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Kinetic Monte Carlo simulations of the di�usion and shape evolution of single-layer

clusters on a hexagonal lattice with and without external force

Stefano Curiottoa,∗, Pierre Müllera, Fabien Cheynisa, Frédéric Leroya

aAix Marseille Univ, CNRS, CINAM, Marseille, France

Abstract

In this work we investigate the di�usion of 2D surface islands and voids as a result of atomic di�usion on terraces, by
kinetic Monte Carlo simulations based on a hexagonal lattice. We show that the di�usion coe�cient of small clusters
strongly depends on their size and does not follow a monotonic law. In particular, the di�usion coe�cient of small voids
increases with the cluster size, reaches a plateau and then decreases. We also study the displacement velocity of clusters
when a force biases the probability of the atomic jump direction. We show how the cluster velocity depends on the
force and on the cluster size. According to the force direction and amplitude, the shapes of the clusters can be strongly
modi�ed.

1. Introduction

Surface di�usion plays a key role in catalysis, adsorp-
tion, growth, reactivity, as it a�ects the stability and the
morphology of material surfaces by means of step rear-
rangement [1] and cluster di�usion [2]. Surface di�usion
is the most common surface transport process, so that re-
cently it has been proposed to use it to control the motion
of nano-objects on a surface [3]. This would open new
perspectives in nanofabrication. In this context, under-
standing cluster di�usion on various surfaces is becoming
a new challenge. Clusters predominantly migrate by the
individual motion of atoms instead of collective motion.
In absence of any external force, the motion of the clus-
ters is random (Brownian), whereas in presence of an ex-
ternal force, as for instance electromigration [4�7], a bias
is added to the random motion and thus enables to con-
trol the cluster motion. If cluster di�usion is now well
documented by experiments and analytical approach (at
least for large islands) [8], Kinetic Monte Carlo (KMC)
simulations have brought new perspectives especially for
studying small clusters for which atomic con�gurations
play an important role [9, 10]. However, most of the stud-
ies have been performed on square lattices. In this article
we use KMC simulations to study the di�usion of single-
layer clusters (2D voids and 2D islands) on a hexagonal
(or triangular) lattice in presence or in absence of an ex-
ternal force like electromigration. We show that most of
the results obtained on square lattices are still valid on
hexagonal lattices, even if subtle changes are evidenced.
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For the largest clusters, simple scaling-laws expressed in
terms of size-dependent di�usion coe�cient do not depend
on the lattice symmetry. For small clusters, the shapes
and shape �uctuations play a major role, leading to the
appearance of �nite-sizes e�ects that may di�er on square
or hexagonal lattices. Our goal in this article is to give
a clear description of the mechanisms of cluster di�usion
on hexagonal lattices with or without an external force.
For this purpose, we start by describing some concepts of
surface di�usion from a microscopic point of view, taking
into consideration single atomic jumps with a special fo-
cus on how atomic jumps lead to cluster di�usion. We pay
special attention to small clusters for which simple scaling
laws are not valid, leading to speci�c behaviors for well-
de�ned cluster sizes. The step-by-step study of the cluster
motion in terms of single atomic jumps aims at providing a
detailed description of the cluster di�usion properties and
shape evolution. Section 2 details the model used in the
simulation. Section 3 addresses the di�usion of clusters
without the e�ect of external forces. We pay particular
attention to small clusters, where discrete e�ects modify
the behaviors predicted by continuous models. Section 4
shows how the clusters displace under a force, their veloc-
ity and shape for di�erent temperatures and force values.
In section 5 we change the symmetry of the lattice from
6-fold to 3-fold and we simulate the shapes of clusters with
and without the e�ect of an external force. The most rel-
evant �ndings are then summarized in the conclusions.

2. Kinetic Monte Carlo model

In our model, we consider a 2D hexagonal (or trian-
gular) lattice of positions that can be either occupied by
atoms or empty (see �gure 1a). The simulation box has at
least 10000 lattice sites and periodic boundary conditions.
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Figure 1: a: Schematics of lattice positions of a single plane that
can be either empty (white) or occupied by atoms (yellow). Possible
jumps are shown with arrows, the red dashed arrows represent jumps
at the box edges with boundary conditions. b: side view and top view
of atoms in our model. The small yellow circles represent atoms of
the top layer, while large grey circles are atoms under the top layer.
Atoms at steps A and B, like the red and green atoms, have the same
number of neighbors but they have a di�erent local arrangement (the
red atom has only one neighbor in the bottom layer at the exterior
of the step, while the green atom has two neighbors in the bottom
layer, see the short black lines). The atoms under the top layer that
are neighbors of the red and the green atoms are indexed nsl1, nsl2
and nsl3 (see appendix A).

Atoms can jump from an occupied to an empty neighbor
position and cannot jump on top of already occupied po-
sitions, therefore atomic jumps are not allowed on top of
islands and outside voids (in�nite Ehrlich-Schwoebel bar-
rier).

Figure 2: Schematics of the energy barrier that an isolated adatom
has to overcome to jump from a site i to a nearby position i + 1 or
i − 1. With a force (red horizontal arrow, right panel), the jump
energy is no more symmetric in the two directions: it is lower for a
jump towards the left (yellow curved arrow), in the force direction,
while it is higher for a jump towards the right (violet curved arrow).
A jump in the force direction is thus favored.

The model is based on a previous version [11]. The
jump probability depends only on the energy of the de-
parting site (Arrhenius dynamics), i.e. on the binding en-
ergy of the jumping adatom (Ebin, see appendix A) and
on the external force acting on it (see the schematics of
�gure 2). The jump rates are proportional to:

exp(−Ebin + Ecg
kT

)

k is the Boltzmann constant and T is the temperature.

Ecg is the energy change due to the external force. It is
positive when the jump direction is against the force and
negative when the jump is helped by the force. We have
used the expression of Ecg given in [5], but modi�ed for a
hexagonal lattice:

Ecg = |F | · cos(π
3
· b− δ) · a

2

which takes into account the angle between the force and
the atomic jumps. |F | is the external force acting on an
atomic jump; a is the lattice separation between two neigh-
bor positions, we take it equal to 1 in all directions; b is an
integer that de�nes the arrival site in anticlockwise order,
with values between 1 and 6 ; δ is the angle between the
force and the x axis. Atomic jumps are selected according
to a rejection-free Kinetic Monte Carlo algorithm. The
time needed for an atomic jump is equal to the inverse of
the sum of all jump rates [12].

The results of section 5 are obtained with an improved
version of the model, modi�ed to represent also the (111)
surface plane of cubic structures, where atomic steps can
form either 100 or 111 microfacets (A and B steps in the
following) with the underlying plane, as shown in �gure
1b. B steps are more stable than A steps [13, 14]. It
is not possible to reproduce this energy di�erence taking
into account only the number of bonds of surface atoms
with in-plane neighbors. In order to consider the step en-
ergy di�erence in our simple lattice model, we have used a
binding energy that depends on the bonds formed by sur-
face atoms with the subsurface atomic layer, that is con-
sidered fully occupied, according to a procedure detailed
in appendix A. This model is general for 2D triangular
lattices and illustrates qualitatively di�erent scenarios of
homo-epitaxial cluster di�usion biased by a force. It was
originally developed to understand the di�usion of 2D Si
islands on Si(111) (see some experimental results in [15]),
but the energies and temperatures used are not character-
istic of a particular system. The model could be adapted
to di�erent systems by changing the binding energies (see
appendix A).

3. Cluster di�usion

The model can be used to simulate random di�usion
when the force |F | is set to 0. The simulations of dif-
fusion of single adatoms and vacancies, available in the
supplementary material, allow to validate the model. In
the following we focus on the di�usion of clusters.

3.1. Large clusters

2D voids and islands are clusters of vacancies and
adatoms respectively. Their edges �uctuate with time,
because atoms can detach and re-attach somewhere
else. The di�usion of clusters on a surface has been
investigated by di�erent authors experimentally (some
prominent examples are [16�19]) and theoretically. As
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Figure 3: a: Di�usivity of islands (black square) and voids (red
empty circles) as a function of their radius, in logarithmic scale
(kT=0.4 Eb). b: Logarithm of the cluster di�usion coe�cient as
a function of 1/(kT) for di�erent islands and a void, as de�ned in
the �gure. The simulations of cluster di�usion are carried out with
knsl=0 (see appendix A). Simulations with di�erent Ead have been
carried out to evaluate its e�ect on DC .

a consequence of atom di�usion, the edges of islands
and voids are modi�ed and the cluster center of mass
displaces. Three di�erent mechanisms of cluster motion
are usually considered: atomic di�usion at the cluster
periphery, di�usion on the terrace outside and inside
clusters, and uncorrelated detachment/attachment of
atoms (evaporation-condensation). Simple scaling ar-
guments lead to the conclusion that di�usion should
depend on the cluster radius R: DC ∝ R−α, with α=1,
2 or 3 for kinetics limited by attachment/detachment,
terrace di�usion and periphery di�usion respectively
[17, 20]. Khare and Einstein [8, 21] used an analytical
continuous description of the cluster boundary to describe
the di�usion of clusters, con�rming the above �nding.
Several authors, the �rst of them being Voter [2], also
considered the discrete nature of clusters, to take into
account the e�ect of kinks and facets, and performed
Monte Carlo simulations to investigate cluster di�usion.
Most of them focused mainly on the periphery di�usion
and evaporation-condensation mechanisms [9, 10, 22�28],
�nding some discrepancies from the power laws detailed

above. Cluster di�usion mediated by atoms di�using on
the terrace has been less studied, but Scanning Tunneling
Microscopy [17] and KMC simulations on a rectangular
lattice to describe the Ag(110) surface [29] con�rm the
power law and α=2.

In order to get further insights into the di�usion of
clusters on a surface with atoms organized in a compact
hexagonal pattern, we have simulated the evolution of clus-
ters when atoms detach from the perimeter, di�use on the
terrace and re-attach to the cluster. Notice that periph-
ery di�usion is not impeded. We have veri�ed that the
cluster average square displacement is proportional to the
time, so that we can de�ne the cluster di�usion coe�cient

DC =
<r2cluster>

4t . The number of atomic jumps of each
simulation ranges between 108 (cluster with R=5) and 1010

(R=45). The convergence of the DC measurement is ver-
i�ed using the procedure detailed in the supplementary
material, where control charts are shown.

The black squares in �gure 3a show the di�usion co-
e�cient of large islands for di�erent radii in log-log scale
(R larger than 8 units, more than 200 atoms in the clus-
ters). A linear �t through the points gives the value of
α = 1.9± 0.1, close to 2. Di�usion of adatoms on the ter-
race controls the cluster di�usion. Islands are surrounded
by a large terrace (the box size is much larger than that of
the island) where adatoms can di�use for a long time be-
fore re-attaching, therefore the kinetics for island displace-
ment in that case are limited mainly by terrace di�usion.

For voids, we �nd that α is di�erent for small (α =
1.54± 0.04) and large (α = 1.92± 0.02) voids (empty cir-
cles in �gure 3a). As suggested by Sholl et al. [24], in small
voids the di�usion time of an adatom between a detach-
ment and an attachment event is small. The kinetics for
the displacement of the cluster depends thus also on the
time needed to detach an atom and not only on the time
of adatom di�usion inside the void. The detachment e�ect
contributes to α that is thus between 1 and 2. At lower
temperatures, the exponent α further decreases because
the detachment rates decrease more than the adatom dif-
fusion rate. For voids we �nd α = 1.54, 1.45 and 1.3 at
kT=0.4, 0.3 and 0.25 respectively.

Voids displace slower than islands, but the di�usion
di�erence decreases when the cluster size increases. The
reason of this is that the step edge of islands is convex
and therefore presents more atoms in kink positions, easy
to detach from the perimeter, than voids, where the step
edge is concave. In other words, on average, atoms at
islands edges are less bound than atoms at void edges.
This di�erence between islands and voids is exacerbated
for small clusters. The detachment time of atoms from
the periphery of small voids is thus expected to be high,
and further accentuates the importance of the detachment
kinetics found for small voids.

We now test the expression for the cluster di�usion co-
e�cient given by Van Siclen [20], developed for terrace dif-
fusion or correlated attachment-detachment mechanisms
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(i.e. an atom detaching from the cluster edge has higher
probability to re-attach in a position close to the detach-
ment site):

DC =
< r2cluster >

4t
=
Dad · c · Ω2

π ·R2
(1)

Ω is the unit cell area and c the adatom concentration. In
the simulations it is possible to measure the average square
displacement and also the number of adatoms around an
island or inside a void. We can thus measure an adatom
concentration. The measured cluster di�usivity can be
compared with that predicted by the above equation us-
ing the measured concentration. Table 1 compares some
values of di�usivity for islands and voids. The above equa-
tion is based on a continuous model, while in our simula-
tions the atomic jumps are discrete and the displacement
of a cluster could depend on facet nucleation. However the
agreement is reasonable for both voids and islands. The
high error on the calculated DC is due to the error on the
measured adatom concentration. Our equations are valid
for di�usion only outside islands and inside voids. The
expression for the di�usion coe�cient given by Khare and
Einstein [8] corresponds to that of Van Siclen multiplied
by a factor 2 because they allow di�usion both outside and
inside the clusters (for instance considering also di�usion
of adatoms on top of the islands).

We verify if, in analogy with the di�usion of a single
adatom, we can writeDC = DC0·exp−Ecluster

kT , whereDC0

is a prefactor and Ecluster an e�ective cluster di�usion en-
ergy. The black squares in �gure 3b show an example of
cluster di�usion coe�cient in natural logarithm scale as a
function of 1/(kT ) for an island, while the empty circles
represent the di�usivity of a void with 10 atomic units ra-
dius. For each set, the points are well aligned, and, using
the expression above, a linear �t gives an e�ective energy
of Ecluster =6.06 ± 0.05 Eb for islands and 6.22 ± 0.05 for
voids. Ecluster does not correspond to the adatom di�u-
sion energy (Ead = 3Eb). We have changed the adatom
di�usion energy independently from other binding energies
to check if Ecluster changes. As shown by the empty pen-
tagons and stars in �gure 3b, decreasing (resp. increasing)
Ead, the cluster di�usivity DC increases (resp. decreases)
only slightly, and the slope of the linear �t in �gure 3b,
i.e. Ecluster, does not change. While cluster di�usion as
a function of size (DC ∝ R−2) suggests the importance of
the adatom di�usion on the terrace, the adatom di�usion
energy Ead does not play a role in the cluster di�usion en-
ergy. These �ndings are consistent with those of Heinonen
et al. [27], who simulated cluster di�usion on (100) lattices
but without extensive discussions.

To understand Ecluster we have to consider in equa-
tion 1 also the adatom concentration and not only Dad.
The concentration c depends from the balance between
atoms that detach from edges and adatoms di�using and
jumping towards an edge and attaching to it [30]. In our
simulations a cluster is at equilibrium with an adatom gas
surrounding it and there is no other structure that can

capture the atoms detached from the cluster. Therefore,
at long times, the number of atoms detaching from the
cluster equals that of atoms attaching to it. On average,
the time necessary to detach an atom is equal to the time
needed to have an attachment to the cluster boundary.
Adatoms on the terrace attach to a cluster with a prob-
ability proportional to the adatom concentration, to the
adatom di�usion coe�cient and to the length of the clus-
ter perimeter (that can be considered as a cross section).
The attachment time, inversely proportional to the attach-
ment probability is then

tattachment ∝
1

c ·Dad · 2πR

The probability to detach an atom from the cluster bound-
ary depends on the number of boundary atoms Nboundary
and on their binding energy (i.e. on their neighbors).
tdetachment is inversely proportional to this probability:

tdetachment ∝
1∑5

j=1Nj · exp
−Ej

kT

where j is the number of in-plane neighbors, Ej is the bind-
ing energy of an atom with j in-plane neighbors, Nj is the
number of atoms at the edge of the cluster with j neigh-
bors (see appendix A and �gure A.14) and

∑5
j=1Nj =

Nboundary. Writing∑5
j=1Nj · exp

−Ej

kT

Nboundary
=< exp

−Ej
kT

>

then

tdetachment ∝ 1/(Nboundary < exp(
−Ej
kT

) >) (2)

This expression cannot be directly handled because the
average of the exponentials depends on the Nj , that de-
pend on the size of the cluster and on the temperature.
We thus re-write the expression using an e�ective binding
energy Ebin for all the boundary atoms, that can be found
considering the energy needed to remove an entire row of a
cluster edge. If the average number of atoms of an edge is
Nedge, and they are removed one after the other, Nedge−1
are kinks, while the last one is more weakly bound (atom
adsorbed at a step). Therefore

< Ebin >=
Ekink(Nedge − 1) + Ead−step

Nedge

We thus write

tdetachment ∝
1

Nboundaryexp(
−Ekink(Nedge−1)+Ead−step

Nedge·kT )

With tattachment = tdetachment and considering that
Nboundary ∝ 2πR, we �nd

c ∝ exp
−Ekink
kT

· exp
Ead
kT
· exp

Ekink − Ead−step
Nedge · kT
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cluster type kT simulated DC calculated DC

island 0.45 8.6·10−9 ± 0.5 · 10−9 6.6·10−9 ± 0.7 · 10−9

island 0.5 3.4·10−8 ± 0.3 · 10−9 2.6·10−8 ± 0.4 · 10−8

void 0.45 1.5·10−9 ± 0.2 · 10−9 1.8·10−9 ± 0.4 · 10−9

void 0.5 5.9·10−9 ± 0.2 · 10−9 7.1·10−9 ± 0.4 · 10−9

Table 1: Comparison of measured(simulated) and calculated (equation 1, Van Siclen expression [20]) cluster di�usion coe�cients, for islands
(R=10) and voids (R=20). The calculated DC has an error due to the error on the simulated concentration.

Notice that this expression includes, in the denominator of
the exponential, the dependence of the concentration on
the cluster size (Nedge ∝ R), as predicted by the Gibbs-
Thomson equation. Substituting the expression above in
equation 1, we obtain:

DC ∝ exp
−Ekink
kT

· exp
Ekink − Ead−step

Nedge · kT
(3)

The argument of the second exponential term in the above
expression is negligible with respect to the argument of the
�rst one and thus Ecluster u Ekink = 6Eb in our simula-
tions. However, changing the cluster radius, we have found
that Ecluster depends on it, though very slightly, and in-
creases when R increases (For 2D islands Ecluster = 5.92,
6.06 and 6.10 Eb for R=8, 10 and 12). This is qualitatively
in agreement with the e�ect of the second exponential term
in equation 3. Another approach to discuss Ecluster that
does not imply an e�ective energy is detailed in appendix
B.

3.2. Finite-size e�ects: 2D islands

Figure 4: Cluster di�usion coe�cient as a function of the number of
atoms in simulations with kT=0.2. The inset shows the same graph
in log-log scale to highlight that D ∝ N−β holds only for large N.

Finite-size e�ects have been experimentally observed in
nanoclusters of some systems. For instance, the catalytic
properties of Pd nanoparticles show non-monotonic varia-
tions as a function of their size [31, 32]. Also the di�usion
of small clusters can depend on their size in a non-trivial

way, especially at low temperatures. As shown in the pre-
vious section, the di�usion coe�cient decreases when the
cluster size increases, and, for islands, it is proportional
to R−2. However, for small islands, this general trend
changes. Figure 4 shows that DC decreases with the island
size N, i.e. the starting number of atoms in the cluster.
For large clusters, N is ∝ R2, therefore DC ∝ R−2 ∝ N−1;
for small clusters R is not signi�cant, however we verify
if the DC proportionality still holds. The inset of �gure
4, shows that log DC is proportional to -1.2(±0.3) logN
only for islands larger than about N=29. For smaller sizes
DC decreases faster than N−1 and ceases to follow a size
dependent power law. Figure 4 also shows that DC does
not decrease steadily when N increases, but is punctuated
by oscillations.

On square lattices, di�erent authors have found that
cluster di�usion does not follow a monotonic descending
trend with the cluster size [9, 27, 33�35]. This is due to
compact or "perfect size" clusters that are slower than oth-
ers because their boundary is only constituted by strongly
bound atoms (with few kinks and no adatoms at steps).
The reasons of the oscillations are explained for (100) sur-
faces by Lai et al. [9]: clusters with perfect size, without
adatoms at steps, di�use slowly because the formation of a
new edge allowing the cluster displacement requires a nu-
cleation energy equivalent to the detachment of two kink
atoms.

On a hexagonal lattice, clusters with symmetric perfect
size are for instance those with N=7, N=19 and N=37, as
shown in �gure 5. Those con�gurations have the minimum
number of border atoms with the maximum possible in-
plane neighbors. They have 6 kinks, no adatoms at steps,
and thus minimize the cluster step energy. However, other
sizes (for instance N=10, 12, 13, 14, 16 and for all clus-
ters with N≥18) also exhibit shapes with 6 kinks and no
adatoms at steps (see two examples in �gures 5 for N=12
and N=13). To understand the DC oscillations, we con-
sider that a signi�cant displacement of a cluster requires
the detachment and re-attachment of atoms, formation of
a new edge with at least two atoms. For instance, starting
from a cluster with N=19 shown in �gure 5, after the re-
moval of a �rst kink (blue in �gure 5), two other kinks are
created (green in �gure 5), and all the boundary atoms still
have at least 3 in-plane neighbors. Therefore the formation
of a new edge requires at least detachment of two kinks.
For N=20, the low energy con�guration has 4 kinks that
are coupled: removing one of them leaves an adatom at
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Figure 5: Low-energy shapes of clusters with a �xed number of
atoms. Clusters with a compact, and thus very likely, shape can
be drawn for di�erent sizes, not only for N=7, 19 and 37 (that have
compact, 6-fold symmetric shape). Blue and green atoms are kinks,
with 3 in-plane neighbors; orange atoms (belonging to edges) have
4 in-plane neighbors; the red atom (adatom at a step) has only 2
in-plane neighbors. For N=20 coupled kinks are light blue, normal
kinks are dark blue.

step, with only 2 in-plane neighbors, easier to detach. Nu-
cleation of a facet is thus easier for N=20 and D20

C > D19
C .

For N=21, the compact shape has only 2 coupled kinks,
less than N=20, therefore the probability to remove one of
the coupled kinks (and to leave one adatom at step with 2
in-plane neighbors) is lower than for N=20, so D20

C > D21
C .

The compact con�gurations with N=12 and N=13 have
both 6 coupled kinks. However for N=13 two of the kinks
are special because removing one of them (for instance the
blue one in �gure 5) leaves two adatoms at step (green in
�gure 5) instead of one. Therefore D13

C > D12
C . Only two

coupled kinks are present for N=14, so D14
C < D13

C . Sim-
ilar reasoning can explain all the other oscillations of DC

in the red boxes of �gure 4. No compact shapes with only
6 kinks can be found for clusters with N=15 and N=17,
they have either one adatom at step on the boundary or
a shape with 7 kinks. These two clusters should emit the
adatom at step very easily to show a compact shape, and
this atom should help the nucleation of new steps and thus
should make the island displace faster than the island with
size N-1. However this is not observed in the value of DC ,
i.e. no signi�cant oscillations of DC are observed between
14 and 17. The increase of DC at N=18 is due to the 6
coupled kinks of the cluster compact shape.

It should also be considered that low energy con�gu-
rations can have, for di�erent sizes N, di�erent number of
atoms constituting the steps. A con�guration with more
step atoms has more probability to emit a boundary atom,
and thus to make the cluster move, than a con�guration
with less step atoms. This e�ect could add to the "coupled
kinks" e�ect explained in the previous paragraph. For in-
stance, the compact, low energy con�guration of the clus-
ter with N=12 has 3 step atoms (highlighted in orange in
�gure 5); a cluster with N=13 is larger and should thus
have lower DC , but its compact con�guration has 4 step
atoms and can thus account for D13

C > D12
C . The change

of number of step atoms in compact shapes explain almost
all the observed oscillations. An exception is the compact
con�guration of the cluster with N=14, that has the same
number of step atoms of the cluster with N=13. Thus the
large decrease of DC between N=13 and N=14 is due to
the general decrease of DC with the size and to the "cou-
pled kinks" e�ect.

Figure 6: a and b: Histograms of the occurrence of di�erent con-
�gurations for clusters with N=12 and N=13. The insets show the
histograms for N=19 and N=20. c: The red circles show the de-
viation of DC from a curve �t of the DC data in �gure 4. The
aim of these points is to highlight the oscillations of DC due to the
�nite-size e�ect. The blue squares represent the number of probable
con�gurations for each cluster dimension.

Another way to discuss the oscillations is to consider
the number of possible con�gurations that can be taken by
a di�using cluster. This number increases with the clus-
ter size, but, for �xed N, some con�gurations have lower
energy and are thus more probable than others. For each
cluster with size N, we have run simulations to allow for the
rearrangement of a cluster shape. During the simulation,
at �xed intervals, the cluster con�guration was compared
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with those already found. At the end of the simulation, we
have counted the number of times all the di�erent cluster
con�gurations appears. Figures 6a and 6b show two his-
tograms of the occurrence of the di�erent con�gurations
for the cluster with size N=12 and N=13 (red and dark
blue bars respectively). The cluster with N=12 tends to
have 2 di�erent con�gurations, while others are much less
probable. The island with N=13 can have many di�erent
con�gurations (≈ 30), with similar probability, while other
con�gurations are less probable. It can thus be assumed
that, for the cluster with size N=12, atoms detach but
often re-attach back at the same position, leading to few
probable cluster con�gurations and delaying cluster di�u-
sion. The island with N=13 can have di�erent con�gura-
tions with similar probability and should thus di�use faster
than that with N=12. The insets in �gure 6a and 6b show
another example of con�gurations found for clusters with
N=19 and N=20. As expected, the cluster with N=19 has
very often the con�guration corresponding to the symmet-
ric perfect size (see �gure 5). Figures 6c shows the number
of most probable con�gurations as a function of the cluster
size, together with the di�usivity corrected of the mono-
tonic descending trend. A con�guration γ is considered
probable if it is found more than 100 times with respect
to a low probable con�guration and if there are no other
con�gurations that occur 5 times more than γ. The clus-
ters with few probable con�gurations, i.e. those that tend
to show very often the same shape, have lower di�usivity.
An exception, addressed above considering the number of
step atoms in the compact shape, is for N=17 and 18. For
clusters larger than N=35, the oscillations are within the
error of the measured di�usion coe�cient. The number of
con�gurations is also an argument evoked on square lat-
tices [9]. The main di�erence is that, as hexagonal islands
have higher symmetry than square ones, the oscillations
in �gure 4 have only weak amplitude and they disappear
for N>35, that is a size much smaller than that observed
for square lattice (N=200/300). The perfect size e�ect, as
also highlighted by Heinonen et al. [27], is only observed
at low temperatures, where the di�erence of Boltzmann
factor among the di�erent atomic jumps is large.

3.3. Finite-size e�ects: 2D voids

Like islands, also voids show a �nite-size dependence
of the di�usion coe�cient from the size. Figure 7 shows
DC as a function of the size of voids. Clusters with small
size often splits during the long simulations necessary to
average the cluster squared displacement, and are thus
not considered. The general trend is an increase of DC

with the size up to about N=50, where a plateau is found.
ThenDC decreases at �rst slowly and, for N>300, steadily,
with DC ∝ N−0.65±0.05. Notice that N−0.65 corresponds
to R−1.3 found in the cluster-di�usion section. Most of
the data, within the simulation error, follow a continuous
curve. However, as in the case of islands, there are some
clear deviations of DC from the general trend, particularly
for N=7, 10 and 19. The increase of DC with the size for

Figure 7: The dark squares show the cluster di�usion coe�cient DC
as a function of the cluster size N (number of empty positions) in
log-log scale. The di�usion coe�cient of a vacancy is also shown as
a red circle. Notice that both the x and the y axis have a break. DC
generally increases with the cluster size up to a plateau around N=50
and then decreases. Certain sizes show signi�cant deviation from the
general trend. Three compact con�gurations for voids with N=6, 7
and 8 are shown in the bottom of the �gure. The boundary atoms
(yellow) have di�erent jump energies (values written in Eb units).

small N is surprising, was not observed for islands, was not
investigated by other authors and thus deserves a discus-
sion. As in the case of single adatoms, DC = 1

4ΓC · λ2C ,
where ΓC is the cluster jump frequency, that depends on
the sum of the detachment rates of boundary atoms and
on the di�usion time of adatoms inside the voids; λC is the
jump length, that decreases slowly when the void size in-
creases. Increasing the void size, the number of boundary
atoms that can move increases and their jump rates also
increase. For instance, the motion of an isolated vacancy
(DC marked with a red circle in �gure 7a) depends on the
jump rates of the 6 atoms around it, ∝ exp −8Eb

kT . The
"perfect" shape of a void with N=7, that should be very
stable, has 6 boundary atoms with jump rate exp −8Eb

kT and

6 other border atoms with jump rates 2 exp −7Eb

kT . It thus
displaces faster than the isolated vacancy. The sum of the
detachment rates of boundary atoms in clusters with non-
perfect shape is even higher than that of the void with N=7
and thus they move faster. For instance the void with N=6
in �gure 7b has a boundary atom with high detachment
rate (3 exp −6Eb

kT ), and the void with N=8 has seven bound-
ary atoms (instead of six for the cluster N=7) with detach-
ment rate 2 exp −7Eb

kT . For small voids the di�usion time
inside the voids is not signi�cant and thus ΓC increases
with the size. Increasing the void size, the cluster jump
length decreases and the di�usion time of the adatoms in-
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side the void increases, reducing ΓC . Therefore for large
voids DC decreases when the size increases. For compari-
son, in very small islands, the jump rates of border atoms
decrease when the island size increases (for instance an
adatom has high jump frequency, exp −3Eb

kT , while atoms
in a cluster are more strongly bound and have smaller
jump rates, ∝ exp −4Eb

kT or smaller). Furthermore, the dif-
fusion time outside islands before attachment is high for
small islands and decreases when the island size increases
(increased cross section and thus increased probability of
adatom attachment). Therefore ΓC (and thus DC) always
decreases when the island size increases.

The behavior described above concerning the di�usiv-
ity of voids with di�erent sizes is not typical of hexagonal
lattices: In preliminary simulations on a square lattice we
have observed the same features (see the inset of �gure
7a).

4. Displacement under an external force

4.1. Single atoms/vacancies

Figure 8: a: Distribution of the �nal positions of a di�using va-
cancy, after 500 simulations. The grey and purple areas correspond
to Ecg=0, and 0.03 respectively. The purple and grey probability
distributions are partially overlapped. The starting position of the
vacancy is the same for the two sets of simulations and marked by
X. b: Velocity of a vacancy for di�erent force (and thus Ecg) values.
The y axis is in logarithmic scale, the velocity depends exponentially
from Ecg . The inset shows that for small Ecg the vacancy velocity
depends linearly from the force. kT=0.1Eb.

Applying a force, the di�usion of single atoms and va-
cancies is biased in the force direction. The grey area in
�gure 8a shows the probability distribution of the �nal po-
sition of a vacancy starting from the point marked by X
and di�using (without force, Ecg=0) for a �xed time. The
�gure is based on 500 simulations, a darker color corre-
sponds to higher probability. Applying a weak force on
the atoms towards the left, the vacancy does not di�use
anymore completely randomly around the starting posi-
tion but displaces preferentially towards the right. This is
shown by the purple probability distributions of the �nal
positions of a vacancy for 500 simulations performed with
Ecg=0.03. The average �nal position of the vacancy is
displaced towards the right, proportionally to the applied
force. For strong forces the distribution is less dispersed,
the vacancy �nal position is well de�ned, with only a small
deviation from the most probable position. Similar results

are obtained for single atoms, the main di�erence is that
they displace in the same direction of the force and the
jump energy is lower (3Eb instead of 8Eb for vacancies).
Considering the time elapsed in the simulations, the va-
cancy velocity can be measured and is shown in �gure 8b
as a function of the force. When a force a�ects a jump, the
jump frequencies are modi�ed and the velocity v against
the force direction is equal to the di�erence between the
jump frequencies along and against the force of the atoms
surrounding the vacancy. Considering the 6 possible jumps
of the vacancy:

v = a · (exp(−Evac − Ecg
kT

) +
1

2
exp(−Evac − 0.5Ecg

kT
)

−1

2
exp(−Evac + 0.5Ecg

kT
)− exp(−Evac + Ecg

kT
)

−1

2
exp(−Evac + 0.5Ecg

kT
) +

1

2
exp(−Evac − 0.5Ecg

kT
))

= a · exp(−Evac
kT

) · (exp(
Ecg
kT

)− exp(−Ecg
kT

)

+ exp(
0.5Ecg
kT

)− exp(−0.5Ecg
kT

))

The velocity as a function of the force found in the simula-
tions agree perfectly with the equation above, as shown by
the �t of the dashed line with the black squares in �gure
8b. For small forces (and thus small Ecg), expx = 1 + x
and therefore

v = 3a
Ecg
kT
· exp(−Evac

kT
) = 3a2

F

2kT
· exp(−Evac

kT
)

because, as shown in �gure2, the energy Ecg is related
to the force acting on the atoms as F · a2 = Ecg. As
detailed in the supplementary material, where we study
the di�usion of single atoms and single vacancies, Dvac =
3
2 · a

2 · exp(−Evac

kT ). Therefore,

v =
F ·Dvac

kT

This expression corresponds to the Nernst-Einstein rela-
tion.

4.2. Clusters

Under the e�ect of a force, as a consequence of atomic
displacement, clusters also move. This motion can be lim-
ited by di�usion of atoms at the cluster periphery, by di�u-
sion on the terrace, and by attachment/detachment kinet-
ics (this last mechanism becomes important if di�usion is
easy and fast with respect to the detachment). Within our
model all these mechanisms can take place, and the bal-
ance among them depends on parameters like the Boltz-
mann factor and the size of the islands. As atomic jumps
depend on the number of neighbors of the starting po-
sition and not on that of the �nal state (we use KMC in
Arrhenius dynamics [12] and not Metropolis Monte Carlo),
periphery di�usion is not particularly favored, contrary to
other works where atoms are constrained to move only at
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Figure 9: Schematics of the motion of 2D islands and voids as a
consequence of forced di�usion. 2D voids always move opposite to
the force acting on the adatoms, while 2D islands can move in the
force direction when the motion is determined by periphery di�usion.

Figure 10: a: Velocity of islands (black squares) and voids (red empty
circles) displacing under the e�ect of a force, as a function of the ra-
dius. Ecg=0.001, kT=0.3. b: Velocity of an island (R=20) displacing
in the direction opposite to the force, as a function of the force. The
inset is a magni�cation of the main �gure at low forces.

the cluster periphery (as for instance done in [5] in the
section on periphery di�usion).

While in our model the atoms di�use preferentially in
the force direction, both islands and voids displace oppo-
site to the force direction. As explained in [5] and summa-
rized in �gure 9, this occurs because in our simulations pe-
riphery di�usion does not play an important role. Clusters
displace with constant velocity under the e�ect of a force.
The velocity of islands and voids as a function of their size
is shown in �gure 10a. While the velocity of islands does
not depend on their size, that of voids is proportional to
the cluster size for small sizes, and becomes constant after
a threshold. According to [5], if the velocity of clusters
moving under a force does not depend on their size, then
the process limiting the displacement is terrace di�usion,
while if the velocity is directly proportional to the size,
then attachment and detachment processes play the most
important role. Our �ndings for clusters subject to a force

are thus consistent with those discussed in section 3, where
we showed that for islands and voids the displacement is
di�usion limited, and for small voids also the detachment
kinetics plays an important role. Furthermore, the veloc-
ity of voids increasing with the void size and reaching a
constant value correctly reproduces the experimental ob-
servations of 2D voids displacing under electromigration
on Si(111) [15].

As shown in �gure 10b, for a �xed size the cluster ve-
locity increases linearly with the force for small forces and
follows an exponential law for strong forces. Supposing
that the equation derived for vacancies in section 4.1 (and
also valid for adatoms) can be used for clusters, we can
�t the data to obtain Ecluster (instead of Evac). We �nd
Ecluster = 6.19 ± 0.02Eb (for kT = 0.3Eb) that is close
to the di�usion energy of a cluster obtained in section 3,
without forces (Ecluster = 6.06± 0.05Eb). The agreement
is very good, the slight di�erence is probably due to the
clusters stability (they have di�erent shapes for di�erent
forces, see section 5.2). For weaker forces, where the clus-
ter shape changes marginally, a �t with Ecluster = 6.06
reproduces well the data (see the black line in the inset of
�gure 10b).

5. Cluster shapes in a lattice with 3-fold symmetry

The shape of clusters �uctuates around an equilibrium
shape that depends on the temperature, on the binding
energy and on the external force applied. For hexagonal
clusters with 6-fold symmetry, when knsl = 0, the shape
changes have been shown in [11]. Here, we discuss the
shapes of clusters on a lattice with 3-fold symmetry.

5.1. Cluster shape dependence on temperature

Figure 11: Shapes of a stationary 2D island (white) on a (111) surface
at di�erent temperatures. At low temperatures the images shown
correspond to the average of several shape con�gurations.

Figure 11 shows the shape of an island at di�erent
temperatures, for knsl = 0.18 (a parameter de�ning the
relative stability of A and B steps, see appendix A). For
each temperature, the simulations start from a round clus-
ter; then atomic jumps are allowed, so that the shape re-
arranges; when the shape does not signi�cantly evolve any-
more, an average shape can be calculated. At low temper-
ature corner and edges of the island are well de�ned; in-
creasing the temperature the corners become rounder and
the length of less stable edges decreases; at higher tem-
perature the whole cluster is roundish, and straight edges
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are no more observed; at very high temperatures the clus-
ter disintegrates in dispersed atoms. A similar behavior is
observed for 2D voids.

5.2. Shapes of clusters under strong forces

Figure 12: Shapes of a 2D island (�rst line) and a 2D hole (second
line) on a (111) surface under a force that adds a bias to di�usion.
The force is towards the left, the top and the bottom of the images
for the three panels respectively. The force acting on the shapes
implies an energy change from left to right Ecg=0.0001, 0.001, 0.01,
0.1 Eb. kT=0.1 Eb.

In absence of any force, clusters are at thermodynamic
equilibrium with an adatom gas and their shape �uctuates
around an equilibrium shape. Under external forces, a
�ux of adatoms leads to the cluster motion. Clusters are
thus no more at equilibrium. Their shape can reach a
steady state, or can �uctuate among di�erent con�gura-
tions. Kuhn, Krug, Rusanen and Dasgupta et al. have

carefully studied this behavior with analytical models
[36�40]. We have studied the shapes of clusters moving
under strong forces (Ecg larger than 10−4Eb), however
we have not carefully investigated possible �uctuations
between di�erent con�gurations. Notice that average
forces found in electromigration phenomena are of the
order of 10−6 eV/lattice length [6], that corresponds to
Ecg ≈ 10−6Eb, with Eb of the order of 1 eV. The 6-fold
symmetry is broken when the simulations are performed
with knsl 6= 0 and the shape of holes and islands has a
three-fold symmetry (see �gure 11). We have studied
the e�ects of forces applied in three di�erent directions
on the nanostructure shapes. Figure 12 shows snapshots
of the simulations of islands and holes moving under
the e�ect of these forces. Each snapshot corresponds to
a representative island or void shape moving under a
constant force. We consider that a cluster has reached
a steady state shape when three shape descriptors do
not signi�cantly evolve anymore, as detailed in the
supplementary material. We at �rst discuss the shapes
of voids. When the force is towards the [1-10] direction
(towards left in �gure 12, �rst panel, second line), the
shapes seem pushed towards the facet of the right, i.e.
towards the advancing edge. The advancing edge is well
faceted and its length increases with the force value. For
very strong forces the voids are elongated and �attened
on the right facet. Loosely bound and kink atoms are
easily removed from the front under the e�ect of the force.
The unzipping of the atomic rows by removal of the kinks
(detachment of a kink atom leaves another kink atom
that will also be detached) leads to a displacement of the
front edge. This unzipping is only stopped at the corners
of the cluster. The clusters tend to keep a convex shape
to maximize the total number of bonds between atoms.
However the force leads to elongation of the advancing
edge and thus of the whole shape, because also atoms
that do not belong to the front edge can detach. When
this happens, atomic rows of that edge unzip; when the
unzipping reach the front edge, this results elongated
of one unit length towards the edge that has unzipped.
Because of the force towards the back, the detached atoms
accumulate at the back edge and only rarely they move
against the force, towards the front edge. The cluster
thus keep an elongated front edge because of a kinetic
e�ect. A similar elongation, perpendicular to the motion,
is observed when the force is in the [11-2] direction (third
panel in �gure 12). In this case the elongation is along
the top facet, that corresponds to the advancing edge.
Applying a force in the [-1-12] direction (second panel in
�gure 12), the elongation perpendicular to the motion is
no more observed. Because of the triangular symmetry, an
edge at the advancing front of the void would correspond
to a A step, less stable than B steps. Under the e�ect of
the force, atoms are removed more easily from A steps
than from B steps. The lateral facets of the void (B
steps) in the �gure are thus enhanced. The void moves
by unzipping of the atomic rows from the lateral facets as
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previously explained, the detached atoms di�use towards
the back edge where they accumulate, and the void shows
a strongly faceted triangular shape. Latz et al. [41]
simulated the shape of 3D holes in Ag(111). They found
elongation of the holes along the force axis and formation
of a tip at the hole advancing front. The di�erence of
their results with ours is due to the di�erent mechanism
of atomic motion: in their simulations atoms di�use along
the edges, by periphery di�usion, while in our case atoms
di�use inside the hole, by terrace di�usion.

For islands the mechanisms are similar to those de-
scribed for voids, but in this case atoms are removed from
the back edge and accumulate to the front edge that thus
advances. Under very strong forces, islands can also break
down in smaller islands that advance together. While in
voids atoms arriving at the back are stuck because of the
force, in islands the atoms arriving to the front are pushed
by the force towards the back moving along the periph-
ery of the cluster. The less stable facets decrease in size
or are rough, because atoms can be removed easily from
them by the force. The most stable facets tend to be
�attened because of the unzipping of atomic rows previ-
ously discussed for voids. Like voids, also islands tend to
elongate along the most stable facets of the front edge.
However, increasing the temperature, i.e. decreasing the
step energy anisotropy, the island shape tends to elongate
parallel to the motion, as shown in �gure 13 for a triangu-
lar islands moving in the [-1-12] direction at three di�erent
temperatures. The elongation parallel to the force is more
di�cult for islands with the front facet perpendicular to
the motion direction (those of the second panel in �gure
12) and it is never observed for voids. The increased tem-
perature decreases the anisotropy of the cluster shape, the
tendency to form facets decreases and atoms also di�use in
the force direction along the island periphery, that gives a
shape elongated in the force direction. In voids, the atoms
do not have to displace along the void edges to follow the
force direction and thus the elongation due to a periphery
di�usion e�ect is absent.

Figure 13: Shapes of a 2D island on a hexagonal lattice under a
force implying an energy change Ecg= 0.01 Eb to the atomic jumps,
that adds a bias to the atomic motion in the [11-2] directions. The
temperatures are kT=0.05, 0.1 and 0.15 Eb for the shapes from left
to right.

6. Conclusions

We have used a KMC model to highlight the di�usion
behaviors of voids and islands in a hexagonal lattice. The
di�usivity of small clusters does not depend on the size in a
continuous way and a perfect size e�ect is clearly observed.
Most of the results obtained on square lattices are also
valid on hexagonal lattices, however subtle changes are ev-
idenced. For instance, since hexagonal islands have higher
symmetry than square ones, the oscillations of the di�usion
coe�cient that exist for the smallest sizes are weakened in
hexagonal lattices. We also evidence the peculiar behavior
of the di�usion coe�cient of small voids: when the void
size increases, the di�usivity at �rst increases then reaches
a plateau and �nally decreases. We show that this behav-
ior is not speci�c to hexagonal lattices but also exists (but
to the best of our knowledge has not yet been described)
on square lattices. We also show how electromigration
adds a bias to the atomic jumps, how the cluster velocity
depends on the force strength and on the cluster size and
how the cluster shapes change with the temperature and
the force direction. Finally, we establish approximated an-
alytical expressions of the di�usion coe�cient of clusters
that gives values in quite good agreement with the values
extracted from the KMC simulations. These developments
lead to a better understanding of the atomic events at the
origin of the behavior of di�using clusters and thus to the
capability of controlling the motion of nano-objects on a
surface.
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Appendix A. Model details

Figure A.14: The atoms at an island edge can have j=1 (blue), 2
(green), 3(grey), 4(red) or 5(black) in-plane neighbors. Within our
model, when knsl = 0, their binding energy is respectively 4, 5, 6, 7
and 8 Eb. An isolated adatom is shown in orange (binding energy
3Eb). Other atoms of the island are yellow, while empty positions
are white.

This appendix completes the details of the model used
in the simulations. In particular we explain the binding
energy of the di�erent kind of atoms considered. Every
surface atom has three neighbors in the subsurface layer
(nsl1, nsl2, nsl3) (see �gure 1b). For each nsl we count the
number of neighbors (nnnsl) in the surface, value variable
between 1 and 3. Thus, nn is variable between 3 (for an
isolated adatom with 3 nearest neighbors in the underly-
ing layer) and 9 (surface atoms surrounded by 6 in-plane
nearest neighbors and 3 atoms in the underlying layer).
The binding energy of each surface atom is:

Ebin = Eb · (nnnsl1 − knsl · nn2nsl1
+ nnnsl2 − knsl · nn2nsl2

+ nnnsl3 − knsl · nn2nsl3) (A.1)

Where knsl is a parameter to be adjusted. This expres-
sion allows to di�erentiate the energy of atoms according
to their environment and in particular reproduce the dif-
ference between A and B steps. When knsl is 0, atoms

at steps A and B have the same binding energy and the
clusters have hexagonal shape. In the text, energy values
are expressed as multiples of Eb, for instance an isolated
adatom, orange in �gure A.14, has Ebin = 3Eb. Atoms
in kink positions, grey in �gure A.14, have Ebin = 6Eb.
Atoms surrounding a vacancy have Ebin = 8Eb (values
given for knsl = 0). In the simulations, with the aim
to reproduce general behaviors of clusters di�using on a
hexagonal lattice, we have used Eb = 1 (eV). For speci�c
systems, this value could be changed. For instance, for
Au, a value of Eb=0.64 eV (see [42]) could be used. How-
ever, as the model is very simple, it cannot be used for
accurate quantitative predictions. To obtain shapes with
a three fold symmetry (like on Pt(111)[13] or Si(111)[43])
we have used knsl values between 0.05 and 0.18. The ratio
between the binding energies of atoms at B and A steps
results less than 0.9, a reasonable value for (111) fcc and
diamond systems [13, 44].

Appendix B. Cluster energy

Expression 2 used in section 3.1 does not directly lead
to Ecluster = Ekink but can be useful to further discuss our
results. Clusters tend to be compact, and the boundary
atoms have j=2 (E = 5Eb, atoms adsorbed at steps, green
in �gure A.14), j=3 (E = 6Eb, kink atoms, grey in �gure
A.14) or j=4 (E = 7Eb, step atoms, red in �gure A.14).
The cluster energy we �nd (≈ 6Eb) does not correspond
to the energy of atoms adsorbed at the cluster steps (5Eb)
because the displacement of these atoms implies only a
�uctuation of the position of the cluster around a certain
position. An important displacement of the cluster can
instead be obtained when kinks are removed (Ej = 6Eb),
as they lead to the unzipping of entire atomic rows. The
boundary atoms constituting the cluster edges (j=4) are
many but they are strongly bound (7Eb) and, because of
the exponential term in the concentration expression, their
contribution to the adatom concentration or to the e�ec-
tive cluster energy is small. However in voids, where the
boundary is concave, they could play a role and could ex-
plain why the cluster energy found in the simulation is
slightly higher than the kink energy.

In order to check a practical example, we have counted
the di�erent Nj of a cluster with R=10 at kT=0.35.
Averaged over many cluster con�gurations, N2=2 N3=18
N4=32. With these values, we �nd

< exp(
−Ej
kT

) >= exp(−6Eb/kT )

where 6Eb corresponds to the value of ECluster that we
have found.
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knsl parameter de�ning the three fold symmetry
Ebin binding energy of an atom, depending on the atom environment
Eb energy unit in our model
Ecg change of the jump energy barrier due to the force
Ekink binding energy of an atom in kink position
Ead−step binding energy of an atom adsorbed at a step
k Boltzmann constant
T temperature
F external force changing the jump energies
Dad adatom di�usion coe�cient
Ead adatom jump/di�usion energy
a adatom jump length
< r2 > adatom average square displacement
< r2cluster > cluster average square displacement
t time
Evac vacancy activation energy
DC cluster di�usivity
R cluster radius
α exponent de�ning the atomic mechanism limiting the di�usion of clusters
λC unit cluster displacement
Γ jump frequency
Ω unit cell area
cl atomic linear concentration at the cluster edge
tdetachment time necessary to detach an atom from a cluster edge
tattachment time for an attachment event
tat−dif adatom di�usion time before attachement to the cluster
c adatom concentration
D0 prefactor in the adatom di�usivity expression
DC0 prefactor in the cluster di�usivity expression
ECluster cluster di�usion energy
N number of atoms in the island or of empty positions in the void
Nedge average number of atoms of a cluster edge
Nboundary total number of atoms of a cluster perimeter
v velocity of a vacancy displacing under the e�ect of a force
nsl1, nsl2, nsl3 indexes identifying three di�erent atoms of the substrate that are neighbors of a

certain atom in the surface
nnnsl1 number of atoms in the surface that are neighbors of the substrate atom nsl1

Table 2: summary of the symbols used in the text
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