
HAL Id: hal-03168195
https://hal.science/hal-03168195v2

Submitted on 22 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computer-assisted proofs for some nonlinear diffusion
problems

Maxime Breden

To cite this version:
Maxime Breden. Computer-assisted proofs for some nonlinear diffusion problems. Communica-
tions in Nonlinear Science and Numerical Simulation, 2022, 109, �10.1016/j.cnsns.2022.106292�. �hal-
03168195v2�

https://hal.science/hal-03168195v2
https://hal.archives-ouvertes.fr


Computer-assisted proofs for some nonlinear diffusion problems

Maxime Breden*

Abstract

In the last three decades, powerful computer-assisted techniques have been developed in order to
validate a posteriori numerical solutions of semilinear elliptic problems of the form ∆u+f(u,∇u) = 0.
By studying a well chosen fixed point problem defined around the numerical solution, these techniques
make it possible to prove the existence of a solution in an explicit (and usually small) neighborhood
of the numerical solution. In this work, we develop a similar approach for a broader class of systems,
including nonlinear diffusion terms of the form ∆Φ(u). In particular, this enables us to obtain new
results about steady states of a cross-diffusion system from population dynamics: the (non-triangular)
SKT model. We also revisit the idea of automatic differentiation in the context of computer-assisted
proof, and propose an alternative approach based on differential-algebraic equations.

1 Introduction

1.1 Context

Diffusion is a key mechanism in many spatially extended systems coming from Physics, Chemistry or
Biology. Starting from the prototypical mathematical model used to describe such phenomena that is
the heat equation

∂tu = ∆u,

many more general models have been introduced, for instance in order to take into account nonlinear
diffusion effects

∂tu = ∆Φ(u). (1)

Some prime examples which have already been studied extensively in the mathematical literature are
the fast-diffusion equation and the porous medium equation, which correspond to Φ(u) = um with m < 1
and m > 1 respectively [2, 38]. More general nonlinearities are also of interest, for instance Φ(u) = log(u)
which corresponds to the Ricci flow in two dimensions [12, 35].

Nonlinear diffusion also plays a crucial role for systems, where u = (u1, . . . , ud), especially when the
diffusion rate of one component can be affected by the other components. This phenomenon is often
referred to as cross-diffusion, and typical mathematical models used in this case are of the form

∂tu = div(A(u)∇u). (2)

In some cases, namely when the matrix A(u) is the derivative of some map Φ, these systems can also be
written under the form (1).

For some of these nonlinear diffusion problems, like the fast-diffusion equation or the porous medium
equation, the long-time behavior of the solutions is well understood, see for instance the monograph [37]
and the references therein. For more general nonlinear diffusion equations, and especially for systems,
the situation is more complex, but in some cases entropy methods can be used to guarantee at least the
existence of global in time solutions, see e.g. [16].
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However, in most applications the models also include nonlinear reaction terms, that is, (1) is replaced
by an equation of the form

∂tu = ∆Φ(u) +R(u).

In this case the dynamics can be way more complex, therefore the study of the long time behavior is
usually significantly more complicated. Even in some specific cases where one can prove that the solution
converges to a steady state, see e.g. the early work [17], solving the corresponding stationary problem

0 = ∆Φ(u) +R(u), (3)

is still a demanding task, especially if one is not only interested in existence results but also in quantitative
information about the solution(s).

In this work, we develop a methodology to get quantitative existence results about equations of the
form (3) on bounded domain, based on computer-assisted proofs. Before giving more details about the
scope and the limitation of our results, let us briefly review some past computer-assisted works on elliptic
equations upon which we build.

1.2 Computer-assisted proofs for elliptic equations

Computer-assisted proofs for elliptic equations originate from the pioneering works of Nakao [24] and
Plum [29], and were then further developed and popularized by them and many others, see e.g. [27, 40,
41, 1, 10, 34, 36, 39, 11].

Most of these works share the same general approach, which consists in validating a posteriori an
approximate solution ū (for an alternative approach, having a topological rather than functional analytic
flavor, see [41]). In order to conduct this a posteriori validation, one considers the elliptic PDE as an
F (u) = 0 problem on some well chosen function space, and then turns it into a fixed point problem
T (u) = u, where the fixed point operator T should be a contraction1 in a neighborhood of ū. In practice,
the two essentials steps are the definition of a suitable fixed point operator T , and the derivation of
explicit estimates allowing to apply Banach’s fixed point theorem to T in a neighborhood of ū. So as to
consistently get a contraction, T is usually defined as something close to

T (u) = u−DF (ū)−1F (u),

where DF denotes the Frechet derivative of F . Provided ū is a sufficiently good approximate solution,
meaning that ‖F (ū)‖ is small enough, the key requirement for applying Banach’s fixed point theorem to
T is to get an explicit control on ‖DF (ū)−1‖. At this stage, there are three main options.

1. If the problem is defined on Hilbert spaces, eigenvalues bounds can be used to directly estimate the
norm of DF (ū)−1 [25, Part II]. While this approach is typically more demanding in practice than
the other two presented below, it is also more versatile, and can for instance handle unbounded
domains.

2. On bounded domains, an alternative approach consists in studying DF (ū)−1 by introducing a well
chosen approximate inverse A of DF (ū), which is obtained using a finite dimensional projection.
In that case, it is more or less equivalent to directly work with T defined by

T (u) = u−AF (u).

Since A is then defined rather explicitly, computing ‖A‖ becomes straightforward, but the difficulty
is transferred to proving thatA is a good enough approximate inverse, meaning that ‖I−ADF (ū)‖ <
1, in order for T to still be a contraction.

1Historically, some of the early works used a slightly different strategy based on Schauder’s fixed point theorem. However,
it seems most of the techniques gradually evolved and aligned towards the usage of a contraction mapping, if only because
that is often the easiest way to enforce the inclusion assumption needed for Schauder’s fixed point theorem.
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3. Still on bounded domains, a third option was recently introduced [32]. While it aims at directly
studying DF (ū)−1 itself like the first option, it does so by also introducing a finite dimensional
projection to decompose DF (ū) and then using the Schur complement. Therefore, in practice this
approach ends up being close to the second one, as it requires very similar estimates, but those are
combined together slightly differently in the end.

Of course, in order to prove that T is a contraction one also has to control the nonlinear terms, but since
such control is only required on a small neighborhood of ū, this is usually not the main difficulty. The
whole procedure boils down to a kind of Newton-Kantorovich theorem [28], an example of which will be
presented in details in Section 2.2.

As we already mentioned, the general strategy and its variations that we just described were success-
fully applied to several elliptic problems. However, in all these studies, the leading differential operator
is always simply ∆u, or ∆2u. The only exceptions seem to be [5] and [6], where some very specific
non-constant coefficients in front of the Laplacian are considered.

1.3 Generalization to some nonlinear diffusion problems

In this paper, we generalize the framework presented above, and more specifically option 2, in order to
treat problems of the form 

∆Φ(u) +R(u) = 0 on Ω

∂u

∂n
= 0 on ∂Ω

(4)

on bounded domains. The key step is to introduce an approximate inverse A for the option 2 described in
the previous subsection, with a different structure than those which are typically used for linear diffusion.

Remark 1.1. The construction of the approximate inverse A presented in this work is also suitable for
uniformly elliptic problems of the form ∆(au)+R(u) = 0, where a is a non constant coefficient (or matrix
in the case of systems), which already fall outside of the usual framework which only covers equations of
the form ∆u+R(u) = 0.

Before going further, let us discuss the assumptions we are going to make in this work, and specify
how relevant they are.

� The current approach is directly applicable to rectangular domains, i.e. of the form
∏

[ai, bi]. This
allows the usage of a discretization based on Fourier series, which is a convenient framework to
obtain some of the estimates. In order to simplify the presentation we restrict our attention to
one-dimensional domains, the generalization to higher dimensions is straightforward (but of course
computationally more intensive).

� More general domains certainly generate extra challenges, even in the linear diffusion case. However,
we believe the new construction of the approximate inverse introduced in this work may also prove
useful for computer-assisted proofs with discretizations based on finite elements [25], in order to try
and handle nonlinear diffusion in more general domains.

� We consider Neumann boundary conditions because they are natural for the main application we
have in mind (namely the SKT system which describes the density of several species in a bounded
environment), but the analysis would be similar with Dirichlet boundary conditions.

� To finish with the domain, we rely crucially on the fact that the domain is bounded, and a signifi-
cantly different approach would be needed for unbounded domains. While we did not explore this
possibility thoughtfully, we believe that option 1 described in Section 1.2 could be generalized to
handle nonlinear diffusion terms as in (4).
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� We chose not to include a first order term ∇u in (4) in order to keep the presentation as simple as
possible, but adding such a term presents no essential difficulty.

� Still in order to limit technicalities and to focus on the main novelty of this work, namely the
treatment of the nonlinear diffusion, we only consider examples where the reaction terms R are at
most quadratic. This can also be easily generalized, and we make some remarks in that regard later
on.

� We also emphasize already that our method does not require specific assumptions on the nonlinearity
Φ, except smoothness. We do have some non-degeneracy condition, but it will appear as an a
posteriori information, rather than as an a priori requirement. That is, if we manage to validate
a solution u to (4), it will mean that DΦ(u) is nonsingular, but we do not need to know this in
advance for the method to work. For instance, it could be that DΦ(x) is singular for some values
of x, but that the solution u ends up never taking these values. In some sense, this means the
problem (4) could have been rewritten as

∆v +R
(
Φ−1(v)

)
= 0,

but our analysis never requires us to deal with Φ−1. Finally, let us point out that, as soon as we
know that DΦ(u) is nonsingular, we can rewrite the boundary conditions in (4) in a form which

directly involves fluxes, namely ∂Φ(u)
∂n = 0.

The remainder of this paper is organized as follows. In Section 2 we start with a simple case, namely
a scalar equation with Φ(u) = u2, in order to expose the main ideas without too many technicalities.
In Section 3 we then focus on the SKT system, and present some new results about its steady states.
Finally, we discuss in Section 4 how to handle more complicated, non-polynomial, diffusion terms, and
propose an alternative to the usual automatic-differentiation technique.

All the Matlab codes used for the computer-assisted parts of the proofs are available at [3].

2 A simple case first

In this section, we consider a scalar problem on a one-dimensional domain of the form


∆Φ(u) +R(u) = 0 on (0, 1),

∂u

∂n
= 0 on {0, 1},

(5)

where Φ(u) = u2 and R(u) = αu − βu2 + g, with α, β positive constants, and g a smooth function
compatible with the boundary conditions. In the end, we will take a specific trigonometric polynomial
for g, constructed experimentally to generate non-trivial solutions (see Section 2.4).

As already stated in the introduction, the goal of this section is to present the main ideas while min-
imizing the amount of technicalities. This is why we make these very explicit assumptions on Φ and R
throughout Section 2, but some generalizations are of course possible. A first and rather straightforward
one would be to consider non-homogeneous coefficients α and β, and to increase the degree of the poly-
nomials Φ and R (possibly also with non-homogeneous coefficients). Some of the required adaptations,
as well as less straightforward generalizations to more complicated nonlinearities, are discussed along the
way, in particular in Remarks 2.1 and 2.7.

2.1 Notations and sequence spaces

The material presented in this subsection is standard, and mostly included for the sake of fixing notations.
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We look for solutions as Fourier series, i.e.

u(x) = u0 + 2

∞∑
n=1

un cos(nπx) =
∑
n∈Z

u|n| cos(nπx),

and denote by u = (un)n≥0 the sequence of Fourier coefficients associated to a function u. In the sequel,
we always use this convention that a bold symbol denotes the sequence of Fourier coefficients associated
to the function of the same name. For instance 1 is the sequence (1, 0, . . . , 0, . . .) representing the constant
function equal to 1.

For any ν ≥ 1, we consider

‖u‖ν = |u0|+ 2

∞∑
n=1

|un|νn

=
∑
n≥0

|un|ξn(ν),

where

ξn(ν) =

{
1 n = 0,

2νn n ≥ 1,

and the associated Banach space

`1ν =
{
u = (un)n≥0 , ‖u‖ν <∞

}
.

Notice that, as soon as ν > 1, if u ∈ `1ν then the coefficients uk decay geometrically, and therefore the
associated function u is smooth.

The product of two functions u and v in function space gives rise to the discrete convolution product
∗ in sequence space:

(u ∗ v)n =
∑
k∈Z

u|k|v|n−k|.

We recall that `1ν is a Banach algebra under the convolution product: for all u,v in `1ν ,

‖u ∗ v‖ν ≤ ‖u‖ν‖v‖ν .

In particular, since Φ is assumed to be a polynomial, for any u in `1ν one can readily define Φ(u), which
also belongs to `1ν , and similarly for R.

Remark 2.1. In order for R(u) (or Φ(u)) to be well defined in `1ν , it is sufficient to assume that R
is analytic on a disk of radius larger than ‖u‖ν . However, in some cases one might avoid the techni-
calities associated with having non polynomial terms by introducing extra variables and using automatic
differentiation techniques, see e.g. [19]. A new alternative approach is also presented in Section 4.

Given u ∈ `1ν , we denote by M(u) : `1ν → `1ν the associated multiplication operator, i.e. for all v in
`1ν , M(u)v = u ∗ v.

Let L be a linear operator on `1ν . L can be identified with an infinite dimensional matrix (Lk,n)k,n≥0

where, for any u in `1ν ,

(Lu)k =

∞∑
n=0

Lk,nun ∀ k ≥ 0.
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We recall that the operator norm of L can be easily expressed in terms of the coefficients Lk,n, namely

‖L‖ν := sup
u∈`1ν
u6=0

‖Lu‖ν
‖u‖ν

= sup
n≥0

1

ξn(ν)

∞∑
k=0

|Lk,n|ξk(ν).

We point out that, for any u ∈ `1ν , the operator norm of the multiplication operator M(u) is nothing but
the norm of the sequence u, i.e. ‖M(u)‖ν = ‖u‖ν . We also recall that the ‖ · ‖ν norm of the coefficients
controls the ‖ · ‖C0 norm of the associated function. That is, for any ν ≥ 1 and any u in `1ν ,

‖u‖C0 := sup
x∈R
|u(x)| ≤ ‖u‖ν . (6)

We slightly abuse the notation ∆ and also use it on a sequence of Fourier coefficients. That is, ∆u is
the sequence defined by

(∆u)n = −(nπ)2un n ≥ 0.

Similarly ∆−1u is the sequence defined by

(
∆−1u

)
n

=


0 n = 0,

− 1

(nπ)2
un n ≥ 1.

Remark 2.2. The Laplacian with Neumann boundary conditions is only invertible if we restrict ourselves
to functions having zero mean, or in terms of Fourier coefficients if we only deal with modes n ≥ 1. This
will be enough for our purposes, and justifies the notation ∆−1 above.

Finally, given N ≥ 1 we introduce the projection onto the N first modes ΠN , where

(ΠNu)n =

{
un 0 ≤ n < N,

0 n ≥ N,

and the associated subspace ΠN`
1
ν of `1ν . In the sequel, we frequently identify a vector ū = (u0, . . . , uN−1)

of RN and its injection ū = (u0, . . . , uN−1, 0, . . . , 0, . . .) in ΠN `
1
ν .

2.2 From a zero finding problem F = 0 into a fixed point problem

Rewriting (5) in Fourier space, our aim is to find u in `1ν satisfying

Fn(u) := −(nπ)2Φn(u) +Rn(u) = 0 ∀ n ≥ 0,

where Φn(u) denotes the n-th Fourier coefficient of Φ(u), or, in a more compact form

F (u) := ∆Φ(u) +R(u) = 0. (7)

We now assume that we have an approximate zero ū ∈ ΠN`
1
ν of F , which in practice can be obtained by

numerically solving the finite dimensional problem ΠNFΠN = 0.
In order to define a suitable approximate inverse A of DF (ū), we first consider w̄ ∈ ΠN `

1
ν such that

w̄ ∗ Φ′(ū) ≈ 1.

Remark 2.3. In practice, such w̄ is easily obtained by numerically solving the linear system

ΠNM (Φ′(ū)) ΠN w̄ = 1,

identifying ΠNM (Φ′(ū)) ΠN with an N ×N matrix, and w̄ and 1 with vectors in RN .
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Next, we consider an N×N matrix Ā, a numerically computed approximation of ΠN

(
DF (ū)−1

)
ΠN ,

which we identify with an operator on ΠN`
1
ν , and define the crucial operator A as follows.

A = Ā+
(
M(w̄)∆−1 −ΠN

(
M(w̄)∆−1

)
ΠN

)
. (8)

In order to better understand this operator, one might think of it as an infinite matrix, which writes

0 0 0 . . .

−w̄N−1

(Nπ)2 0 0

Ā
... −w̄N−1

((N+1)π)2 0
. . .

−w̄2

(Nπ)2

... −w̄N−1

((N+2)π)2

. . .

−w̄1

(Nπ)2
−w̄2

((N+1)π)2

...
. . .

0 −w̄N−1

π2 . . . −w̄2

((N−2)π)2
−w̄1

((N−1)π)2
−w̄0

(Nπ)2
−w̄1

((N+1)π)2
−w̄2

((N+2)π)2

0 0 −w̄N−1

(2π)2 . . . −w̄2

((N−1)π)2
−w̄1

(Nπ)2
−w̄0

((N+1)π)2
−w̄1

((N+1)π)2

. . .

0 0 0 −w̄N−1

(3π)2 . . . −w̄2

(Nπ)2
−w̄1

((N+1)π)2
−w̄0

((N+2)π)2

. . .

...
. . .

. . .
. . .

. . .
. . .

. . .



,

or in a more compact form,

A =


Ā

M(w̄)∆−1

 .

Remark 2.4. When there is only linear diffusion, Ā is usually defined by numerically computing the
inverse of ΠNDF (ū)ΠN . In our situation this won’t necessarily be good enough. This is related to
the fact that the extra-diagonal terms in DF (ū) cannot be neglected, even outside of the finite block
corresponding to the projection on ΠN `

1
ν . For more details and an explicit computation, see Appendix A.

Instead, in order to get a good enough approximation of ΠN

(
DF (ū)−1

)
ΠN , we numerically compute

the inverse of a larger block, and then project it back onto ΠN`
1
ν , e.g.

Ā ≈ ΠN (Π2NDF (ū)Π2N )
−1

ΠN ,

where the ≈ sign is only here to emphasize that the inverse does not have to be computed exactly.
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Now that the important operator A has been defined, we are ready to consider the fixed-point operator
T : `1ν → `1ν defined by

T (u) = u−AF (u), (9)

and to give the classical sufficient conditions for T to admit a fixed-point near ū. This Newton-
Kantorovich-like theorem tells us that A has to be a sufficiently good approximate inverse of DF (ū),
and that ū has to be a sufficiently good approximate zero of F , makes it precise what sufficiently good
means (see (11)), and then gives an explicit error bound for ū (see (12)).

Theorem 2.5. With the notations introduced in this section, assume there exist constants Y , Z1 and Z2

satisfying

‖AF (ū)‖ν ≤ Y (10a)

‖I −ADF (ū)‖ν ≤ Z1 (10b)

‖AD2F (u)‖ν ≤ Z2 ∀ u ∈ `1ν , (10c)

and

Z1 < 1 (11a)

2Y Z2 < (1− Z1)2. (11b)

Then, for any r satisfying

1− Z1 −
√

(1− Z1)2 − 2Y Z2

Z2
≤ r < 1− Z1

Z2
, (12)

there exists a unique fixed-point u∗ of T in Bν(ū, r), the closed ball of center ū and radius r in `1ν .
Assume further that w̄ (which plays a role in the definition of A), is such that

‖1− w̄ ∗ Φ′(ū)‖ν < 1. (13)

Then u∗ is the unique zero of F in Bν(ū, r).

Proof. The first part of the proof, which consists in showing that T defined in (9) admits a unique fixed
point in Bν(ū, r) is standard, so we only sketch it. For any u in Bν(ū, r) and r satisfying (12), we have

‖T (u)− ū‖ν ≤ Y + Z1r +
1

2
Z2r

2 ≤ r,

and

‖DT (u)‖ν ≤ Z1 + Z2r < 1,

therefore T is a contraction on Bν(ū, r), and there is a unique fixed-point u∗ of T in Bν(ū, r).
The second part of the proof consists in showing that A is injective, so that this fixed point of T

indeed corresponds to a zero of F . From (10b) and (11a), we know that ADF (ū) is bijective, therefore
we have at least that A is surjective. Furthermore, by (13) we have that

‖I −M(w̄)M(Φ′(ū))‖ν = ‖1− w̄ ∗ Φ′(ū)‖ν < 1,

therefore M(w̄) is invertible (M(w̄) and M(Φ′(ū)) commute, because ∗ is commutative and associative).
Since ∆−1 is a Fredholm operator of index 0, so is M(w̄)∆−1. However, A is just a compact perturbation
ofM(w̄)∆−1, therefore it is also Fredholm of index 0, and since we have already shown that A is surjective,
it must be injective.
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Remark 2.6. With a Fourier discretization and linear diffusion, the second part of the above proof is
usually trivial, but ideas similar to the ones used here already appeared in the context of computer-assisted
proofs, see e.g. the proof of [25, Theorem 6.2].

While this second part of the proof seems to require an extra assumption, namely (13), the term
‖1−w̄∗Φ′(ū)‖ν is going to naturally appear in our estimate for Z1, and therefore (13) will be automatically
satisfied as soon as (11a) is, see (14).

Finally let us mention that (10c) does not really need to hold for all u in `1ν , but only in a small
neighborhood of ū. In the present case it does not matter, since we took Φ and R as polynomials of degree
two and therefore D2F is constant. In a more general case one may introduce an a priori radius r∗, and
restrict the whole analysis to Bν(ū, r∗), in order to only have to estimate D2F (u) locally.

2.3 Derivation of the bounds

It remains to derive computable estimates Y , Z1 and Z2 satisfying (10), and to check that (11) also holds.
One key point to keep in mind in this subsection is that, since w̄ ∈ ΠN`

1
ν , the infinite matrix M(w̄) is

a banded matrix, with a bandwidth of at most N . That is, as soon as |k−n| ≥ N , (M(w̄))k,n = 0. Since

we assumed Φ(u) = u2 and R(u) = αu− βu2 + g with α and β constant, the same is true for M(Φ′(ū))
and M(R′(ū)).

Remark 2.7. If R or Φ were polynomials of higher order, M(Φ′(ū)) and M(R′(ū)) would simply have
a larger bandwidth (equal to d(N − 1) + 1 if the polynomial is of degree d), and all the estimates to come
would have to be adapted in a straightforward manner.

If R (or Φ) were to be merely analytic, one could split R′(ū) between a finite sequence and a remainder
whose ‖ · ‖ν norm is small and could be estimated, deal as above with the finite part, and keep track of
the extra terms that are produced by the remainder. See also Section 4 for a different approach.

Still for the sake of simplicity, in the sequel we also assume that g ∈ ΠN `
1
ν , but more general g could

be handled in a similar way, as soon as the remainder can be estimated explicitly.

2.3.1 The bound Y

Since Φ and R are polynomials, and ū and g belong to ΠN`
1
ν , F (ū) only has a finite number of non-zero

coefficients. Similarly, since w̄ belongs to ΠN`
1
ν , each column of A only has a finite number of non-zero

coefficients. Therefore AF (ū) and then ‖AF (ū)‖ν can be computed exactly, up to rounding errors, and
the rounding errors can be controlled using interval arithmetic. In our implementation we make use of
the Intlab package [30] for Matlab. The upper bound of this computation will be our bound Y , and
satisfies (10a).

2.3.2 The bound Z1

Denoting B = I −ADF (ū) and B(·,n) the n-th column of B, we split the estimation of the norm of B as
follows.

‖B‖ν = sup
n≥0

1

ξn(ν)
‖B(·,n)‖ν

= max

(
max

0≤n≤2N−2

1

ξn(ν)
‖B(·,n)‖ν , sup

n≥2N−1

1

ξn(ν)
‖B(·,n)‖ν

)
≤ max

(
Zfinite1 , Ztail1

)
.

Zfinite1 can be computed explicitly. Indeed, the n-th column of B is nothing but the n-th column of the
identity minus the n-th column of DF (ū) multiplied by A, and similarly to the situation for the Y bound,
the norm of any individual column can be computed exactly (or, to be more precise, enclosed rigorously
using interval arithmetic).
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Regarding the estimate for Ztail1 , we use the fact that M(Φ′(ū)) and M(R′(ū)) have bandwidth
N . Hence for any column of DF (ū) = ∆M(Φ′(ū)) + M(R′(ū)) having index n ≥ 2N − 1, its N first
coefficients must be zero, and the multiplication of such a column by A does not depend on Ā. This
enables us to easily estimate by hand ‖B(·,n)‖ν for any n ≥ 2N − 1. Equivalently, we can start by
rewriting

sup
n≥2N−1

1

ξn(ν)
‖B(·,n)‖ν = sup

u∈(I−Π2N−1)`1ν
u6=0

‖Bu‖
‖u‖

.

Then, since Φ′(ū) and R′(ū) belong to ΠN`
1
ν , for any u ∈ (I − Π2N−1)`1ν we have that Φ′(ū) ∗ u and

R′(ū) ∗ u belong to (I −ΠN )`1ν , and so does DF (ū)u. Therefore, for any u ∈ (I −Π2N−1)`1ν ,

Bu = u−ADF (ū)u

= u− w̄ ∗∆−1DF (ū)u

= u− w̄ ∗ Φ′(ū) ∗ u− w̄ ∗∆−1 (R′(ū) ∗ u) ,

and

‖Bu‖ν ≤ ‖1− w̄ ∗ Φ′(ū)‖ν‖u‖ν + ‖w̄‖ν‖∆−1 (R′(ū) ∗ u) ‖ν .

Finally, since R′(ū) ∗u belongs to (I −ΠN )`1ν we have ‖∆−1 (R′(ū) ∗ u) ‖ν ≤ 1
(Nπ)2 ‖R′(ū) ∗u‖ν , and we

can take

Ztail1 = ‖1− w̄ ∗ Φ′(ū)‖ν +
1

(Nπ)2
‖w̄ ∗R′(ū)‖ν . (14)

We then just take Z1 = max
(
Zfinite1 , Ztail1

)
, and it satisfies (10b).

2.3.3 The bound Z2

For any u1,u2 in `1ν , remembering that Φ(u) = u2 and R(u) = αu− βu2 + g, we have

D2F (u)(u1,u2) = 2∆ (u1 ∗ u2)− 2βu1 ∗ u2,

and therefore

‖AD2F (u)‖ν = sup
u1,u2∈`1ν
u1,u2 6=0

‖AD2F (u)(u1,u2)‖ν
‖u1‖ν‖u2‖ν

≤ 2‖A∆‖ν + 2|β|‖A‖ν . (15)

We thus take

Z2 = 2‖A∆‖ν + 2|β|‖A‖ν .

Similarly to what we have done for the Z1 bound, the norm of A and A∆ can be computed by splitting
between a finite number of column and the rest, and we get

‖A‖ν = max

(
max

0≤n≤N−1

1

ξn(ν)
‖A(·,n)‖ν ,

1

(Nπ)2
‖w̄‖ν

)
(16a)

‖A∆‖ν = max

(
max

0≤n≤N−1

1

ξn(ν)
‖ (A∆)(·,n) ‖ν , ‖w̄‖ν

)
. (16b)

Combining (15) and (16) gives us a computable Z2 bound satisfying (10c).
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(a) The forcing term g used in the examples.

0 0.2 0.4 0.6 0.8 1

1.3

1.35

1.4

1.45

(b) The approximate solution ū of (5) with Φ(u) = u2,
R(u) = u−u2 +g and g as in Figure 1a, which has been
validated in Theorem 2.8.

Figure 1: Data associated to Theorem 2.8.

2.4 Example and results

In this subsection, we consider an explicit case, namely Φ(u) = u2 and R(u) = u − u2 + g (i.e. we take
α = β = 1), and g given by g(x) = 1

2 + 3 cos(πx) + 2 cos(2πx) − cos(3πx) + 6 cos(4πx) (see Figure 1a),
for which we check that Theorem 2.5 is applicable.

We computed an approximate solution ū (see Figure 1b), and then validated it using the procedure
described in this whole section, which yielded the following theorem.

Theorem 2.8. Let ū be the function whose Fourier coefficients ū can be downloaded at [3], and which
is represented in Figure 1b. There exists a strong solution u of (5), with Φ and R as given just above,
such that ‖u− ū‖C0 ≤ 2× 10−10.

Proof. We apply the validation procedure with N = 20 and ν = 1.1. That is, we define some w̄ and Ā,
then evaluate the bounds Y , Z1 and Z2 obtained in Section 2.3, with interval arithmetic to take rounding
errors into accounts. We get that assumption (10) is satisfied with

Y = 1.3× 10−10, Z1 = 0.0002 and Z2 = 2.2.

Therefore (11) holds, and so does (12) with r = 2 × 10−10. As mentioned in Remark 2.6, formula (14)
shows that (13) also holds because (11a) does.

We can then apply Theorem 2.5, and there exists a unique zero u of F in Bν(ū, r). Since ν > 1 the
associated function u is smooth, and is therefore a strong solution of (5). The announced error estimate
in C0 norm follows directly from (6).

The computational parts of the proof can be reproduced by running the Matlab code script PM.m

from [3], together with Intlab [30].

Remark 2.9. If needed, one could also get error estimates in different function spaces, since the `1ν norm
of u controls the norm of any derivative of u, as soon as ν > 1 (with constants depending on ν).

In `1ν we not only have existence of a zero u of F , but also local uniqueness. This local uniqueness
carries over to the solutions of (5), provided we know a priori that any solution of (5) must be smooth
enough for its Fourier coefficients to belong to `1ν . Otherwise, we only have local uniqueness among smooth
enough functions.

For problems where analyticity is too much too ask for, be it because the solution itself is not analytic,
or because we care about local uniqueness but proving the analyticity a priori is hard, it should be noted
that one can easily replicate the whole procedure presented here in a sequence space corresponding to
functions of lower regularity, see e.g. [18].
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3 The SKT system

We now use the techniques introduced in Section 2 to study steady states of the SKT system
∂tu

(1) = ∆
((
d1 + d11u

(1) + d12u
(2)
)
u(1)

)
+
(
r1 − a1u

(1) − b1u(2)
)
u(1) = 0 on Ω,

∂tu
(2) = ∆

((
d2 + d21u

(1) + d22u
(2)
)
u(2)

)
+
(
r2 − b2u(1) − a2u

(2)
)
u(2) = 0 on Ω,

∂u(1)

∂n
= 0 =

∂u(2)

∂n
on ∂Ω,

(17)

which is exactly of the form (1), with

u =

(
u(1)

u(2)

)
, Φ(u) =

(
Φ(1)(u)
Φ(2)(u)

)
=

((
d1 + d11u

(1) + d12u
(2)
)
u(1)(

d2 + d21u
(1) + d22u

(2)
)
u(2)

)
,

and

R(u) =

(
R(1)(u)
R(2)(u)

)
=

((
r1 + a1u

(1) + b1u
(2)
)
u(1)(

r2 + b2u
(1) + a2u

(2)
)
u(2)

)
.

3.1 Presentation of the model

The SKT system was introduced in the seminal paper [33] in order to model the dynamics of two
competing species, whose densities are denoted here by u(1) and u(2). The reactions terms are standard
Lotka-Volterra terms with signs indicating intra-specific and inter-specific competitions. The key feature
of this model is the presence of nonlinear diffusion terms: the diffusion rate of each species depends on
the local density of both species. These nonlinear diffusion terms can give rise to a repulsive effect which
leads to spatial segregation: the two species co-exist but mostly concentrate in different regions of the
domain Ω. Mathematically, this corresponds to the existence of non-homogeneous steady states of (17)
exhibiting this type of patterns.

The existence and stability analysis of such steady states has been studied extensively, through a wide
variety of techniques such as bifurcation theory, singular perturbation theory or fixed point index theory,
see e.g. [22, 23, 20, 31], which provide a qualitative understanding on the conditions required on the many
parameters of (17) for non-homogeneous steady states to exist. Some asymptotic parameter regimes have
also been scrutinized, especially when one or both of the cross-diffusion coefficients d12 and d21 become
very large, and in such cases additional information about the shape of the obtained solutions is also
available, see e.g. [26, 21]. However, numerical studies like [13, 14] show that the steady states of (17)
can be very diverse, already in the one dimensional case, and that many of them can co-exists for a given
set of parameter values. Proving the existence, and characterizing the shape, of all these different steady
states seems very hard by purely analytic means, but computer-assisted techniques provide a valuable
tool to attack such questions.

The computer-assisted study of the steady states of the SKT system started first via a system with
linear diffusion approximating (17) in [9], and then for (17) itself in [4], but only in the so-called triangular
case. This case corresponds to taking the self-diffusion coefficients d11 and d22 equal to 0, and one of
the cross-diffusion coefficient (say d21) equal to 0. While having only d12uv as a nonlinear diffusion term
is already sufficient to produce many interesting steady states, the mathematical analysis is somewhat
simpler in that case. In particular, the work [4] takes advantage of the fact that, in the triangular case,
Φ−1 can be computed explicitly, and therefore one can directly transform (17) into a system with only
linear diffusion. However, this feature is specific to the triangular case, and the general case where d1,
d2, d12, d21, d11 and d22 all are possibly non-zero could not be handled in [4].

With the techniques introduced in this paper, we get a new approach which is not only more general
(i.e. not restricted to the triangular case), but also more efficient compared to the ad hoc technique used
in [4] for the triangular case (see Remark 3.2). Building upon the work done in Section 2, we introduce
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the necessary supplementary notations and spaces in Section 3.2, the fixed-point setup in Section 3.3,
derive the estimates needed for the validation in Section 3.4, and present some examples in Section 3.5,
which include the a posteriori validation of some interesting solutions first found numerically in [8].

3.2 Notations

We consider the product space Xν := `1ν×`1ν , and slightly abuse all the notations introduced in Section 2.1
by applying them component-wise. That is,

for any u =

u(1)

u(2)

 , ΠNu :=

ΠNu
(1)

ΠNu
(2)

 , ‖u‖ν :=

‖u(1)‖ν
‖u(2)‖ν

 , M(u) :=

M(u(1))

M(u(2))

 .

The norm on Xν is then defined as

‖u‖Xν = |‖u‖ν |1 = ‖u(1)‖ν + ‖u(2)‖ν ,

where |·|1 denotes the 1-norm on R2.
Given a linear operator L on Xν , written

L =

 L(1,1) L(1,2)

L(2,1) L(2,2)

 ,

where each L(i,j) is an operator on `1ν , we also abuse the ‖ · ‖ν notation in a similar way, that is

‖L‖ν =

‖L(1,1)‖ν ‖L(1,2)‖ν
‖L(2,1)‖ν ‖L(2,2)‖ν

 .

For the operator norm of L, it is then straightforward to show that

‖L‖Xν ≤ max
(
‖L(1,1)‖ν + ‖L(2,1)‖ν , ‖L(1,2)‖ν + ‖L(2,2)‖ν

)
= |‖L‖ν |1 .

3.3 From a zero finding problem F = 0 into a fixed point problem

We look for a zero u = (u(1),u(2)) in Xν of

F =

(
F (1)

F (2)

)
defined as {

F (1)
n (u) = −(nπ)2Φ(1)

n (u) +R(1)
n (u)

F (2)
n (u) = −(nπ)2Φ(2)

n (u) +R(2)
n (u)

∀ n ≥ 0,

or, in a more condensed form,

F (u) = ∆Φ(u) +R(u),

with Φ and R as in Section 3.1.
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We now assume that we have computed an approximate zero ū in ΠNXν that we want to validate a
posteriori. We also assume that we have computed

w̄ =

(
w̄(1,1) w̄(1,2)

w̄(2,1) w̄(2,2)

)
∈M2,2(ΠN `

1
ν), such that w̄ ∗DΦ(ū) ≈

(
1 0
0 1

)
,

where

DΦ(ū) =

(
d1 + 2d11ū

(1) + d12ū
(2) d12ū

(1)

d21ū
(2) d2 + d21ū

(1) + 2d22ū
(2)

)
,

and w̄ ∗DΦ(ū) must be understood as(
w̄(1,1) ∗

(
d1 + 2d11ū

(1) + d12ū
(2)

)
+ w̄(1,2) ∗ d21ū(2) w̄(2,1) ∗

(
d1 + 2d11ū

(1) + d12ū
(2)

)
+ w̄(2,2) ∗ d21ū(2)

w̄(1,1) ∗ d12ū(1) + w̄(1,2) ∗
(
d2 + d21ū

(1) + 2d22ū
(2)

)
w̄(2,1) ∗ d12ū(1) + w̄(2,2) ∗

(
d2 + d21ū

(1) + 2d22ū
(2)

)) .
Next, we consider Ā, a numerically computed approximation of ΠN

(
DF (ū)−1

)
ΠN (Remark 2.4 is also

relevant here). Identifying Ā with a 2N × 2N matrix, we separate it into four N ×N blocks

Ā =

 Ā(1,1) Ā(1,2)

Ā(2,1) Ā(2,2)

 .

The operator A is then defined as

A =



Ā(1,1)

M
(
w̄(1,1)

)
∆−1

Ā(1,2)

M
(
w̄(1,2)

)
∆−1

Ā(2,1)

M
(
w̄(2,1)

)
∆−1

Ā(2,2)

M
(
w̄(2,2)

)
∆−1



,

or, in a more compact form,

A = Ā+
(
M(w̄)∆−1 −ΠN

(
M(w̄)∆−1

)
ΠN

)
. (18)

Now that A is defined, we can again state sufficient conditions for the validation, which are the same
as the one in Theorem 2.5, up to the slightly different space and norm.

Theorem 3.1. With the notations introduced in this section, assume there exist constants Y , Z1 and Z2

satisfying

‖AF (ū)‖Xν ≤ Y
‖I −ADF (ū)‖Xν ≤ Z1

‖AD2F (u)‖Xν ≤ Z2 ∀ u ∈ Xν ,
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and

Z1 < 1

2Y Z2 < (1− Z1)2.

Then, for any r satisfying

1− Z1 −
√

(1− Z1)2 − 2Y Z2

Z2
≤ r < 1− Z1

Z2
,

there exists a unique fixed-point u∗ of T in BXν (ū, r), the closed ball of center ū and radius r in Xν .
Assume further that w̄ (which plays a role in the definition of A), is such that∥∥∥∥(1 0

0 1

)
− w̄ ∗DΦ(ū)

∥∥∥∥
Xν

< 1.

Then u∗ is the unique zero of F in BXν (ū, r).

3.4 Derivation of the bounds

It remains to derive computable estimates Y , Z1 and Z2 satisfying the assumptions of Theorem 3.1. Since
all the estimations are very similar to the ones performed in Section 2.3, we omit the details.

3.4.1 The bound Y

As in Section 2.3.1, there is no pen and paper estimation to make here, ‖AF (ū)‖Xν can be computed
explicitly using interval arithmetic.

3.4.2 The bound Z1

As in Section 2.3.2, we introduce

B =

(
B(1,1) B(1,2)

B(2,1) B(2,2)

)
= I −ADF (ū),

and split the norm between a finite number of columns and an estimate for the tail:

Z1 = max
(
Zfinite1 , Ztail1

)
.

Zfinite1 , which corresponds to

max
0≤n≤2N−2

1

ξn(ν)
max

(
‖B(1,1)

(·,n) ‖ν + ‖B(2,1)
(·,n) ‖ν , ‖B

(1,2)
(·,n) ‖ν + ‖B(2,2)

(·,n) ‖ν
)
,

can again be computed explicitly using interval arithmetic. A computation similar to the one performed
in Section 2.3.2 shows that the second part, namely

sup
n≥2N−1

1

ξn(ν)
max

(
‖B(1,1)

(·,n) ‖ν + ‖B(2,1)
(·,n) ‖ν , ‖B

(1,2)
(·,n) ‖ν + ‖B(2,2)

(·,n) ‖ν
)
,

can be bounded by

Ztail1 =

∣∣∣∣∥∥∥∥(1 0
0 1

)
− w̄ ∗ Φ′(ū)

∥∥∥∥
ν

+
1

(Nπ)2
‖w̄‖ν ‖DR(ū)‖ν

∣∣∣∣
1

. (19)
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Remark 3.2. In the previous work [4] on computer-assisted proofs for the (triangular) SKT system, the
estimate equivalent to Ztail1 scaled only as 1

N , rather than as 1
N2 here (in practice the first term in (19)

is small enough that only the second part really matters). Therefore, on top of not being restricted to the
triangular case, our approach has the advantage of recovering the 1

N2 scaling expected for a second order
equation with no first order term. This comes from the fact that, contrarily to what was done in [4], we
do not have to resort to automatic differentiation techniques. This point will be discussed in more details
in Section 4.

3.4.3 The bound Z2

Again, we proceed as in Section 2.3.3 and estimate, for u and v in Xν ,∥∥AD2F (ū)(u,v)
∥∥
Xν
≤
(
‖A(1,1)∆‖ν + ‖A(2,1)∆‖ν

)(
2d11‖u(1)‖ν‖v(1)‖ν + d12(‖u(1)‖ν‖v(2)‖ν + ‖v(1)‖ν‖u(2)‖ν)

)
+
(
‖A(1,1)‖ν + ‖A(2,1)‖ν

)(
2a1‖u(1)‖ν‖v(1)‖ν + b1(‖u(1)‖ν‖v(2)‖ν + ‖v(1)‖ν‖u(2)‖ν)

)
+
(
‖A(1,2)∆‖ν + ‖A(2,2)∆‖ν

)(
2d22‖u(2)‖ν‖v(2)‖ν + d21(‖u(1)‖ν‖v(2)‖ν + ‖v(1)‖ν‖u(2)‖ν)

)
+
(
‖A(1,2)‖ν + ‖A(2,2)‖ν

)(
2a2‖u(2)‖ν‖v(2)‖ν + b2(‖u(1)‖ν‖v(2)‖ν + ‖v(1)‖ν‖u(2)‖ν)

)
≤ max

[
2d11

(
‖A(1,1)∆‖ν + ‖A(2,1)∆‖ν

)
+ 2a1

(
‖A(1,1)‖ν + ‖A(2,1)‖ν

)
,

2d22

(
‖A(1,2)∆‖ν + ‖A(2,2)∆‖ν

)
+ 2a2

(
‖A(1,2)‖ν + ‖A(2,2)‖ν

)
,

d12

(
‖A(1,1)∆‖ν + ‖A(2,1)∆‖ν

)
+ b1

(
‖A(1,1)‖ν + ‖A(2,1)‖ν

)
+ d21

(
‖A(1,2)∆‖ν + ‖A(2,2)∆‖ν

)
+ b2

(
‖A(1,2)‖ν + ‖A(2,2)‖ν

)]
‖u‖Xν ‖v‖Xν ,

which yields

Z2 = max
[
2d11

(
‖A(1,1)∆‖ν + ‖A(2,1)∆‖ν

)
+ 2a1

(
‖A(1,1)‖ν + ‖A(2,1)‖ν

)
,

2d22

(
‖A(1,2)∆‖ν + ‖A(2,2)∆‖ν

)
+ 2a2

(
‖A(1,2)‖ν + ‖A(2,2)‖ν

)
,

d12

(
‖A(1,1)∆‖ν + ‖A(2,1)∆‖ν

)
+ b1

(
‖A(1,1)‖ν + ‖A(2,1)‖ν

)
+ d21

(
‖A(1,2)∆‖ν + ‖A(2,2)∆‖ν

)
+ b2

(
‖A(1,2)‖ν + ‖A(2,2)‖ν

)]
.

3.5 Examples and results

We now consider several specific parameter values, and use the presented methodology to obtain qualita-
tive existence theorems about the steady states of the SKT system (17) for those parameter values, with
Ω = (0, 1). The different parameter sets that we study here are given in Table 1, and their respective
relevance is explained in the following subsections.

In each case, we only show one or a couple of steady states, but we emphasize that there might exist
many more steady states for the exact same parameter values. We refer to [13, 14, 8] for a broader picture
and many bifurcation diagrams.

Finally, before getting to each case let us also mention that, even if we only study the existence
and the precise description of (some of) the steady states here, their stability is also a very important
question. While adapting the computer-assisted techniques presented in this work to prove that a steady
steady is unstable is relatively straightforward (see e.g. [4] for the triangular case), a computer-assisted
approach that could be used to prove (linear) stability for an arbitrary solution of the SKT system
is still lacking. The main reason for that is again the nonlinear diffusion terms. Indeed, with linear
diffusion, the simpler structure of A allows us to control its spectrum, and therefore the one of A−1,
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d1 d2 d12 d21 d11 d22 r1 r2 a1 a2 b1 b2

0.005 0.005 3 0 0 0 5 2 3 3 1 1 Section 3.5.1

0.005 0.005 100 100 0 0 15/2 16/7 4 2 6 1 Section 3.5.2

0.05 0.05 3 0 0 0 15 5 1 1 0.5 3 Section 3.5.3

-0.007 -0.007 3 0.002 0.05 0.05 5 2 3 3 1 1 Section 3.5.4

Table 1: The parameter sets of the SKT system (17) considered in this work.

very explicitly (we can compute rigorously the eigenvalues of the finite block, and the tail is diagonal).
Roughly speaking, using that DF (u∗) is close to A−1 (this statement can be made explicit via estimates
like Z1 and Z2), we can then control the spectrum of DF (u∗) (see e.g. the Appendix of [15] for more
details and an explicit example for infinite dimensional compact maps). In order to apply this procedure
to systems with nonlinear diffusion like the SKT system, one would first have to understand well enough
the spectrum of operators like the A defined in (18).

3.5.1 Comparison with the previous setup using automatic differentiation [4]

We first focus on the first parameter set (i.e. the first row) in Table 1. For these parameter values, a
complex bifurcation diagram of steady states was first computed in [13], and then mostly validated in [4]
using an approach relying on the fact that d11 = d22 = d21 = 0. We therefore use this first case as a
benchmark, and compare the results of our method with the ones of [4].

Theorem 3.3. Let ū be the function represented on Figure 2, and whose precise description in terms of
Fourier coefficients can be found at [3]. There exists a smooth steady state u of the SKT system (17),
with parameters as in the first row of Table 1 and Ω = (0, 1), such that ‖u− ū‖C0 ≤ 4× 10−7.

Proof. We take N = 50 and ν = 1.01, compute the estimates Y , Z1 and Z2 obtained in Section 3.4, the
approximate values for the bounds being

Y = 2.7× 10−7, Z1 = 0.25, Z2 = 14000,

and apply Theorem 3.1. The computational parts of the proof can be reproduced by running the Matlab
code script SKT.m from [3], together with Intlab [30].

Remark 2.9 also applies here (and for the remainder of Section 3.5). The main point that we want
to emphasize with this theorem is not the result itself, which was already obtained in [4], but the fact
that our new approach is significantly more efficient. Indeed, with the same parameters (N = 50 and
ν = 1.01) the estimate corresponding to Ztail1 in [4] would be approximately equal to 1.46 . . . and therefore
assumption (11a) would not hold. Comparatively, with our approach we get Ztail1 ≈ 0.25. This means the
validation is less costly with our approach, because it works with N smaller, and this comes from the fact
that we avoid the usage of automatic differentiation techniques, as we already mentioned in Remark 3.2).
Moreover, with N = 50, Z1 is still significantly away from 1 in our approach, and the main reason why
we need close to N = 50 modes to validate this solution is only because otherwise Y is not small enough.
This is exactly what one would hope for, i.e. that the validation is successful as soon as we have enough
modes for the approximate solution to be sufficiently accurate.

If we wanted to, we could of course get more accurate results by increasing N and taking full advantage
of the accuracy of spectral methods: for instance, with N = 100 we get an even better approximate
solution ū for which we can prove that ‖u− ū‖C0 ≤ 4× 10−12.
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Figure 2: The approximate steady state ū of the SKT system (17) on Ω = (0, 1) and with parameters as
in the first row of Table 1, which has been validated in Theorem 3.3.

3.5.2 A first non-triangular case

We now focus on the second parameter set in Table 1. Notice that we are no longer in the so-called
triangular case (both d12 and d21 are non zero), therefore the previous approach from [4] can no longer
be used. Moreover, the solutions which are proved to exist for these parameters are of particular in-
terest, because they answer positively a question which was open until recently, about the existence of
non homogeneous steady states in the weak competition case (b1b2 < a1a2) when both cross diffusion
coefficients are large, see [8] and the reference therein for more details. In [8] this question was answered
positively by a bifurcation analysis which provides information locally (close to the bifurcation point),
and solutions far away from the bifurcation were computed numerically. It is such solutions far away
from the bifurcation whose existence we are able to prove here with computer-assistance.

Theorem 3.4. For each of the functions represented in Figure 3, and whose precise description in terms
of Fourier coefficients can be found at [3], there exists a smooth steady state of the SKT system (17),
with parameters as in the second row of Table 1 and Ω = (0, 1), at a distance of at most 8× 10−12 in C0

norm.

Proof. We take N = 50 and ν = 1.01, compute the estimates Y , Z1 and Z2 obtained in Section 3.4
for each approximate solution, and apply Theorem 3.1. The computational parts of the proof can be
reproduced by running the Matlab code script SKT.m from [3], together with Intlab [30], which provides
more details such as the precise value of each bound for each solution.

3.5.3 A new parameter regime

We now focus on the third parameter set in Table 1. In order to understand its interest, it is helpful to
briefly consider the homogeneous case, i.e. (17) with only the reaction terms, for which one can easily
identify three different parameter regimes with different dynamics, see e.g. [20].

� Case 1 (weak competition):

b1
a2

<
r1

r2
<
a1

b2
.

Here, any solution with positive initial data converges to a co-existence steady state(
r1a2 − r2b1
a2a1 − b2b1

,
r2a1 − r1b2
a2a1 − b2b1

)
. (20)
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Figure 3: The two approximate steady states of the SKT system (17) on Ω = (0, 1) and with parameters
as in the second row of Table 1, which have been validated in Theorem 3.4.

� Case 2 (strong competition):

a1

b2
<
r1

r2
<
b1
a2
.

Here, the above co-existence steady state (20) is still positive, but it is unstable, and generically a
solution with positive initial data converges to one of the two extinction states(

r1

a1
, 0

)
or

(
0,
r2

a2

)
, (21)

depending on the initial condition.

� Case 3: everything else (except the case b1/a2 = r1/r2 = a1/b2 which is degenerate). Here, any
solution with positive initial data also converges to one of the two extinction states (21), but all
solutions converge to the same one (the one being selected depends on the parameter values, not
on the initial data).

The aim of introducing a spatial dimension to the model, and more precisely nonlinear diffusion as in (17),
is to obtain more interesting and realistic solutions, and in particular non-homogeneous positive steady
states. However, it is striking that in the literature on the SKT system, the existence of non-homogeneous
steady states is usually studied in cases 1 and 2 only. This might be related to the fact that the analysis
in case 3 can be more difficult, because there is no positive steady state that can be used as a kind of
starting point: the co-existence steady states (20) still exists (except if a1a2 = b1b2), but it is no longer
positive in case 3.

However, recent numerical experiments suggested that positive non-homogeneous steady states do
also exist in case 3 [8]. The third parameter set in Table 1 corresponds to such a case, and we now
rigorously establish the existence of (some of) the solutions that were found numerically in [8].

Theorem 3.5. For each of the functions represented in Figure 4, and whose precise description in terms
of Fourier coefficients can be found at [3], there exists a smooth steady state of the SKT system (17),
with parameters as in the third row of Table 1 and Ω = (0, 1), at a distance of at most 9 × 10−11 in C0

norm.

Proof. We take N = 500 and ν = 1.005, compute the estimates Y , Z1 and Z2 obtained in Section 3.4
for each approximate solution, and apply Theorem 3.1. The computational parts of the proof, can be
reproduced by running the Matlab code script SKT.m from [3], together with Intlab [30], which provides
more details such as the precise value of each bound for each solution.

19



0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25
u1

u2

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

u1

u2

Figure 4: The two approximate steady states of the SKT system (17) on Ω = (0, 1) and with parameters
as in the third row of Table 1, which have been validated in Theorem 3.5.

3.5.4 Full case

We finally focus on the fourth and last parameter set in Table 1, which allows us to showcase that our
approach is still successful when all coefficients related to the diffusion term are non zero. As a bonus,
we show that positive self-diffusion coefficients d11 and d22 allow to take negative values of the linear
diffusion coefficients d1 and d2 and still retain positive and smooth solutions. This was also already
noticed numerically in [8].

Theorem 3.6. For each of the functions represented in Figure 5, and whose precise description in terms
of Fourier coefficients can be found at [3], there exists a smooth steady state of the SKT system (17),
with parameters as in the fourth row of Table 1 and Ω = (0, 1), at a distance of at most 1× 10−9 in C0

norm.

Proof. We take N = 100 and ν = 1.01, compute the estimates Y , Z1 and Z2 obtained in Section 3.4
for each approximate solution, and apply Theorem 3.1. The computational parts of the proof, can be
reproduced by running the Matlab code script SKT.m from [3], together with Intlab [30], which provides
more details such as the precise value of each bound for each solution.

4 Beyond polynomial diffusion terms

In this section, we go back to a scalar problem on a one-dimensional domain of the form
∆Φ(u) +R(u) = 0 on (0, 1),

∂u

∂n
= 0 on {0, 1},

(22)

with R(u) = αu− βu2 + g, but this time with a non-polynomial term Φ of the form Φ(u) = u
γ+u . Again,

rather than aiming for the most general result possible, we chose to consider an explicit scalar example
to simplify the presentation, but the ideas presented in this section can also be applied with different
non-polynomial terms, systems, and higher space dimension.

If the solution u whose existence we aim at proving satisfies ‖u‖ν < γ, then Φ(u) =
∑
k≥0(−1)k uk+1

γk+1

is still well defined in `1ν , and the procedure described in Section 2 could be adapted, at the expense of
more pen and paper estimates. However, as we are going to see, there are solutions for which ‖u‖ν > γ.

Even in the case where ‖u‖ν < γ, it might be more convenient to try to get back to a polynomial
system, by introducing new variables. Following the ideas of [19], one could consider the additional
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Figure 5: The four approximate steady states of the SKT system (17) on Ω = (0, 1) and with parameters
as in the fourth row of Table 1, which have been validated in Theorem 3.6.

variable v = u
γ+u , rewrite (22) as a first order system, and append to it the differential equation satisfied

by v. While this approach can be appealing, because the resulting system is again polynomial and
therefore fits immediately into the existing framework, it also has a couple of shortcomings. First, having
to go back to a system of first order equations is a downside, because all the 1

N2 terms in the estimates
(like in (14) and (19)) are now replaced by 1

N terms, and therefore the dimension N of the projection has
to be taken much larger for these terms to be small enough. Second, it does not seem straightforward to
generalize these ideas as soon as the space dimension or the number of unknowns is greater than one.

In order to overcome these limitations, we propose a new approach, which is based on the following
observation: Introducing new variables is a good idea, but in the context of computer-assisted proofs there
is nothing wrong with differential-algebraic equations, and we do not always have to differentiate those
algebraic equations. This is especially true when the algebraic equations can be rewritten as polynomial
ones, for instance if Φ is a rational function, as in the example (22). In that case, we do also introduce
the additional variable v = u

γ+u , but we then directly work on the system
∆v +R(u) = 0 on (0, 1),

u− (γ + u)v = 0 on (0, 1),

∂u

∂n
= 0 =

∂u

∂n
on {0, 1}.

(23)

Indeed, we show in this section that this system of differential-algebraic equations is amenable to a
posteriori validation techniques very similar to the ones presented up to now in this paper.
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4.1 From a zero finding problem F = 0 into a fixed point problem

Relabeling the unknowns (u, v) in (23) as (u(1), u(2)), we can directly use all the notations, spaces and
norms introduced in Section 3. That is, we look for a zero u = (u(1),u(2)) in Xν of

F =

(
F (1)

F (2)

)
defined as {

F (1)
n (u) = u(1)

n − γu(2)
n − (u(1) ∗ u(2))n

F (2)
n (u) = −(nπ)2u(2)

n +Rn(u(1))
∀ n ≥ 0,

or, in a more condensed form,

F (u) =

(
u(1) − γu(2) − u(1) ∗ u(2)

∆u(2) +R(u(1))

)
,

with R(u) = αu− βu2 + g.
We now assume that we have computed an approximate zero ū in ΠNXν that we want to validate a

posteriori. We also assume that we have computed w̄ ∈ ΠN `
1
ν such that w̄∗(1−ū(2)) ≈ 1, and σ̄ ∈ ΠN`

1
ν

such that σ̄ ≈ w̄ ∗ (γ + ū(1)). Next, we consider

Ā =

 Ā(1,1) Ā(1,2)

Ā(2,1) Ā(2,2)

 ,

a numerically computed approximation of ΠN

(
DF (ū)−1

)
ΠN (Remark 2.4 is also relevant here). The

approximate inverse A for this problem is then defined as

A =



Ā(1,1)

M(w̄)

Ā(1,2)

M(σ̄)∆−1

Ā(2,1)

0

Ā(2,2)

∆−1



, (24)

or more compactly as

A = Ā+
(
Ã−ΠN ÃΠN

)
,

where Ã is defined by

Ãu :=

(
w̄ ∗ u(1) + σ̄ ∗∆−1u(2)

∆−1u(1)

)
.

Now that A is defined, the validation conditions are again the same as in Theorem 2.5 and 3.1, the
only difference being the extra condition ensuring the injectivity of A, which differs because the structure
of A does.
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Theorem 4.1. With the notations introduced in this section, assume there exist constants Y , Z1 and Z2

satisfying

‖AF (ū)‖Xν ≤ Y
‖I −ADF (ū)‖Xν ≤ Z1

‖AD2F (u)‖Xν ≤ Z2 ∀ u ∈ Xν ,
and

Z1 < 1

2Y Z2 < (1− Z1)2.

Then, for any r satisfying

1− Z1 −
√

(1− Z1)2 − 2Y Z2

Z2
≤ r < 1− Z1

Z2
,

there exists a unique fixed-point u∗ of T in BXν (ū, r), the closed ball of center ū and radius r in Xν .
Assume further that w̄ (which plays a role in the definition of A), is such that

‖1− w̄ ∗ (1− ū(2))‖ν < 1.

Then u∗ is the unique zero of F in BXν (ū, r).

4.2 Derivation of the bounds

It once again remains to derive computable estimates Y , Z1 and Z2 satisfying the assumptions of Theo-
rem 3.1. The required computations are still very similar to the ones performed in Sections 2.3 and 3.4.

4.2.1 The bound Y

‖AF (ū)‖Xν can be computed explicitly using interval arithmetic.

4.2.2 The bound Z1

Introducing once more

B =

(
B(1,1) B(1,2)

B(2,1) B(2,2)

)
= I −ADF (ū),

we again consider Z1 = max
(
Zfinite1 , Ztail1

)
, where Zfinite1 corresponds to

max
0≤n≤2N−2

1

ξn(ν)
max

(
‖B(1,1)

(·,n) ‖ν + ‖B(2,1)
(·,n) ‖ν , ‖B

(1,2)
(·,n) ‖ν + ‖B(2,2)

(·,n) ‖ν
)
,

and

Ztail1 =

∣∣∣∣∥∥∥∥(1− w̄ ∗ (1− ū(2)) σ̄ − w̄ ∗ (γ + ū(1))
0 0

)∥∥∥∥
ν

+
1

(Nπ)2

(
‖σ̄‖ν‖R′(ū(1))‖ν 0
‖R′(ū(1))‖ν 0

)∣∣∣∣
1

(25)

= max

[
‖1− w̄ ∗ (1− v̄)‖ν +

1

(Nπ)2
(1 + ‖σ̄‖ν) ‖R′(ū))‖ν , ‖σ̄ − w̄ ∗ (γ + ū))‖ν

]
,

bounds

sup
n≥2N−1

1

ξn(ν)
max

(
‖B(1,1)

(·,n) ‖ν + ‖B(2,1)
(·,n) ‖ν , ‖B

(1,2)
(·,n) ‖ν + ‖B(2,2)

(·,n) ‖ν
)
.

Remark 4.2. The obtained Ztail1 estimate shows that the proposed approach of introducing a system of
differential-algebraic equations to deal with (at least some types of) non-polynomial diffusion terms is not
only valid but also efficient, because we keep the 1

N2 scaling. Even the constant is close to optimal, see
the discussion in Appendix B.
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4.2.3 The bound Z2

Finally, remembering that R(u) = αu− βu2 + g, an estimation similar to the ones performed in the two
previous cases leads to

Z2 = max
[
‖A(1,1)‖ν + ‖A(2,1)‖ν , 2β

(
‖A(1,2)‖ν + ‖A(2,2)‖ν

)]
.

4.3 Example and results

In this subsection, we apply the technique we just presented to a specific example, and again consider
R(u) = u − u2 + g (i.e. we take α = β = 1), with g as in Section 2.4, but this time with Φ(u) = u

γ+u ,
and two different values of γ.

In each case, we computed an approximate solution ū (see Figure 6), and then validated it using the
procedure described in this whole section, which yield the following theorem.
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(b) γ = 0.1.

Figure 6: The two approximate solutions of (22) with Φ(u) = u
γ+u , R(u) = u − u2 + g and g as in

Figure 1a, which have been validated in Theorem 4.3. u1 corresponds to the solution u itself, while u2

corresponds to the additional variable v = Φ(u) introduced in (23).
.

Theorem 4.3. Let γ = 3, and ū be the function whose Fourier coefficients ū can be downloaded at [3],
and which is represented in Figure 6a. There exists a strong solution u of (22), with Φ and R as given
just above, such that ‖u− ū‖C0 ≤ 2× 10−13.

Let γ = 0.1, and ū be the function whose Fourier coefficients ū can be downloaded at [3], and which
is represented in Figure 6b. There exists a strong solution u of (22), with Φ and R as given just above,
such that ‖u− ū‖C0 ≤ 8× 10−12.

Proof. We take N = 100 and ν = 1.1, compute the estimates Y , Z1 and Z2 obtained in Section 4.2
for each approximate solution, and apply Theorem 4.1. The computational parts of the proof, can be
reproduced by running the Matlab code script NP.m from [3], together with Intlab [30], which provides
more details such as the precise value of each bound for each solution.

Remark 2.9 also applies here. To tie back these results to the discussion at the start of this section,
notice from Figure 6 that, for γ = 3 we have ‖u‖C0 < γ, so one could hope to prove that Φ(u) =∑
k≥0(−1)k uk+1

γk+1 is converging power series, but that is definitely not true for γ = 0.1. In that case, u
stays positive so we are still safely away from the pole of Φ, but one would have to use a power series
expansion around some non zero value depending on the solution (e.g. the middle of the interval of values
taken by u).
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Appendix

A About the computation of Ā

We give here more details about Remark 2.4, and in particular explain why, no matter how large N is,
taking Ā = (ΠNDF (ū)ΠN )

−1
is not necessarily suitable. Indeed, let us consider the case described in

Section 2, and have a closer look at the coefficient in position (N,N) of ADF (ū). The coefficients in A
and DF (ū) that are relevant for this computation are highlighted below:

Ā

−w̄1
(Nπ)2

−w̄2
((N+1)π)2

. . .





ΠNDF (ū)ΠN

−N2Φ′1(ū)

−(N + 1)2Φ′2(ū)

.

.

.


.

There should also be terms corresponding to R′(ū) in DF (ū), but they do not have a factor N2 in front,
hence for N large enough we can neglect them. Therefore we have

(ADF (ū))N,N ≈
(
Ā ΠNDF (ū)ΠN

)
N,N

+
∑
n≥1

w̄nΦ′n(ū).

Now, if we were to take Ā ≈ (ΠNDF (ū)ΠN )
−1

, then we would have in particular(
Ā ΠNDF (ū)ΠN

)
N,N
≈ 1

and therefore

(ADF (ū))N,N ≈ 1 +
∑
n≥1

w̄nΦ′n(ū).

However,
∑
n≥1 w̄nΦ′n(ū) has no reason to be small in general, so (ADF (ū))N,N could be significantly

different from 1, which would prevent us from satisfying (11a).

B About the Ztail
1 bound in the non-polynomial case

We make some comments about the quality of the bound (25), which in some sense measures how well
adapted the transformation of (22) into (23) and the choice of A in (24) are for computer-assisted proofs,
and explain why we claim in Remark 4.2 the output is close to optimal.

In order to get a comparison, notice that for this example Φ can be inverted by hand, and therefore (22)
can easily be rewritten as an equation with linear diffusion∆v + R̃(v) = 0 on (0, 1),

∂v

∂n
= 0 on {0, 1},
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where v = Φ(u) and

R̃(v) = R
(
Φ−1(v)

)
= R

(
γv

1− v

)
.

In this case which is standard since there is no nonlinear diffusion, the Ztail1 estimate would be equal to

1

(Nπ)2
‖R̃′(v̄)‖ν =

1

(Nπ)2

∥∥∥∥ γ

(1− v̄)2
R′(ū)

∥∥∥∥
ν

.

However, since w̄ ≈ 1
1−v̄ , γ+ ū ≈ γw̄ and σ̄ ≈ w̄ ∗ (γ+ ū) ≈ γw̄2, hence the above Ztail1 estimate would

be roughly equal to

1

(Nπ)2
‖σ̄R′(ū)‖ν .

The estimate obtained in (25) is worse, but not dramatically so. Indeed, in practice the first part of (25)
can always be made small enough not to matter, and essentially (25) reduces to

1

(Nπ)2
(1 + ‖σ̄‖ν) ‖R′(ū)‖ν .

The extra 1 could even be removed by choosing an appropriately weighted norm on the product space
`1ν × `1ν (see e.g. the discussion about the weights in [7]). Therefore the only thing that we lost, at least
concerning the crucial Ztail1 estimate, by going through a system of differential-algebraic equation is that
‖σ̄R′(ū)‖ν is replaced by ‖σ̄‖ν ‖R′(ū)‖ν , which in most cases is perfectly acceptable. This shows that,
in more complex situations where Φ cannot be explicitly inverted, the approach proposed in this paper
provides a good alternative.
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