏
j=1

φ(j)
nj (sj),

where (φ
(j)
nj )nj∈N is a basis of orthogonal polynomials associated to the weight ρ(j). In practice, there

are several ways to compute the coefficients Xn of a PC expansion (2). Notice that directly using the
orthogonality relations to get

Xn =
1

hn
〈X,φn〉ρ,

is usually not one of them, as X is not known a-priori but is actually what we want to compute via the
PC expansion. To formalize the discussion, assume that the quantity of interest X(p) ∈ Rm for which
we want to find a PC expansion, solves a problem depending on a parameter p ∈ Rd, of the form

F (X(p), p) = 0,

where F : Rm × Rd → Rm.

Remark 2.2. In the sequel, the invariant object that we will be studying is sometimes infinite dimen-
sional (a periodic orbit, an invariant manifold, a connecting orbit...). In that case, X(p) will be a well
chosen representation of that object, living in a Banach space, and for which we will compute a finite
dimensional approximation. As an example, if we look for a periodic orbit, X(p) will be a sequence of
Fourier coefficients (and a frequency), and in practice we compute the PC expansion of a finite number
a such coefficients. We refer to Section 3 for a broader discussion about random sets, and to Section 4
for more details on the implementation.

One common way to find the coefficients Xn is to solve the system obtained by Galerkin projection:〈
F

( ∞∑
n1=0

Xn1
φn1

(p), p

)
, φn2

(p)

〉
ρ

= 0 ∀ n2 ∈ N. (3)

Of course, in practice one only solves for a truncated expansion

XN (p) =

N∑
n1=0

Xn1
φn1

(p),
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by considering a finite-dimensional projection of associated dimension, i.e. ∀ n2 ≤ N in (3). This is
the technique we make use of in this work. Another possible option is to use a collocation/interpolation
approach [47]. This technique is based on first solving the deterministic problem several times for a well
chosen sample of parameter values (pi)1≤i≤i, i.e. computing X(pi) that solves

F (X(pi), pi) = 0, ∀ 1 ≤ i ≤ I.

The polynomial chaos coefficients Xn are then constructed by interpolation:

Xn =

I∑
i=1

X(pi)φn(pi)αi,

where αi are weights associated to the interpolation points pi in such a way that, for any smooth function
g

I∑
i=1

g(pi)αi ≈
∫
g(s)ρ(s) ds,

where ρ is the PDF of p. For a detailed discussion of these two approaches and their respective merits
and limitations, we refer to the survey [48], the book [27] and the references therein. In practice, after
an accurate PC approximation

XN (p) =

N∑
n=0

Xnφn(p)

of X has been computed, we can then do Monte Carlo simulations for a very large sample of values of
p. Indeed, instead of having to solve the deterministic problem F (X(pi), pi) = 0 for each value pi of the
sample, we only have to evaluate φn(pi) to obtain XN (pi) ≈ X(pi).

3 About random sets

In this work we focus on invariant sets of RODEs, and therefore we have to deal with families of points,
curves and higher-dimensional manifolds, parameterized by random parameters. While it is straightfor-
ward to define what the expectation of a random equilibrium point living in Rd is, the same cannot be
said about infinite dimensional objects like random curves, or more general random invariant sets.

In particular, when dealing with infinite dimensional objects depending on random parameters, one
has to be mindful of the fact that the X(p) that we look for in practice is actually a parameterization
of that object in some function space. For instance, if we look for a random family of curves in Rd, the
X(p) that we compute in practice is an element of (say) C0

(
[0, 1],Rd

)
, and the curves themselves are

the images X(p)([0, 1]). This distinction is actually crucial, because while it is not a problem to define
the expectation of the random variable X with values in C0

(
[0, 1],Rd

)
, the link between this expectation

in function space and the random family of curves that we are considering is not so straightforward.
In particular, there is no unique way to parametrize a family of curves, and different parameterizations
can give different expectations! As an easy example, one can consider a random variable p uniformly
distributed in the interval [1, 2], and the random family of half-parabola y = px2, x ≥ 0. Such curves can
be parametrized in many different ways, for instance via

X(p, t) =

(
t
pt2

)
, t ≥ 0 or Y (p, t) =

(
1√
p

√
t

t

)
, t ≥ 0.

We then have that

E (X(p, t)) =

(
t

E(p)t2

)
and E (Y (p, t)) =

(
E
(

1√
p

)√
t

t

)
,
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which respectively correspond to the half-parabola y = E(p)x2, x ≥ 0, and y = E
(

1√
p

)−2

x2, x ≥ 0.

There is no reason why E(p) and E
(

1√
p

)−2

should be equal (indeed in our example they are respectively

equal to 3
2 and 3+2

√
2

4 ), and thus the expectation of each parameterization yields a different curve.
This does not mean that computing a parameterization of a random invariant set is useless, but only

than one has to be careful when interpreting it. Indeed, we believe that a better adapted view-point
is the one of observables. Here we think of an observable as being a scalar random variable which can
be computed from the parameterization X(p), that is intrinsic to the random object, or at least to its
representation in some coordinate system. For instance, given a family of periodic orbits, their period is
an observable (that is actually immediately accessible with the way we compute periodic orbits with PC,
see Section 6.1). When looking at a family of stable/unstable manifolds, another example of observable
would be their curvature at the equilibrium. In Sections 5 and 6 we give several examples of such
observables, whose PC expansion can be computed as nonlinear functions of the PC expansion of X.

Let us also reiterate that, once the PC expansion of X has been computed, we can also easily compute
many samples of the invariant set for different realizations of p, and therefore use Monte-Carlo simulations
to answer questions such as: What is the probability that the first coordinate of this random limit cycle
(which could correspond to an electric potential for instance), crosses a given threshold value?

In Section 7, we also provide an outlook on future problems regarding the computation of observables
to capture the dynamics of random differential equations. Furthermore, we are briefly going to outline
additional challenges arising in the computation of the expectation of random sets/manifolds.

4 Computation of periodic orbits, invariant manifolds and con-
necting orbits

In this section, we review some classical techniques to numerically study periodic orbits, invariant mani-
folds and connecting orbits of deterministic ODEs. An exhaustive review of these techniques is far beyond
the scope of this work, and we only focus on one technique for each case, although alternative methods
could certainly also be used; see e.g. [21] for a comparison of methods for computing stable/unstable
manifolds. All the techniques presented here are based on series expansions, and this choice is motivated
by two main reasons. The first and most important one is that series expansions can easily and efficiently
be combined with PC expansions, once we go to the stochastic setting. This is particularly relevant for
limit cycles, and is to be contrasted with more classical long-term integration approaches, for which PC
expansions are known to be ill-behaved. The second one is that series expansions are particularly well
suited for a-posteriori validation techniques [42], which we plan on developing in this context in a future
work. In each case, we explain how an extra layer of PC expansion can be added, to keep track of the
stochastic nature of the parameters. Illustrations for all these methods are presented in Section 5 and
Section 6.

4.1 Periodic orbits via Fourier series

We start by considering the parameter dependent problem (1) from a deterministic point of view. Limit
cycles of (1) can be efficiently studied and computed using Fourier series. That is, for a fixed p, we write
a T (p)-periodic solution t 7→ X(t, p) of (1) as

X(t, p) =
∑
k∈Z

Xk(p)eikΩ(p)t, Xk(p) ∈ Cm, X−k(p) = Xk(p), Ω(p) ∈ R, (4)

where Ω(p) = 2π/T (p). To find numerically a periodic orbit, we thus solve for the coefficients Xk(p) and
Ω(p), which satisfy the system obtained by plugging (4) into (1), namely

ikΩ(p)Xk(p) = fk(X(t, p), p) ∀k ∈ Z, (5)
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where fk(X(t, p), p) are the Fourier coefficients of t 7→ f(X(t, p), p).

Remark 4.1. In practice, it is helpful to complement the above system, with a phase condition. For
simplicity we choose to fix a section through which the solution has to pass at time 0, but other options
are available [26]. More precisely, we add a scalar equation of the form

(X(0, p)− u(p)) · v(p) = 0,

where u(p) is some (approximate) point on the orbit, v(p) ≈ f(u(p)), and we use the dot product to denote
the scalar product on Rn (and avoid potential confusion with the L2(ρ) scalar product 〈, 〉ρ). The phase
condition allows to isolate the solution by eliminating time-shifts, which makes the system easier to solve
in practice, especially using iterative methods. Indeed, if t 7→ X(t, p) is a periodic orbit of (1), then so
is any function of the form t 7→ X(t+ τ, p), but there is (locally) only one τ that also satisfies the phase
condition.

This approach of solving for the Fourier coefficients and the frequency has several advantages, com-
pared to numerically integrating (1) and trying to find an (approximately) closed orbit. Indeed, the
approach is not sensitive to the linear stability or instability of the limit cycle, and is therefore not sus-
ceptible to diverging if one tries to approximate an unstable periodic orbit, which is a definitive concern
for time-integration based techniques. We illustrate this point in Section 6 by computing unstable limit
cycles belonging to the chaotic attractor of the Lorenz system. The Fourier series approach is also par-
ticularly well adapted to continuation algorithms, especially to compute limit cycles originating from a
Hopf bifurcation, where the linearized analysis can predict the first Fourier coefficient and the frequency.

If we now consider that p is random and has a given PDF ρp, it is natural to still consider a Fourier
ansatz [30]. It is straightforward to extend the Fourier series approach by expanding each Fourier coeffi-
cient, together with the frequency, with PC. Namely, write

Xk(p) =
∑
n∈Z

Xk,nφn(p) and Ω(p) =
∑
n∈N

Ωnφn(p),

or equivalently

X(t, p) =
∑
k∈Z

∑
n∈N

Xk,nφn(p)eiktΩ(p). (6)

In practice, we of course consider truncated expansions

XN
k (p) =

N∑
n=0

Xk,nφn(p) and Ω(p) =

N∑
n=0

Ωnφn(p).

for which we solve using (5). Each Xk now belongs to RmN instead of Rm, and Ω belongs to RN instead
of R. An explicit example of such system together with numerical solutions is given in Section 6. In
this setting, the Fourier series approach also has the notable advantage of separating the random period
(or equivalently the random frequency Ω(p)), from the description of the random cycle given by the
coefficients Xk(p). In particular, we avoid the usual pitfalls related to phase-drift and broadening of the
spectrum, which are the main reasons why limit cycles are hard to compute using PC combined with
time integration [9]. A similar idea was introduced in [28, 36], where a random time rescaling is used
to compensate for the random period, which significantly improves the long time behavior of the PC
expansions and allows to better capture stable limit cycles. Yet a Fourier series approach accomplishes
that naturally, and can also be used to study unstable limit cycles.

4.2 Local invariant manifolds via Taylor series and the parameterization
method

We again start by considering the parameter dependent problem (1) from a deterministic point of view,
but now focus on studying local stable and unstable manifolds attached to equilibrium points. In this
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section we only discuss the case of stable manifolds, but unstable manifolds can of course be studied with
the same techniques. Let X̂(p) be an equilibrium point of (1), i.e. f(X̂(p), p) = 0, and assume that the
derivative Dxf(X̂(p), p) has exactly ms ≤ m eigenvalues λ(1)(p), . . . , λ(ms)(p) with negative real part. For
simplicity, we also assume that each of these eigenvalues is simple, and denote by v(1)(p), . . . , v(ms)(p)
associated eigenvectors. Our goal is to find a parameterization Q(p) : Rms → Rm of the local stable
manifold of X̂(p). We look for a power series representation of Q:

Q(θ, p) =
∑
|k|≥0

Qk(p)θk, θ =

 θ1

...
θms

 ∈ Rms , Qk(p) =


Q

(1)
k (p)

...

Q
(m)
k (p)

 ∈ Rm, (7)

with the classical multi-indexes notations |k| = k1 + · · · + kms and θk = θk11 · · · θ
kms
ms . Since we want

θ 7→ Q(θ, p) to be a parameterization of the local stable manifold of X̂(p), we must have

Q0(p) = X̂(p) and Qei(p) = γiv
(i)(p), ∀ 1 ≤ i ≤ ms, (8)

where γi are scaling that can be adjusted. To obtain the higher order terms, we follow the idea of
the parameterization method, introduced in [4, 5, 6] (see also the recent book [19]). We want to ob-
tain a parameterization that conjugates the dynamics on the stable manifold with the stable dynamics
of the linearized system. More precisely, introducing the diagonal matrix Λ(p) with diagonal entries
λ(1)(p), . . . , λ(ms)(p), we want p to satisfy (see Figure 2)

ϕp(t, Q(θ, p)) = Q(eΛ(p)tθ, p), ∀ ‖θ‖∞ ≤ 1, ∀ t ≥ 0, (9)

where ϕp is the flow generated by the vector field f(·, p) and ‖θ‖∞ ≤ 1 = max1≤i≤ms |θi|.

Rms Rms

Rm Rm

θ θ

Q(θ, p) Q(θ, p)

Q(·, p) Q(·, p)

ϕp(t, ·)

etΛ(p)

Figure 2: Schematic illustration of the parameterization method. We want the parameterization Q to
conjugate the nonlinear flow ϕp to the linearized flow generated by Λ(p) on the stable subspace.

Remark 4.2. If some of the stable eigenvalues are complex conjugate, say λ(1) = λ̄(2), . . . , λ(2r−1) =
λ̄(2r), it is more convenient to first look for a complex valued parameterization Q with Qk ∈ Cm, and then
recover a real valued parameterization via

Qreal(θ, p) = Q(θ1 + iθ2, θ1 − iθ2, . . . , θ2r−1 + iθ2r, θ2r−1 − iθ2r, θ2r+1, . . . , θms , p),
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see e.g. [41].

Finding a parameterization Q satisfying (9) is interesting because it provides us with not only a
local stable manifold but also an explicit description of the dynamics on this manifold. However, the
formulation (9) is not the most convenient one to work with in order to determine the higher order
coefficients of Q, because it involves the flow. To get rid of it, one can take a time derivative of (9) and
evaluate at t = 0, to obtain the following invariance equation

f(Q(θ, p), p) = DθQ(θ, p)Λ(p)θ, ∀ ‖θ‖∞ ≤ 1. (10)

One can check that, if Q solves (10) and is such that Q(0, p) = X̂(p), then Q satisfies (9), therefore
Q(·, p) is indeed a parameterization of the local unstable manifold of X̂(p). The invariance equation (10)
is the one we are going to use to numerically find the coefficients Qk. Plugging the expansion (7) in the
invariance equation (10), we obtain∑

|k|≥0

fk(Q(θ, p), p)θk =
∑
|k|≥0

(λ(p) · k)Qk(p)θk, (11)

where fk(Q(θ, p), p) are the Taylor coefficients of θ 7→ f(Q(θ, p), p) and λ(p) · k = λ(1)(p)k1 + . . . +
λ(ms)(p)kms . Therefore the coefficients Qk must satisfy

(λ(p) · k)Qk(p) = fk(Q(θ, p), p), ∀k ∈ Nms . (12)

Notice that (8) already ensures that (12) is satisfied for |k| ≤ 1. In order to solve (12) for |k| ≥ 2, let us
first describe how fk(Q(θ, p), p) depends on Qk(p). Given a Taylor series of the form (7), we define for
all K ∈ N the truncated series

πKQ(θ, p) =
∑

0≤|k|≤K

Qk(p)θk.

Notice also that, for any k ∈ Nms , fk(Q(θ, p), p) = fk(π|k|Q(θ, p), p). Besides, using a Taylor expansion
of f in the x variable, we have for all k ∈ Nms \ {0}

f

 ∑
0≤|l|≤|k|

Ql(p)θ
l, p

 = f

 ∑
0≤|l|≤|k|−1

Ql(p)θ
l +

∑
|l|=|k|

Ql(p)θ
l, p


= f

 ∑
0≤|l|≤|k|−1

Ql(p)θ
l, p

+
∑
|l|=|k|

Dxf

 ∑
0≤|j|≤|k|−1

Qj(p)θ
j , p

Ql(p)θ
l

+ higher order terms,

and looking at the coefficient of degree k on each side we get

fk(Q(θ, p), p) = fk(π|k|Q(θ, p), p) = fk(π|k|−1Q(θ, p), p) + Dxf(Q0(p), p)Qk(p).

Therefore, assuming (8), having (12) for all |k| ≥ 2 is equivalent to having(
(λ(p) · k)−Dxf(X̂(p), p)

)
Qk(p) = fk(π|k|−1Q(θ, p), p), ∀ |k| ≥ 2. (13)

Assuming the following non-resonance condition is satisfied:

λ(p) · k 6= λ(i)(p) ∀ |k| ≥ 2, ∀ 1 ≤ i ≤ r,

we see that (13) has a unique solution that can be computed recursively via

Qk(p) =
(

(λ(p) · k)−Dxf(X̂(p), p)
)−1

fk(π|k|−1Q(θ, p), p) ∀ |k| ≥ 2, (14)
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since the right-hand side only depends on Ql(p) for |l| < |k|. We can therefore compute a truncated
parameterization πKQ of arbitrary order, starting from (8) and then computing (14) recursively for k
as large as desired. In practice, the weights γi in (8) are chosen in order to obtain a reasonable decay
of the coefficients Qk(p) (we refer to [3] for a detailed explanation of how this choice can be optimized).
Explicit examples are presented in Sections 5 and 6.

Remark 4.3. In cases where resonant eigenvalues are present, a similar approach can still be used, but
the conjugacy condition (9) defining Q has to be adapted [41].

If we now consider that p is random and has a given PDF ρp, this approach based on the parameter-
ization method can also be easily generalized by adding a layer of PC expansion. Namely, we write

Q(θ, p) =
∑
|k|≥0

∑
n∈N

Qk,nφn(p)θk,

or equivalently

Qk(p) =
∑
n∈N

Qk,nφn(p).

In practice we consider a truncation

QNk (p) =

N∑
n=0

Qk,nφn(p),

which we compute via

QNk (p) =
(

(λN (p) · k)−Dxf(X̂N (p), p)
)−1

fk(π|k|−1Q
N (θ, p), p) ∀ |k| ≥ 2, (15)

where, compared to (14), QNk (p) is now a vector of size mN rather than m, and(
(λN (p) · k)−Dxf(X̂N (p), p)

)
can be interpreted as a block matrix, with m×m blocks having each size N×N . For explicit computations
we again refer to Sections 5 and 6.

4.3 Heteroclinic orbits via Chebyshev series and projected boundaries

We go back to considering the parameter dependent problem (1) from a deterministic point of view, and
extend the discussion of the previous subsection by looking at more global solutions, namely connecting
orbits between equilibrium points.

Let X̂(p) and X̌(p) be two equilibrium points of (1). Assume that X̂(p) has an unstable manifold of
dimension r̂ and that X̌(p) has a stable manifold of dimension ř, such that r̂ + ř = m+ 1. Then, if the
two manifolds intersect, we can generically expect this intersection to be transverse in the phase space
Rm, in which case there exists a transverse heteroclinic orbit between X̂(p) and X̌(p). We recall that a
heteroclinic orbit between X̂(p) and X̌(p) (or homoclinc orbit if X̂(p) = X̌(p)) is a solution t 7→ x(t, p)
of (1) such that

lim
t→−∞

x(t, p) = X̂(p) and lim
t→+∞

x(t, p) = X̌(p).

In this work, we compute such solution by solving a boundary value problem [1] between the unstable
manifold of X̂(p) and the stable manifold of X̌(p), for which we first compute local parameterization as
in Section 4.2. This allows us to only solve (1) on a finite time interval, and recover the remaining parts
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of the orbit via the conjugacy satisfied by the parameterizations. More precisely, we want to find an orbit
t 7→ X(t, p) such that 

Ẋ(t, p) = f(X(t, p), p) ∀ t ∈ [0, τ(p)]

X(0, p) ∈W u(X̂(p))

X(τ(p), p) ∈W s(X̌(p)),

(16)

whereW u(X̂(p)) andW s(X̌(p)) respectively denote the unstable manifold of X̂(p) and the stable manifold
of X̌(p). Note that, since we only consider autonomous vector fields in this work, only the length τ(p)
of the time interval [0, τ(p)] is relevant, and the whole interval itself could of course be shifted. To
numerically compute such an orbit, we use piece-wise Chebyshev series (see e.g. [11, 40]). In order to do
so, we first introduce some notations.

For k ∈ N, we denote by Tk the Chebyshev polynomial of order k, defined for instance by Tk(cos(θ)) =
cos(kθ). We introduce a partition 0 = t̃(0) < t̃(1) < . . . < t̃(J) = 1 of [0, 1]. We denote by τ(p) the
(unknown) time the orbit spends between the two local manifolds and consider the partition of [0, τ(p)]
given by 0 = t(0)(p) < t(1)(p) < . . . < t(J)(p) = τ(p), where t(j)(p) = τ(p)t̃(j) for all 1 ≤ j ≤ J . For all

k ∈ N and j = 1, . . . , J , we also introduce the rescaled Chebyshev polynomial T
(j)
k (p), defined as

T
(j)
k (t, p) = Tk

(
2t− t(j)(p)− t(j−1)(p)

t(j)(p)− t(j−1)(p)

)
.

We can then write the orbit between the two manifolds as

X(t, p) = X
(j)
0 (p) + 2

∞∑
k=1

X
(j)
k (p)T

(j)
k (t, p), ∀ t ∈ (t(j−1)(p), t(j)(p)), ∀ j ∈ {1, . . . , J}. (17)

Finally, we assume that, following the methodology presented in Section 4.2, a truncated parameterization
Q̂(p) of the local unstable manifold of X̂(p) as well as a truncated parameterization Q̌(p) of the local
stable manifold of X̌(p) have been computed. Rewriting the differential equation in (16) as an integral
one, plugging in the expansion (17) and using well known properties of the Chebyshev polynomials,
namely

Tk(1) = 1, Tk(−1) = (−1)k and

∫
Tk =

1

2

(
Tk+1

k + 1
− Tk−1

k − 1

)
,

we obtain

kX
(j)
k (p) = τ(p)

t̃(j) − t̃(j−1)

4

(
f

(j)
k−1(X(t, p), p)− f (j)

k+1(X(t, p), p)
)
, ∀ k ≥ 1, ∀ 1 ≤ j ≤ J

X
(j)
0 (p) + 2

∞∑
k=1

X
(j)
k (p) = X

(j+1)
0 (p) + 2

∞∑
k=1

(−1)kX
(j+1)
k (p), ∀ 1 ≤ j ≤M − 1

X
(1)
0 (p) + 2

∞∑
k=1

(−1)kX
(1)
k (p) = Q̂(θ̂(p), p)

X
(M)
0 (p) + 2

∞∑
k=1

X
(J)
k (p) = Q̌(θ̌(p), p),

(18)

where f
(j)
k (X(t, p), p) are the Chebyshev coefficients of t 7→ f(X(t, p), p) on (t(j−1)(p), t(j)(p)). The

first line in (18) corresponds to the differential equation Ẋ(t, p) = f(X(t, p), p) on each subinterval
(t(j−1)(p), t(j)(p)), the second line ensures that the solution connects continuously between two consecutive
subintervals, and the last two lines correspond to the boundary conditions on each manifold.

Remark 4.4. In (18), besides the unknown Chebyshev coefficients X
(j)
k (p), we have r̂+ ř+ 1 additional

scalar unknowns: τ(p) ∈ R, θ̂(p) ∈ Rr̂ and θ̌(p) ∈ Rř. Still assuming r̂ + ř = m + 1, the system is then
underdetermined and we can fix two of these m+ 2 parameters to recover a unique solution.
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Similarly to the two previous cases of Fourier and Taylor series, when we consider p as a random
parameter having a given distribution we only need to expand every unknown in (18) using PC. We
again refer to Section 6 for an explicit example.

5 First example: a Lotka-Volterra system

In this section, we compute steady states and invariant manifolds of a Lotka-Volterra system of compe-
tition type {

ẋ = (1− x− ay)x,

ẏ = (1− y − bx)y,
(19)

where b = b(ω) is a bounded random variable having a given distribution. This basic example allows us
to easily study the quality of our numerical computations by comparing them to analytic results.

5.1 Analytical results (for benchmarking)

5.1.1 Deterministic framework

Assuming ab 6= 1, system (19) has a non trivial equilibrium given by

(xeq, yeq) =

(
a− 1

ab− 1
,
b− 1

ab− 1

)
.

The eigenvalues of the Jacobian Df(xeq, yeq) are

λ(1) = −1 and λ(2) =
(a− 1)(b− 1)

ab− 1
. (20)

and associated eigenvectors are given by

Vλ(1) =

(
a− 1
b− 1

)
and Vλ(2) =

(
a
−b

)
. (21)

In the case a, b > 1, λ(2) is positive and the equilibrium is of saddle type. Its stable manifold is the line
y = b−1

a−1x, x > 0 and its unstable manifold is a (nonlinear) curve connecting to (0, 1) and (1, 0).

5.1.2 Stochastic framework

We now assume that the parameter b = b(ω) is a bounded random variable. We write

b(ω) = b̄+ σp(ω),

where σ ≥ 0 and p is a random variable taking values in [−1, 1]. We assume ab̄ 6= 1 and σ ≤
∣∣∣ab̄−1

a

∣∣∣,
so that ab(ω) − 1 6= 0 a.e.. For specific distributions of p, one can compute analytically the first two
moments of xeq = a−1

ab−1 :

• If p is uniformly distributed on [−1, 1], that is if its PDF is given by ρp(s) = 1
21s∈(−1,1), one has

E(xeq) =
a− 1

aσ
atanh

(
aσ

ab̄− 1

)
and E(x2

eq) =
(a− 1)2

(ab̄− 1)2 − (aσ)2
.

• If p is beta-distributed with parameters (− 1
2 ,−

1
2 ), that is if its PDF is given by ρp(s) = 1s∈(−1,1)

1
π
√

1−s2 ,

one has

E(xeq) =
a− 1

ab̄− 1

1√
1−

(
aσ
ab̄−1

)2
and E(x2

eq) =

(
a− 1

ab̄− 1

)2
1(

1−
(

aσ
ab̄−1

)2
) 3

2

.
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• If p is beta-distributed with parameters (1
2 ,

1
2 ), that is if its PDF is given by ρp(s) = 1s∈(−1,1)

2
π

√
1− s2,

one has

E(xeq) =
a− 1

ab̄− 1

2

1 +

√
1−

(
aσ
ab̄−1

)2
and E(x2

eq) =

2

(
1−

√
1−

(
aσ
ab̄−1

)2
)

(
aσ
ab̄−1

)2
√

1−
(

aσ
ab̄−1

)2

(
a− 1

ab̄− 1

)2

.

In order to focus the amount of comparisons and illustrations in the next section, we only consider
the first component xeq of the equilibrium, but similar analytical and numerical computations could of
course also be carried out for yeq.

5.2 Numerical results

In this section, we compute using PC the equilibrium (xeq, yeq) and its stable and unstable manifold. For
given a, b̄ and σ, we use the techniques presented in Section 4 on

f((x, y), p) =
(
(1− x− ay)x, (1− y − (b̄+ σp)x)y

)
, (22)

where for convenience we use (x, y) instead of (x1, x2).

5.2.1 Analysis of convergence for the steady state problem

We first solve, for various choices of expansions, the steady state problem f(x(p), y(p), p) = 0, and
analyze how the choice of expansion together with the distribution of p affect the convergence rates.
More precisely, for a given expansion basis φn and truncation level N , we look for coefficients (xn)0≤n<N
and (yn)0≤n<N such that

f(xN (p), yN (p), p) ≈ 0,

where
xN (p) =

∑
0≤n<N

xnφn(p) and yN (p) =
∑

0≤n<N

ynφn(p).

By taking the scalar product with respect to each φn, 0 ≤ n < N , we obtain the following system{
xn − (x ∗ x)n − a(x ∗ y)n = 0

yn − (y ∗ y)n − b̄yn − σ(p ∗ x ∗ y)n = 0
∀ 0 ≤ n < N. (23)

Here ∗ denotes the product associated to the basis φn, i.e. (x ∗ y)0≤n<2N−1 is the unique sequence such
that

xN (p)yN (p) =
∑

0≤n<2N−1

(x ∗ y)nφn(p).

If φn is chosen so that φ1(p) = p, which will often be the case in practice, then the expansion of p only
has a single non-zero coefficient: pn = δn,1.

Remark 5.1. We emphasize that ∗ of course depends on the choice of the basis φn. We refer to the
Appendix for more details about this product structure, and discussions on how it can be computed in
practice.

We solve (23) using Newton’s method, and the initial conditions given by the deterministic equilib-
rium, i.e., for σ = 0 so that

x0 =
a− 1

ab̄− 1
, y0 =

b̄− 1

ab̄− 1
and xn = 0, yn = 0 ∀ 1 ≤ n < N.
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The results for different choices of basis φn are presented in Figure 3. To make the comparison fair,
we consider rescaled version of the Chebyshev polynomials of the second kind and of the Gegenbauer
polynomials (see the Appendix), so that all φn used satisfy sups∈[−1,1] |φn(s)| = 1. The decay of the

coefficients is therefore indicative of the truncation error in C0-norm. As expected, the Chebyshev and
Legendre expansions converge faster than the Taylor expansions, with the Gegenbauer one lying some-
where in between. As mentioned previously, we focus here only on the first component x, but the same
behavior is observed for the second component y.

0 2 4 6 8
10-15

10-10

10-5

100

(a) σ = 0.1

0 5 10 15
10-15

10-10

10-5

100

(b) σ = 1

0 10 20 30
10-15

10-10

10-5

100

(c) σ = 3

Figure 3: We represent the absolute value of the coefficients xn solving (23) with respect to n. The
computations were done for a = 3, b̄ = 5 and σ = 0.1 for Figure 3a, σ = 1 for Figure 3b and σ = 3
for Figure 3c. In each case, the coefficients are computed for different expansions: Chebyshev of the
first kind in blue, Legendre in cyan, Chebyshev of the second kind (rescaled) in green, Gegenbauer with
µ = 20 (rescaled) in magenta and Taylor in red.

However, as mentioned in the introduction, we are more interested in understanding the distribution
of the solution, assuming p has a prescribed distribution in [−1, 1]. In Figure 4 and Figure 5 we display
the relative error for the first two moments

Err1(N) =

∣∣E(x(p))− E(xN (p))
∣∣

|E(x(p))|
and Err2(N) =

∣∣E(x(p)2)− E(xN (p)2)
∣∣

|E(x(p)2)|
,

depending on the truncation level N , for several PDF ρp of p and again for several expansions.
The limiting moments E(x(p)) and E(x(p)2) are computed analytically when possible (see Sec-

tion 5.1.2) and using numerical integration otherwise. The truncated moments E(xN (p)) and E(xN (p)2)
are computed from the coefficients of the expansion

xN =

N−1∑
n=0

xnφn.

If φn is the orthogonal basis associated to the distribution ρp, then as explained in Section 2

E(xN (p)) = x0 and E(xN (p)2) =

N−1∑
n=0

x2
nhn.

Otherwise, we have

E(xN (p)) =

N−1∑
n=0

xn

∫ 1

−1

φn(s)ρp(s)ds and E(xN (p)) =

2N−2∑
n=0

(x ∗ x)n

∫ 1

−1

φn(s)ρp(s)ds,

and we first compute the above integrals to obtain the truncated moments. As expected from the
paradigm of PC, we obtain faster convergence for these statistics when using the PC expansions associated
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22µ−1µB(µ,µ)

π
(1− s2)µ−

1
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Figure 4: Relative error for the first moment in function of the truncation level N , for several distributions
ρp of the parameter p. In each case, we take a = 3, b̄ = 5, σ = 1, and use several expansions which are
represented in different colors: Chebyshev of the first kind in blue, Legendre in cyan, Chebyshev of the
second kind in green, Gegenbauer with µ = 20 in magenta and Taylor in red.

to the distribution ρp of the parameter p, i.e., a family of polynomial φn orthogonal with respect to 〈·, ·〉ρp .

In particular, if p has a uniform distribution then the Legendre expansion converges the fastest (Figure 4a
and Figure 5a), if p has an arcsine distribution then the Chebyshev expansion of the first kind converges
the fastest (Figure 4b and Figure 5b), if p has a Wigner semicircle distribution then the Chebyshev
expansion of the second kind converges the fastest (Figure 4c and Figure 5c) and finally if p has a beta
distribution of parameter (20, 20) then the Gegenbauer expansion of parameter µ = 20 converges the
fastest (Figure 4d and Figure 5d).

Remark 5.2. These simple experiments confirm that it is in general a good option to choose the expansion
basis associated to the distribution of the parameter, and we will systematically do so in the sequel.
Nonetheless, we believe that in some cases, especially highly nonlinear ones, the cost of actually computing
the nonlinear terms should also be taken into account (see the discussion in Section 8.3).
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Figure 5: Relative error for the second moment in function of the truncation level N , for several distribu-
tions ρp of the parameter p. In each case, we take a = 3, b̄ = 5, σ = 1, and use several expansions which
are represented in different colors: Chebyshev of the first kind in blue, Legendre in cyan, Chebyshev of
the second kind in green, Gegenbauer with µ = 20 in magenta and Taylor in red.

5.2.2 Computation of eigenvalues and eigenvectors

Now that we found an accurate representation of the steady state, we turn our attention to the dynamics
around it. Before computing parameterizations of the local stable and unstable manifolds, which will
be done in the next subsection, we first focus on the linearized system around the equilibrium. More
precisely, we are interested in the usual eigenvalue problemD(x,y)f(x(p), y(p), p)

(
u(p)
v(p)

)
− λ(p)

(
u(p)
v(p)

)
= 0

u(p)2 + v(p)2 = 1,

(24)

where (x(p), y(p)) is the previously computed equilibrium, and we solve for u(p), v(p) and λ(p), the last
equation being a normalization of the eigenvector allowing us to have a (locally) unique solution. In the
previous subsection we obtained truncated expansions xN and yN of the equilibrium, and we now aim at
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doing the same for the eigendata. Namely, we write

uN (p) =
∑

0≤n<N

unφn(p), vN (p) =
∑

0≤n<N

vnφn(p) and λN (p) =
∑

0≤n<N

λnφn(p),

and plug these expansions back in (24). For our explicit example (22), this yields the following system
for the coefficients un, vn and λn:
un − 2(x ∗ u)n − a(y ∗ u)n − a(x ∗ v)n − (λ ∗ u)n = 0

− b̄(y ∗ u)n − σ(p ∗ y ∗ u)n + vn − 2(y ∗ v)n − b̄(x ∗ v)n − σ(p ∗ x ∗ v)n − (λ ∗ v)n = 0

(u ∗ u)n + (v ∗ v)n − δn,0 = 0

∀ 0 ≤ n < N.

Again we solve this system using Newton’s method and the initial conditions given by numerically ob-
tained eigenvalue and eigenvector for the deterministic problem (20)-(21). We obtain PC expansions for
the eigenvalues λ(1) and λ(2) and associated eigenvectors Vλ(1) =

(
u(1), v(1)

)
and Vλ(2) =

(
u(2), v(2)

)
.

From these PC expansions, we can then easily get statistical information about the eigenvalues and
eigenvectors. For instance, as mentioned in the introduction, once the PC coefficients have been computed,
we immediately get the mean and the variance of the eigenvalue λ. Furthermore, one can carry out Monte
Carlo simulations basically for free (the only cost being the evaluation of the basis polynomials φn, for
0 ≤ n < N , at the sampled values of p). For a given distribution of p, this allows us to numerically
compute the PDF of λ (see Figure 6). Regarding the eigenvectors, while we also have access to the
mean and the variance component-wise, these quantities are not the most relevant as they neglect the
correlations between the components. Here we have a simple example where a well chosen observable,
namely the angle defined by the eigenvector, contains most of the information. In practice, we compute
the PC expansion of the angle ψ via the formula

ψ(i) = 2 arctan
v(i)

1 + u(i)
,

see Section 8.2 for more details. Once the PC expansion of this observable has been computed, we
again have directly access to its mean and variance, which gives us a good sense of the direction of the
eigenspace (see Figure 7). Since the PC expansion also allows us to compute higher order moments (see
Section 8.2), this coarse description can be made more quantitative by using these moments to obtain
concentration inequalities.

5.2.3 Computation of local stable/unstable manifolds

We are now ready to compute parameterizations of the stable and unstable manifolds of the equilibrium,
as described in Section 4.2. That is, we look for a parameterization of the form

QK,N (θ, p) =

K−1∑
k=0

N−1∑
n=0

Qk,nφn(p)θk.

Notice that for our example (22) the phase space is two-dimensional and both the stable and the unstable
manifolds that we are interested in are one-dimensional. Therefore, θ will be one-dimensional and the

coefficients Qk,n =
(
Q

(1)
k,n, Q

(2)
k,n

)
belong to R2. It will be convenient to use the following notation

Q
(1)
k =


Q

(1)
k,0
...

Q
(1)
k,N−1

 and Q
(2)
k =


Q

(2)
k,0
...

Q
(2)
k,N−1

 ∀ 0 ≤ k < K. (25)
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Figure 6: PDF of both eigenvalues, for different distributions ρp of the parameter p. The PC coefficients
of λ(1) and λ(2) were obtained for a = 3, b̄ = 5, σ = 3, and then used to compute 10, 000 samples used to
recover the PDF. Notice that the results are consistent with the analytic computations (20), as the PDF
of λ(1) is supposed to be a Dirac at −1.

According to (8) we define

Q
(1)
0 =

 x0

...
xN−1

 , Q
(2)
0 =

 y0

...
yN−1

 , Q
(1)
1 = γi


u

(i)
0
...

u
(i)
N−1

 and Q
(2)
1 = γi


v

(i)
0
...

v
(i)
N−1

 ,

where (xn)n and (yn)n are the PC coefficients of the equilibrium computed in Section 5.2.1, and (u
(i)
n )n and

(v
(i)
n )n are the PC coefficients of the eigenvectors computed in Section 5.2.2. Observe that i = 1 if we want

to compute a parameterization of the stable manifold (resp. i = 2 for the unstable manifold). To compute
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Figure 7: We display here in solid lines the mean direction of the two eigenspaces (the stable one in blue
and the unstable in red), given by E(ψ(i)) for i = 1, 2, still for a = 3, b̄ = 5 and σ = 3. The dotted lines

have directions given by E(ψ(i))±
√
V(ψ(i)).

the higher order coefficients Qk, 2 ≤ k < K we use (15), which we now specialize to our example (22).
We need to introduce some more notations. Given an expansion basis φn and z = (zn)0≤n<N ∈ RN , we
denote by Mz the N ×N product matrix such that

(Mzz
′)n = (z ∗ z′)n ∀ z′ ∈ Rn, ∀ 0 ≤ n < N. (26)

This matrix can be computed explicitly from z and the linearization coefficients α (see the Appendix).
Given an expansion basis φn and double expansions of the form

qK,N (θ, p) =

K−1∑
k=0

N−1∑
n=0

qk,nφn(p)θk and q′K,N (θ, p) =

K−1∑
k=0

N−1∑
n=0

q′k,nφn(p)θk

we denote by ~ the product associated to the basis φn(p)θk, that is (q ~ q′)k,n is the unique sequence
such that

qK,N (θ, p)q′K,N (θ, p) =

2K−2∑
k=0

2N−2∑
n=0

(q ~ q′)k,n φn(p)θk.

We again refer to the Appendix for more details about this product structure, and discussions on how it
can be computed in practice. Similarly to (25) we write

(q ~ q′)k =

 (q ~ q′)k,0
...

(q ~ q′)k,N−1

 ∀ 0 ≤ k < K.

We are now ready to go back to (15) and give explicit and computable formulas for the coefficients Qk
k ≥ 2 of the parameterization in the case of our example (22). Assuming the coefficients Q

(1)
l and Q

(2)
l

have been computed for 0 ≤ l ≤ k − 1, the next coefficients are given by

Q(1)
k

Q
(2)
k

 =

kMλ(i) − (IN − 2Mx − aMy) aMx

−
(
−b̄My − σMpy

)
kMλ(i) −

(
IN − 2My − b̄Mx − σMpx

)
−1
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 (
Q(1) ~Q(1)

)
k
− a

(
Q(1) ~Q(2)

)
k(

Q(2) ~Q(2)
)
k
− b̄

(
Q(1) ~Q(2)

)
k
− σ

(
p~Q(1) ~Q(2)

)
k

 ,

where IN is the N×N identity matrix and again i = 1 if we are computing a parameterization of the stable
manifold (resp. i = 2 for the unstable manifold). Here p is identified with the sequence pk,n = δk,0δn,1
(again assuming the φn are normalized such that φ1(p) = p).

Once the coefficients Q
(1)
k and Q

(2)
k have been computed up to the desired order, we have access to

the statistical properties of the manifold. Indeed we can for instance carry out cheap sampling to get a
sense of how the manifolds are distributed in phase space (see Figures 8 and 9). We can also compute
another interesting observable, namely the PC expansion of the curvature κ of each manifold at the
equilibrium, which gives us a sense of how much the manifold deviates from its tangent space spanned
by the eigenvectors. In practice, we compute the PC expansion of the curvature from the PC expansion
of the parametrization Q of the manifold, via the formula

κ(p) =

∣∣∂θQ(1)(0, p)∂2
θθQ

(2)(0, p)− ∂θQ(2)(0, p)∂2
θθQ

(1)(0, p)
∣∣(

∂θQ(1)(0, p)2 + ∂θQ(2)(0, p)2
) 3

2

,

which is independent of the way we parametrize the curve. However, notice that with our choice of
parameterization, the derivatives with respect to θ are readily accessible from the coefficients of Q:

∂θQ
(i)(0, p) = Q

(i)
1 and ∂2

θθQ
(i)(0, p) = 2Q

(i)
2 .

As expected, the PC expansion of the curvature κstable that we obtain for the stable manifold is close
to 0 (the stable manifold is a line for all values of p). On Figures 8 and 9, we display the PDF of the
curvature κunstable of the unstable manifold, computed from its PC expansion.

6 Second example: the Lorenz system

In this section, we compute periodic orbits, invariant manifolds and heteroclinic orbits for the Lorenz
system 

ẋ = ς(y − x),

ẏ = %x− y − xz,
ż = −βz + xy,

(27)

where % = %(ω) is a bounded random variable having a given distribution. We renormalize it by writing

%(ω) = %̄+ σp(ω),

where σ > 0 and p is a random variable taking values in [−1, 1].

6.1 Computation of periodic orbits

Using the framework presented in Section 4.1, we compute periodic orbits of (27) via a Fourier×PC
expansion. That is, we write

xK,N (t, p) =

K−1∑
k=−K+1

N−1∑
n=0

xk,nφn(p)eikΩ(p)t,

and similarly for yK,N and zK,N , where

Ω(p) =

N−1∑
n=0

Ωnφn(p).
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Figure 8: Representations of the local stable (in blue) and unstable (in red) manifolds of the equilibrium
(xeq, yeq). The computations were done for a = 3, b̄ = 5, σ = 3, N = 20, K = 10, γ1 = 0.2, γ2 = 0.4.
The random parameter p is assumed to have an arcsine distribution, i.e. ρp(s) = 1s∈(−1,1)

1
π
√

1−s2 and

therefore we used the Chebyshev polynomials of the first kind for the PC expansion. In Figure 8a
we display manifolds for several values of p, sampled according to the arcsine distribution. The same
manifolds are represented in Figure 8b with an additional dimension describing the value of b = b̄ + σp
corresponding to each sample. In Figure 8c, we display the PDF of the curvature κunstable of the unstable
manifold at the equilibrium.

In this subsection, we use ~ to denote the product associated to the basis φn(p)eikΩ(p)t, i.e. (x~ y)k,n is
the unique sequence such that

xK,N (t, p)yK,N (t, p) =

2K−2∑
k=−2K+2

2N−2∑
n=0

(x~ y)k,nφn(p)eikΩ(p)t. (28)
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Figure 9: Representations of the local stable (in blue) and unstable (in red) manifolds of the equilibrium
(xeq, yeq). The computations were done for a = 3, b̄ = 5, σ = 3, N = 10, K = 20, γ1 = 0.2, γ2 = 0.4.
The random parameter p is assumed to have a beta distribution of parameter (20, 20), i.e. ρp(s) =

1s∈(−1,1)
22µ−1µB(µ,µ)

π (1 − s2)µ−
1
2 with µ = 20, and therefore we used the Gegenbauer polynomials of

parameter µ = 20 for the PC expansion. In Figure 9a we display manifolds for several values of p,
sampled according to the arcsine distribution. The same manifolds are represented in Figure 9b with an
additional dimension describing the value of b = b̄+ σp corresponding to each sample. In Figure 9c, we
display the PDF of the curvature κunstable of the unstable manifold at the equilibrium.

It will again be convenient to write

xk =


xk,0

...

xk,N−1

 , yk =


yk,0

...

yk,N−1

 , zk =


zk,0

...

zk,N−1

 , ∀ 0 ≤ k < K, (29)

24



and similarly

(x~ y)k =


(x~ y)k,0

...

(x~ y)k,N−1

 ∀ 0 ≤ k < K, (30)

and so on. Plugging the expansions (28) for x , y and z in (27) and using the notations (29) and (30),
we obtain the following system of (2K − 1)×N equations:

ik(Ω ~ x)k − ς(yk − xk) = 0

ik(Ω ~ y)k − (%̄xk + σ(x~ p)k − yk − (x~ z)k) = 0

ik(Ω ~ z)k − (−βzk + (x~ y)k) = 0

∀ |k| < K, (31)

where again p is identified with the sequence pk,n = δk,0δn,1 and Ω with the sequence Ωk,n = δk,0Ωn. As
mentioned in Section 4.1, we complement this system with a phase condition, that we also expand using
PC. That is, given

u(i) =


u

(i)
0

...

u
(i)
N−1

 and v(i) =


v

(i)
0

...

v
(i)
N−1

 i = 1, 2, 3,

we append to (31) the N equations(
K−1∑

k=−K+1

xk − u(1)

)
∗ v(1) +

(
K−1∑

k=−K+1

yk − u(2)

)
∗ v(2) +

(
K−1∑

k=−K+1

zk − u(3)

)
∗ v(3) = 0. (32)

In practice, we solve (31)-(32) using Newton’s method. More precisely, we assume that we are given a
deterministic periodic orbit (i.e. a solution for σ = 0) and do a predictor-corrector continuation in σ
(using Newton’s method as the corrector step) until we reach the desired value. In Figure 10 we illustrate
the output of this procedure.

6.2 Computation of heteroclinic orbits

In this subsection, we detail how our approach can be used to compute heteroclinic orbits for the Lorenz
system, going between (√

β(%− 1),
√
β(%− 1), %− 1

)
(33)

and the origin. We focus on the case where

% >
ς (ς + β + 3)

ς + β − 1
,

in which the origin has a two-dimensional stable manifold and (33) has a two-dimensional unstable
manifold.

As explained in Section 4.3, we use these local manifolds to set up our boundary value problem for the
heteroclinic orbits. A parameterization of these local manifolds is computed as described in Section 4.2,
using a Taylor×PC expansion. This procedure was already described in details in Section 5.2.3, so we

omit these details here. We denote by Q̂K̂,N (resp. Q̌Ǩ,N ) a local parameterization of the unstable
manifold of (33) (resp. of the stable manifold of the origin) of the form

Q̂K̂,N (θ, p) =
∑

0≤|k|<K̂

∑
0≤n<N

Q̂k,nφn(p)θk.
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Figure 10: We illustrate here some of the information that can be recovered from the Fourier×PC
expansion of the periodic orbit. The computations were done for ς = 10, β = 8/3, %̄ = 28, σ = 10,
K = 80, N = 10 and several PDF ρp of p. In Figure 10a and Figure 10b we display the PDF of the
period T = 2π/Ω of the orbit. In Figure 10c, we display some of the orbits described by the Fourier×PC
expansion (notice that, from the expansion we can again sample cheaply to obtain such orbits for many
values of %, but the picture becomes cluttered very quickly, which is the only reason why we restrict
ourselves to three values of % here).

Notice that since both manifolds are two-dimensional, we have θ = (θ1, θ2). We recall that our goal

is to find τ(p), θ̂(p), θ̌(p) and an orbit X(t, p) that solves the Lorenz system on [0, τ(p)], and satisfies

the boundary conditions X(0, p) = Q̂K̂,N (θ̂(p), p) and X(τ(p), p) = Q̌K̂,N (θ̌(p), p). As mentioned in
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Remark 4.4, this system is underdetermined and we can in fact fix θ̂1 and θ̌1, and only solve for τ(p),

θ̂2(p), θ̌2(p) and X(t, p) to recover a unique solution. In practice, we solve for PC expansions of τ(p),

θ̂2(p) and θ̌2(p):

τN (p) =

N−1∑
n=0

τnφn(p), θ̂N2 (p) =

N−1∑
n=0

(
θ̂2

)
n
φn(p) and θ̌N2 (p) =

N−1∑
n=0

(
θ̌2

)
n
φn(p).

To compute the heteroclinic orbit (or to be more precise, the part of that orbit that connects the two
local manifolds), we use piece-wise Chebyshev×PC expansions, as explained in Section 4.3. That is, we
now write

xK,N (t, p) =

K−1∑
k=−K+1

N−1∑
n=0

x
(j)
k,nφn(p)T

(j)
|k| (t, p), ∀ t ∈ (t(j−1)(p), t(j)(p)), ∀ j ∈ {1, . . . , J},

and similarly for yK,N and zK,N , where we use the notations of Section 4.3 for partition of [0, τ ] and the
associated rescaled Chebyshev polynomials. In this subsection, we use ~ to denote the product associated

to the basis φn(p)T
(j)
|k| (t, p), i.e. (x~ y)k,n is the unique sequence such that

xK,N (t, p)yK,N (t, p) =

2K−2∑
k=−2K+2

2N−2∑
n=0

(x~y)
(j)
k,nφn(p)T

(j)
|k| (t, p), ∀ t ∈ (t(j−1)(p), t(j)(p)), ∀ j ∈ {1, . . . , J}.

(34)
It will again be convenient to write

x
(j)
k =


x

(j)
k,0

...

x
(j)
k,N−1

 , y
(j)
k =


y

(j)
k,0

...

y
(j)
k,N−1

 , z
(j)
k =


z

(j)
k,0

...

z
(j)
k,N−1

 , ∀ 0 ≤ k < K,

and similarly

Q̂k =


Q̂k,0

...

Q̂k,N−1

 ∀ 0 ≤ k < K,

(x~ y)
(j)
k =


(x~ y)

(j)
k,0

...

(x~ y)
(j)
k,N−1

 ∀ 0 ≤ k < K, ∀ j ∈ {1, . . . , J},

and so on. To write all three components at once, we also use

X
(j)
k =


x

(j)
k

y
(j)
k

z
(j)
k

 .
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With these notations, system (18) for the Lorenz vector field is then given by

kx
(j)
k −

t̃(j) − t̃(j−1)

4

(
τ ∗
(
ς(y

(j)
k−1 − x

(j)
k−1)− ς(y(j)

k+1 − x
(j)
k+1)

))
= 0, ∀ k ≥ 1, ∀ 1 ≤ j ≤ J

ky
(j)
k −

t̃(j) − t̃(j−1)

4

(
τ ∗
((
%̄x

(j)
k−1 + σ(x~ p)

(j)
k−1 − y

(j)
k−1 − (x~ z)

(j)
k−1

)
−
(
%̄x

(j)
k+1 + σ(x~ p)

(j)
k+1 − y

(j)
k+1 − (x~ z)

(j)
k+1

)))
= 0, ∀ k ≥ 1, ∀ 1 ≤ j ≤ J

zy
(j)
k −

t̃(j) − t̃(j−1)

4

(
τ ∗
((
−βz(j)

k−1 + (x~ y)
(j)
k−1

)
−
(
−βz(j)

k+1 + (x~ y)
(j)
k+1

)))
= 0, ∀ k ≥ 1, ∀ 1 ≤ j ≤ J

X
(j)
0 + 2

K−1∑
k=1

X
(j)
k = X

(j+1)
0 + 2

K−1∑
k=1

(−1)kX
(j+1)
k , ∀ 1 ≤ j ≤M − 1

X
(1)
0 + 2

K−1∑
k=1

(−1)kX
(1)
k =

∑
0≤|k|<K̂

Q̂k ∗ θ̂k,

X
(M)
0 (p) + 2

K−1∑
k=1

X
(J)
k =

∑
0≤|k|<Ǩ

Q̌k ∗ θ̌k,

where, for k = (k1, k2), θ̂k must be understood as

θ̂1 ∗ . . . ∗ θ̂1︸ ︷︷ ︸
k1 times

∗ θ̂2 ∗ . . . ∗ θ̂2︸ ︷︷ ︸
k2 times

.

Again, we solve this system for the desired noise level σ by doing predictor corrector steps with Newton
iterations.

In Figure 11 we illustrate the output of this procedure, by plotting several connecting orbits sampled
from the computed PC coefficients. As mentioned in the Section 3, we can also obtain the PC expansion
of the Gaussian curvature of each manifold at their respective equilibrium. We do so by computing each
coefficient of the first two fundamental forms, which can easily be recovered from the parametrization
Q of the manifold since they only involve derivatives of Q evaluated at 0. The obtained PDF for the
Gaussian curvature of both the stable manifold at the origin and the unstable manifold at one of the
nontrivial equilibrium points are depicted in Figure 12. As can be seen in Figure 11, both manifolds are
fairly flat close to their respective equilibrium, and indeed the suport of both PDF is close to zero in
Figure 12.

Finally, we point out that while our method is also successful when % takes values around the classical
value % = 28, the computation is then more challenging due to the proximity of the Hopf bifurcation at

% = ς(ς+β+3)
ς+β−1 (≈ 24.7 for the classical values ς = 10 and β = 8/3), and therefore we are only able to

handle smaller noise level (σ ≈ 1). For such parameter values, the computations (in both the stochastic
and the deterministic framework) are intrinsically more difficult because of the strong oscillatory behavior
induced by the pair of eigenvalues being close to the imaginary axis.

7 Conclusions & Outlook

PC expansions have proven very successful in studying evolution equations (be it ODEs or PDEs) with
random coefficients, but mostly from the point of view of time integration. In this work we developed a
complementary approach, also based on PC but aimed at studying invariant sets of such systems, and
applied it to investigate steady states, stable and unstable manifolds, periodic orbits and connecting
orbits for ODEs. This approach is driven by the paradigm of nonlinear dynamics to study the structure
of invariant sets to understand the relevant effects. Once a PC expansion representation of an invariant
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Figure 11: Some of the heteroclinic orbits encoded in the piece-wise Chebyshev×PC expansions and in
the parameterizations of the local manifolds. The computations were done for ς = 10, β = 8/3, %̄ = 50,
σ = 15, M = 25, K = 8, N = 15 and K̂ = 30, Ǩ = 30. We display the manifolds and orbits for 10 values
of p, uniformly sampled. The local unstable manifolds of (33) are in blue and the local stable manifolds of
the origin are in red. The part of the heteroclinic orbits that solves the boundary value problem between
the two manifolds and is computed via piece-wise Chebyshev×PC expansions is displayed in green. The
remaining parts of the heteroclinic orbits (in cyan and magenta), are obtained for free via the conjugation
properties of the parameterizations (as explained on Figure 2).

set is computed, this expansion contains explicit information about the random invariant sets. Using fast
sampling or geometric visualization of the moments, then allows us to understand, how the phase space
structure is going to change based upon the random input.

We conclude by providing a brief discussion about some potential generalizations and further directions
of research connected to this work.

Extension to PDEs: A natural extension of this work would be to use similar techniques to study
invariant sets of time-dependent PDEs with random coefficients. The steady state case has already
been extensively investigated, but we believe that our new framework could allow to complement the
already existing studies on periodic orbits, and to explore new problems related to invariant manifolds
and connecting orbits for PDEs with random coefficients.

Bifurcations: If the invariant state we are studying undergoes a bifurcation for some value of the
random parameter, then the curve or manifold of invariant state that we are looking for may not be
smooth, and the PC expansions will then converge slowly, if at all. Several multiresolution analysis
schemes, based on subdividing the random space or on different bases such as wavelets, were developed
to handle such situations (see e.g. [44],[27, Chapter 8] and the references therein), and could be used also
in our setting to study random parameter bifurcation problems [20, 25, 24].

Rigorous computation: A posteriori error analysis for PC expansions is of course critical, as the
quantification of uncertainty provided by those expansions is only relevant if the error coming from
the discretization/truncation can also be controlled. Techniques of rigorous computations have been
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Figure 12: PDF of the Gaussian curvature of the stable manifold at the origin 12a, and of the unstable
manifold at one of the non-trivial equilibirum points 12b, for the same parameter values as in Figure 11,
and with p having a uniform distribution, i.e. ρp(s) = 1

21s∈(−1,1).

developed to obtain certified a-posteriori error estimates about numerically computed invariant sets of
deterministic systems [13], and we aim at generalizing them for random systems in a future work.

Expectation of random sets: Although it is relatively straightforward to define the expectation/average
for random variables and observables generated by dynamical systems, we already observed that more
general manifolds are more difficult to characterize via expectations. In fact, finding a good definition for
the expectation of a random set X (ω) is an entire sub-branch of mathematics; see the monograph [31]
and references therein. Several definitions for the expectation of X (ω) exist. One could start to investi-
gate the use of selection expectation for the dynamical systems context. Selections ξ(ω) are single-valued
measurable functions capturing particular elements out of a set-valued random variable X (ω) in the sense
that one requires ξ(ω) ∈ X (ω) for almost all ω ∈ Ω. Selections take values in Rm if X (ω) ⊂ Rm. Then
one defines the expectation of X (ω) as the closure of the expectations of all integrable selections. Note
that this viewpoint is a nice abstract way we can go beyond scalar observables to define expectations for
sets in a consistent way; we are planning to investigate this viewpoint in future work.

8 Appendix

We discuss here the computations of products of PC expansions, and detail some implementation aspects.

8.1 Linearization formulas for products

For any family of orthogonal polynomials φn associated to a weight ρ, and any m and n in N, the product
φmφn can be written in the original basis:

φmφn =

n+m∑
k=0

αm,nk φk. (35)
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This is often called a linearization formula. Notice that, since φmφn = φnφm, the linearization coefficients
are symmetric in m and n: αm,nk = αn,mk . Besides, by orthogonality we have

αm,nk =
1

hk
〈φmφn, φk〉ρ =

1

hk
〈φkφn, φm〉ρ ,

from which we infer that, if k + n < m or k +m < n, then αm,nk = 0, i.e.

φmφn =

n+m∑
k=|m−n|

αm,nk φk. (36)

Besides, if the weight ρ is even, then any even function is orthogonal to any odd function and therefore,
for all k having a different parity than m+ n, αm,nk = 0. In such case, it can be convenient to eliminate
all the coefficients that are a priori equal to zero, and rewrite (35) as

φmφn =

min(m,n)∑
k=0

α̃m,nk φm+n−2k. (37)

Remark 8.1. In practice, it is convenient to precompute and store the linearization coefficients αm,nk

(or α̃m,nk ). These coefficients can be obtained by numerically computing the integrals 〈φmφn, φk〉ρ, for
instance using quadrature rules. For the classical orthogonal polynomials, the linearization coefficients
can also be computed in closed form (see e.g. [33]). For Legendre polynomials Pn, we have

α̃m,nk =

(
m−k−1/2
m−k

)(
n−k−1/2
n−k

)(
k−1/2
k

)
(n+m− 2k + 1/2)(

m+n−k−1/2
m+n−k

)
(n+m− k + 1/2)

, ∀ m,n, k ∈ N, k ≤ min(m,n),

where (
z

k

)
=

Γ(z + 1)

Γ(k + 1)Γ(z − k + 1)
.

For Chebyshev polynomials of the first kind Tn, we have

α̃m,nk =


1 if k = min(m,n) = 0,

1/2 if min(m,n) > 0, and k = 0 or k = min(m,n),

0 otherwise.

For Chebyshev polynomials of the second kind Un, we have

α̃m,nk = 1, ∀ m,n, k ∈ N, k ≤ min(m,n).

For Gegenbauer polynomials Cµn , we have

α̃m,nk =

(
m−k+µ−1

m−k
)(
n−k+µ−1

n−k
)(
k+µ−1

k

)
(n+m− 2k + µ)(

m+n−k+µ−1
m+n−k

)
(n+m− k + µ)

, ∀ m,n, k ∈ N, k ≤ min(m,n),

Finally, we point out that linearization coefficients αm,nk can of course also be defined for arbitrary (i.e.
non necessarily orthogonal) bases of polynomials. In particular, for the canonical basis φn(s) = sn

associated to Taylor expansions we have

α̃m,nk =

{
1 if k = 0,

0 otherwise.
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Definition 8.2. Given to sequences u = (un)n∈N and v = (vn)n∈N, we define their convolution product
u ∗ v by

(u ∗ v)k =

∞∑
m=0

∞∑
n=0

umvnα
m,n
k , ∀ k ∈ N,

with the convention αm,nk = 0 for all k > m + n. Notice that this definition depends on the weight ρ, or
equivalently on the family (φn)n∈N, via the coefficients αm,nk .

Lemma 8.3. If the weight ρ is even, the convolution of u and v can also be written as

(u ∗ v)k =

∞∑
p=0

k∑
q=0

up+qvp+k−qα̃
p+q,p+k−q
p .

This definition is the natural one to describe the product of two functions in the basis given by
(φn)n∈N. Indeed, writing

u(s) =

∞∑
n=0

unφn(s) and v(s) =

∞∑
n=0

vnφn(s),

one has, at least formally,

u(s)v(s) =

∞∑
n=0

(u ∗ v)n φn(s). (38)

With the notations of Definition 8.2, one has

‖u ∗ v‖1 ≤

(
sup
m,n∈N

m+n∑
k=0

|αm,nk |

)
‖u‖1 ‖v‖1 ,

where ‖u‖1 =
∑∞
n=0 |un|. Therefore, as soon as

sup
m,n∈N

m+n∑
k=0

|αm,nk | <∞, (39)

the space `1 of sequences with finite ‖·‖1 norm is stable under the convolution product, i.e.
(
`1, ∗

)
is a

Banach algebra.

Remark 8.4. If the family φn is such that sups∈[−1,1] |φn(s)| ≤ 1 for all n ∈ N, then the `1-norm of the

coefficients controls the C0-norm of the function:

sup
s∈[−1,1]

|u(s)| ≤ sup
n∈N
|un|.

In particular, if the coefficients associated to u and v have finite `1-norm and (39) is satisfied, then the
sum in (38) is guaranteed to converge, and (38) holds not only formally, but also in C0.

For each family of polynomials used in this work, namely the Legendre polynomials Pn, the Chebyshev
polynomials of the first kind Tn, the canonical basis Xn, and (suitable renormalization of) the Chebyshev
polynomials of the second kind Ũn = Un/Un(1) and the Gegenbauer polynomials C̃µn = Cµn/C

µ
n(1), we

have
m+n∑
k=0

|αm,nk | = 1, ∀ m,n ∈ N. (40)
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Indeed, in all these cases φn(1) = 1 for all n ∈ N, therefore (35) yields

m+n∑
k=0

αm,nk = 1, ∀ m,n ∈ N.

Besides, in all these cases the linearization coefficients αm,nk are nonnegative for all m,n, k ∈ N, and hence
we get (40), which implies (39). Notice that in all those cases sups∈[−1,1] |φn(s)| = 1 for all n ∈ N, and
therefore Remark 8.4 applies. For a more in depth discussion about the convolution products and Banach
algebra structures that can be associated to orthogonal polynomials, we refer to the lecture notes [37]
and the references therein.

In practice we need to implement the linear operator representing the (truncated) convolution with a
given sequence (see e.g. Section 5.2.3). Given u = (un)0≤n<N , and linearization coefficients α associated
to a basis (φn), we therefore define the N ×N matrix Mu by

(Mu)i,j =

i+j∑
k=|i−j|

αk,ji uk ∀ 0 ≤ i, j < N.

It follows from (36) that, for any vector v = (vn)0≤n<N

(Muv)k = (u ∗ v)k ∀ 0 ≤ k < N.

Let us now consider two basis
(
φ

(1)
n1

)
n1∈N

and
(
φ

(2)
n2

)
n2∈N

having linearization coefficients α(1) and

α(2) and associated convolution products ∗(1) and ∗(2). We encountered this situation in Section 5 and
Section 6, for instance when dealing with Taylor×PC expansions, but what follows could also be used for
multivariate PC expansions. Given bidimensional sequences u = (un)n∈N2 and v = (vn)n∈N2 associated
to expansions

u(x, y) =
∑
n∈N2

unφ
(1)
n1

(x)φ(2)
n2

(y) and v(x, y) =
∑
n∈N2

vnφ
(1)
n1

(x)φ(2)
n2

(y),

we introduce the bidimensional product ~ such that

u(x, y)v(x, y) =
∑
n∈N2

(u~ v)n φ
(1)
n1

(x)φ(2)
n2

(y).

The coefficients (u~ v)n can of course be computed from the univariate convolution products, for instance
by looking at u and v as functions of one variable (say x) having coefficients depending on the other
variable (say y):

u(x, y) =
∑
n1∈N

(∑
n2∈N

un1,n2φ
(2)
n2

(y)

)
φ(1)
n1

(x) and v(x, y) =
∑
n1∈N

(∑
n2∈N

vn1,n2φ
(2)
n2

(y)

)
φ(1)
n1

(x).

Denoting u(1) =
(
u

(1)
n1

)
n1∈N

, where for all n ∈ N u
(1)
n1 = (un1,n2)n2∈N, and slightly abusing the notation

∗(1) we get

(u~ v)k =

((
u(1) ∗(1) v(1)

)
k1

)
k2

=
∑
m1∈N

∑
n1∈N

(
α(1)

)m1,n1

k1

(
u(1)
m1
∗(2) v(1)

n1

)
k2
.

Of course the role of each variable/basis is interchangeable and we also have

(u~ v)k =

((
u(2) ∗(2) v(2)

)
k2

)
k1

=
∑
m2∈N

∑
n2∈N

(
α(2)

)m2,n2

k2

(
u(2)
m2
∗(1) v(2)

n2

)
k1
.
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8.2 Treatment of higher order terms

Let us now consider situation where product of three or more expansions have to be computed for a given
family φn. Of course one could consider the coefficients βk,m,nl such that

φkφmφn =

k+m+n∑
l=0

βk,m,nl φl,

and precompute (and store) them using the formula:

βk,m,nl =
1

hl
〈φkφmφn, φl〉ρ .

However, this approach becomes impracticable very fast even for univariate bases when the degree of the
nonlinearity increases. Therefore in practice it is more efficient to stick with only the coefficients α for
quadratic products, and compute nonlinear term of higher order recursively. That is, given expansions

u(s) =
∞∑
n=0

unφn(s), v(s) =

∞∑
n=0

vnφn(s) and w(s) =

∞∑
n=0

wnφn(s),

we get the coefficients of u(s)v(s)w(s) by first computing u∗v and then (u∗v)∗w, which by associativity
can simply be denoted (u ∗ v ∗ w).

Remark 8.5. It should be noted that associativity is often only approximately true in practice because of
truncation errors, but this is negligible as soon as we use enough coefficients for the truncation error to
be small (see e.g. [27, Section 4.5.1.2]).

We point out that, even for systems with nonlinear terms of low order, these considerations are also
relevant if one wishes to compute higher order moments associated to PC expansions. Indeed the k-th
moment of u is given by

E(uk) =

∞∑
l=0

(uk)l 〈φl, 1〉ρ = (uk)0,

where we have
(uk)l = (x ∗ . . . ∗ x︸ ︷︷ ︸

k times

)l.

Finally, let us also mention that handling non polynomial functions of PC expansions is also possible,
although less straightforward, see e.g. [7]. As a specific example, in Section 5.2.2 we compute the PC
expansion of an angle ψ, from the PC expansion of the coordinates (u, v), via the formula

ψ = 2 arctan
v

1 + u
.

In practice, we first compute the PC expansion of w = v
1+u . This can easily be done by solving the linear

system M1+uw = v, with M1+u the convolution matrix associated to 1 +u (see the previous subsection).
We then use a truncated Taylor series of arctan to compute the PC expansion of ψ from the one of w.
Notice that we may run into trouble here, if w ranges outside (−π/2, π/2). To avoid such problems, we
first do a quick sample of (u, v) to estimate the range of w, define ψ0 as the middle of this range, and
then compute ψ − ψ0 insteaduψ0

vψ0

 =

 cosψ0 sinψ0

− sinψ0 cosψ0

u
v

 , wψ0
=

vψ0

1 + uψ0

, ψ = ψ0 + 2 arctanwψ0
.
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8.3 Faster computations

The usual paradigm of PC is that, to minimize computational cost one should use the expansion basis
associated to the PDF of the random inputs, as this minimize the number of coefficients needed to reach
a given accuracy (see Section 5.2.1). However, the cost of computing the nonlinear terms for a given
expansion should also be taken into account, and we briefly discuss it here. Let us consider truncated
PC expansions of size N :

u(s) =

N−1∑
n=0

unφn and v(s) =

N−1∑
n=0

vnφn

and evaluate the cost of computing (u ∗ v)n for all 0 ≤ n < N , assuming the linearization coefficients α
have been precomputed and stored. From (36) we have

(u ∗ v)k =

N−1∑
n=0

k+n∑
m=|k−n|

αm,nk umvn,

therefore, using directly this formula the total cost of computing (u ∗ v)k for all 0 ≤ k < N is of order
N3. However, this cost can easily be reduced by one order for some specific expansions, for which we
know a priori that most of the linearization coefficients are zero. In particular, for Taylor expansions the
convolution product (usually called Cauchy product in that case) writes

(u ∗ v)k =

k∑
l=0

ulvk−l,

and thus the total cost of computing (u ∗ v)k for all 0 ≤ k < N is of order N2. Chebyshev expansions of
the first kind also enjoy a similar property. Indeed, let us consider φn defined as φ0 = T0 and φn = 2Tn
for all n ≥ 1. Then the associated convolution product is related to the classical discrete convolution
product and writes

(u ∗ v)k =

N−1∑
−N+1

u|l|v|k−l|,

and the total cost of computing (u∗ v)k for all 0 ≤ k < N is again of order N2. Finally, when N becomes
large one may want to try and reduce this cost even further. A natural way to do so for Chebyshev or
Taylor expansions is to compute the convolution via a Fast Fourier Transform, which then brings down
the cost even lower, to an order of N logN (see e.g. [32, 35]). This idea was partially extended to other
bases such as the Gegenbauer polynomials, see [34] and the references therein for more details.
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