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Abstract

We confirm a long-standing conjecture concerning shear-induced chaos in stochastically perturbed
systems exhibiting a Hopf bifurcation. The method of showing the main chaotic property, a positive
Lyapunov exponent, is a computer-assisted proof. Using the recently developed theory of conditioned
Lyapunov exponents on bounded domains and the modified Furstenberg-Khasminskii formula, the
problem boils down to the rigorous computation of eigenfunctions of the Kolmogorov operators de-
scribing distributions of the underlying stochastic process.
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1 Introduction

The impact of stochastic noise on the behaviour of a dynamical system is an intensely studied topic of
mathematical and physical research. Very often the mathematical analysis focuses on the statistics of
trajectories for different noise realisations and does not consider the dynamical aspects of the system.
In contrast, the theory of random dynamical systems as coined by the works of Ludwig Arnold and his
co-workers in the 1980s and 1990s, and manifested in Arnold’s book Random Dynamical Systems [3],
compares trajectories with different initial conditions but driven by the same noise. A random dynamical
system in this sense consists of a model of the time-dependent noise seen as a dynamical system θ on the
probability space, and a model of the dynamics on the state space formalized as a cocycle ϕ over θ.

In this framework, we can study the asymptotic behaviour of typical trajectories. In many situations
there is a spectrum of exponential asymptotic growth rates, the Lyapunov exponents. The sign of the
largest (or top) Lyapunov exponent, Λ1, determines if two nearby trajectories converge or separate from
each other. If Λ1 is negative, we typically observe the convergence of trajectories, a phenomenon labelled
synchronization. Positivity of Λ1 implies sensitivity to initial conditions and is thereby associated with
chaotic behaviour. The sensitivity to initial conditions means that any two trajectories starting arbitrarily
close to each other will separate at a certain point of time. In other words, even the smallest error in the
initial conditions leads to a considerably large error in the future.

Transitions between synchronization and chaos have become an essential part of bifurcation theory
for random dynamical systems. From an applied point of view, specific laser dynamics constitute an
important example for such bifurcations. Wieczorek [56] has conducted numerical bifurcation studies
for stochastically forced laser models exploring transitions from synchronisation to chaos. He has also
shown similar phenomena for coupled lasers with his co-workers in [7, 8]. In the context of oceanography,
stochastic Hopf bifurcations have been discussed for example in [20]. Beyond such applications, there is a
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genuine mathematical interest and motivation for studying the stability of random systems. In dissipative
as well as in conservative systems, proving chaotic behaviour has turned out to be a very challenging and
rarely resolved problem. The classical example for this problem is the standard map, an area-preserving
mapping of the two-torus which is characterised by expansion on large regions of the state space and
small islands of contraction. Positivity of the first Lyapunov exponent has not been shown analytically,
even if the volumes of these critical regions of contraction tend to zero, and the difficulties have been
quantified in [23]. Blumenthal, Xue and Young have shown recently in [9] that adding a tiny bit of noise
to the system allows for averaging arguments over a stationary measure of the induced Markov chain. As
long as the stationary measure allocates just a small amount of mass to the regions of contraction, the
existence of a positive Lyapunov exponent can be shown. This turns out to hold true for a large class of
maps, also in dissipative systems.

We will prove a similar result for a random dynamical system induced by a stochastic differential
equation in this work. The result lines up with the research program suggested in [59], and also exemplified
by other recent works [5, 24]: Young expressed the hope that if the geometry of a random map or stochastic
flow suggests a positive Lyapunov exponent, then this is actually the case. The underlying philosophy is
that a system with expansions on a large enough portion of its phase space can overcome tendencies to
form sinks as long as the randomness is strong enough. This work adds evidence for this conjecture.

1.1 The random dynamical system

Our main example is the two-dimensional stochastic differential equation

dZt = f(Zt)dt+ σ dWt , Z0 ∈ E ⊆ R2 , (1.1)

where Zt = (xt, yt)
T ∈ Ē ⊆ R2, Wt =

(
W 1
t ,W

2
t

)T
is a two-dimensional standard Brownian motion and

the function f : R2 → R2 is defined by

f(Z) :=

(
α −β
β α

)
Z − ‖Z‖2

(
a b
−b a

)
Z.

The constant σ ≥ 0 represents the strength of the purely additive noise and α ∈ R is a parameter equal
to the real part of eigenvalues of the linearisation of the vector field at (0, 0). The parameter b ∈ R
determines shear strength by amplitude-phase coupling, as can be seen when writing the deterministic
part of (1.1) in polar coordinates, and a > 0, β ∈ R are additional parameters.

In the absence of noise (σ = 0), the differential equation (1.1) is a normal form for the super-
critical Hopf bifurcation: when α ≤ 0 the system has a globally attracting equilibrium at (x, y) =
(0, 0) which is exponentially stable until α = 0 and, when α > 0, the system has a limit cycle at{

(x, y) ∈ R2 : x2 + y2 = α/a
}

which is globally attracting on R2 \ {0}.
In the case with noise (σ > 0), it has been shown in [22] that the solutions of (1.1) generate a random

dynamical system (θ, ϕ) (see Appendix A), where θ is the shift over Wiener space (see Appendix A.1)
and ϕ is a cocycle over θ, i.e.

ϕ(0, ω, ·) ≡ Id and ϕ(t+ s, ω, Z) = ϕ(t, θsω, ϕ(s, ω, Z)) for all ω ∈ Ω, Z ∈ R2 and t, s ≥ 0 .

For E = R2, the stochastic system has a unique stationary density

p(x, y) = Ka,α,σ exp

(
2α(x2 + y2)− a(x2 + y2)2

2σ2

)
,

where Ka,α,σ > 0 is the normalisation constant and is given by

Ka,α,σ =
2
√

2a
√
πσ erfc

(
− α√

2aσ2

) .
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This density allows to understand the dynamics of the system by means of ergodic theory: the unique
stationary measure dρ = p(x, y)d(x, y) gives rise to an ergodic invariant measure µ (see Appendix A.2)
for the skew product flow (Θt)t∈R+

0
on Ω× R2, defined by

Θt(ω,Z) := (θtω, ϕ(t, ω, Z)) .

In order to analyse asymptotic stability, we study the linearisation Φ(t, ω, Z) := DZϕ(t, ω, Z). A direct
computation yields that Φ(0, ω, Z) = Id and

Φ̇(t, ω, Z) = Df(ϕ(t, ω, Z))Φ(t, ω, Z) , (1.2)

where

Df(x, y) =

(
α− ay2 − 3ax2 − 2byx −β − 2axy − bx2 − 3by2

β − 2axy + by2 + 3bx2 α− ax2 − 3ay2 + 2byx

)
.

The key observation is that (Θ,Φ) is a linear random dynamical system, where the ergodic dynamical
system (θt)t∈R is replaced by (Θt)t∈R+

0
. We know from [22] that the linear system Φ defined in (1.2)

satisfies the integrability condition

sup
0≤t≤1

ln+ ‖Φ(t, ω, Z)‖ ∈ L1(µ) .

Therefore, we can apply Oseledets’ Multiplicative Ergodic Theorem to obtain the Lyapunov spectrum
of the linear random dynamical system (Θ,Φ) (see Appendix B). In particular, the largest Lyapunov
exponent Λ1 is given by

Λ1 = lim
t→∞

1

t
ln ‖Φ(t, ω, Z)‖ for µ-almost all (ω,Z) ∈ Ω× R2 .

This exponent is the crucial measure of stability. In case Λ1 is negative, synchronisation of trajectories
can be proven, as in [22], where it has also been shown that Λ1 is negative if |b| ≤ κ, where

κ := a

√
πKa,α,σσ2

α+ πKa,α,σσ2

(
πKa,α,σσ2

α+ πKa,α,σσ2
+ 2

)
.

Furthermore, DeVille et al. [19] have demonstrated that Λ1 < 0 for σ aα → 0, i.e. for sufficiently small
noise. Numerical evidence from [19, 22, 56] has suggested that large shear |b| leads to a positive largest
Lyapunov exponent, indicating chaotic behaviour. Except for the strongly simplified model in [24] inspired
by numerical experiments in [34], an analytical proof has so far appeared out of reach, and the following
conjecture has been formulated:

Conjecture 1.1 ([22]). Consider the random dynamical system induced by the stochastic differential
equation (1.1), and fix a > 0 and β ∈ R. Then there exists a function C : R× R+ → R+ such that if

b ≥ C(α, σ) ,

then the largest Lyapunov exponent Λ1 is positive.

1.2 The main result

In this paper, we restrict to a bounded domain E ⊂ R2, where we consider the conditioned Lyapunov
exponent Λc, giving an approximation of Λ1 but also having crucial dynamical significance in its own
right. For this situation, we can prove a weaker version of Conjecture 1.1, by finding values of b, given
the other parameters, such that the Lyapunov exponent Λc is positive.
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The main modification is to consider trajectories of the SDE starting inside the interior of E ⊂ Rd
conditioned on the fact that they do not reach the boundary ∂E. In other words, the boundary ∂E
constitutes a trap, reached at the hitting or absorption time

T = inf{t ≥ 0 : Xt ∈ ∂E}.

In many situations of stochastic bifurcation theory, this setting may even be more appropriate and
insightful since the deterministic counterparts are local bifurcations in contrast to the globally spreading
noise. Considering the problem on a bounded domain helps to control the geometric forces within a
dynamically relevant neighbourhood and makes the local effects of noise detectable.

The theory of conditioned processes goes back to the pioneering work of Yaglom in 1947 [57], but in
recent years, new ideas have been developed (see [16, 37] for recent surveys). Due to the loss of mass
by absorption at the boundary, the existence of a stationary distribution is impossible and, therefore,
stationarity is replaced by quasi-stationarity. A quasi-stationary distribution preserves mass along the
process conditioned on survival. Given a unique quasi-stationary distribution for a Markov process
(Zt)t≥0 on a state space E, one can derive the existence of a quasi-ergodic distribution m [12]. If the
unit tangent bundle process (Zt, st)t≥0 possesses a joint quasi-ergodic distribution m on E×Sd−1, Engel
et al. [25] obtain the existence of a conditioned Lyapunov exponent, independently from Z0 ∈ E and
s0 ∈ Sd−1,

Λc = lim
t→∞

1

t
EZ0

[
ln ‖DZϕ(t, ·, Z0)s0‖

∣∣∣∣T > t

]
=

∫
Sd−1×E

〈s,DZf(Z)s〉 m(dZ,ds) , (1.3)

where DZϕ(t, ω, Z0) solves equation (1.2) for t < T (ω,Z0) (see Appendix C).

In this paper, we prove (with computer assistance) that for some given domain E and parameter
values α, β, a, b and σ, this conditioned Lyapunov exponent is positive. Here is a typical result that
we can obtain. More examples with different parameter values are given in Section 4.4, where we also
rigorously compute Λc < 0 close to the transition to positive Λc (see e.g. Figure 2).

Theorem 1.2. Consider the random dynamical system induced by the SDE (1.1) on an annulus Brmax
(0)\

Brmin
(0) ⊂ R2 with absorption at the boundary. For rmin = 0.5, rmax = 1.5, a = β = α = 1, b = 3.6 and

σ = 1.3, the conditioned Lyapunov exponent Λc is positive.

The highly challenging ingredient for computing or estimating values of Λc is to find the quasi-ergodic
distribution m in formula (1.3). We will see that the statistics of the unit tangent bundle process
Xt = (Zt, st)t≥0 can be obtained from an SDE on some bounded domain Ẽ

dX̃t = f̃(X̃t)dt+ σ̃(X̃t) dWt , X̃0 ∈ Ẽ ⊆ Rd . (1.4)

Let us assume that the associated generator L, given by

L = f̃ · ∇+
1

2
σ̃σ̃∗ : ∇2 ,

and its formal L2-adjoint L∗ are uniformly elliptic. Then one observes (see e.g. [25] or for more general
background [46, Chapter 6]) that the quasi-stationary distribution for the process solving (1.4) has the
density φ, vanishing at the boundary and satisfying for the exponential escape rate λ0 < 0

L∗φ = λ0φ ,

where λ0 is the eigenvalue with largest non-zero real part. Furthermore we know (see e.g. [12, 25]) that,
given the eigenfunction η with

Lη = λ0η , η = 0 on ∂Ẽ ,

the quasi-ergodic distribution m satisfies

m(dx) = η(x)φ(x)dx .

4



For our situation we will see that the calculations of η and φ, and by that m, can be done numerically;
to make the calculation rigorous, we need guaranteed error bounds on the computed objects. This is a
highly non-trivial task, which the major part of the paper is dedicated to, and which is computer-assisted.

Since the proof of the universality of the Feigenbaum constant [33], and later on the proof of chaos [28,
39] and of the existence of a strange attractor [51] in the Lorenz system, computer-assisted proofs have
become more and more frequent in dynamical systems. The techniques that we use in this paper fall into
the category of a posteriori validation methods, meaning that we first compute a numerical approximation
of the solution of interest — in our case, an approximate eigenpair of L or L∗ — and then use a fixed
point argument to simultaneously prove the existence of an exact solution nearby and get explicit error
bounds. We describe such techniques in more details in Section 3, and refer the interested reader to the
survey papers [30, 31, 32, 45, 54] and books [40, 52] for a broader overview on rigorous numerics and
computed-assisted proofs for non-linear equations.

Until recently, most of these computer-assisted proofs for dynamical systems where focused on de-
terministic dynamical systems. However, several questions about stochastic dynamical systems can be
reduced to questions about deterministic objects, for instance using large deviation theory in the small-
noise case, or more generally via the transfer operator (resp. forward Kolmogorov/Fokker-Planck oper-
ator) for stochastic maps (resp. stochastic differential equations). These deterministic objects can be
studied very precisely using computer-assisted techniques, and the results can then be transferred back
to give new rigorous insight on the initial stochastic system, see e.g. [11, 27]. This is the general strategy
that we pursue in this work. While we believe that the main interest of this work lies in the result itself,
namely the proof of shear induced chaos, some of the techniques that we introduce might also be useful
in a broader context. In particular, even if the fundamental ideas behind the computer-assisted part of
this work are by now standard in some communities, it is, up to our knowledge, the first time that these
ideas could be adapted and brought to fruition in order to directly handle an elliptic operator with a
leading differential operator (in our case a Laplacian) having non-constant coefficients; this could open
the door for many interesting further problems, in particular in the context of Fokker-Planck equations
associated to SDEs.

The remainder of this paper is structured as follows. Section 2 describes the derivation of the formula
for the first and conditioned Lyapunov exponent and introduces the corresponding PDE problem. In
Section 3 we give the abstract framework for the computer-assisted proof and show that the problem
at hand fits into this setting with suitable a-priori bounds. Finally, in Section 4, we implement the
proof method and conduct the rigorous numerics to get tight enclosures of the conditioned Lyapunov
exponent for different parameter values, including those of Theorem 1.2. Appendices A, B and C provide
background information on random dynamical systems and Lyapunov exponents while appendices D,
E and F include basic estimates, embedding constants for the functional-analytic framework and error
bounds for the rigorous numerics.

All the computer-assisted parts of the proof can be reproduced using the Matlab code available at [10].

2 Furstenberg-Khasminskii formula and PDE formulation

Based on an approach by DeVille et al. in [19], we consider the two-dimensional problem (1.1) in polar
coordinates

r =
√
x2 + y2, φ = arctan(

y

x
) .

Applying Itô’s rule to the stochastic differential equation (1.1) we obtain
dr =

(
αr − ar3 +

σ2

2r

)
dt+ σ(cosφdW 1

t + sinφdW 2
t ),

dφ = (β + br2) dt+
σ

r
(− sinφdW 1

t + cosφ dW 2
t ).
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This form illustrates the role of the parameter b inducing a shear force: if b > 0, the phase velocity dφ
dt

depends on the amplitude r. Since Gaussian random vectors are invariant under orthogonal transforma-
tions, we can define the independent Wiener processes

dWr = cosφdW 1
t + sinφ dW 2

t ,

dWφ = − sinφ dW 1
t + cosφdW 2

t .

Hence, the Markov process solving
dr =

(
αr − ar3 +

σ2

2r

)
dt+ σdWr

dφ =
(
β + br2

)
dt+

σ

r
dWφ.

corresponds with (1.1) in terms of the Itô integral.
The associated variational equation (1.2), also when taking into account killing at the boundary, reads

in polar coordinates 
dρ = ρ

(
α− 2ar2 + r2

√
a2 + b2 sin(2θ − χ0 − 2φ)

)
dt

dθ =
(
β + 2br2 + r2

√
a2 + b2 cos(2θ − χ0 − 2φ)

)
dt,

where χ0 = arccos
(

b√
a2+b2

)
. Introducing ψ = 2θ − χ0 − 2φ, we see that the linear expansion rate

e(r, ψ) = α− 2ar2 + r2
√
a2 + b2 sinψ

is determined only by r and ψ, which satisfy the following system
dr =

(
αr − ar3 +

σ2

2r

)
dt+ σdWr,

dψ = 2r2
(
b+

√
a2 + b2 cosψ

)
dt− 2σ

r
dWϕ.

(2.1)

The associated backward and forward Kolmogorov operators are then given by

Lu =
σ2

2

(
∂2u

∂r2
+

4

r2

∂2u

∂ψ2

)
+

(
αr − ar3 +

σ2

2r

)
∂u

∂r
+ 2r2

(
b+

√
a2 + b2 cosψ

) ∂u
∂ψ

, (2.2)

and

L∗u =
σ2

2

(
∂2u

∂r2
+

4

r2

∂2u

∂ψ2

)
− ∂

∂r

[(
αr − ar3 +

σ2

2r

)
u

]
− ∂

∂ψ

[
2r2

(
b+

√
a2 + b2 cosψ

)
u
]
. (2.3)

In the case without killing, one can derive the Furstenberg-Khasminskii formula [3] for the largest Lya-
punov exponent Λ1 on E = R2

Λ1 =

∫∫
e(r, ψ)p(r, ψ)drdψ,

where p is the stationary density for system (2.1), solving the stationary forward Kolmogorov equation

L∗p = 0.

Finding or just making useful estimates for this density has proven to be extremely difficult (cf. [19, 22]).
A rigorous computation of p on the whole space R2 also seems out of reach for the moment.
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Hence, we make use of the theory of conditioned Lyapunov exponents as an approximation of Λ1

in a well-defined analytical framework, and consider the SDE (1.1) on the bounded domain E := Ω̃ =
Brmax

(0) \ Brmin
(0), with 0 < rmin < rmax < ∞. Denoting by η and φ the (normalized) eigenfunctions

associated to the eigenvalue λ0 with largest real part of L and L∗ respectively, the conditioned Lyapunov
exponent (1.3) can be expressed by the modified Furstenberg-Khasminskii formula [25]

Λc =

∫∫
e(r, ψ)η(r, ψ)φ(r, ψ)drdψ. (2.4)

In Figure 1, we illustrate numerical approximations of the functions e, η, φ involved in formula (2.4), with

r
ψ

(a) η(r, ψ)

r
ψ

(b) φ(r, ψ)

ψ
r

(c) e(r, ψ)

Figure 1: The eigenfunctions η of L (a) and φ of L∗ (b), and the modified Furstenberg-Khasminskii
functional e (c), for the domain and the parameter values as used in Theorem 1.2.

the domain and the parameter values chosen as in Theorem 1.2. Observe that the function e has regions
of positive and negative output, expressing areas of expansion and contraction as it is typical for non-
uniformly hyperbolic dynamics. Hence, to be able to say something about the sign of the integral (2.4),
one must be able to describe quite precisely the eigenfunctions η and φ. This is why a computer-assisted
argument seems particularly relevant (and almost mandatory) here, as it will allow us to get a precise
numerical approximation of η and φ together with guaranteed and reasonably tight error bounds. In the
remainder of the paper, we show how to obtain such rigorous computation of the eigenfunctions, and use
them to study the sign of Λc.
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Remark 2.1. In general, when the bounded domain E → R2, we clearly have that the escape rate and
eigenvalue λ0 converges to 0 such that η → 1 pointwise and φ→ p as tempered distributions, and, hence,
Λc → Λ1 (see [25] for more details). In our case, we can take rmax →∞ accordingly but for rmin → 0 we
arrive at absorption at the origin which is not coherent with the full R2-model. However, for α > 0, small
neighbourhoods of the origin contribute to a positive rather than a negative Lyapunov exponent,hence our
results can still be seen also as strong evidence for Conjecture 1.1; see Section 4.4 for a more detailed
discussion of computational findings and numerical indications with respect to this issue.

3 A posteriori validation of an eigenpair

In this section, we describe the computer-assisted techniques allowing us to get our hands on the eigenfunc-
tions η and φ required for the computation of the Furstenberg-Khasminskii formula (2.4). In Section 3.1,
we start by introducing some notations and the functions spaces we are going to work in. We then refor-
mulate the problem of looking for eigenfunctions and eigenvalues of the backward Kolmogorov operator
L into a fixed-point problem in Section 3.2, and give sufficient conditions for a fixed-point Theorem to
be used. These sufficient conditions are to be checked, rigorously, with the help of a computer, and we
present the required theory in Section 3.3. Eigenfunctions and eigenvalues of the forward Kolmogorov
operator L∗ can be handled in a very similar fashion, and we describe the small adjustement that have to
be made in Section 3.4. Finally, in 3.5, we show how to make sure that we did not obtain any eigenpairs
of L and L∗, but that we indeed have the ones needed for the Furstenberg-Khasminskii formula (2.4).

Although some of the arguments presented in this section rely on the computer in a crucial way, we
mainly focus on the theoretical aspects here, and postpone the discussions about practical implementation
to Section 4.

3.1 Setting and notations

Introducing the notations

∇̃ =

(
∂
∂r

2
r
∂
∂ψ

)
, (3.1)

∆̃u := ∇̃ · ∇̃u =
∂2u

∂r2
+

4

r2

∂2u

∂ψ2
, (3.2)

f(r) = αr − ar3 +
σ2

2r
, g(r, ψ) = 2r2

(
b+

√
a2 + b2 cosψ

)
, (3.3)

h(r, ψ) =
∂f

∂r
(r) +

∂g

∂ψ
(r, ψ) = α− 3ar2 − σ2

2r2
− 2r2

√
a2 + b2 sinψ, (3.4)

and

V = f(r)
∂

∂r
+ g(r, ψ)

∂

∂ψ
, (3.5)

we can write the backward and forward Kolmogorov operators (2.2) and (2.3) in a more condensed form:

Lu =
σ2

2
∆̃u+ V u and L∗u =

σ2

2
∆̃u+ V ∗u =

σ2

2
∆̃u− V u− hu.

We consider the domain
Ω = (rmin, rmax)× (0, 2π). (3.6)

The main functions spaces that we are going to use are L2 and the Sobolev space H2, with appropriate
boundary conditions:

X :=
{
u ∈ H2(Ω) | u(rmin, ψ) = u(rmax, ψ) = 0 ∀ ψ ∈ (0, 2π), u(r, 0) = u(r, 2π) ∀ r ∈ (rmin, rmax)

}
,
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Y := L2(Ω).

These spaces will be equipped with weighted inner products:

〈u1, u2〉X := 〈u1, u2〉L2 + 〈∇̃u1, ∇̃u2〉L2 + ξ2〈∆̃u1, ∆̃u2〉L2 , 〈u1, u2〉Y := 〈u1, u2〉L2 ,

where the scalar product on L2(Ω) is defined by

〈u1, u2〉L2 :=
1

2π(rmax − rmin)

∫
Ω

u1(r, ψ) (u2(r, ψ))
∗
dr dψ, (3.7)

u∗2 denotes the complex conjugate and ξ2 is some positive weight (whose role will become apparent in
Section 3.3.4). We denote the associated norms by

‖u‖X :=
√
〈u, u〉X and ‖u‖Y :=

√
〈u, u〉Y .

Notice that ‖·‖X is equivalent to the canonical norm on H2 (see Appendix D), therefore (X, ‖·‖X) is still
a Hilbert space.

Remark 3.1. We could have added wore weights in the norm on X, by considering

〈u1, u2〉X := ξ0〈u1, u2〉L2 + ξ1〈∇̃u1, ∇̃u2〉L2 + ξ2〈∆̃u1, ∆̃u2〉L2 .

Adding such weights is often a good idea for the quantitative type of arguments we are going to use in this
work, because their value can be chosen a posteriori in order to make the validation easier. However, in
this case it turned out that this extra flexibility did not bring significant improvements, and we therefore
chose to remove those weights in order to simplify a bit the presentation.

Since we are going to solve for both an eigenfunction and an eigenvalue at the same time, we must
append an extra scalar field to our spaces, and thus define

X := X × C and Y := Y × C.

A generic element in X (resp. Y) will typically be denoted by (u, λ), where u ∈ X (resp. u ∈ Y ) and
λ ∈ C. The inner products (and the associated norms) we consider on X and Y are directly inherited
from those defined on X and Y :

〈(u1, λ1), (u2, λ2)〉X := 〈u1, u2〉X + λ1λ
∗
2 and 〈(u1, λ1), (u2, λ2)〉Y := 〈u1, u2〉Y + λ1λ

∗
2.

3.2 The fixed point problem

We now give the analytical framework within which we are going to conduct the computer-assisted proof.
Let (ū, λ̄) be a numerically computed approximate eigenpair of L, and the map F : X → Y defined

by

F [(u, λ)] :=

 Lu− λu

〈u, ū〉L2 − 1

 . (3.8)

Our first goal is to prove that there is a genuine zero of F (i.e. a genuine eigenpair of L) in a small and
explicit neighbourhood of (ū, λ̄).

Remark 3.2. Since our proof will be based on a contraction argument, the map F that we consider must
have a locally unique zero in a neighbourhood of (ū, λ̄), which is why we must append a normalization
condition to the equation Lu−λu = 0. Many such conditions could be chosen, but taking 〈u, ū〉L2 −1 = 0
will prove convenient later on, in particular for the estimates of Lemma 3.18.
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Remark 3.3. For the moment, we focus exclusively on rigorously validating an eigenpair for L, but the
same method can and will be used to validate an eigenpair of L∗. In Section 3.4, we highlight the small
changes that have to be made when we consider L∗ instead of L.

The corner stone of our computer-assisted approach is the following Newton-Kantorovich-like theorem.
Very similar statements have already appeared in many instances, especially in the computer-assisted-
proof literature (and at least as early as 1965 [53]). The version below is strongly inspired from [40,
Theorem 6.2].

Theorem 3.4. Let (ū, λ̄) ∈ X and F be as in (3.8). Denoting by F ′ the Frechet derivative of F , we
assume there exist nonnegative constants δ, κ and γ satisfying

‖F [(ū, λ̄)]‖Y ≤ δ, (3.9)

‖(u, λ)‖X ≤ κ‖F ′(ū, λ̄)[(u, λ)]‖Y ∀ (u, λ) ∈ X , (3.10)

‖F ′′(ū, λ̄)[(u1, λ1), (u2, λ2)]‖Y ≤ γ‖(u1, λ1)‖X ‖(u2, λ2)‖X ∀ (u1, λ1), (u2, λ2) ∈ X , (3.11)

such that
2κ2γδ < 1. (3.12)

Then, for any ρ satisfying

1−
√

1− 2κ2γδ

κγ
≤ ρ < 1

κγ
, (3.13)

F has a unique zero (u, λ) ∈ X , such that

‖(u, λ)− (ū, λ̄)‖X ≤ ρ. (3.14)

Proof. The main idea is to apply Banach’s fixed point theorem to the Newton-like operator

T : (u, λ) 7→ (u, λ)−
(
F ′(ū, λ̄)

)−1 F(u, λ). (3.15)

First, we show that F ′(ū, λ̄) is indeed an isomorphism between X and Y. For any (u1, λ1) ∈ X and
(u2, λ2) ∈ Y, the equation

F ′(ū, λ̄)(u1, λ1) = (u2, λ2), (3.16)

is equivalent to u1 +
2

σ2
∆̃−1

(
V u1 − λ̄u1 − λ1ū

)
=

2

σ2
∆̃−1u2,

λ1 + (〈u1, ū〉 − 1− λ1) = λ2.

Since Ω is bounded, the operator on the left hand side is a compact perturbation of the identity, and the
Fredholm alternative holds. Besides, we know by (3.10) that, when (u2, λ2) = (0, 0), the only solution
of (3.16) is (u1, λ1) = (0, 0). The Fredholm alternative then yields that (3.16) has a unique solution for
any (u2, λ2) ∈ Y.

The operator T introduced in (3.15) is thus well defined, and maps X into itself. Besides, T ′(ū, λ̄) = 0,
and therefore T will be contracting near (ū, λ̄). Provided (ū, λ̄) gets not mapped too far away from itself
by T , we should have a stable neighbourhood of (ū, λ̄) on which we can apply the contraction mapping
theorem. The hypotheses (3.9)-(3.12) allow us to make this statement quantitative. For any ρ ≥ 0, we
denote by BX ,ρ(ū, λ̄) the closed ball with center (ū, λ̄) and radius ρ in X , and we now show that, for any
ρ satisfying (3.13), T maps BX ,ρ(ū, λ̄) into itself, and that it is contracting on this ball.

For any (u, λ) ∈ X , we estimate, using (3.9)-(3.11) and the fact that T ′(ū, λ̄) = 0,

‖T (u, λ)− (ū, λ̄)‖X ≤ ‖T (u, λ)− T (ū, λ̄)‖X + ‖T (ū, λ̄)− (ū, λ̄)‖X

=
1

2
‖T ′′(ū, λ̄)[(u− ū, λ− λ̄), (u− ū, λ− λ̄)]‖X + ‖

(
F ′(ū, λ̄)

)−1 F(ū, λ̄)‖X

≤ 1

2
κγ‖(u− ū, λ− λ̄)‖2X + κδ.
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Assuming (u, λ) ∈ BX ,ρ(ū, λ̄), where ρ satisfies (3.13), we have

‖T (u, λ)− (ū, λ̄)‖X ≤
1

2
κγρ2 + κδ

≤ ρ,

by (3.12), and therefore T (BX ,ρ(ū, λ̄)) ⊂ BX ,ρ(ū, λ̄). Besides, for any (u, λ) in BX ,ρ(ū, λ̄), we have

‖T ′(u, λ)‖X = ‖T ′′(ū, λ̄)(u− ū, λ− λ̄)‖X
≤ κγρ
< 1

by (3.12). The contraction mapping thus yields the existence of a unique fixed point of T in BX ,ρ(ū, λ̄),
which corresponds to a unique zero of F in that ball.

In order to apply this theorem, we need computable estimates to find δ, κ and γ satisfying (3.9)-(3.11).
Notice that one can think of the quantities κ and γ as being intrinsic to the problem, as they only depend
on the first two derivatives of F at the zero we are interested in. Therefore, one can think of them as
being given and fixed (even though in practice we will have to work quite hard to get them explicitly),
and (3.12) is going to be satisfied as soon as we have a sufficiently accurate numerical approximation
(ū, λ̄), so that the residual error δ is less than 1

2κ2γ .
Using interval arithmetic, it is rather straightforward to obtain a computable and reasonably sharp

estimate for (3.9). This is detailed in Section 4. Besides, noticing that the only nonlinear term in F is
the product λu, it is easy to check that (3.11) holds with γ = 1. Our main task is therefore to get a
computable estimate for (3.10). We will do so in Section 3.3.

Before turning to inequality (3.10), we give a corollary of Theorem 3.4 which will come in handy later
on by allowing us to prove that the eigenfunction of L is in fact one-dimensional, i.e. it does not depend
on the angular component ψ.

Corollary 3.5. Make the same assumptions as in Theorem 3.4, and suppose further that the function ū
does not depend on the ψ-variable. Then the zero (u, λ) given by Theorem 3.4 is such that u also does
not depend on the ψ-variable.

Proof. Consider the subspace Xradial of X made of functions u ∈ X which do not depend on the angle
variable ψ. Similarly, we introduce Xradial and Yradial, and we have that F maps Xradial into Yradial.
Since Yradial is a closed subset of Y, and since we assumed that (ū, λ̄) ∈ Xradial, the derivative F ′(ū, λ̄)
also maps Xradial into Yradial. An argument similar to the one used in the proof of Theorem 3.4 shows
that F ′(ū, λ̄) is in fact an isomorphism between Xradial and Yradial. Therefore, as soon as (ū, λ̄) ∈ Xradial,
the fixed point operator T defined in (3.15) maps Xradial into itself. In particular, from the proof of
Theorem 3.4 we see that, for any ρ satisfying (3.12), T maps BX ,ρ(ū, λ̄)∩Xradial into itself, and that it is
contracting on this ball. Since Xradial is closed in X , the contraction mapping still applies and yields the
existence of a unique zero (u, λ) of F in BX ,ρ(ū, λ̄)∩Xradial, which corresponds to the zero of F described
in Theorem 3.4 by uniqueness.

Remark 3.6. Corollary 3.5 is mainly used for the sake of unifying the presentation and the code. In-
deed, one could instead introduce one-dimensional versions of the spaces X and Y, state an analog of
Theorem 3.4 with these spaces, and derive the associated estimates in the following subsections as well.
However, since we need the two-dimensional setup for L∗ whose eigenfunction will depend on ψ, we
choose to use it for L as well, for which the above corollary guarantees that the eigenfunction is in fact
one-dimensional.
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3.3 Obtaining a bound for the inverse of the derivative

From now on, let us denote by S the derivative of F at the approximate solution:

S[(u, λ)] := F ′(ū, λ̄)[(u, λ)] =

Lu− λ̄u− λū
〈u, ū〉L2

 . (3.17)

Our goal is to obtain an explicit constant κ such that inequality (3.10) holds, which reads

‖(u, λ)‖X ≤ κ ‖S[(u, λ)]‖Y ∀ (u, λ) ∈ X ,

or, at least formally for now,
∥∥S−1

∥∥
B(Y,X )

≤ κ. This is usually the most challenging part of a computer-

assisted proof based on an a posteriori fixed point argument, and two main strategies have been developed
in order to tackle such problems.

One of them, see e.g. [2, 18, 41, 55, 58], consists in combining rigorous computations on a finite dimen-
sional projection with a priori error estimates, which typically amounts to introducing an approximate
inverse of S whose norm is easier to bound, and then to control the error between this approximate in-
verse and S−1 itself. Because of the fact that the leading differential operator in L and L∗, namely ∆̃, has
non-constant coefficients, this strategy seems difficult to apply to our current problem. One option that
might prove successful with this approach could be to use a discretization based on Zernike polynomials,
as was done recently in [1], but we did not investigate this possibility.

The other approach, see e.g. [43, 48], consists in directly estimating the norm of the inverse of S
via rigorous eigenvalue bounds. Although this strategy has, to our knowledge, also never been applied
before to a problem where the leading order operator — typically a Laplacian or a bi-Laplacian — has
non-constant coefficients, it seems more amenable to this situation. Therefore we will follow this strategy
in the remainder of Section 3.

The starting point is the following. Introducing

Z :=
{
u ∈ H4(Ω) | u ∈ X, Lu ∈ X

}
and Z = Z × C (3.18)

we have, for all (u, λ) ∈ Z,

‖S(u, λ)‖2Y = 〈S(u, λ), S(u, λ)〉Y
= 〈S∗S(u, λ), (u, λ)〉Y
≥ λ1(S∗S) ‖(u, λ)‖2Y ,

where λ1(S∗S) is the smallest eigenvalue of the self-adjoint operator S∗S. Therefore, if we manage to
get an explicit lower bound on λ1(S∗S), we get a constant κ0 such that

‖(u, λ)‖Y ≤ κ0 ‖S[(u, λ)]‖Y ∀ (u, λ) ∈ X. (3.19)

Combining such a bound with a priori estimates of the form

‖∇̃u‖L2 . ‖S[(u, λ)]‖Y and ‖∆̃u‖L2 . ‖S[(u, λ)]‖Y ∀ (u, λ) ∈ X , (3.20)

we can then obtain (3.10) from (3.19).
Sections 3.3.1 to 3.3.3 are devoted to obtaining an explicit lower bound on λ1(S∗S), giving κ0, and

in Section 3.3.4 we derive the priori estimates (3.20) which finally yields κ.

3.3.1 Homotopy and eigenvalue bounds

In this section, we describe the so-called homotopy method [29, 42], which is the key ingredient we use to
get an explicit lower bound on λ1(S∗S). As we will use this argument several times, we do not write it
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explicitly for the operator S∗S but present it in a slightly more general way. Nonetheless, we tailor the
presentation to our specific needs, and refer the reader to [40, Chapter 10] for a more general description
of these techniques, and for the proofs of Propositions 3.7, 3.10 and 3.13. Before proceeding further,
we point out that there are other existing techniques to rigorously compute eigenvalues of self-adjoint
operators, at least on bounded domains (see e.g. [13, 35]).

In this subsection, we consider a densely defined self-adjoint operator S on a separable Hilbert space
X, and assume that its spectrum only consists of eigenvalues, which accumulate only at +∞. This is the
operator for which we want rigorous bounds on the eigenvalues. We further assume there exists a family
of operators S(s), with the same properties, and additionally

� we know the eigenvalues of S(0) exactly (this assumption will be slightly relaxed later on, see
Remark 3.16),

� the eigenvalues increase with s, that is, denoting by

λ
(s)
1 ≤ λ(s)

2 ≤ . . . ≤ λ(s)
n ≤ . . .

the eigenvalues of S(s) counted with multiplicity and arranged in ascending order, we assume that

∀ 0 ≤ s′ ≤ s ≤ 1, ∀ n ≥ 1, λ(s′)
n ≤ λ(s)

n , (3.21)

� S(1) = S.

Under those assumptions, we can use the homotopy method to get rigorous enclosures on the eigenvalues
of S, using the following steps.

The first step is to obtain rigorous upper bounds for the eigenvalues. More precisely, for any given
s ∈ [0, 1] and M ∈ N, we can get rigorous upper bounds for the M smallest eigenvalues of S(s) via the
well known Rayleigh–Ritz method, see e.g. [40, Theorem 10.12].

Proposition 3.7. Let x1, . . . , xM ∈ D(S(s)) be linearly independent, define the matrices

A0 = (〈xi, xj〉)1≤i,j≤M and A1 =
(
〈S(s)xi, xj〉

)
1≤i,j≤M

,

and let
λ1 ≤ . . . ≤ λM ,

be the eigenvalues of the generalized eigenvalue problem

A1v = λA0v. (3.22)

Then, for all m ≤M
λ(s)
m ≤ λm.

Remark 3.8. In order to get sharp bounds, the vectors x1, . . . , xM should be chosen to be good numerical
approximations of the eigenvectors of S(s) associated to the M smallest eigenvalues of S(s). For these
bounds to be rigorous, one has to

� make sure that the approximate eigenvectors xi exactly belong to the domain D(S(s)) of S(s),

� rigorously compute the entries of A0 and A1,

� rigorously solve the eigenvalue problem (3.22).

For the specific problems we are interested in here (see Sections 3.3.2 and 3.3.3), this can be easily done
with interval arithmetic, at least as long as M is not too large (see Section 4.2 for more details). Notice
that the computation of x1, . . . , xM can and should be done first with usual floating-point arithmetic.
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Remark 3.9. In this work, making sure that the approximate eigenvectors xi exactly belong to the domain
of S(s) is an easy task, because of our choice of numerical method (see again Section 4). However,
for situations where this would be a troublesome requirement, we point out the existence of an elegant
workaround: the so-called Goerisch extension [6] (see also [40, Section 10.2.3]).

The second step is to obtain rigorous lower bounds for the eigenvalues. The following method from
Lehmann and Maehly, see e.g. [40, Theorem 10.14], can be used to do so, and more precisely to ob-
tain lower bounds on the M first eigenvalues of S(s), assuming some a priori knowledge on the ”next”

eigenvalue λ
(s)
M+1.

Proposition 3.10. Repeat the assumptions of Proposition 3.7. Assume further that there exists ν ∈ R
such that

λM < ν ≤ λ(s)
M+1, (3.23)

define the matrices

A2 =
(
〈S(s)xi,S

(s)xj〉
)

1≤i,j≤M
, B1 = A1 − νA0 and B2 = A2 − 2νA1 + ν2A0,

let
µ1 ≤ . . . ≤ µM

be the eigenvalues of the generalized eigenvalue problem

B1v = µB2v, (3.24)

and assume that µM < 0. Then, for all m ≤M

λm ≤ λ(s)
m ,

where

λm := ν +
1

µM+1−m
.

In practice, one has to get sharp enough upper bounds in Proposition 3.7 first, otherwise λM > λ
(s)
M+1

and there is no hope of satisfying assumption (3.23). Even assuming that λM < λ
(s)
M+1, it may be

challenging to find an explicit ν for which we can ensure ν ≤ λ
(s)
M+1: we do not have any lower bound

at this point and that is precisely what we are trying to get with Proposition 3.10. This is where the
monotonicity (3.21) of the homotopy plays a crucial role, because it allows us to get crude lower bounds
on the eigenvalues of S(s) if we already control the eigenvalues of S(s′) for some s′ < s.

A somewhat informal description of how the whole procedure should look like, assuming one wants
to get rigorous bounds on the M smallest eigenvalues of S, is given in Algorithm 1.

Remark 3.11. Note that, in practice, we do not need to know all the eigenvalues of S(0) but only the
M smallest, or more precisely rigorous and explicit lower bounds on the M smallest eigenvalues of S(0).

Remark 3.12. During the homotopy, that is for any sk+1 < 1, we do not actually need to obtain rigorous

lower bounds for all the eigenvalues λ
(sk+1)
1 , . . . , λ

(sk+1)
M−(k+1), but only for λ

(sk+1)
M−(k+1), which is the only lower

bound that will be required for the next homotopy step. The following modification of Proposition 3.10
can then be useful, allowing us to avoid the a posteriori validation of most eigenvalues of (3.24).

Proposition 3.13. Repeat the assumptions of Proposition 3.7. Assume further that there exists ν ∈ R
such that

λM < ν ≤ λ(s)
M+1,
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Initialization: Numerically compute a rough guess of the largest eigenvalue λ
(1)
M for which we

want to get a rigorous lower bound in the end, and fix some M large enough so that λ
(0)
M is

larger than this guess. Define s0 = 0 and take k = 0. At this stage we have rigorous lower and
upper bounds for the M − k first eigenvalues of S(sk) (since we assumed we knew the
eigenvalues of S(0)).

while k < M − 1 and sk < 1 do

� Numerically find s̃k+1 such that λ
(s̃k+1)
M−(k+1) ≈ λ

(sk)
M−k.

� Take sk+1 slightly smaller than s̃k+1, and compute rigorous upper bounds for the M − (k + 1)

first eigenvalues of S(sk+1) using Proposition 3.7. Check that λ
(sk+1)

M−(k+1) < λ
(sk)
M−k. Otherwise

reduce sk+1, and repeat this step.

� Once we have λ
(sk+1)

M−(k+1) < λ
(sk)
M−k, by the monotonicity of the homotopy we have

λ
(sk+1)

M−(k+1) < λ
(sk+1)
M−k , and, using Proposition 3.10, we can compute rigorous lower bounds of

λ
(sk+1)
1 , . . . , λ

(sk+1)
M−(k+1).

� Do k = k + 1. At this stage we have rigorous lower and upper bounds for the M − k first
eigenvalues of S(sk).

end
Termination: If we reach k = M − 1, we have to start the whole procedure again with a larger
M . Otherwise, once we reach sk = 1, we exit with rigorous bounds for the M − k first
eigenvalues of S1. If M − k is smaller than the number M of eigenvalues that we wanted, we
also have to start the whole procedure again with a larger M .

Algorithm 1: The homotopy method.
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define the matrices

A2 =
(
〈S(s)xi,S

(s)xj〉
)

1≤i,j≤M
, B1 = A1 − νA0 and B2 = A2 − 2νA1 + ν2A0,

and let
µ < 0

be an eigenvalue of the generalized eigenvalue problem

B1v = µB2v.

Then,

λM ≤ λ
(s)
M ,

where

λM := ν +
1

µ
.

Proof. The proof of [40, Theorem 10.14] can readily be adapted to this case, thanks to [40, Theorem
10.10].

3.3.2 Base problem for S∗S

Let us define S := S∗S : Z ⊂ Y → Y. We want to use the homotopy method described in the previous
subsection to compute a rigorous lower bound of λ1(S). In order to do so, we first need a so-called base
problem, i.e. another self-adjoint operator S(0) which is simpler than S in the sense that we know its
spectrum, and for which the eigenvalues are proven to be smaller than the ones of S. This subsection is
devoted to the derivation of an appropriate base problem.

It will be convenient to use a block-notation to describe the various operators involved. For instance,
introducing A = L− λ̄ Id we write

S =

A −ū

ū∗ 0

 , (3.25)

meaning that, for any (u, λ) ∈ X

S[(u, λ)] =

A −ū

ū∗ 0

u
λ


=

Au− λū
〈u, ū〉L2

 .

Note that we extend the notation ∗ for the adjoint of an operator, and also use it on elements of X, ū∗

being the map from X to C defined by

ū∗u := 〈u, ū〉L2 ∀ u ∈ X.

The densely defined self-adjoint operator S : Z ⊂ Y → Y then writes

S =

(
A∗A+ ūū∗ −A∗ū
−(A∗ū)∗ ū∗ū

)
.

Actually, it will not be easy to directly compare S with the base problem S(0) that we are going to
introduce in the following, because they will not have the same domain. The appropriate view-point here
is to compare the associated quadratic forms, which we introduce in the next lemma.
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Lemma 3.14. Let ηL ∈ (0, 1), ηS ∈ (0, ‖ū‖2L2), h0 := infΩ h for h as in (3.4), CV the constant introduced
in Appendix D and

s2 := (1−ηL)
σ4

4
, s1 :=

1− ηL
ηL

C2
V−λ̄σ2, s0 := λ̄2+λ̄h0−

1

ηS
‖A∗ū‖2L2 , sλ :=

(
‖ū‖2L2 − ηS

)
. (3.26)

Consider, the Hermitian sesquilinear forms B : X × X → C and B(0) : X × X → C defined by

B [(u1, λ1), (u2, λ2)] := 〈S[(u1, λ1)], S[(u2, λ2)]〉Y ,

and
B(0) [(u1, λ1), (u2, λ2)] :=

(
s2〈∆̃u1, ∆̃u2〉L2 − s1〈∇̃u1, ∇̃u2〉L2 + s0〈u1, u2〉L2

)
+ sλλ1λ

∗
2.

Then, assuming λ̄ ∈ R, we have

B [(u, λ), (u, λ)] ≥ B(0) [(u, λ), (u, λ)] ∀ (u, λ) ∈ X . (3.27)

Proof. From the definition of S, we have, for all (u, λ) ∈ X ,

B[(u, λ), (u, λ)] =
(
〈Au,Au〉L2 + |〈u, ū〉L2 |2 + ‖ū‖2L2 |λ|2 − 2< (〈u,A∗ū〉L2λ∗)

)
.

Using that |〈u, ū〉L2 |2 is non negative, and estimating < (〈u,A∗ū〉L2λ∗) with Young’s inequality, we obtain

B[(u, λ), (u, λ)] ≥
(
〈Au,Au〉L2 − 1

ηS
‖A∗ū‖2L2 〈u, u〉L2 +

(
‖ū‖2L2 − ηS

)
|λ|2

)
. (3.28)

Let us now focus on 〈Au,Au〉L2 . Recalling that λ̄ is assumed to be real, we have

〈Au,Au〉L2 = (L− λ̄ Id)u, (L− λ̄ Id)u〉L2

= 〈Lu,Lu〉L2 + λ̄2〈u, u〉L2 − λ̄< (〈(L∗ + L)u, u〉L2)

= 〈Lu,Lu〉L2 + λ̄2〈u, u〉L2 − λ̄
(
〈σ2∆̃u− hu, u〉L2

)
= 〈Lu,Lu〉L2 + λ̄σ2〈∇̃u, ∇̃u〉L2 + λ̄2〈u, u〉L2 + λ̄ 〈hu, u〉L2

≥ 〈Lu,Lu〉L2 + λ̄σ2〈∇̃u, ∇̃u〉L2 +
(
λ̄2 + λ̄h0

)
〈u, u〉L2 . (3.29)

Finally, recalling that L = σ2

2 ∆̃ + V and using Lemma D.1, we estimate

〈Lu,Lu〉L2 ≥ σ4

4
〈∆̃u, ∆̃u〉L2 + 〈V u, V u〉L2 − σ2

√
〈∆̃u, ∆̃u〉L2

√
〈V u, V u〉L2

≥ (1− ηL)
σ4

4
〈∆̃u, ∆̃u〉L2 −

(
1

ηL
− 1

)
〈V u, V u〉L2

≥ (1− ηL)
σ4

4
〈∆̃u, ∆̃u〉L2 − 1− ηL

ηL
C2
V 〈∇̃u, ∇̃u〉L2 . (3.30)

Combining (3.28), (3.29) and (3.30), we end up with

B[(u, λ), (u, λ)] ≥
(

(1− ηL)
σ4

4
〈∆̃u, ∆̃u〉L2 −

(
1− ηL
ηL

C2
V − λ̄σ2

)
〈∇̃u, ∇̃u〉L2

+

(
λ̄2 + λ̄h0 −

1

ηS
‖A∗ū‖2L2

)
〈u, u〉L2 +

(
‖ū‖2L2 − ηS

)
|λ|2

)
,

which finishes the proof.
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We are now almost ready to obtain the base problem S(0), and the family of operators whose eigen-
values will satisfy (3.21), but first we need to introduce a few more spaces. For all s ∈ [0, 1], we define

Z(s) :=

{
u ∈ H4(Ω)

∣∣∣ u ∈ X, (sL+ (1− s)2s2

σ2
∆̃

)
u ∈ X

}
and Z(s) = Z(s) × C.

Note that Z(1) is nothing but the space Z introduced in (3.18). Finally, consider the self-adjoint operator
S(0) : Z(0) ⊂ Y → Y defined by

S(0) :=

(
s2∆̃2 + s1∆̃ + s0 0

0 sλ

)
, (3.31)

with s2, s1, s0 and sλ as in (3.26) and, for all s ∈ [0, 1], the self-adjoint operator S(s) : Z(s) ⊂ Y → Y
defined by

S(s) := sS + (1− s)S(0). (3.32)

For all s ∈ [0, 1], we denote the eigenvalues of S(s) by

λ
(s)
1 ≤ λ(s)

2 ≤ . . . ≤ λ(s)
n ≤ . . . .

We can now prove that the family S(s) gives a suitable homotopy between S(0) and S.

Proposition 3.15. Repeat the assumptions of Lemma 3.14, and assume ū ∈ X. Then the eigenvalues

λ
(s)
n increase with s, i.e. (3.21) holds.

Proof. For any s in [0, 1], we consider the Hermitian sesquilinear forms B(s) : X × X → C defined by

B(s) = sB + (1− s)B(0),

and note that S(s) is the self-adjoint operator associated to B(s), that is,

B(s) [(u1, λ1), (u2, λ2)] = 〈S(s)(u1, λ1), (u2, λ2)〉Y ∀ (u1, λ1) ∈ Z(s), ∀ (u2, λ2) ∈ X . (3.33)

Indeed, in order to obtain (3.33) from the definition of B(s) we only have to integrate by parts, and check
that all the boundary terms vanish: most of them do so simply by virtue of ū, u1 and u2 being in X, and

the remaining ones vanish if and only if the function σ2

2 sLu1 + s2(1 − s)∆̃u1 also belongs to X, hence

the definition of Z(s).
Therefore, the eigenvalues of S(s) can be expressed in terms of the Rayleigh quotient of B(s) (see e.g.

the proof of [40, Theorem 10.33]):

λ(s)
n = inf

H⊂X
dimH=n

max
(u,λ)∈H\{0}

B(s) [(u, λ), (u, λ)]

〈(u, λ), (u, λ)〉Y
. (3.34)

However, by Lemma 3.14 we have

B(s′) [(u, λ), (u, λ)] ≤ B(s) [(u, λ), (u, λ)] ∀ 0 ≤ s′ ≤ s ≤ 1, ∀ (u, λ) ∈ X ,

which, combined with (3.34) indeed yields

λ(s′)
n ≤ λ(s)

n ∀ 0 ≤ s′ ≤ s ≤ 1, ∀ n ≥ 1.

In order to use the homotopy method as explained in Section 3.3.1, with S(0) as a base problem for
S, we need to know the eigenvalues of S(0), or at least to get explicit lower bounds for a finite number
of eigenvalues of S(0). We explain how to get such bounds in the next subsection, where we use the
homotopy method again, this time to enclose the eigenvalues of ∆̃.
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Remark 3.16. We could have used a different base problem, say Ŝ(0), written in terms of ∆ rather
than ∆̃, for instance by using the estimates of Appendix D. Had we done so, we would know exactly the
eigenvalues of Ŝ(0) — remember that Ω is a rectangle, therefore we know explicitly the spectrum of ∆.
However, Ŝ(0) would be in some sense further away from S than the S(0) we have defined in (3.31); this
is due to the fact that S does involve the operator ∆̃, and not ∆. Therefore the homotopy between Ŝ(0)

and S would be longer and more costly in practice. The extra work we have to do in the next subsection
to rigorously compute eigenvalues of ∆̃ is therefore more than compensated by the fact that our S(0)

from (3.31) yields a shorter homotopy.

3.3.3 Getting the eigenvalues of ∆̃ and of S(0)

As explained in the previous subsection, we need to know the eigenvalues of ∆̃, or at least a finite number
of them, in order to know the smallest eigenvalues of S(0) (3.31) and be able to initialize the homotopy
method from S(0) to S. In order to do so, we can, in fact, also use the homotopy method.

Indeed, defining ∆̃(0) : X ⊂ Y → Y by

∆̃(0)u :=
∂2u

∂r2
+

4

r2
max

∂2u

∂ψ2
,

we have that
〈−∆̃u, u〉Y ≥ 〈−∆̃(0)u, u〉Y ∀ u ∈ X.

Note that −∆̃(0) has constant coefficients, therefore its spectrum on the recantagular domain Ω can be
computed by hand: The eigenvalues of −∆̃(0) are given by

λ̃
(0)
k,n =

(
kπ

rmax − rmin

)2

+

(
2n

rmax

)2

∀ k ∈ N1, ∀ n ∈ N0,

where λ̃
(0)
k,0 is of multiplicity one, and λ̃

(0)
k,n, n 6= 0, of multiplicity two for all k. The corresponding

eigenvectors are

ũ
(0)
k,n = sin

(
rkπ

rmax − rmin

)
einψ ∀ k ∈ N1, ∀ n ∈ Z.

Therefore, defining ∆̃(s) := s∆̃+(1−s)∆̃(0) for s ∈ [0, 1], we have all the required ingredients in order
to apply the homotopy method between ∆̃(0) and ∆̃, as described in Section 3.3.1, and to get rigorous
enclosures on finitely many eigenvalues of ∆̃. Then, coming back to (3.31), we see that the eigenvalues
of S(0) are exactly given by

{s2λ̃
2 − s1λ̃+ s0 | λ̃ eigenvalue of ∆̃} ∪ {sλ}.

Remember that, in order to start the main homotopy — the one from S(0) to S, that aims at obtaining
a rigorous lower bound on the smallest eigenvalue λ(0)(S) of S — we need a rigorous lower bound on
all the eigenvalues of S(0) that are smaller than some threshold Γ, which in practice is typically taken
slightly larger than a numerically obtained value of λ(0)(S). Since s2 is positive, the set of λ̃ such that
s2λ̃

2 − s1λ̃ + s0 ≤ Γ is bounded, and can be computed explicitely in practice once s2, s1, s0 are known.
Therefore, a first homotopy from −∆̃(0) to −∆̃ can be used, as explained just above, to get rigorous
enclosures of the finitely many eigenvalues λ̃ of −∆̃ such that s2λ̃

2 − s1λ̃+ s0 ≤ Γ.
This then yields the finitely many eigenvalues of S(0) that are below Γ, after having added sλ if it was

also below Γ, and we can finally use a second homotopy, from S(0) to S, to get a rigorous lower bound
on λ(0)(S).

Remark 3.17. In order to reduce the computational cost associated to rigorously enclosing the eigenvalues
of −∆̃, one could make use of the fact that the eigenfunctions of −∆̃ are of the form

vn(r)einψ,
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where vn solves a one-dimensional eigenvalue problem:

v′′n(r)− 4

r2
vn(r) = λvn(r).

However, in order to simply the presentation, we did not take advantage of this reduction and choose to
directly apply the homotopy method to −∆̃.

3.3.4 Lifting the operator norm estimate from Y to X

In Sections 3.3.1 to 3.3.3, we have seen how to obtain a rigorous lower bound on the smallest eigenvalue
λ(0)(S) of S, or equivalently how to get an explicit constant κ0 such that (3.19) holds. κ0 controls the
operator norm of S−1, seen as an operator from Y to itself. However, in order to apply Theorem 3.4 we
need a constant κ satisfying (3.10), i.e. we need to control the operator norm of S−1 from Y to X . This
is done in the next lemma, which is inspired from [40, Sections 6.2.3 and 9.4.1.1].

Lemma 3.18. Recalling the weight ξ2 in the definition of ‖·‖X in Section 3.1, let now θ, ξ2 > 0 be such
that

ξ2

(
1 +

1

θ

)(
2 ‖ū‖L2

σ2

)2

< 1, (3.35)

and consider κ1, κ2 given by

κ1 :=
1

σ2

(
CV κ0 +

√
C2
V κ

2
0 + 2σ2κ0

(
1 + κ0(−λ̄)+

))
, (3.36)

where (−λ̄)+ = max(−λ̄, 0), and

κ2 :=
2

σ2

(
1 + CV κ1 + |λ̄|κ0

)
. (3.37)

If κ0 satisfies (3.19), then (3.10) holds with

κ :=

√√√√ κ2
0 + κ2

1 + (1 + θ)ξ2κ2
2

1− ξ2
(
1 + 1

θ

) ( 2‖ū‖L2

σ2

)2 , (3.38)

Proof. We start by establishing the following two estimates:∥∥∥∇̃u∥∥∥
L2
≤ κ1 ‖S[(u, λ)]‖Y ∀ (u, λ) ∈ X , (3.39)

and ∥∥∥∆̃u
∥∥∥
L2
≤ κ2 ‖S[(u, λ)]‖Y +

2 ‖ū‖L2

σ2
|λ| ∀ (u, λ) ∈ X . (3.40)

In order to get (3.39), we use the Cauchy-Schwarz inequality

‖S[(u, λ)]‖Y ‖(u, λ)‖Y ≥ < (〈−S[(u, λ)], (u, λ)〉Y) ,

and observe that

〈−S[(u, λ)], (u, λ)〉Y = 〈−Lu+ λ̄u+ λū, u〉L2 − 〈u, ū〉L2λ∗

= 〈−
(
σ2

2
∆̃u+ V u

)
+ λ̄u+ λū, u〉L2 − 〈u, ū〉L2λ∗

=

(
σ2

2

∥∥∥∇̃u∥∥∥2

L2
− 〈V u, u〉L2 + λ̄ ‖u‖2L2

)
− (〈u, ū〉L2λ∗ − λ〈ū, u〉L2) .
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We point out that the fact that the last two terms above are the complex conjugate of each other,
and therefore vanish when we take the real part, is the main reason behind our choice of normalization
condition for F (see Remark 3.2). Taking the real part, and using the estimates of Appendix D, we get

< (〈−S[(u, λ)], (u, λ)〉Y) ≥
(
σ2

2

∥∥∥∇̃u∥∥∥2

L2
− ‖V u‖L2 ‖u‖L2 + λ̄ ‖u‖2L2

)
≥
(
σ2

2

∥∥∥∇̃u∥∥∥2

L2
− CV

∥∥∥∇̃u∥∥∥
L2
‖u‖L2 + λ̄ ‖u‖2L2

)
,

and therefore (
σ2

2

∥∥∥∇̃u∥∥∥2

L2
− CV

∥∥∥∇̃u∥∥∥
L2
‖u‖L2 + λ̄ ‖u‖2L2

)
≤ ‖S[(u, λ)]‖Y ‖(u, λ)‖Y .

Using (3.19), we end up with

σ2

2

∥∥∥∇̃u∥∥∥2

L2
− CV κ0 ‖S[(u, λ)]‖Y

∥∥∥∇̃u∥∥∥
L2
− κ0 ‖S[(u, λ)]‖2Y ≤ 0,

and, using that the above expression is a quadratic polynomial in
∥∥∥∇̃u∥∥∥

L2
, we obtain (3.39).

In order to get (3.40), we start by writing

∆̃u =
2

σ2

(
(L− λ̄I)u− λū− (V u− λ̄u− λū)

)
,

and estimate ∥∥∥∆̃u
∥∥∥
L2
≤ 2

σ2

(
‖S[(u, λ)]‖Y + ‖V u‖L2 + |λ̄| ‖u‖L2 + |λ| ‖ū‖L2

)
≤ 2

σ2

(
‖S[(u, λ)]‖Y + CV

∥∥∥∇̃u∥∥∥
L2

+ |λ̄| ‖u‖L2 + |λ| ‖ū‖L2

)
≤ 2

σ2

(
CV κ1 + |λ̄|κ0

)
‖S[(u, λ)]‖Y +

2 ‖ū‖L2

σ2
|λ|

= κ2 ‖S[(u, λ)]‖Y +
2 ‖ū‖L2

σ2
|λ|,

which yields (3.40).
Summing up the obtained estimates we can write, for any (u, λ) ∈ X and any θ > 0,

‖u‖2L2 + |λ|2 ≤ κ2
0 ‖S[(u, λ)]‖2Y ,∥∥∥∇̃u∥∥∥2

L2
≤ κ2

1 ‖S[(u, λ)]‖2Y ,∥∥∥∆̃u
∥∥∥2

L2
≤ (1 + θ)κ2

2 ‖S[(u, λ)]‖2Y +

(
1 +

1

θ

)(
2 ‖ū‖L2

σ2

)2

|λ|2.

Therefore, we obtain

‖u‖2L2 +
∥∥∥∇̃u∥∥∥2

L2
+ ξ2

∥∥∥∆̃u
∥∥∥2

L2
+ |λ|2 ≤(

κ2
0 + κ2

1 + (1 + θ)ξ2κ
2
2

)
‖S[(u, λ)]‖2Y + ξ2

(
1 +

1

θ

)(
2 ‖ū‖L2

σ2

)2

|λ|2,

and (3.35) allows us to conclude the proof.

Remark 3.19. In practice, we take θ = 1 and ξ2 = σ4

16‖ū‖2
L2

.
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3.4 Modifications for L∗

The procedure that we use to rigorously compute an eigenpair of L∗ is essentially the same as the one we
just presented for L. In this section we outline the small changes that have to be made to the estimates,
without repeating all the computations.

Let (ū, λ̄) be a numerically computed approximate eigenpair of L∗. As in Section 3.2, our starting
point is a map whose zeros correspond to eigenpairs of L∗, and we thus replace (3.8) by F : X → Y
defined as

F [(u, λ)] :=

 L∗u− λu

〈u, ū〉L2 − 1

 . (3.41)

Theorem 3.4 still holds for this new F , and we just have to slightly adapt the way we compute κ, by
replacing every instance of V by V ∗ = −V − h in the computations of Sections 3.3.2 and 3.3.4.

Firstly, the self-adjoint operator, whose smallest eigenvalue we have to rigorously enclose using the
homotopy method in order to get κ0, is now

S =

(
AA∗ + ūū∗ −Aū
−(Aū)∗ ū∗ū

)
,

still with A = L− λ̄ Id. Repeating the computations done in Lemma 3.14 for this slightly different S, we
still obtain a base problem S(0) of the form (3.31), with

s2 := (1− η(1)
L − η

(0)
L )

σ4

4
, s1 :=

C2
V

η
(1)
L

− λ̄σ2, s0 := λ̄2 + λ̄h0−
‖Aū‖2L2

ηS
−
‖h‖2∞
η

(0)
L

, sλ :=
(
‖ū‖2L2 − ηS

)
.

Secondly, once κ0 has been obtained, we get κ in the same fashion as in Lemma 3.18, the constant κ1

and κ2 now having to be defined as follows

κ1 :=
1

σ2

(
CV κ0 +

√
C2
V κ

2
0 + 2σ2κ0

(
1 + κ0(h0 − λ̄)+

))
,

and

κ2 :=
2

σ2

(
1 + CV κ1 +

∥∥h+ λ̄
∥∥
∞ κ0

)
.

3.5 Validation of the correct eigenpairs

We have just finished describing a procedure that allows us to rigorously compute an eigenpair (η, λη) of
L and an eigenpair (φ, λφ) of L∗. In order to use these eigenpairs to rigorously compute the conditioned
Lyapunov exponent Λc via formula (1.3) (or more precisely via formula (2.4)), we will prove a posteriori
that we indeed have validated the correct eigenpairs. For that prupose, we will use the following insights.

As indicated in Section 1.2, we know from [38, Proposition 4] that

dν(r, ψ) = φ(r, ψ)drdψ,

where
L∗φ = λ0φ, φ = 0 on ∂E,

is the limiting quasi-stationary distribution with escape rate λ0 < 0 such that

Pν(T > t) = eλ0t.

Let further be E := Ω = (rmin, rmax)× (0, 2π] ⊂ R3 our domain of interest, seen as a cylinder in R3 with
absorbing boundary {r = rmin}∪{r = rmax}. We obtain the following result directly from the literature:
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Proposition 3.20. (a) There exists a non-negative function η on E ∪ ∂E, positive on E and vanishing
on ∂E, defined by

η(x) = lim
t→∞

Px(T > t)

Pν(T > t)
= lim
t→∞

e−λ0tPx(T > t) , (3.42)

where
∫
η dν = 1 and the convergence holds uniformly in E ∪ ∂E.

Furthermore, η is a bounded eigenfunction the backward Kolmogorov operator (2.2) with eigenvalue
λ0, i.e.

Lη = λ0η .

(b) Let f ∈ Ẽ be an eigenfunction of L for an eigenvalue λ, being constant on ∂E. Then either

(i) λ = 0 and f is constant,

(ii) or λ = λ0, f =
(∫
f dν

)
η and f |∂E ≡ 0,

(iii) or <(λ) ≤ λ0 − γ,
∫
f dν = 0 and f |∂E ≡ 0, where γ > 0 is the rate of convergence to the

quasi-stationary distribution ν, and, in particular, f is not non-negative.

Proof. This follows from [15, Proposition 2.3 and Corollary 2.4] which are applicable in our situation
according to [14, Section 5.3.2]. For statement (iii), we simply carry the proof over to the case with
potentially complex eigenvalues and eigenfunctions, adopting the estimate for the real part.

Hence, we obtain that a non-negative eigenfunction of L vanishing at the boundary is necessarily
associated to the largest non-zero eigenvalue λ0 < 0. Therefore, we can formulate the following statement
which gives sufficient conditions, checkable in practice (see Section 4.3 for the details), for having obtained
the correct eigenpairs.

Proposition 3.21. Let (η, λη) ∈ X be an eigenpair of L, and (φ, λφ) ∈ X be an eigenpair of L∗. If

η(r, ψ) ≥ 0 ∀(r, ψ) ∈ Ω, (3.43)

then λη is the eigenvalue with largest real part λ0 of L and η is exactly the eigenfunction occurring in
formula (2.4). Assume further that

〈η, φ〉L2 6= 0, (3.44)

then also λφ = λ0 and φ is the eigenfunction of L∗ occurring in formula (2.4).

Proof. The first part follows directly from Proposition 3.20. To obtain the second part, simply notice
that

λ0〈η, φ〉L2 = 〈Lη, φ〉L2 = 〈η, L∗φ〉L2 = λ∗φ〈η, φ〉L2 ,

thus (3.44) implies λφ = λ0.

4 Numerics and implementation

In this section we discuss the implementation of our strategy outlined in Section 3, and present the
obtained results. While we feel that the choices we have made here, in particular in terms of how to
discretize the solution, are all well adapted to our precise problem, we emphasize that there is some
freedom at the level of the implementation, and that different procedures could definitely be used.
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4.1 Discretization

We represent elements of X and Z via Fourier-Chebyshev series

u(r, ψ) =
∑
n∈Z

(
un,0 + 2

∞∑
k=1

uk,n(r)T|k|(r)

)
einψ

=
∑
k,n∈Z

u|k|,nT|k|(r)e
inψ, (4.1)

where Tk denotes the k-th Chebyshev polynomial of the first kind, rescaled from [−1, 1] to [rmin, rmax].
In practice, we naturally truncate the expansions. For instance, the approximate eigenvector ū of L that
we want to validate is of the form

ū(r, ψ) =
∑
|k|<K

∑
|n|<N

u|k|,nT|k|(r)e
inψ, (4.2)

for some given N and K.
The choice of using a spectral method is motivated by the fact that the elements of X and Z that

we need to approximate, namely eigenvectors of L and S, are much smoother than a typical element of
X or Z, and therefore they admit a representation of the form (4.1) with fast decaying coefficients uk,n.
For more background on Chebyshev series, see e.g. [50].

Notice also that, for a function ū of the form (4.2), most of the operations involved in computing Lū
or Sū, i.e. taking derivatives in r and ψ, being multiplied by functions like g(r, ψ) or computing inner
products, can be done easily and exactly in practice — up to rounding errors, which we control using
the Intlab package for interval arithmetic [44]. The only exception concerns the terms of the form 1

r
or 1

r2 , which of course cannot be represented exactly using truncated Chebsyhev series. However, it is
straightforward to approximate these terms on [rmin, rmax] with high accuracy by truncated Chebyshev
series, and to get tight and rigorous error bounds, for instance using a Newton-Kantorovich argument
similar to Theorem 3.4 (see Appendix F for more details).

We emphasize that most of the computations required in Section 3 can (and should) be done with usual
floating point arithmetic, without worrying about rigorous error bounds. This is for instance the case
when we find an approximate eigenpair for L and L∗, or when we look for the approximate eigenvectors
needed during the homotopy method (see Proposition 3.7 and Remark 3.8). The only computations that
have to be made rigorous, i.e. where truncation error and rounding errors have to be explicitly controlled,
are the ones that we use to verify the assumptions in Theorem 3.4 and Proposition 3.21. We give more
details concerning theses rigorous computations in the following two subsections.

4.2 Rigorous computation needed for Theorem 3.4

Most of the quantities that we need in Theorem 3.4, such as δ, are straightforward to compute rigorously
using interval arithmetic. The single quantity whose rigorous computation is more involved is κ, and
more specifically κ0, which we will focus on in this subsection. In particular, in the process of obtaining
rigorously a constant κ0 satisfying (3.19), we use the homotopy method twice and we therefore have to:

1. Make sure that the approximate eigenvectors used in Propositions 3.7 and 3.10 exactly belong to
the domain of the self-adjoint operator under consideration,

2. Using these eigenvectors, rigorously compute the entries of the matrices A0, A1, A2, B1 and B2 in
Propositions 3.7 and 3.10,

3. Rigorously solve the generalized eigenvalue problems (3.22) and (3.24) in order to get rigorous
eigenvalue bounds.
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Let us focus on the case of the homotopy from ∆̃(0) to ∆̃, discussed in Section 3.3.3. The first point
that has to be addressed, is that, according to Proposition 3.7, we need the approximate eigenvectors
ū(i) to belong to X. The regularity requirements as well as the boundary conditions in ψ are trivially
satisfied by truncated Fourier-Chebyshev series of the form (4.2). Therefore, having ū(i) belonging to X
is equivalent to having ū(i) satisfying the homogeneous Dirichlet boundary conditions in r. Even though
we consider non-local representations of the solutions by using Chebyshev series, these conditions at the
boundary are easy to enforce, because we can efficiently parametrize the subspace of elements of the
form (4.2) which satisfy those boundary conditions. Indeed, just by making use of the fact that the
(unrescaled) Chebyshev polynomials satisfy

Tk(−1) = (−1)k and Tk(1) = 1 ∀ k ∈ N,

the conditions ū(i)(rmin, ψ) = 0 = ū(i)(rmax, ψ) rewrites
∑
|k|<K

ū(i)
|k|,n = 0

∑
|k|<K

(−1)kū(i)
|k|,n = 0

∀ |n| < N. (4.3)

Therefore, for each Fourier mode n, we can parametrize the first two Chebyshev modes in terms of the
other Chebyshev modes. In other words, the condition (4.3) is equivalent to having

ū
(i)
0,n = −2

bK2 c∑
l=1

ū
(i)
2l,n

ū
(i)
1,n = −

bK−1
2 c∑
l=1

ū
(i)
2l+1,n

∀ |n| < N. (4.4)

In practice, when using the discretization (4.2), we thus only consider the coefficients ūk,n for 1 ≤ k < K
and |n| < N as unknowns, and define the remaining coefficients ūk,n for k ∈ {0, 1} and |n| < N via (4.4).
We then automatically get ū ∈ X. This strategy can be easily generalized to tackle more boundary
conditions, as in (3.18), which is required for the second homotopy. The only slight difference is that in
the above case we could make the conversion between the implicit definition of some coefficients (4.3),
and the associated explicit definition (4.4) by hand (it basically amounts to inverting a 2 × 2 system),
whereas when we have more equations it becomes convenient do to the conversion using rigorous numerics
instead.

Secondly, in order to rigorously compute the matrices A0, A1 and A2, we need to rigorously evaluate
quantities like

〈ū(i), ū(j)〉L2 , 〈∆̃(0)ū(i), ū(j)〉L2 , and 〈∆̃(0)ū(i), ∆̃(0)ū(j)〉L2 , (4.5)

as well as
〈ū(i), ū(j)〉L2 , 〈∆̃ū(i), ū(j)〉L2 , and 〈∆̃ū(i), ∆̃ū(j)〉L2 , (4.6)

where ū(i) and ū(j) are numerically computed approximate eigenvectors, represented by truncated Fourier-
Chebyshev series of the form (4.2), and belong to X as explained above. Indeed, all the computations
required for (4.5) can be made exactly: since ū(i) and ū(j) are truncated Fourier-Chebyshev series, so
are ∆̃(0)ū(i) and ∆̃(0)ū(j), as well as their products, and the integrals involved in the inner products can
be computed. The output is then exact, up to potential rounding errors, which are explicitly controlled
using interval arithmetic. For (4.6) we have to be slightly more careful, since the factor 1

r2 in ∆̃ cannot
be represented exactly as a truncated Chebyshev series. However, as mentioned previously (see also
Appendix F), we can write

1

r2
= ϕinv(r) + εinv(r) ∀ r ∈ [rmin, rmax],

25



where
ϕinv(r) =

∑
|k|<K

ϕinv
|k| T|k|(r),

is a truncated Chebyshev series whose coefficients we have computed explicitly, and εinv is such that

sup
r∈[rmin,rmax]

∣∣εinv(r)
∣∣ ≤ ρinv,

where the error bound ρinv is also known explicitly (and very small, see Section 4.4 for explicit numbers).
We then introduce

∆̄ =
∂2

∂r2
+ ϕinv(r)

∂2

∂ψ2
and ε∆ = εinv(r)

∂2

∂ψ2
,

so that
∆̃ = ∆̄ + ε∆.

When having to compute 〈∆̃ū(i), ū(j)〉L2 in (4.6), we can thus use the splitting

〈∆̃ū(i), ū(j)〉L2 = 〈∆̄ū(i), ū(j)〉L2 + 〈ε∆ū(i), ū(j)〉L2 ,

where the first term can be compute exactly, and the second one can be estimated explicitly by∣∣∣〈ε∆ū(i), ū(j)〉L2

∣∣∣ ≤ ρinv

∥∥∥∥∂2ū(i)

∂ψ2

∥∥∥∥
L2

∥∥∥ū(j)
∥∥∥
L2
.

Similarly, we write

〈∆̃ū(i), ∆̃ū(j)〉L2 = 〈∆̄ū(i), ∆̄ū(j)〉L2 + 〈ε∆ū(i), ∆̄ū(j)〉L2 + 〈∆̄ū(i), ε∆ū
(j)〉L2 + 〈ε∆ū(i), ε∆ū

(j)〉L2 ,

where the first term is computed exactly, and the rest is explicitly estimated as follows∣∣∣〈ε∆ū(i), ∆̄ū(j)〉L2 + 〈∆̄ū(i), ε∆ū
(j)〉L2 + 〈ε∆ū(i), ε∆ū

(j)〉L2

∣∣∣
≤ ρinv

(∥∥∥∥∂2ū(i)

∂ψ2

∥∥∥∥
L2

∥∥∥∆̄ū(j)
∥∥∥
L2

+

∥∥∥∥∂2ū(j)

∂ψ2

∥∥∥∥
L2

∥∥∥∆̄ū(i)
∥∥∥
L2

)
+
(
ρinv

)2 ∥∥∥∥∂2ū(i)

∂ψ2

∥∥∥∥
L2

∥∥∥∥∂2ū(j)

∂ψ2

∥∥∥∥
L2

.

We can therefore get rigorous enclosures of every coefficient of the matrices A0, A1 and A2 (and thus also
of B1 and B2).

Remark 4.1. Once a rigorous enclosure of A0, A1 and A2 has been computed, it is straightforward to
obtain a rigorous enclosure of B2, using interval arithmetic and the formula B2 = A2−2νA1 +ν2A0 (see
Proposition 3.10). However, this formula is prone to cancellation errors, which can lead to rather large
enclosures. Therefore, in practice we instead compute B2 using the following formula

B2 =
(
〈(S(s) − ν)xi, (S

(s) − ν)xj〉
)

1≤i,j≤M
,

for which we observed tighter enclosures.

Finally, for the third point, in order to then rigorously solve the eigenproblems (3.22) and (3.24), we
use the built-in Intlab routine verifyeig.

Remark 4.2. From a theoretical point of view, the eigenproblem (3.24) is obviously equivalent (as soon
as there is no zero eigenvalue) to the eigenproblem B2v = µ−1B1v, but in practice this last formulation
seems better suited to rigorous validation via verifyeig, and so we used it instead of (3.24).

The rigorous computations needed for the second homotopy — the one from S(0) to S — are similar,
and we omit the details.
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4.3 Rigorous computation needed for Proposition 3.21

We have seen in Section 3 how we could validate an eigenpair of L or L∗, and we just discussed the related
implementation issues in the previous subsection. That is, given a numerically computed eigenpair (η̄, λ̄η)
of L, we can now prove the existence of an eigenpair (η, λη) of L such that

(η, λη) = (η̄, λ̄η) + (εη, ελη ),
∥∥(εη, ελη )

∥∥
X ≤ ρη,

where ρη is small and explicitly known. Similarly, we can validate a numerically computed eigenpair
(φ̄, λ̄φ) of L∗, with an error estimate of the form

(φ, λφ) = (φ̄, λ̄φ) + (εφ, ελφ),
∥∥(εφ, ελφ)

∥∥
X ≤ ρφ.

In the following, we explain how Proposition 3.21 can be applied in practice, ensuring that we have the
correct eigenpairs needed for the rigorous computation of the Lyapunov exponent.

Condition (3.44) is straightforward to check in practice, using interval arithmetic. Indeed, we have

〈η, φ〉L2 = 〈η̄, φ̄〉L2 + 〈η̄, εφ〉L2 + 〈εη, φ̄〉L2 + 〈εη, εφ〉L2 ,

and ∣∣〈η̄, εφ〉L2 + 〈εη, φ̄〉L2 + 〈εη, εφ〉L2

∣∣ ≤ ‖η̄‖L2‖εφ‖L2 + ‖φ̄‖L2‖εη‖L2 + ‖εη‖L2‖εφ‖L2

≤ ‖η̄‖L2ρφ + ‖φ̄‖L2ρη + ρηρφ.

Therefore, in order to prove that (3.44) holds, we only have to check that

|〈η̄, φ̄〉L2 | > ‖η̄‖L2ρφ + ‖φ̄‖L2ρη + ρηρφ,

which will be the case in practice as soon as the error bounds ρη and ρφ are small enough.
Condition (3.43) is less straightforward to verify. The method we propose here is well adapted to

the specific solutions we obtain, but we mention that the question of rigorously computing nonnegative
solutions of elliptic PDEs has been investigated more generally in [49]. We first consider a subdomain

Ωε := (rmin + ε, rmax − ε)× (0, 2π) (4.7)

of Ω which stays safely away from the absorbing boundary. For some small but positive ε, we estimate

inf
Ωε
η ≥ inf

Ωε
η̄ − ‖εη‖C0

and check rigorously using interval arithmetic that

inf
Ωε
η̄ − ‖εη‖C0 > 0. (4.8)

In order to bound ‖εη‖C0 from above, we use the Sobolev embedding H2(Ω) ↪→ C0(Ω̄)

‖u‖C0 ≤ ΥX,C0‖u‖X ∀ u ∈ X,

where the constant ΥX,C0 is given explicitly in Appendix E.
Note that (4.8) cannot be true for ε = 0, because the eigenfunction vanishes at the boundary. However,

as illustrated in Figures 1 and 3, we observe that

∂η̄

∂r
(r, ψ) > 0

for r close to rmin, and that
∂η̄

∂r
(r, ψ) < 0
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for r close to rmax. Therefore, we would like to prove that

∂η

∂r
(r, ψ) =

∂η̄

∂r
(r, ψ) +

∂εη
∂r

(r, ψ) > 0

for all (r, ψ) ∈ (rmin, rmin + ε)× (0, 2π) and get a similar estimate close to rmax. Here is where we make
use of Corollary 3.5, and of the fact that η is essentially a one-dimensional function, as it happens to
be independent of the angle variable ψ. Indeed, H2 is not embedded in C1 in dimension 2, but it is in
dimension 1, and we have ∥∥∥∥∂u∂r

∥∥∥∥
C0

≤ ΥXradial,C1‖u‖X ∀ u ∈ Xradial,

where the constant ΥXradial,C1 is given explicitly in Appendix E. Therefore we can compute an explicit
lower bound for

inf
r∈(rmin,rmin+ε]

∂η̄

∂r
(r, ψ)−

∥∥∥∥∂εη∂r
∥∥∥∥
C0

,

and check that it is indeed non negative. Similarly, we check that

inf
r∈[rmax−ε,rmax)

∂η̄

∂r
(r, ψ)−

∥∥∥∥∂εη∂r
∥∥∥∥
C0

≥ 0,

which allows us to conclude that (3.43) holds.

4.4 Examples and validated results

In the following, we will fix a = 1, α = 1 and β = 1. We are going to vary the shear parameter b, the noise
level σ, and the interval [rmin, rmax] in numerical simulations to demonstrate the parameter-dependent
behaviour in a broad range. Most of the calculations are not rigorous, i.e. do not use the full homotopy
method, due to reasons of running time. However, for particular parameter combinations, we run the
complete algorithm as described in the previous sections in order to obtain the sign of the conditioned
Lyapunov exponent Λc rigorously.

4.4.1 [rmin, rmax] = [0.75, 1.25]

When fixing the shear b, and numerically computing Λc with respect to σ, we observe different behaviour
depending on the fixed value of b. In particular, Figure 2 suggests that for large enough shear, there is
a transition from negative conditioned Lyapunov exponent to positive conditioned Lyapunov exponent.
For large enough noise, there is also a second transition from positive to negative values of Λc. These
findings are in accordance with the results and numerics in [22] and similar to the behaviour described
in [24], where a simplified model of a stochastically driven limit cycle is considered. The main difference
of similar calculations for the latter model (see e.g. [24, Figure 1 (a)] or the respective figures in [34])
is that the graph of the largest Lyapunov exponent (σ,Λ1(σ)) shows no second extremum but increases
monotonously after the minimum for small σ has been passed, due to the far simpler structure of the
model. To sum up, the behaviour of Λc is analogous to what we can expect numerically from the first
Lyapunov exponent Λ1 for the global model: for large enough fixed b, the Lyapunov exponent depends
smoothly on σ, firstly decreasing from 0 to a minimum and then increasing up to a positive number such
that a change of sign occurs for some critical σ∗(b), indicating a two-parameter bifurcation.

We prove that such a transition occurs, by rigorously computing Λc for b = 3.5 and two noise level
σ = 1.20 and σ = 1.15 for which we get different signs. These proofs are done with truncation levels
K = 30 and N = 30 of the Chebyshev-Fourier modes. Notice that the number of modes is not dictated by
the eigenfunctions η and φ themselves, which could be very accurately approximated with fewer modes,
but by the rigorous validation process, and in particular by the fact that we need to compute many more
eigenfunctions, of ∆̃ and S, with reasonable accuracy during the homotpy method.
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Figure 2: Numerical computation of the conditioned Lyapunov exponent Λc as a function of σ for
[rmin, rmax] = [0.75, 1.25], and b = 2.5, 3, 3.5 and 4. For b = 3.5, we proved that a transition occurs by
rigorously computing two Λc close to the crossing through 0, indicated by ⊕ and 	 respectively in (c),
for which we can prove that Λc > 0 (resp. Λc < 0).

For σ = 1.20, the eigenfunctions η of L and φ of L∗ represented in Figure 3 are validated using
Theorem 3.4. We obtain error bounds of ρη = 1.15× 10−10 and ρφ = 2.70× 10−10. We then rigorously
check assumption (3.43), as explained in Section 4.3, and assumption (3.44), which ensures we have vali-
dated the correct eigenfunctions. Finally, a rigorous evaluation of the modified Furstenberg-Khasminskii
formula (2.4) yields

Λc ∈ [0.001453, 0.001456],

and so we have proven that Λc is positive in this case. (The escape rate, i.e. the eigenvalue associated to
η and φ, is approximately equal to −27.2).

A similar computer-assisted argument yields that, for σ = 1.15,

Λc ∈ [−0.004618,−0.004615],

and so we have proven that Λc is negative in that case.
All the computer-assisted parts of the proofs can be reproduced using the Matlab code available

at [10].
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ψ

(b) φ(r, ψ)

Figure 3: The validated eigenfunctions η of L (a) and φ of L∗ (b), for [rmin, rmax] = [0.75, 1.25], b = 3.5
and σ = 1.2.

4.4.2 [rmin, rmax] = [0.5, 1.5]

On the domain [rmin, rmax] = [0.5, 1.5], we observe a similar behaviour as in the previous case, i.e. on the
domain given by [rmin, rmax] = [0.75, 1.25] (see also the close similarity of the eigenfunctions in Figure 1
and Figure 3).

One difference is that we need slightly more shear to obtain a positive Lyapunov exponent. The other
difference is that, since the domain is now larger, the obtained escape rates are lower. An illustration of
the numerically obtained behaviour of Λc as a function of σ for b = 3.6 is given in Figure 4.
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Figure 4: Numerical computation of the conditioned Lyapunov exponent Λc as a function of σ for
[rmin, rmax] = [0.5, 1.5], and b = 3.6. For σ = 1.3, indicated by ⊕, we rigorously computed Λc and proved
that it was positive.

With this larger domain, the proof is computationally more demanding (in each homotopy the base
problem is in some sense further away from the end problem), and this challenge generally increases with
larger domains (and smaller σ). Nonetheless, we managed to apply the whole procedure described in this
paper for b = 3.6 and σ = 1.3, this time with K = 70 and N = 50, and obtain that

Λc ∈ [0.00970, 0.00972],
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with an escape rate of roughly −7.1. The fact that [0.00970, 0.00972] ⊂ (0,∞) proves Theorem 1.2.
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Appendix

A Definition of a random dynamical system

A random dynamical system consists of two ingredients: a ergodic dynamical system that models the
noise, and a cocycle that models the dynamics of the system. The definition of a random dynamical
system is given as follows [3, Definition 1.1.2].

Definition A.1 (Random dynamical system). Let (Ω,F ,P) be a probability space. A random dynamical
system is a pair of mappings (θ, ϕ).

• The (B(R) ⊗ F , F)-measurable mapping θ : R × Ω → Ω, (t, ω) 7→ θtω, is an ergodic dynamical
system, i.e.

(i) θ0 = id and θt+s = θt ◦ θs for t, s ∈ R,

(ii) P(A) = P(θtA) for all A ∈ F and t ∈ R,

(iii) any A ∈ F with θtA = A for all t ∈ R satisfies P(A) ∈ {0, 1}.

• The (B(R) ⊗ F ⊗ B(Rd), B(Rd))-measurable mapping ϕ : R × Ω × Rd → Rd, (t, ω, x) 7→ ϕ(t, ω, x),
is a cocycle over θ, i.e.

ϕ(0, ω, ·) ≡ Id and ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x)) for all ω ∈ Ω, x ∈ Rd and t, s ∈ R .

The random dynamical system (θ, ϕ) is called continuous if (t, x) 7→ ϕ(t, ω)x is continuous for every
ω ∈ Ω. If the mapping ϕ is only defined on R+

0 × Ω × Rd, we speak of a one-sided random dynamical
system.

A.1 RDS induced by an SDE

In this paper, we investigate random dynamical systems induced by stochastic differential equations.
Hence, we are interested in random dynamical systems adapted to a suitable filtration and of white noise
type. Following [26], we make the following definition:

Definition A.2. Let (θ, ϕ) be a random dynamical system over a probability space (Ω,F ,P) on a topo-
logical space X where ϕ is defined in forward time. Let (F ts)−∞≤s≤t≤∞ be a family of sub-σ-algebras of
F such that
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(i) Fut ⊂ F vs for all s ≤ t ≤ u ≤ v,

(ii) F ts is independent from F vu for all s ≤ t ≤ u ≤ v,

(iii) θ−1
r (F ts) = F t+rs+r for all s ≤ t, r ∈ R,

(iv) ϕ(t, ·, x) is F t0-measurable for all t ≥ 0 and x ∈ X.

Furthermore we denote by F t−∞ the smallest sigma-algebra containing all F ts, s ≤ t, and by F∞t the
smallest sigma-algebra containing all Fut , t ≤ u. Then (θ, ϕ) is called a white noise (filtered) random
dynamical system.

Consider a stochastic differential equation (SDE)

dXt = f(Xt)dt+ g(Xt)dWt, X0 ∈ Rd , (A.1)

where (Wt) denotes some r-dimensional standard Brownian motion, the drift f : Rd → Rd is a locally
Lipschitz continuous vector field and the diffusion coefficient g : Rd → Rd×r a Lipschitz continuous
matrix-valued map. If in addition f satisfies a bounded growth condition, as for example a one-sided
Lipschitz condition, then by [21] there is a white noise random dynamical system (θ, ϕ) associated to the
diffusion process solving (A.1). The probabilistic setting is as follows: We set Ω = C0(R,Rr), i.e. the
space of all continuous functions ω : R → Rr satisfying that ω(0) = 0 ∈ Rr. If we endow Ω with the
compact open topology given by the complete metric

κ(ω, ω̂) :=

∞∑
n=1

1

2n
‖ω − ω̂‖n

1 + ‖ω − ω̂‖n
, ‖ω − ω̂‖n := sup

|t|≤n
‖ω(t)− ω̂(t)‖ ,

we can set F = B(Ω), the Borel-sigma algebra on (Ω, κ). There exists a probability measure P on (Ω,F)
called Wiener measure such that the r processes (W 1

t ), . . . , (W r
t ) defined by (W 1

t (ω), . . . ,W r
t (ω))T := ω(t)

for ω ∈ Ω are independent one-dimensional Brownian motions. Furthermore, we define the sub-σ-algebra
F ts as the σ-algebra generated by ω(u) − ω(v) for s ≤ v ≤ u ≤ t. The ergodic metric dynamical system
(θt)t∈R on (Ω,F ,P) is given by the shift maps

θt : Ω→ Ω, (θtω)(s) = ω(s+ t)− ω(t) .

Indeed, these maps form an ergodic flow preserving the probability P, see e.g. [3].

A.2 Invariant measures

Let (θ, ϕ) be a random dynamical system with the cocycle ϕ being defined on one-or two-sided time
T ∈ {R+

0 ,R}. Then the system generates a skew product flow, i.e. a family of maps (Θt)t∈T from Ω×Rd
to itself such that for all t ∈ T and ω ∈ Ω, x ∈ Rd

Θt(ω, x) = (θtω, ϕ(t, ω, x)) .

The notion of an invariant measure for the random dynamical system is given via the invariance with
respect to the skew product flow, see e.g. [3, Definition 1.4.1]. We denote by T ∗µ the push forward of a
measure µ by a map T , i.e. T ∗µ(·) = µ(T−1(·)).

Definition A.3. A probability measure µ on Ω×Rd is invariant for the random dynamical system (θ, ϕ)
if

(i) Θ∗tµ = µ for all t ∈ T ,

(ii) the marginal of µ on Ω is P, i.e. µ can be factorised uniquely into µ(dω,dx) = µω(dx)P(dω) where
ω 7→ µω is a random measure on Rd.
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The marginal of µ on the probability space is demanded to be P as we assume the model of the noise
to be fixed. Note that the invariance of µ is equivalent to the invariance of the random measure ω 7→ µω
on the state space in the sense that

ϕ(t, ω, ·)∗µω = µθtω P-a.s. for all t ∈ T . (A.2)

For white noise random dynamical systems (θ, ϕ), in particular random dynamical systems induced by a
stochastic differential equation, there is a one-to-one correspondence between certain invariant random
measures and stationary measures of the associated stochastic process, first observed in [17]. In more
detail, we can define a Markov semigroup (Pt)t≥0 by setting

Ptf(x) = E(f(ϕ(t, ·, x))

for all measurable and bounded functions f : X → R. If ω 7→ µω is a F0
−∞-measurable invariant random

measure in the sense of (A.2), also called Markov measure, then

ρ(·) = E[µω(·)] =

∫
Ω

µω(·)P(dω)

turns out to be an invariant measure for the Markov semigroup (Pt)t≥0, often also called stationary
measure for the associated process. If ρ is an invariant measure for the Markov semigroup, then

µω = lim
t→∞

ϕ(t, θ−tω, ·)ρ

exists P-a.s. and is an F0
−∞-measurable invariant random measure.

We observe similarly to [4] that in the situation of µ and ρ corresponding in the way described above

E[µω(·)|F∞0 ] = E[µω(·)] = ρ(·) ,

and, hence,
E[µ(·)|F∞0 ] = (P× ρ)(·) .

Therefore the probability measure P × ρ is invariant for (Θt)t≥0 on (Ω × Rd,F∞0 × B(Rd)). In words,
the product measure with marginals P and ρ is invariant for the random dynamical system restricted to
one-sided path space.

B Lyapunov spectrum

The random dynamical system (θ, ϕ) is called Ck if ϕ(t, ω, ·) ∈ Ck for all t ∈ T and ω ∈ Ω, where again
T ∈ {R,R+

0 }. Let’s assume that (θ, ϕ) is C1. The linearisation or derivative Dϕ(t, ω, x) of ϕ(t, ω, ·) at
x ∈ Rd is the Jacobian d× d matrix

Dxϕ(t, ω, x) =
∂ϕ(t, ω, x)

∂x
.

Differentiating the equation
ϕ(t+ s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x))

on both sides and applying the chain rule to the right hand side yields

Dxϕ(t+ s, ω, x) = Dxϕ(t, θsω, ϕ(s, ω, x))Dxϕ(s, ω, x) = Dxϕ(t,Θs(ω, x))Dxϕ(s, ω, x) ,

i.e. the cocycle property of the fibrewise mappings with respect to the skew product maps (Θt)t∈T.
Let us now assume that the random dynamical system possesses an ergodic invariant measure µ. This
implies that (Θ,Dxϕ) is a random dynamical system with linear cocycle Dxϕ over the metric dynamical
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system (Ω×Rd,F ×B(Rd), (Θt)t∈T), see e.g. [3, Proposition 4.2.1]. Suppose that Φ := Dxϕ satisfies the
integrability condition

sup
0≤t≤1

ln+ ‖Φ(t, ω, x)‖ ∈ L1(µ) ,

where ln+(x) := max{ln(x), 0}. Then the Multiplicative Ergodic Theorem [3, Theorem 3.4.1] guarantees

the existence of a Θ-forward invariant set Ω̂ ⊂ Ω × Rd with µ(Ω̂) = 1, the Lyapunov exponents Λ1 >
· · · > Λp, and an invariant measurable filtration

Rd = V1(ω, x) ) V2(ω, x) ) · · · ) Vp(ω, x) ) Vp+1(ω) = {0} ,

such that for all 0 6= v ∈ Rd, the Lyapunov exponent Λ(v, ω, x), defined by

Λ(v, ω, x) = lim
t→∞

1

t
ln ‖Φ(t, ω, x)v‖

exists, and we have

Λ(v, ω, x) = Λi ⇐⇒ v ∈ Vi(ω, x) \ Vi+1(ω, x) for all i ∈ {1, . . . , p} .

C Conditioned Lyapunov exponents for RDS

The following is a short summary of the results from Engel et al. [25] which are relevant for this paper.
We consider the stochastic differential equation (1.1) and the time-homogeneous Markov process

(Xt)t≥0 on the Wiener space Ω = C0(R+
0 ,Rd), i.e. the space of all continuous functions ω : R+

0 → Rd
satisfying that ω(0) = 0 ∈ Rd, for an initial condition X0 ∈ E. Let (θ : R+

0 ×Ω→ Ω, ϕ : R+
0 ×Ω×Ē → Ē)

be the continuous random dynamical system generated by (see Appendix A). Similarly to Appendix A.1,
the family (θt)t∈R+

0
is the B(R+

0 )⊗F-measurable collection of shift maps

θt : Ω→ Ω, (θtω)(s) = ω(s+ t)− ω(t) ,

preserving the ergodic probability measure P : F → [0, 1]. We assume that the cocycle ϕ : R+
0 ×Ω×Ē → Ē

is globally defined in time, in the sense that it takes a constant value in ∂E if the system is killed at the
boundary ∂E. We have

Px(Xt ∈ B) = P(ϕ(t, ·, x) ∈ B) for all t ≥ 0 , x ∈ E and B ∈ B(Ē) .

Define the stopping time T̃ : Ω× E → R+
0 as

T̃ (ω, x) = inf
{
t > 0 : ϕ̂(t, ω, x) ∈ ∂E

}
such that for all x ∈ E and t ≥ 0

Px(T > t) = P(T̃ (·, x) > t)

where T is the absorption time of the Markov process.
Note that ϕ(t, ω, ·) is differentiable for all ω ∈ Ω, x ∈ E and t < T̃ (ω, x). We consider the finite-time

Lyapunov exponents

Λv(t, ω, x) =
1

t
ln
‖Dxϕ(t, ω, x)v‖

‖v‖
for all t ∈

(
0, T̃ (ω, x)

)
,

where Dxϕ solves the variational equation (1.2).
Consider the extended process (Xt, st)t≥0, where

st(ω, x, v) =
Dxϕ(t, ω, x)v

‖Dxϕ(t, ω,X0)v‖
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denotes the induced process on the unit sphere. Then we can apply Furstenberg–Khasminskii averaging
to show that

Λc := lim
t→∞

E
[
Λv(t, ·, x)

∣∣T̃ (·, x) > t
]

for all x ∈ E and v ∈ Rd \ {0} (C.1)

exists and is independent of x and v.

Theorem C.1 (Conditioned Lyapunov exponent). Consider the process (Xt, st)t≥0 under the assumption
that it possesses a joint quasi-ergodic distribution m̃ on E × Sd−1. Then the conditioned Lyapunov
exponent Λc as defined in (C.1) exists and is given by

Λc = lim
t→∞

E
[
Λv(t, ·, x)

∣∣T̃ (·, x) > t
]

=

∫
Sd−1×E

〈s,Df(y)s〉 m̃(ds,dy) , (C.2)

where the convergence is uniform over all x ∈ E and v ∈ Rd \ {0}.

In this paper, we find the quasi-ergodic distribution m as

m(dx) = η(x)φ(x)dx ,

where η is an eigenfunction of the backward Kolmogorov operator L and φ is an eigenfunction of the
forward Kolmogorov operator L∗.

Additionally, we mention the following theorem which equips the limit of expected values Λc with the
strongest possible dynamical meaning in the setting of killed processes.

Theorem C.2 (Convergence in Lp and conditional probability). Consider a stochastic differential equa-
tion of the form (1.1) corresponding to the Markov process (Xt)t≥0 that is killed at ∂E such that the
conditioned Lyapunov exponent Λc exists. Then we have for all 1 ≤ p ≤ 2 that

lim
t→∞

E
[
|Λv(t, ·, x)− Λc|p

∣∣T̃ (·, x) > t
]

= 0 , (C.3)

and for all ε > 0

lim
t→∞

P
(∣∣Λv(t, ·, x)− Λc

∣∣ ≥ ε∣∣∣T̃ (·, x) > t
)

= 0 , (C.4)

in each case uniformly for all x ∈ E and v ∈ Sd−1. This means that the finite-time Lyapunov exponents of
the surviving trajectories converge to the Lyapunov exponent Λc in Lp, for 1 ≤ p ≤ 2, and in probability.

D Some elementary estimates

We present here some elementary estimates enabling to compare the operators ∇ and ∆ with ∇̃ and
∆̃ respectively, with explicit constants. The constant CV plays a role in Section 3.3.4, and the other
estimates obtained here are used to get explicit embedding constants in Appendix E.

First, we define rmean by
1

r2
mean

=
1

2

(
1

r2
min

+
1

r2
max

)
.

We can then show the following estimates for these differential operators, where the norms are in L2(Ω)
for Ω as in (3.6):

Lemma D.1. The operators ∇̃ (3.1) and ∆̃ (3.2) satisfy

min

(
2

rmax
, 1

)
‖∇u‖L2 ≤ ‖∇̃u‖L2 ≤ max

(
2

rmin
, 1

)
‖∇u‖L2 , (D.1)

‖V u‖L2 ≤ CV ‖∇̃u‖L2 , (D.2)
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where

CV :=

√
‖f2‖∞ +

∥∥∥∥r2

4
g2

∥∥∥∥
∞
, (D.3)

and

min

(
4

r2
max

,
2r2

min

r2
min + r2

max

)
‖∆u‖L2 ≤

∥∥∥∆̃u
∥∥∥
L2
≤ max

(
4

r2
min

,
2r2

max

r2
min + r2

max

)
‖∆u‖L2 , (D.4)

or equivalently 
4

r2max
‖∆u‖L2 ≤

∥∥∥∆̃u
∥∥∥
L2
≤ 2r2max

r2min+r2max
‖∆u‖L2 , if 4

r2mean
≤ 1,

2r2min

r2min+r2max
‖∆u‖L2 ≤

∥∥∥∆̃u
∥∥∥
L2
≤ 4

r2min
‖∆u‖L2 , if 4

r2mean
≥ 1.

(D.5)

Proof. The inequality (D.1) follows immediately from observing that

min

(
4

r2
max

, 1

)
〈−∆u, u〉L2 ≤ 〈−∆̃u, u〉L2 ≤ max

(
4

r2
min

, 1

)
〈−∆u, u〉L2 .

Furthermore, for any θ > 0,

〈V u, V u〉L2 ≤ (1 + θ)〈f∂ru, f∂ru〉L2 +

(
1 +

1

θ

)
〈g∂ψu, g∂ψu〉L2

≤ (1 + θ)
∥∥f2

∥∥
∞ 〈∂ru, ∂ru〉L2 +

(
1 +

1

θ

)∥∥∥∥r2

4
g2

∥∥∥∥
∞
〈2
r
∂ψu,

2

r
∂ψu〉L2

≤ max

(
(1 + θ)

∥∥f2
∥∥
∞ ,

(
1 +

1

θ

)∥∥∥∥r2

4
g2

∥∥∥∥
∞

)
〈∇̃u, ∇̃u〉L2 .

Optimizing by taking

θ =

∥∥∥ r24 g2
∥∥∥
∞

‖f2‖∞
yields equation (D.2) with

CV :=

√
‖f2‖∞ +

∥∥∥∥r2

4
g2

∥∥∥∥
∞
.

Finally, recall that rmean satisfies

1

2

(
4

r2
min

+
4

r2
max

)
=

4

r2
mean

and introduce

∆̃(0)u :=
∂2u

∂r2
+

4

r2
mean

∂2u

∂ψ2
.

Then, we write

∆̃u = ∆̃(0)u+

(
4

r2
− 4

r2
mean

)
∂2u

∂ψ2
,
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and estimate ∥∥∥∥( 4

r2
− 4

r2
mean

)
∂2u

∂ψ2

∥∥∥∥
L2

≤
∥∥∥∥ 4

r2
− 4

r2
mean

∥∥∥∥
L∞

∥∥∥∥ ∂2u

∂ψ2

∥∥∥∥
L2

=
1

2

(
4

r2
min

− 4

r2
max

)∥∥∥∥ ∂2u

∂ψ2

∥∥∥∥
L2

= 2
r2
max − r2

min

r2
minr

2
max

∥∥∥∥ ∂2u

∂ψ2

∥∥∥∥
L2

≤ 2
r2
max − r2

min

r2
minr

2
max

r2
mean

4

∥∥∥∆̃(0)u
∥∥∥
L2

=
r2
max − r2

min

r2
max + r2

min

∥∥∥∆̃(0)u
∥∥∥
L2
.

Hence, we obtain(
1− r2

max − r2
min

r2
max + r2

min

)∥∥∥∆̃(0)u
∥∥∥
L2
≤
∥∥∥∆̃u

∥∥∥
L2
≤
(

1 +
r2
max − r2

min

r2
max + r2

min

)∥∥∥∆̃(0)u
∥∥∥
L2
.

Then, using

min

(
4

r2
mean

, 1

)
‖∆u‖L2 ≤

∥∥∥∆̃(0)u
∥∥∥
L2
≤ max

(
4

r2
mean

, 1

)
‖∆u‖L2 ,

we end up with the estimates (D.4) and (D.5).

E Embedding constants

We obtain here the explicit embedding constants needed in Section 4.3. Firstly, we derive an explicit
constant ΥX,C0 for the Sobolev embedding H2(Ω) ↪→ C0(Ω̄)

‖u‖L∞(Ω) ≤ ΥX,C0 ‖u‖X ∀ u ∈ X.

For the following, we define

γ1 = 1.1548, γ2 = 0.22361 , (E.1)

l1 = 2π, l2 = rmax − rmin, (E.2)

C0 = (l1l2)1/2, C1 =
γ1√

3

√
l21 + l22
l1l2

, C2 =
γ2

3

√
(l21 + l22)

2
+ 4

3 (l41 + l42)

l1l2
, (E.3)

m1 = max
(rmax

2
, 1
)
, m2 = max

(
r2
max

4
,
r2
min + r2

max

2r2
min

)
. (E.4)

Then [40, Example 6.12 b)]1, in combination with Lemma D.1, gives

‖u‖L∞(Ω) ≤
√

2π(rmax − rmin)
(
C0‖u‖L2(Ω) + C1‖∇u‖L2(Ω) + C2‖∆u‖L2(Ω)

)
≤
√

2π(rmax − rmin)
(
C0‖u‖L2(Ω) +m1C1‖∇̃u‖L2(Ω) +m2C2‖∆̃u‖L2(Ω)

)
≤
√

2π(rmax − rmin)
√

3
√

(C0‖u‖L2(Ω))2 + (m1C1‖∇̃u‖L2(Ω))2 + (m2C2‖∆̃u‖L2(Ω))2.

1Note that in [40, Section 6.2.6], the estimate involves the L2-norm of the Hessian uxx which due to the absorbing and
periodic boundary conditions on Ω coincides with the L2-norm of the Laplacian, as can be seen from integration by parts.

40



The factor
√

2π(rmax − rmin) comes from the normalization we choose for the L2 norm, see (3.7). Hence,
recalling the weigh ξ2 in the norm on X, we obtain

ΥX,C0 =
√

6π(rmax − rmin) max

(
C0, C1m1,

C2m2√
ξ2

)
. (E.5)

Additionally, we determine a constant ΥXradial,C1 such that∥∥∥∥∂u∂r
∥∥∥∥
L∞(Ω)

≤ ΥXradial,C1 ‖u‖X ∀ u ∈ Xradial,

related to the Sobolev embedding H2((rmin, rmax)) ↪→ C1((rmin, rmax)). We obtain directly from [36]
that, for any u ∈ H2((rmin, rmax)),∥∥∥∥∂u∂r

∥∥∥∥
L∞((rmin,rmax))

≤
√

rmax − rmin

tanh(rmax − rmin)

√√√√∥∥∥∥∂u∂r
∥∥∥∥2

L2((rmin,rmax))

+

∥∥∥∥∂2u

∂2r

∥∥∥∥2

L2((rmin,rmax))

,

and, hence, for all u ∈ Xradial,∥∥∥∥∂u∂r
∥∥∥∥
L∞(Ω)

≤
√

rmax − rmin

tanh(rmax − rmin)

√∥∥∥∇̃u∥∥∥2

L2(Ω)
+
∥∥∥∆̃u

∥∥∥2

L2(Ω)
,

which yields

ΥXradial,C1 =

√
rmax − rmin

tanh(rmax − rmin)
max

(
1,

1√
ξ2

)
. (E.6)

F Approximation of 1
r2 using Chebyshev series, and rigorous

error bounds

We present here some basic estimates needed to get a good approximation — together with tight error
bounds — of the function r 7→ 1

r2 on [rmin, rmax] using Chebyshev series. For more background on the
usage of Chebyshev series for computer-assisted proofs, we refer to [47] and the references therein.

Let ν > 1 and consider the following weighted `1 space

`1ν :=

{
ϕ ∈ RN, ‖ϕ‖`1ν := |ϕ0|+ 2

∞∑
k=1

|ϕk|νk <∞

}
.

For any ϕ ∈ `1ν , the corresponding Chebyshev series

ϕ(t) = ϕ0 + 2

∞∑
k=1

ϕkTk(t),

is well defined and smooth on [−1, 1]. It is in fact analytic on the Bernstein ellipse of size ν, and
reciprocally, any function which is analytic on a Bernstein ellipse of size ν′ for some ν′ > ν has its
Chebyshev coefficients in `1ν , see [50].

For any ϕ,ψ ∈ `1ν , we define their convolution product ϕ ∗ψ by

(ϕ ∗ψ)k =
∑
l∈Z

ϕ|l|ψ|k−l| ∀ k ∈ N.

We point out that ϕ ∗ ψ is nothing but the sequence of Chebyshev coefficients of the product ϕψ, and
that

(
`1ν , ∗

)
is a Banach algebra:

‖ϕ ∗ψ‖`1ν ≤ ‖ϕ‖`1ν ‖ψ‖`1ν ∀ ϕ,ψ ∈ `1ν .
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Define R ∈ `1ν by

Rk :=



(
rmin + rmax

2

)2

+
(rmax − rmin)2

8
k = 0,

r2
max − r2

min

4
k = 1,

(rmax − rmin)2

16
k = 2,

0 k ≥ 3.

The associated Chebyshev series R is nothing but r 7→ r2, rescaled from [rmin, rmax] to [−1, 1]: it is
straightforward to check that

R(t) =

(
rmax − rmin

2
t+

rmax + rmin

2

)2

.

Our goal is to find a Chebyshev series ϕ̄, such that

R(t)ϕ̄(t) ≈ 1 ∀ t ∈ [−1, 1],

with an explicit error bound. To do so, we introduce

F :

{
`1ν → `1ν

ϕ 7→ R ∗ϕ− 1

and use the following lemma (which is similar to Theorem 3.4, but simpler, because the problem is linear).

Lemma F.1. Let ν ∈ (1, νmax), where

νmax :=
rmax + rmin

rmax − rmin

1 +

√
1−

(
rmax − rmin

rmax + rmin

)2
 . (F.1)

Let ϕ̄ ∈ `1ν such that there exists δ < 1 satisfying

‖F(ϕ̄)‖`1ν ≤ δ.

Then, F has a unique zero ϕ ∈ `1ν , and it satisfies

‖ϕ− ϕ̄‖`1ν ≤
δ

1− δ
‖ϕ̄‖`1ν .

Proof. The map F is affine, therefore to get the existence of a unique zero we only have to prove that
ϕ 7→ R ∗ϕ is invertible on `1ν . For any given ψ ∈ `1ν , the equation

R ∗ϕ = ψ, (F.2)

is equivalent to having
Rϕ = ψ

at the level of functions. νmax is defined so that the function t 7→ 1/R(t) is analytic on a Berstein ellipse
of size ν′ > ν, therefore the function ψ/R is analytic on the same ellipse, and (F.2) does have a unique
solution in `1ν .

Hence we have the existence of a unique zero ϕ of F, and it remains to get the a priori error estimate
between ϕ and ϕ̄. We have

R ∗ ϕ̄− 1 = R ∗ (ϕ̄−ϕ) ,
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and therefore

‖ϕ− ϕ̄‖`1ν ≤
∥∥R−1

∥∥
B(`1ν ,`

1
ν)
‖R ∗ ϕ̄− 1‖`1ν

≤
∥∥R−1

∥∥
B(`1ν ,`

1
ν)
δ,

where
∥∥R−1

∥∥
B(`1ν ,`

1
ν)

must be understood as the operator norm of the inverse of ϕ 7→ R ∗ϕ. Besides,

‖R ∗ ϕ̄− 1‖`1ν ≤ δ < 1,

yields that the operator ϕ 7→ R ∗ ϕ̄ ∗ϕ is invertible, and that∥∥∥(R ∗ ϕ̄)
−1
∥∥∥
B(`1ν ,`

1
ν)
≤ 1

1− δ
.

Therefore ∥∥R−1
∥∥
B(`1ν ,`

1
ν)

=
∥∥∥ϕ̄ (R ∗ ϕ̄)

−1
∥∥∥
B(`1ν ,`

1
ν)

≤ ‖ϕ̄‖B(`1ν ,`
1
ν)

∥∥∥(R ∗ ϕ̄)
−1
∥∥∥
B(`1ν ,`

1
ν)

≤ ‖ϕ̄‖B(`1ν ,`
1
ν)

1

1− δ
,

and because the operator norm ‖ϕ̄‖B(`1ν ,`
1
ν) is equal to the norm ‖ϕ̄‖`1ν of the element (this holds for any

ϕ ∈ `1ν), we have ∥∥R−1
∥∥
B(`1ν ,`

1
ν)
≤ ‖ϕ̄‖`1ν

1

1− δ
,

and

‖ϕ− ϕ̄‖`1ν ≤ ‖ϕ̄‖`1ν
1

1− δ
δ.

This finishes the proof.
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