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As part of the energy transition, and in order to take advantage of the data generated by buildings, this paper presents a thermal control methodology that allows improving smart buildings thermal comfort and energy efficiency. Indeed, based on measured data (e.g., indoor temperatures, weather conditions, etc.) in a building, a multiple linear regression model to predict indoor temperature is developed following an iterative statistical approach. This model shows very good performance, with a mean absolute percentage error less than 2% and an adjusted R² close to 0.99. To avoid problems of thermal discomfort and energy overconsumption, using the brute force optimization method, the heating strategy is improved according to thermal and energy criteria over a 10hour horizon. An example of results that improve the thermal comfort of a simulated building is presented.

I. INTRODUCTION

Buildings are responsible for approximately 40% of energy consumption and 36% of CO2 emissions in the European Union (EU), making them the single largest energy consumer in Europe, in 2014 (EUROPEAN COMMISSION, 2014). In this context, the EU has set up the climate and energy framework, which aims to reduce energy consumption and CO2 emissions. In 2008, the EU has fixed the following targets for 2020: Increase the share of renewable energy in the European energy mix to 20%, Reduce the CO2 emissions of EU countries by 20%, Increase energy efficiency by 20%. Subsequently, in 2014, the EU has set up 2030 climate and energy framework with the following objectives: Reduce greenhouse gas emissions by at least 40% (compared to 1990 levels), At least 32% share of renewables, At least 32.5% improvement in energy efficiency [1].

Therefore, local governments have established a strict energy policy like the French one called Factor 4, which aims to reduce greenhouse gas emissions by a factor of four by 2050 and energy consumption in public and government buildings by at least 40% by 2020 [2].

To achieve these objectives, efforts must be made at each step of the building's life cycle: During the design phase: appropriate assumptions, adequate calculation tools, During the construction phase: high-performance materials, During the verification phase: verification of system performance, During the operating phase: optimized system control (e.g., heating control), performance monitoring [START_REF] Najjar | information modeling and life cycle assessment for generating energy[END_REF].

From that perspective, the digitalization of the building is a must. Indeed, the use of the Internet-of-Things (IoT) facilitates the collect of massive amount of data (e.g., occupancy, indoor temperature, etc.). These data can then be used to analyse and predict the behaviour of the building. Even more, using Building Information Model (BIM) as a digital twin these data can be shared allowing, for example, facility managers to locate easily possible anomalies (e.g., overheating of a zone) thanks to the 3D representation [START_REF]Data collecting Using IoT and BIM Real Time no[END_REF] 

[5] [6].
Evaluation of building performance, whether in the design or operational phase, is necessary to improve the energy efficiency of the building. Due to the complexity of the problem, many studies have been carried out in different fields (e.g., physics, mathematics, computer science, etc.), and three main methods can be distinguished: White box: studies the physical phenomena and allows estimating them at a given time and in a given space, it is carried out using Dynamic Thermal Simulation (DTS) software (e.g., TRNSYS, EnergyPlus, etc.). It requires a good knowledge of the building (materials, geometry, description of heating, ventilation and air conditioning (HVAC), control strategies, occupancy, location, etc.). It can provide very detailed results, but they can take a long time and often require calibration and are impacted by uncertainties at different levels (model, parameters, etc.) [START_REF] Foucquier | lding modelling and Renew[END_REF], Black box: a model based on mathematical and statistical methods (Machine Learning, Markov chain, etc.). Training time depends on the method used and the computation time is generally low [START_REF] Foucquier | lding modelling and Renew[END_REF], Grey box: approach combining the two previous models requiring fewer learning data and less knowledge of physical phenomena. One of the best known grey box models is the RxCy model [8].

The aim of this study is to set up a thermal control comfort and energy consumption in real time taking advantage of the large amount of data measured in modern buildings, commonly known as smart buildings. This methodology is: i) generalizable: applicable to any type of building provided that it is instrumented, ii) scalable: usable all year round and iii) self-adjusting: improves its accuracy over time. In this paper, authors have investigated Multiple Linear Regression which is part of the Black Box family of models to predict building indoor temperature. They also studied the brute force optimization method for selecting new heating control strategies.

II. PROPOSED CONTROL METHODOLOGY

In order to improve the thermal comfort of users and the energy efficiency of buildings, an aid method for controlling the heating systems is proposed. This aid method is based on a multiple linear regression allowing predicting the indoor temperature of a studied area with aim of anticipating possible anomalies of thermal comfort and energy overconsumption.

Based on this methodology, a platform is proposed as represented in Fig 1 . This platform is composed of: (i) Data Level: firstly, the data measured in the building, such as the indoor parameters (e.g., indoor temperature) and outdoor parameters (weather data), completed by the weather forecast and the initial heating strategy over a predefined horizon are transmitted to the Core platform Level. Then, after processing and at each iteration, the optimized heating strategy is received and transmitted to the BMS for the application and to the 3D BIM for display, (ii) Core platform Level: at each iteration, the measured and forecasted data are received from the Data Level, used to train and update the indoor temperature prediction model. The indoor temperature is predicted hourly during a time interval according to the predefined prediction horizon (e.g., ten hours in this study). At each time step (e.g. one hour), the resulting forecasted temperature is used to predict the next hour. Each iteration is constituted of n predictions (e.g., n=10 for a ten-hour time horizon). At each iteration, these predictions are updated, reducing uncertainty since predicted data are replaced by measured data. Then, using the prediction model each generated heating strategy is evaluated. For each heating strategy, n predicted temperatures are obtained, constituting a solution. Each solution is scored according to criteria defined in the Config Level and (iii) Config Level: depending on the method chosen for the evaluation of the heating strategy (e.g., brute force optimization) a prediction horizon is defined allowing reasonable calculation times. The scoring criteria of the heating strategies are defined by the user (e.g., keep indoor temperature between 20 and 24°C, minimize energy consumption, encourage energy consumption during low price periods, etc.).

A. Studied building

To generate data, a building is modelled using TRNSYS [START_REF] Mcdowell | and olution of the Software Thermal Energy System Specialists[END_REF] software. This building is composed of 8 thermal zones, each zone is equipped with a power-controlled heating system. An initial heating strategy is applied: between 8 a.m and 6 p.m the power is set to 100% and 0% for the rest of the day. This type of control is close to reality and can ensure the comfort criteria defined above. The control curve of the heating system is shown on Fig 2. 

B. Prediction model

From the results obtained with the simulated building, data are selected to build the prediction model according to three criteria: i) availability in real buildings ii) physical sense and iii) statistical significance (p-value) see Fig 4. These data are divided into two parts: 70% of the dataset is devoted to training phase (estimation of regression terms) and the remaining 30% for the testing phase. The test phase allows estimating the performance of the model with new data. The terms of the model are calculated using the Least Mean Square method [START_REF]C performance forecasting: A multiple linear[END_REF].

In this study the dataset is composed of the following data: Input: heating power demand (Pheat), outdoor temperature (Tout), outdoor relative humidity (RHout), global horizontal radiation (Rad), sky opacity (OpaSky), wind speed (WindS) and wind direction (WindDir) and Output: indoor temperature (Tin). For example, here 3 models were trained: Model 1 is set up using only the initial parameters (7 inputs and 1 output), Model 2 is set up using the initial parameters and including previous data measured 3 hours before (15 inputs and 1 output) and Model 3 is set up using the initial parameters and including previous data measured 3 and 6 hours before (23 inputs and 1 output). This model allows predicting Tin during a time interval: a n-size interval corresponds to n-Tin predictions. Every hour Tin is predicted based on the prediction of the previous hour. Then, at the next iteration, the predicted value is replaced by the measured value.

C. Heating strategy amelioration

To improve the thermal comfort and energy consumption of the area under study, optimal heating strategy must be identified according to predefined criteria (comfort interval, occupancy period, etc.). Each strategy is composed of n-value (or n-modes) of heating power, each value corresponds to one hour. In this study, authors decided to test all possible strategies and then pick the best one, see Fig 8 . It is the brute force approach. However, this approach makes it necessary to shorten the prediction horizon in order to be able to perform the calculations in a reasonable amount of time. For example, for a 24-hour horizon and for a heating system with two modes (Mode 1: On and Mode 2: Off), the number of possible strategies to be tested is 16.777.216 ( ). It is clearly impossible to test all of them. It is then more reasonable to take a prediction horizon of 10 hours and thus to have 1024 strategies to test. To study more complete heating strategies (e.g., 3-Mode strategy with Mode 1: On, Mode 2: Half-power and Mode 3: Off, etc.) more sophisticated optimization methods can be used (e.g., genetic algorithm). 

D. Application and display

Every time step (e.g., 1 hour), the heating strategy chosen is updated and then, the setpoints are sent in real time to the BMS and to the 3D Building Information Model to be displayed.

III. APPLICATION CASE

Based on this developed methodology a platform is set up. To validate this platform functioning, tests are carried out on the simulated building described above.

Every hour, data are gathered from the simulated building and then the MLR model is trained according to the approach described below. At each iteration (1 iteration = 1-hour time step), the platform tries to improve the heating strategy by predicting the indoor temperature with different values of Pheat (Heating On: Pheat=1 and Heating Off: Pheat=0), with a time horizon of 10 hours as explained below. The best heating strategy is selected by optimizing thermal comfort and energy consumption following the function shown in Fig 9, where: Y: matrix of all the possible Tin (1024), Tinocc: limit temperature during unoccupied periods, ConfortRange: comfort interval during occupancy [Tmin Tmax], TinVerification: parameter checking the comfort criteria, ConsumedEnergy: energy consumed for heating during the studied period and TinSelected: selected temperature according to the criteria described above. As seen from the temperature curve Fig 10, the platform has tried to improve thermal comfort by spending the minimum possible energy, anticipating the heating in order to reach an indoor temperature inside the predefined comfort range: between 20 and 24°C during occupancy (from 8:00 to 18:00) and above 16°C during unoccupied hours. Focusing on the first day treated (between February 15 and 16) the platform activated the heating 7 hours earlier than the initial schedule. Comfort is improved; however, the goal is not achieved because the 10-hour horizon is not sufficient. Indeed, the building did not have enough time to react and activate the heating early enough. Looking at the following days, the goal is achieved. Februrary 20 and 21 and February 27 and 28 correspond to two weekends. To conclude, this work presents a thermal control methodology improving thermal comfort and energy consumption. This methodology is generalizable, scalable and self-adjusting. It can be used on any type of building with the necessary measures, can be applied throughout the year and can be improved over time. From the data measured in the treated building, a specific Multiple Linear Regression model is set up and updated at each time step, taking into account any meteorological evolution (seasonality) or changes in use. The average MAPE of the MLR models used is less than 2%. Using this methodology on a simulated building, 11 of the 13 days treated had an improvement in thermal comfort and respect the predefined criteria. The only day that did not meet these criteria was the first day of the study period. This problem is due to the prediction horizon (10 hours) which turned out to be insufficient. To address this problem, in future works, this horizon will be extended and other methods of heating strategies selection, such as the genetic algorithm optimization method, will be studied.
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