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Swimming droplet in 1D geometries, an active Brether-
ton problem†

Charlotte de Blois,a‡ Vincent Bertin,a,b,‡ Saori Suda,c‡ Masatoshi Ichikawa,c Mathilde
Reyssat,a and Olivier Dauchota

We investigate experimentally the behavior of self-propelled water-in-oil droplets, confined in cap-
illaries of different square and circular cross-sections. The droplet’s activity comes from the forma-
tion of swollen micelles at its interface. In straight capillaries the velocity of the droplet decreases
with increasing confinement. However at very high confinement, the velocity converges toward
a non-zero value, so that even very long droplets swim. Stretched circular capillaries are then
used to explore even higher confinement. The lubrication layer around the droplet then takes
a non-uniform thickness which constitutes a significant difference with usual flow-driven passive
droplets. A neck forms at the rear of the droplet, deepens with increasing confinement, and even-
tually undergoes successive spontaneous splitting events for large enough confinement. Such
observations stress the critical role of the activity of the droplet interface on the droplet’s behavior
under confinement. We then propose an analytical formulation by integrating the interface activity
and the swollen micelles transport problem into the classical Bretherton approach. The model
accounts for the convergence of the droplet’s velocity to a finite value for large confinement, and
for the non-classical shape of the lubrication layer. Further including the saturation of the mi-
celles concentration along the interface length, it predicts the divergence of the lubrication layer
thickness when the length of the droplet increases, eventually leading to the spontaneous droplet
division.

1 Introduction
Biological micro-swimmers exhibit a number of fascinating swim-
ming strategies, to compensate for the absence of inertia. Even
more intriguing is the way such organisms manage to probe and
explore their environment, probing the presence of external fields
such as temperature, nutriment concentration, gravity, etc. In
many cases, they also manage to explore narrow channel-like
passages, such as in soil1 or in the organism2 of their host; or
because they are placed in artificial micro-fluidic channels3,4 to
steer their motion5,6 with application in drug delivery. The eu-
glenids7 is a striking example of such microorganisms, which are
able to adapt its swimming strategy from flagellar propulsion to

a UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.
b Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33405 Talence, France
c Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-
Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
† Electronic Supplementary Information (ESI) available: [(1) Drp_in_Cyl.avi
(1 i/s accelerated 20 times): video showing three experiments of droplets of differ-
ent sizes swimming in circular capillaries of radius h = 50 µm. (2) Drp_in_Cons.avi
(10 i/s accelerated 30 times): video showing two experiments inside stretched cap-
illaries of droplets simply elongating or spontaneously dividing while swimming.].
See DOI: 10.1039/cXsm00000x/
‡ These authors contributed equally to this work

crawling. During this transition, the euglenids don’t touch the
wall, and are sensitive to the confinement through hydrodynamic
interactions only. Another amazing example is that of parame-
cium8,9, when they take a cylindrical shape to swim in narrow
capillaries.

In the context of artificial micro-swimmers, a now classical
strategy is to exploit phoretic effects10,11 to ensure propulsion
by locally inducing gradients that generate a flow field around
the swimmer, which in turn ensures its propulsion. The gradi-
ent can be induced by engineering an asymmetry in the swim-
ming body – the so called Janus particles – and thereby obtain
auto-phoretic swimmers (diffusio-phoresis12, thermo-phoresis13,
electro-phoresis14). More recently, it was shown that a sponta-
neous symmetry breaking of the flow field, non linearly coupled
to the advection-diffusion of the scalar field, can also lead to self-
sustained propulsion15,16. Swimming droplets, generating a so-
lute gradient around them, are the prototypical experimental re-
alization of this mechanism17–20. ‘ The presence of walls or ob-
stacle can alter the swimming motion in different ways. The most
common and unavoidable one is the disturbance of the hydrody-
namic flow field. The case of weakly confined swimmers inter-
acting with the boundaries only via the far-field hydrodynamics
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flow has been intensively studied theoretically21–28. In this sit-
uation, the flow field around the swimmer is affected through
the no-slip condition at the boundaries. Theoretical studies for
spherical swimmers23,24 demonstrated that the behavior of the
swimmer (helical vs straight trajectory - attraction vs repulsion
by the boundary) then strongly depends on its nature (pusher
- puller - neutral). Experimental investigations on real swim-
mers29 have revealed the diversity of the flow field developing
around a micro-swimmer under such confinement. In the case of
the phoretic swimmers, the transport of the scalar field will also
be altered and thereby modify the swimming motion. The way a
single flat boundary (a wall) alters the swimmer motion has been
documented both theoretically and experimentally30–34. In the
case of the swimming droplets, which is the focus of the current
work, the situation is yet more complex because of the non linear
coupling between the flow field and the advection-diffusion of the
solute. The response of the swimmer motion to the proximity of
the wall depends on the relative importance of the advection and
the diffusion of the scalar field. Quantitative measurements of the
velocity field around a droplet swimming close to a wall could
be analyzed and described theoretically recently35, but little is
known about the swimming motion in more confined geometries
such as micro-fluidic channels36,37.

In the present work, we study experimentally the motion of a
pure water swimming droplet18, in square and cylindrical capil-
laries with different levels of confinement. Amazingly, the droplet
keeps its ability to swim under very strong confinement L/2h> 10,
where 2h is the width of the capillary and L is the length of the
strongly elongated droplet. This is not only observed for square
capillaries, but also for cylindrical ones, for which the droplet
body is separated from the lateral boundaries by a lubrication
film of a few microns in thickness. Furthermore for even larger
confinement, we observe the spontaneous division of the droplet
at its rear part. Both observations stress the crucial role of the
active stresses at the droplet interface. The main goal of the
present work is to quantify these new features, qualitatively dif-
ferent from that of flow-driven passive droplets and unveil the
diffusio-phoretic mechanisms coupled to the interface dynamics,
responsible for them.

The paper is organized as follow. After a thorough description
of the experimental setting, we characterize the swimming mo-
tion of the droplet in different channel-like geometries. We then
propose a theoretical description, which accounts for the main
observations, despite some important simplifications. Discussion
about these simplifications and perspective for future investiga-
tions conclude the paper.

2 Experimental setting
The experimental system is made of a water droplet inside a glass
capillary filled with a continuous oil-surfactant phase. The oil is
squalane and the surfactant is mono-olein, a nonionic surfactant
at a concentration c = 25 mmol/L, which is far above its critical
micellar concentration (CMC ' 5 mmol/L).

In large chambers18 (of diameter and thickness much larger
than the droplet size) filled with the same oil-surfactant solu-
tion, such water droplets of typical size a= 100 µm spontaneously

start swimming. The swimming motion results from the combi-
nation of two ingredients. First, the system is far from its physico-
chemical thermodynamic equilibrium, which is a micro-emulsion
made of inverse micelles filled with water, in the oil phase. As a
result, a flux of water takes place continuously from the droplet
to the inverse micelles38. Secondly, the resulting isotropic con-
centration field of inverse swollen micelles happens to be unsta-
ble against an infinitesimal flow disturbance: in the presence of
any tiny gradient of swollen micelles at the interface, Marangoni
stresses and phoretic flows take place, which induce a mobility
of the droplet towards regions of small concentration, and there-
fore enhance the initial disturbance. For this instability to take
place15,16,18, the Péclet number Pe = U∗a/D, where U∗ is the
characteristic phoretic velocity, a the radius of the droplet and
D is the diffusion coefficient of the micelles, must exceed some
critical value Pec = O(1). In other words, the diffusion of the mi-
celles must be slow enough compared to their advection by the
Marangoni and phoretic flows.

Here we confine such droplets in long micro-channels (of
length typically 2 cm, much longer than the droplet size) with dif-
ferent cross-sections of typical inner size h (40µm < h <200µm)
comparable to or smaller than the droplet size. Three differ-
ent 1D geometries are used: square glass capillaries (Figure 3
(a)), h is then defined as half the inner dimension of the capil-
lary, circular glass capillaries (Figure 3 (b)), h is then defined as
the radius of the capillary, and stretched circular capillaries (Fig-
ure 4) whose inner radius varies continuously along their length
between 2h = 100 µm (at both ends), and a constriction of diam-
eter 2hmin, in the middle of the capillary, with a typical gradient
of diameter dh

dx = ±0.02. Thus they present a convergent region
followed by a divergent one.

At the beginning of each experiment, one droplet is produced
at one end of a capillary previously filled with the oil-surfactant
solution. The droplet spontaneously starts swimming. Both capil-
lary ends are left open to the air and no external flow is imposed.
Three sets of experiments are conducted. The first set of exper-
iments focus on the shape detection and tracking of the droplet
in square, circular and stretched capillaries (section 3.1 and 3.4).
A second set of experiments is dedicated to the study of the flow
field around the droplet in circular capillaries using particle im-
age velocimetry (PIV) (section 3.2). For the third set of exper-
iments, a fast camera is used to study the dynamics of the rear
of the droplet in stretched capillaries during splitting events (sec-
tion 3.5). A complete description of the materials and methods is
given in the appendix A.

3 Experimental results
We start by conducting experiments in glass capillaries having a
square or a circular cross-section of comparable inner size be-
tween 2h = 80 µm and 2h = 400 µm. Upon production, in square
capillaries, all droplets start swimming whatever their size. In
circular ones, droplets of size up to six times the capillary diame-
ter also swim, whereas the longer ones spontaneously divide into
two droplets, which each starts swimming in opposite directions.
After less than a minute, all droplets reach a stationary state, and
keep a persistent direction (except for the very small, essentially
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Fig. 1 Droplet velocity in square (top) and cylindrical (bottom) capillaries (a) Sketch of a droplet in a square capillary, with snapshots of three
droplets under increasing confinement L

2h = 0.5, L
2h = 1, L

2h = 8.5 in a square capillary of half-width h = 50 µm. (b) Velocity V of droplets of various
lengths L swimming alone in square capillaries of different half-heights h, as a function of the confinement L

2h . (c) Sketch of a droplet in a circular
capillary, and snapshots of three droplets under increasing confinement L

2h = 0.5, L
2h = 1.5, L

2h = 4 in a circular capillary of radius h = 50 µm. (d) Velocity
V of droplets of various lengths L swimming alone in circular capillaries of different radii h, as a function of the confinement L

2h . The straight horizontal
dotted line stresses the fact that even for the largest confinement, the droplet velocity is non-zero.

unconfined, ones - L
2h < 0.2, that sometime change direction). In

the following we shall concentrate on droplets swimming in one
direction only.

3.1 Droplet Velocity vs. Confinement

The behaviour of the swimming droplet strongly depends on the
confinement, but not much on the capillary geometry. A video
of the swimming of three droplets of different sizes (L = 50 µm,
90 µm or 400 µm) in circular capillaries of radius h = 50 µm
is provided in the electronic supplementary information. Typical
shapes of droplets in square and circular capillaries are shown in
Figure 1, together with their velocity dependence on the confine-
ment L

2h .

Droplets smaller than the capillary inner size are spherical of di-
ameter L ( L

2h < 1). Such droplets oscillate between the two sides
of the channel (in the median plane perpendicular to gravity). Be-
cause of buoyancy, they follow the bottom wall, thus performing
a 2D motion on the bottom plane of a square capillary, and a 3D
motion on the curved bottom surface of a circular capillary. The
velocity of the droplet varies during an oscillation: it is minimum
when the droplet reaches a side wall, and maximum far from the
walls. For such small droplet, we measure the velocity averaged
in time 〈V 〉, together with its standard deviation

√
〈V 2〉−〈V 〉2.

The variations of the velocity during an oscillation period explain

the large standard deviation of the velocity.
Droplets larger than the capillary inner size take an elongated

shape ended with two spherical caps. The total length of the
droplet is denoted L ( L

2h ≥ 1). The elongated part of the droplet
is separated from the glass wall by a film of oil (the droplet is
never observed to wet the glass). Inside a square capillary, the
gutters of the square cross-section give space for the outer fluid
to flow. Inside a cylindrical capillary, the droplet is separated
from the wall by a lubrication film of up to a few micro-meters
in thickness only. We observe that the cross-section of the droplet
has a radius that varies along its length, reaching a local minimum
at the rear of the droplet. We call this region where the droplet is
the thinnest the neck of the droplet.

Starting from the smaller confinement, the velocity decreases
with increasing confinement *. When the confinement is greater
than 1 (elongated droplets), the droplet velocity rapidly con-
verges toward a small but finite value. Amazingly, further in-
creasing the confinement, up to L

2h = 9 in square capillaries and
L
2h = 6.5 in circular capillaries, the velocity remains constant. This
is all the more surprising in the case of the cylindrical capillar-
ies, for which the mass conservation imposes that a significant

* In 18, it was shown that in 3D/2D, the velocity of the droplets increase with their
size, V ∝ a.
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Fig. 2 PIV of the flow field around droplets swimming in circular capillaries: PIV around (a) a circular droplet ( L
2h = 1) and (b) a long droplet

( L
2h = 3) in a circular capillary of radius h = 50 µm. The two first rows display the color-map of the velocities ux (direction of swimming) and uy around

the droplet. The third row shows several streamlines around the droplet; and the fourth row displays the variation of the average over y of the velocity
modulus, along x.

amount of fluid must be driven through the thin lubrication film,
leading to a potentially strong dissipation.

In the following, we focus on the behaviour of long droplets
( L

2h > 2) in circular capillaries, the most intriguing situation and
also the simplest geometry to handle theoretically.

3.2 Flow field

PIV is performed in the median plane of droplets swimming in
cylindrical capillaries of radius h = 50 µm. Figure 2 summarizes
the observations obtained around (a) a spherical droplet of typi-
cally the size of the capillary, L

2h = 1, and (b) a long droplet of size
L
2h = 3. From top to bottom, we show the component ux and uy of
the flow field, a few selected streamlines and the modulus of the
velocity averaged over the capillary thickness 〈U〉y, as a function
of the distance from the droplet interface.

A first crucial observation is that there is no flow far from the
droplet (although the two ends of the capillary are left open to
the air). All flows take place close to the droplet interface, up to
a distance of typically the droplet size. Note that the resolution
of the PIV (16 µm/pixel), is not high enough to resolve the flux
in the lubrication film on the side of the droplet, and therefore
only gives a global indication on the flow direction opposite to
the droplet direction of motion.

In front of spherical droplets, the flow is symmetric in y, and
two recirculating regions are observed at the front and back of
the droplet. The velocity of the fluid in these regions is similar in
magnitude to the droplet velocity (∼ 3 µm/s).

In front of long droplets, only one large recirculating region
develops on the channel width, bringing out a symmetry breaking

along the y axis. The direction of this recirculation is stable during
one experiment but switches between the two possible directions
from one experiment to another. A possible interpretation of this
observation is that the stagnation point observed in front of the
small droplets is unstable for elongated droplets. The velocity of
the fluid in this region is larger than the droplet velocity (∼ 10
µm/s). Finally, we notice that the PIV at the back of the droplet is
disturbed by an agglomeration of the tracers at a stagnation point
located at the extremity of the back cap, which makes the precise
flow profile not fully resolved in this region. One can still observe
a strong asymmetry between the front and rear in the amplitude
of the flow, contrasting with the case of the spherical droplets.
A more advanced interpretation of the above descriptions would
require a better knowledge of the flow field around a confined
active droplet, which is not the purpose of this paper, and is left
for future work.

3.3 Shape of the long droplets

Typical shapes for different droplet sizes are illustrated in Fig-
ure 3, (a), (b) and (c). The shape of a droplet is stable and
averaged over the duration of the experiment. Droplets smaller
than the capillary diameter ( L

2h ) are spherical (a) while longer
droplets take an elongated shape ((b) and (c)). This elongated
shape present two particularities. First the thickness of the lu-
brication film is not constant, but increases toward the back of
the droplet; this is a tiny but systematic effect. Second, for con-
finement larger than L

2h = 1.5, a neck appears at the rear of the
droplet. Figure 3 (d) and (e) display the neck radius rn, and its
distance from the back of the droplet ln. At the smallest confine-
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Fig. 3 Shape of an elongated droplet: (a), (b) and (c), image and corresponding shape of droplets of size (a) L
2h = 0.5, (b) L

2h = 1.7, (c) L
2h = 4.

Long droplets present a neck of radius rn located at a position ln from the back of the droplet. (d) Evolution of the dimensionless neck radius rn
h with

the confinement L
2h . (e) Evolution of the dimensionless neck position ln

2h with the confinement L
2h . The continuous black lines correspond to a linear

regression of the data.

ment, the neck forms at a distance ln
2h ' 0.5. The neck is then

shallow, rn
h . 1. As the confinement increases, the neck goes fur-

ther away from the rear of the droplet, and deepens. The shape
of the droplet rear hence depends on the droplet length.

The fact that the film thickens from the front to the rear of the
droplet and that the neck shape depends on the droplet length
contrast with the standard Bretherton phenomenology39, which
describes the shape and motion of passive droplets driven exter-
nally. This underlines the conceptual difference with the present
case, where active droplets are driven by self-induced local flows
and calls for investigation at even higher confinement.

3.4 Further confinement

Very long droplets ( L
2h > 7) in circular capillaries are not stable at

production and divide spontaneously into two or more droplets.
A way to explore higher confinement and to probe continuously
its effects on the droplet behavior, is to conduct experiments in
stretched circular capillaries. Such devices keep the ideal circular
cross-section and mimic perfectly situations where real swimmers
have to experience confinement gradient.

Upon production at one end of the capillary (h =50 µm),
the droplet (of typical length between 50 and 150 µm) starts
swimming. As it swims down the convergent part of the cap-

illary, the local radius of the capillary decreases and the length
of the droplet increases per conservation of the droplet volume
V (L ∝

V
h2 ), as does the confinement ( L

2h ∝
V
h3 ). Two different

phenomena are observed, a simple elongation of the droplet, fol-
lowed by a contraction after the constriction, or spontaneous di-
vision, presented respectively in Figures 4 and 6. A video of
the swimming of two droplets, one simply elongating, the other
spontaneously dividing in stretched capillaries is provided in the
electronic supplementary information. For each experiment, the
droplet is tracked, and its shape detected along its motion. At
each time, the radius of the capillary h at the position of the
droplet center of mass (b), the confinement of the droplet L

2h (c),
the velocity of the droplet V (d), the neck radius rn (e) and the
neck position ln (f) are measured as a function of the position of
the droplet center of mass x.

Let us first focus on the simple elongation of the droplet. Fig-
ure 4 shows in (a) three snapshots of a droplet swimming in a
stretched circular capillary, when it is in the convergent region, at
the constriction, and when it is in the divergent region. Figure 4
(b) to (f) display the measurements obtained for two different ex-
periments with stretched capillaries of different shapes, one with
hmin = 55 µm, and one with a larger constriction hmin = 71 µm.
Throughout the experiment, the droplet swims from one end of
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Fig. 4 Elongation of a swimming droplet in a stretched capillary:
(a) Sketch of the geometry and images of the droplet at three different
times corresponding to three positions in the stretched capillary. At 460s,
the droplet is at the position where the confinement is the highest. (b)
to (f) provide the evolution of several quantities with the position x of the
droplet in the capillary. (b) Height of the capillary at the center of mass
of the droplet, (c) confinement of the droplet, (d) velocity of the droplet
(average and std over 20 s), (e) dimensionless radius of the neck, (f) di-
mensionless position of the neck. The vertical black dashed line marks
the position of the minimum capillary diameter. The two colors corre-
spond to two different experiments made with different droplet sizes and
capillary shapes.

the capillary to the other. We note a small variation of the droplet
velocity and a more significant dependence of the neck position
and radius with the confinement. More importantly, although the
converging and diverging regions are quite symmetric, the ob-
served dependencies are not. This is further enlighten on Fig-
ure 5, where we compare the dependence on the confinement of
(a) the velocity of the droplet, (b) the neck radius and (c) the
neck position between the convergent and divergent part of the
capillary for the constriction, hmin = 55 µm (brown circles and
diamond) and the straight circular capillaries (green squares).

The velocity slightly increases with the confinement, but also
presents an hysteresis between the convergent (brown circles)
and divergent (brown diamond) regions of the capillary. This last
effect is most likely due to the gradient of capillary radius and
would also exist for passive droplets : the difference of curvature
between the front and back meniscus induces a capillary-induced
pressure gradient inside the droplet, which, for passive droplets,
makes the droplet move toward the highest radius. For an active
droplet, this effect slows down the droplet in a convergent tube,
while it accelerates it in a divergent one. This effect remains how-

Fig. 5 Convergent vs. Divergent dynamics: Evolution of (a) the droplet
velocity, (b) the dimensionless neck radius and (c) the dimensionless
neck position with the confinement; for droplets in straight circular cap-
illaries of half height h = 50 µm (green squares), for one droplet in a
stretched capillary, in the convergent section (dark brown filled diamond),
and in the divergent section (dark brown empty circles).

ever weak, and comparable in magnitude to the variability of the
velocity from one experiment to another (see insert Fig 1.d).

Figure 5 (b) and (c) confirms the dependence of the shape of
the droplet rear with the confinement : the radius of the neck de-
creases linearly with increasing confinement, and its position goes
further away from the back of the droplet. The shape evolution of
the rear with increasing confinement is reversible when decreas-
ing the confinement, which is an indication that the dynamics is
quasi-static, and that the influence of the capillary-induced pres-
sure gradient is indeed negligible.

Finally, further increasing the confinement, the neck is thus
expected to narrow, until eventually the droplet divides sponta-
neously.

3.5 Spontaneous division of the droplet
This spontaneous division phenomenon is presented in Figure 6.
The beginning of the experiment remains the same as above, the
droplet starts swimming, and as it progresses in the convergent
region of the capillary, it elongates. Then at t=40s, when the
droplet becomes "too confined", it undergoes a spontaneous di-
vision at the position of the neck, as can be seen in Figure 6 (a).
The daughter droplet (formed by the previous rear of the droplet)
does not swim, which suggests that there is no fuel anymore for
propulsion, namely that all micelles present in its environment
have been saturated with water. The main droplet that shrunk
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Fig. 6 Division of a droplet in a stretched capillary: (a) images of
a droplet at different positions in the stretched capillary: successive di-
visions occur. (b) to (f) give the evolution of quantities depending of the
position x of the droplet in the capillary, for the corresponding experiment.
(b) Height of the capillary at the center of mass of the droplet, (c) droplet
confinement, (d) droplet velocity (average and std over 20 s), (e) dimen-
sionless radius of the neck (average and std over 20 s), (f) dimensionless
position of the neck (average and std over 20 s).

in volume continues to swim in the same direction. As the con-
finement of the droplet further increases, the droplet eventually
divides a second time or more (up to 14 successive divisions of
the same droplet have been observed). Once the main droplet
reaches the divergent region, its length decreases normally due
to volume conservation. No division is observed in the divergent
region. The behaviour of the droplet only differs from that of the
simple elongation case at the approach of a division event (∼50 s
before division). Let us first describe a succession of spontaneous
divisions (Figure 6 (b) to (f)). Right before the division the neck
rapidly shrinks (e), until its radius reaches 0 at division. The con-
finement (c) at which the division occurs always occurs around
L
2h = 10, slightly decreasing at each successive division.

In this series of experiments, the time and spatial resolutions
are not large enough to give access to the precise dynamics of a di-
vision. Another series of experiments have thus been conducted,
using a microscope and a fast camera, and focusing on the first
division of a long droplet. Because the field of view is now lim-

Fig. 7 Dynamic evolution of the neck: (a) linear plot and (b) logarith-
mic plot of the evolution of the dimensionless neck radius with time. The
red and orange triangles and the pink empty circles correspond to exper-
iments at different acquisition frequencies of droplet dividing, considering
only the data up to the first division. t = 0 corresponds to the time of divi-
sion. The brown full circles correspond to an experiment with no division,
t = 0 is then chosen so that the convergent part of the experiment aligns
with the others. The data for the intermediate regime of the experiment
at facq = 1000 Hz and for the last 2 ms before division of the experiments
at facq = 10000 are fitted with a logarithmic regression (continuous black
lines), with an evaluation of the confidence interval (dashed black lines).

ited, to a square of size 2h, we don’t have access to the position
of the neck ln, but the radius of the neck rn is measured precisely.
The dynamical evolution of rn for two of such experiments are
presented in Figure 7, one conducted at an acquisition frequency
of 1000 Hz, with a spatial resolution of 1.692 µm/pix (orange
top oriented triangles), and another conducted at an acquisition
frequency of 10000 Hz, with a spatial resolution of 0.840 µm/pix
(red down oriented triangles). Figure 7 also shows the dynamical
evolution of rn for the first division of the droplet in the previ-
ous experiment conducted at a frequency of 1 Hz (pink empty
circles), and the dynamical evolution of rn during an experiment
without division (dark brown full circles). In the figure, the time
t = 0 corresponds to the division time (evaluated with the tempo-
ral resolution of each experiment). For the experiment without
division, it is set such that the neck radius match in the converg-
ing part of the capillary. Figure 7 (a) presents the data in a linear
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plot, while the Figure 7 (b) presents the same data in a log-log
plot.

The radius of the neck follows three successive regimes; the
first one is slow, and for droplets that do not undergo division, this
regime is reversible when the confinement increases again. In this
regime, the evolution of the shape of the droplet is quasi-static,
and controlled by the geometry of the problem. The second and
third regime are fast, and lead to the division of the droplet. Once
the droplet enters these regimes, the division always take place.
Both regimes are power-law regimes, in the time −t separating
from the instant of the division. However we observe two very
different power laws. For rn

h & 0.1, rn
h ∼ |t|β with β ∈ [1/8−1/6].

For rn
h . 0.1, in the last moments before the division, rn

h ∼ |t|α with
α ∈ [2/3−1].

Such a power-law behaviours are naturally found in the ul-
timate fate of the break-up process for a droplet, because of
the absence of characteristic length-scale but also in transient
regimes40. The value of the exponent is dictated by which effects
dominate and balance amongst surface tension, viscous and iner-
tial forces. Here, the viscosity of the outer fluids dominates, and
one expects the simple self-similar form to be broken by the pres-
ence of logarithmic terms. Finally, the presence of active stresses
is likely to alter the already numerous possible scaling regimes.
Investigating such a fascinating question is beyond the scope of
the present paper. It would require even much faster acquisition
rate, and dedicated experiments. The exponents provided here
should be seen as indicative and a source of motivation for future
work.

Let us recap our main findings, which we now aim at captur-
ing theoretically, on the basis of the reformulation of the classical
Bretherton problem in the realm of active droplets. Two unex-
pected phenomena have been observed: the convergence of the
droplet velocity towards a constant value when the droplet be-
comes longer than the capillary height, and the spontaneous di-
vision of the droplets under high confinement. In the following
section, we introduce a simple theoretical framework that will
allow to grasp the physics at play behind such observations.

4 Theoretical approach

4.1 Introduction

The motion of confined droplets or bubbles under the action of
an external flow has been widely studied since its original de-
scription by F.P. Bretherton in a cylindrical tube39 and are usu-
ally called Bretherton models in tribute to the British professor.
With the emergence of droplet-based microfluidics, a particular
interest has been devoted to squared channels41,42. Pressure, or
gravity driven flows are not the only way to induce droplet mo-
tions in a channel. Marangoni stresses can also induce the migra-
tion of such confined droplets as described and observed in the
presence of external thermal gradients43. In our case, the motion
of the droplets is not externally driven, neither by pressure nor
a temperature gradient as there is no observable flow far from
the droplet (U∞ = 0), but is the result of local flows induced by
the spontaneous establishment of solutes concentration gradients
around the droplet. To the best of our knowledge, such a problem

has never been considered theoretically before, and is the primary
subject of the following section.

The flow around the droplet is driven by a combination of
phoretic and Marangoni effects: concentration gradients of all
present solute along the interface generates shear stress (denoted
σ) and velocity (denoted v) jumps at the interface10. For sim-
plicity purpose, we consider in the following that the velocity and
stress jumps through the interface result only from the concen-
tration gradient in swollen micelles in the outer fluid, but one
should keep in mind that more complex and realistic models of
the physico-chemical interactions at the interface have been pro-
posed44, taking into account the surfactant concentration at the
interface. Then the velocity and stress jumps can be expressed as:
σoil,‖−σwater,‖ = −K∇‖c and voil,‖− vwater,‖ = M∇‖c, where c is
the solute concentration field, ∇‖ is the gradient operator tangent
to the interface, K ≈ kBT λ and M ≈ kBT λ 2/ηoil where kBT is the
thermal energy, λ the typical interaction distance between the so-
lute and the interface and ηoil is the oil viscosity. Under the above
assumptions, the Marangoni effects dominate with respect to the
phoretic ones18, so that, in what follows, we will assume conti-
nuity of the velocity across the interface and the presence of a
stress jump at the interface. We further notice that the magnitude
of the viscous shear stress in the water phase ∼ ηwaterv/h is much
smaller than the one in the oil phase ∼ ηoilv/e, where v is a typi-
cal velocity in the film and e is a typical lubrication film thickness
as the viscosity ratio ηwater/ηoil ≈ 1/36 and the film thickness to
capillary height ratio is small with respect to unity, e≈ 1 µm and
h ≈ 100µm. Therefore, the tangential stress balance simplifies to
σoil,‖ = σ(x) = −K∇‖c. We can thus focus on the flow in the oil
phase only, and we refer to the oil viscosity as η to lighten the
notations. The peculiarity, and difficulty of this problem lies in
that the hydrodynamic and the transport of the chemical species
(surfactant molecules and swollen micelles) in the solution are
non-linearly coupled via the Marangoni stress σ(x), which varies
along the interface.

The present theoretical description deals with highly elongated
droplets, swimming in cylindrical tubes that are axially invariant,
leaving aside the case of squared channel43,45,45. In such con-
fined environment, various lengths of different magnitude are at
play : the radius of the capillary h, the length of the droplet L,
the thickness of the lubrication film e(x) and, at the microscopic
level, the typical distance of interaction between the solute and
the interface λ 10. Given the large scale separation between these
lengths, L > h� e� λ , it is a standard approach to separate the
problem in different regions and match the corresponding solu-
tions asymptotically39,43. Usually, five zones are distinguished, as
exhibited in Fig. 8: the front (I) and rear (V) caps that are sup-
posed spherical, the front (II) and rear (IV) dynamical menisci of
variable curvature, and in between the lubrication film (III) that
is defined as the limiting solution of the dynamical menisci with
a uniform thickness.

We propose to use here a similar approach. In section 4.2, we
derive a lubrication model for the velocity field, coupled to the
transport of solute. Then, in section 4.3, we focus on the lubrica-
tion film dynamics (zone III) where capillary flows are negligible
behind Marangoni flows and we propose a numerical resolution
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of the resulting system of equations. This allows to identify the
typical scales of the Marangoni stress and the film thickness in the
problem. Lastly, in the section 4.4, we simplify the equation in the
dynamical meniscus by assuming a uniform Marangoni stress, of
typical magnitude equal to the one identified in the zone III, and
we find a Landau-Levich type equation. The matching of this so-
lution to the spherical cap allows to obtain a scaling relation of
the droplet velocity, which we finally compare to the experimental
data.

Fig. 8 Sketch of an elongated droplet in a circular capillary, in the
lab frame : the droplet is divided into five regions, two spherical caps (I)
and (V) of radius h, two dynamical meniscus, the front dynamical menis-
cus (II) of typical size ` and the rear dynamical meniscus (IV) where a
neck forms, and a lubrication film (III) of variable thickness e(x), where
a Marangoni stress σ(x) at the interface induces local flows of velocity
v(x,y). The resulting droplet velocity is denoted V . Far from the droplet,
there is no flow U∞ = 0.

4.2 Lubrication model in the zone II-III-IV

We consider the steady motion of a water droplet in oil that is
assumed to behave as a Newtonian fluid. The Reynolds number
Re= ρV h/η , where ρ is the oil density is much smaller than unity
so that fluid inertia is neglected. The water-oil interface position,
denoted e(x), depends on x and is almost parallel to the direction
of motion x in the regions II-III-IV so that one can use the lubri-
cation approximation to describe the flow. Therefore the pressure
field p is independent of the normal direction y and is given by
the Laplace pressure, via the normal stress continuity:

p(x) =−γe′′(x)− γ/h, (1)

where γ denotes the water-oil interfacial tension. We have ne-
glected the non-linear terms in the curvature in accordance with
the lubrication approximation. We also suppose that the interfa-
cial tension is uniform, assuming that the surface tension differ-
ence resulting from the chemical activities is small with respect
to the equilibrium surface tension. The momentum balance in
the direction of motion reduces to ∂x p = η∂ 2

y vx, where vx is the
velocity component in x. The shear-stress continuity at water-oil
interface gives η ∂yvx

∣∣
y=e(x) = σ(x) at leading order in the lubrica-

tion scaling, where σ(x) is the Marangoni stress. In the reference
frame of the moving droplet, the no-slip boundary condition at
the wall reads vx|y=0 = −V . As a consequence of the global flux
conservation, the flux of water must balance the oil flux, which
means that the typical velocity in the film v is of the order of
V h/e, where e is the typical lubrication film thickness. Hence, the
typical velocity in the film is hundred times larger than the drop

velocity and we can safely approximate the no-slip boundary con-
dition to vx|y=0 = 0. The resulting flow is a linear combination of
a Poiseuille and Couette terms and reads:

vx(x,y) =
p′(x)
2η

(
y2−2ye(x)

)
+

σ(x)y
η

, (2)

vy(x,y) =−
p′′(x)
2η

(
y3

3
− y2e(x)

)
+

p′(x)e′(x)y2

2η
− σ ′(x)y2

2η
. (3)

Computing the pressure gradient from (1) and integrating the
flow in y allows us to express the flux conservation. We find:

− γe3(x)e′′′(x)
3η

+
σ(x)e2(x)

2η
=−φ , (4)

where the oil flux per unit of orthoradial length is denoted φ . The
first term on the l.h.s of this equation corresponds to the driving
by capillarity and the second one to the Marangoni ones. The
global mass conservation in a plane perpendicular to the capillary
axis implies that the flux of advected oil in the lubrication layer
must balance the longitudinal water flux

πh2V =−2πhφ . (5)

The Marangoni stress originates microscopically from the gradi-
ents of swollen micelles interacting with the interface. The trans-
port of swollen micelles obeys the stationary advection-diffusion
equation

vx(x,y)
∂c
∂x

+ vy(x,y)
∂c
∂y

= D
(

∂ 2c
∂x2 +

∂ 2c
∂y2

)
≈ D

∂ 2c
∂y2 , (6)

where D is the diffusion constant of swollen micelles in solution
and c(x,y) denotes the concentration fields of solute. In what
follows, the diffusion terms in x are neglected with respect to the
ones in y in agreement with the lubrication approximation. The
swollen micelles are produced at the water-oil interface with a
rate A that we assume to be constant, which gives the boundary
conditions at the water-oil interface

D
∂c
∂y

∣∣∣∣
y=e(x)

= A. (7)

The wall is assumed to be impermeable such that the diffusive
flux vanishes at the wall, i.e.− ∂c

∂y

∣∣∣
y=0

= 0. The Marangoni stress

is induced by the concentration gradient tangent to the interface
as

σ(x) =−K (~t.~∇)c
∣∣∣
y=e(x)

=−K (∂x + e′(x)∂y)c
∣∣
y=e(x) . (8)

where the non-linear terms in e′(x)2 of the tangent vector are
neglected to be consistent with the lubrication approximation.

In the following we shall not solve the general lubrication prob-
lem but focus on the dominant swimming mechanism with the
aim at identifying the scaling governing the droplet velocity. In
the next section, we focus on the solution in the lubrication film,
which corresponds to the zone III in Fig. 8.
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4.3 Scaling and numerical solution in zone III.

In this region, the water-oil interface is nearly flat, although we
stress that the film thickness is not necessarily uniform in the lu-
brication film zone, which is the major difference with classical
Bretherton models. The goal of this section is to provide a solu-
tion of the lubrication model in the zone III.

A first step is to identify the proper length and stress scales
at play. The dimensionless ratio φ/D, which corresponds to the
ratio between horizontal and vertical transport scales, compares
advection to diffusion and is therefore analogous to a local Péclet
number. In the experiments presented here, its typical magni-
tude is large Pe = φ/D ∼ 100 (numerical application detailed in
the annex B). Denoting by e∗ the characteristic thickness of the
film, one finds from equation (7) a concentration scale c∗ = A

D e∗

and, from equation (8), a stress scale σ∗ = KA
PeD = KA

φ
. The length-

scale e∗ is chosen such that the Marangoni driving dominates in
equation (4) so that σ ∗e∗2

η
= φ , and one obtains:

e∗ = φ

√
η

KA
, x∗ = e∗φ/D, σ

∗ =
KA
φ

, c∗ =
φ

D

√
Aη

K
, (9)

Coming back to equation (4), we then find that the Marangoni
driving dominates as soon as σ∗e∗2 � γe∗4

x∗3 , or, in other words

when x∗ � `∗, with `∗ = e∗
(√

ηKA
γ

)−1/3
. One notices that the

length scale `∗ has a similar scaling form as the dynamical menis-
cus length in the classical Landau-Levich-Derjaguin-Bretherton
problem. A nice way to see the analogy is to understand the ratio
Ca =

√
ηKA
γ

as the ratio of two velocities, the Marangoni driving

velocity v∗ =
√

KA
γ

and the capillary one Vγ =
γ

η
exactly as in the

classical problem where the driving velocity is externally set and
CaB = V/Vγ = ηV/γ. In the experimental system, the capillary
number is estimated to Ca∼ 10−3 (numerical application detailed
in the annex B), which is small with respect to unity. Therefore,
it justifies the use of the Bretherton type scale separations in the
present work.

We introduce the dimensionless variables with ·̃ as e(x)= e∗ẽ(x̃),
y = e∗ỹ, x = x∗x̃, c(x,y) = c∗c̃(x̃, ỹ), σ(x) = σ∗σ̃(x̃) and the equa-
tions (4)(6)(7)(8) become:

− 2ỹ
ẽ2

∂ c̃
∂ x̃

+
2ẽ′y2

ẽ3
∂ c̃
∂ ỹ

=
∂ 2c̃
∂ ỹ2 , (10)

∂ c̃
∂ ỹ

∣∣∣∣
ỹ=ẽ

= 1,
∂ c̃
∂ ỹ

∣∣∣∣
ỹ=0

= 0, (11)

σ̃(x̃) =− 2
ẽ2(x)

= (∂x̃ + ẽ′(x̃)∂ỹ)c̃
∣∣
ỹ=ẽ . (12)

The later equations are solved numerically using a volume-of-
fluid method46. The Eq. (10) is analogous to a 1D heat equa-
tion where −x̃ represents time. Therefore, we set “initial condi-
tions” at x̃ = 0 and solve for negative x̃. In this model, the initial
conditions represents an arbitrary x position near the boundary
between the zone II and III in Fig. 8. There we assume that the
solute has not diffused over the full lubrication film and is local-
ized near the water/oil interface. We proceed as follows: we first
choose an initial thickness ẽ(x̃ = 0) and we take a initial concen-
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Fig. 9 (a) Initial conditions at x/x∗ = 0 for the concentration fields given
by c̃(x̃ = 0, ỹ) ∝ exp( ẽ(x̃=0)−ỹ

L ). The initial thickness is set to ẽ(x̃ = 0) = 0.5
(resp. 1.8) in the initial conditions denoted 1− 2 (resp. 3− 4) and the
dimensionless length L = 0.05 (resp. 0.1) in 1− 3 (resp. 2− 4). (b)
Evolution of the non-dimensional film thicknesses along the x-axis in the
numerical simulation for the different initial conditions. The inset shows
a zoom near x = 0. (c) Colormap of the non-dimensional concentration
field of solute c(x,y)/c∗ resulting from the numerical integration with the
initial condition 1. The thickness profile is highlighted in black.

tration fields as c̃(x̃ = 0, ỹ) ∝ exp( ẽ(x̃=0)−ỹ
L ), where L is a dimen-

sionless length scale that would correspond to the length over
which the solute has diffused on the region I-II in Fig. 8. The
prefactor of the initial concentration is set to be consistent with
the flux boundary condition Eq. (11).

In Fig. 9 is shown the numerical solution of Eq. (10). We exhibit
four solutions with a subscript i = (1,2,3,4) that differs via their
initial conditions, plotted in Fig. 9(a). In the panel (b) is plotted
the evolution of the lubrication film thickness along the x-axis for
these four different initial conditions. We observe that the lubri-
cation film converges toward a uniform solution, with a constant
thickness e∞ =

√
2e∗ =

√
2φ
√

η/(KA), a constant concentration
gradient ∂xc and a Marangoni stress σ∞ = −σ∗ = −KA/φ , what-
ever the initial film thickness and concentration. The concentra-
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tion field of the solution 1 is displayed in Fig.9(c). As we already
stressed, the film thickness is not uniform; the uniform solution is
obtained only for |x| & x∗, that is when the solute diffusing front
reaches the wall at y = 0. The concentration fields in this regime
is in very good agreement with the uniform solution computed in
Appendix C.

4.4 Scaling of the droplet velocity.

In this section, we aim at deriving a scaling law for the droplet
velocity using the aforementioned scales. Solving the lubrication
problem in zone II, requires the full resolution of equation (4),
which has no simple or scaling solution. In order to identify a
scaling for the swimming velocity we therefore assume that the
Marangoni stress in zone II does not change much and we give it
a uniform value set by that of the uniform solution of the lubri-
cation film σ(x) = σ∞ = −σ∗. This is a strong assumption which
will only be validated by comparison with the experimental data.
Having done so, Eq. (4) is written in a closed form and one can
then use e∞ =

√
2e∗ and `∗ as a thickness and x scale and write

the resulting flux conservation in a universal form using the di-
mensionless variables E(X) = e(x)/(

√
2e∗), X = x/`∗ :

2
3

d3E
dX3 =−E2−1

2E3 . (13)

The latter equation admits a trivial solution E = 1, which corre-
sponds to the uniform film usually found in Bretherton models
and which is identical to the uniform solution found at |x| > x∗

in the previous section. We solve Eq. (13) numerically, assuming
limX→−∞ E(X) = 1. The numerical solution is found to diverge at
X → ∞ with a finite second derivative, leading to limx→∞ e′′(x) =
2.125

e∗ (σ ∗e∗
γ

)2/3 for the dimensional variables. The limit curvature

must be matched to the curvature of the spherical caps 1
h in order

to preserve the continuity of the pressure in the region I and II,
which yields to the following relationship

e∗

h
= 2.125

(
σ∗e∗

γ

)2/3
. (14)

Note that, although the right hand side term of eq. (13) dif-
fers from the standard Landau-Levich-Derjaguin and Bretherton
one, the film thickness scaling law remains of the same form, as
σ∗e∗/γ =

√
ηKA/γ = Ca. The reason is that the exponent 2/3 re-

sults from the presence of the third order derivative in the left
hand side of eq. (13) and the fact that the asymptotic matching
with the spherical caps involves the curvature, hence the second
derivative of e(x), two aspects which are common to our prob-
lem and the classical one. The product of Marangoni stress and
film thickness appears as the relevant traction force that deforms
the interface, analogous to ηV in the standard Bretherton frame-
work. Finally, recalling the global mass conservation Eq. (5), one
finds the swimming velocity V =−2φ/h = σ ∗e∗

η

e∗
h . Combining this

expression with Eq. (14), we find:

V = 2.125
σ∗e∗

η

(
σ∗e∗

γ

)2/3
∼
√

KA
η

(√
ηKA
γ

)2/3
(15)

‘ or, in a more compact form,

V
v∗
∼ Ca2/3. (16)

A first validation of the present scaling relation is that it pre-
dicts a swimming velocity which does not depend on the cap-
illary height h, as observed experimentally. Second, using our
experimental estimation of the ratio between the film thickness
and capillary radius e∗/h ∼ (σ∗e∗/γ)2/3 ∼ 1/100, we deduce that
the meniscus length `∗/h∼ (σ∗e∗/γ)1/3 ∼ 1/10, which is also con-
sistent with the experimental observation. Finally, a numerical
application (using the numerical values given in annex B) leads
to a droplet velocity in the micron per second range, which is
consistent with what is observed in the experiments.

4.5 Saturation of the solute
The above description finds that the interface profile saturates
once the solute has diffused over the film, at a position −x ∼ x∗.
This contrasts with the experimental observation of an increas-
ingly deep neck with increasing confinement, that leads to divi-
sion for L/h > 10. Beside, we observe experimentally that the
daughter droplets that have detached themselves at the rear of
the main droplet don’t swim. This suggests that there is no more
fuel for the propulsion - all micelles in solution have been satu-
rated with water. We speculate that the spontaneous division of
the droplet is related to this saturation of swollen micelles at the
rear of the droplet, an ingredient absent so far from our theoreti-
cal description.

As a matter of fact, one expects the presence of swollen micelles
near the water-oil interface to disturb the sorption kinetic of the
surfactant molecules and to slow down the emission of swollen
micelles44. In the model, the lubrication film thickness at large
−x is found to scales as e∞ ∝ 1/

√
A, and thus is expected to in-

crease as the emission rate decreases. A precise description of a
physico-chemistry that trigger the saturation is beyond the scope
of the paper, but as a minimal description, the model is consistent
with the scenario of a growing lubrication film, at the rear of the
droplet, where the non-uniformity is now driven by the saturation
of swollen micelles.

Let us simply point out a few elements of thoughts. For droplets
that are not too long, we expect a continuous matching between
a modest increase of the lubrication film thickness and the rear
meniscus, where the active stresses have vanished. In such a case,
the dynamics remains steady and the evolution of the droplet
shape should be reversible when entering and escaping a con-
striction zone, as observed experimentally. On the contrary for
very long droplets, the diverging lubrication film thickness gener-
ates strong curvatures, which will eventually trigger a Rayleigh-
Plateau instability and lead to an irreversible dynamical regime
the ultimate fate of which is the division of the droplet.

5 Conclusions
In this work, we presented first-of-a-kind experimental measure-
ments of the behavior of a swimming droplet in one-dimensional
capillaries of different geometries, namely square capillary, circu-
lar capillaries and stretched circular capillaries. For high enough
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confinement, the velocity of the droplet converges toward a small
but non-zero value, while the lubrication layer, which separates
the droplet from the wall, becomes of non-constant thickness and
a neck forms at the rear of the droplet. Under continuously in-
creasing confinement, the deepening of the neck is observed to
lead to successive spontaneous divisions of the droplet. A brief
study of its dynamic shows a rich behaviors that can be the ground
for future works.

We introduce a simplified model for the motion of such a con-
fined droplet following the standard Bretherton approach, with
the major difference that the flow is locally driven by solute con-
centration gradient at the interface of the droplet. We focus on
the front dynamical meniscus and the lubrication layer. The latter
is treated using the lubrication layer approximation, and we find
that the solute concentration converges toward a uniform solu-
tion far from the front meniscus with a uniform thickness. The
front dynamical meniscus is only treated partially, simplifying the
transport equation and assuming a uniform stress at the droplet
interface. The matching of these two regions, using the afore-
mentioned uniform solution, allows us to find a scaling relation
for the emerging velocity of the droplet, which, as observed ex-
perimentally, does not depend on the confinement. Finally we
argue that the saturation of the swollen micelles at the rear of
the droplet, decreases the solute emission flux, giving rise to in-
creasing film thickness, which ultimately is prone to induce the
spontaneous division of long enough droplets.

As the theoretical approach presented in this work was meant
to be kept simple, a certain number of hypothesis have been used.
Among them, the assumption of a uniform Marangoni stress in
the dynamical meniscus is the strongest one. Ideally one would
need to solve the advection-diffusion problem also in this region
to find the precise prefactor for the droplet velocity and check the
robustness of the scaling law derived here.

The experimental measurement of the flow field around a con-
fined swimming droplet, Figure 2 (b) shows that the hydrody-
namics in front of the droplet is also more complex that what we
considered theoretically. More specifically, we observe a large re-
circulation area, which breaks the axisymmetry of the problem.
How to capture this symmetry breaking and coupling it to the
above description is a completely open question. Not only does it
most likely alter the droplet velocity but is also bounded to have
consequences on the interactions between two droplets.

Finally, the spontaneous division of the droplet under increas-
ing confinement is an unexpected consequences of the limited
amount of empty reverse micelles in solution. In this work, we
kept the initial concentration of micelles constant. In a complex
environment where the concentration of reverse micelles could
vary with time and space, this instability would be triggered only
in region where the "food" is scarce, an amazing behavior to ob-
serve, especially in the perspective of using simple physical sys-
tems in the design of probiotic systems.
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A Material and Methods
The experimental system is a water droplet inside a glass capil-
lary filled with a continuous oil-surfactant phase consisting of a
surfactant mixed in squalane. The surfactant is the mono-olein,
a nonionic surfactant at a concentration c = 25 mmol/L, which is
far above its critical micellar concentration (CMC ' 5 mmol/L).
The droplets are produced using a ©Femtojet apparatus by in-
jecting a single droplet of controlled size in the micro-channel
previously filled with the oil-surfactant solution, and left opened
at both ends. The length of the droplet formed varies between
0.25 and 8 times the capillary inner size (for reference, it would
correspond to equivalent spherical droplets of radius between 25
µm and 250 µm.) The droplets are made from a (milli-Q) water
solution of 15%wt NaCl. The continuous phase is a 25 mM mono-
oleine surfactant (MO; 1-oleoylrac-glycerol, 99%, Sigma-Aldrich)
solution in squalane (Sq; 99%, Sigma-Aldrich). The room tem-
perature is kept above 25oC in order to avoid mono-oleine crys-
tallization47.

Three different 1D geometries are used:

1. Square glass capillaries (Figure 3 (a)) of length 5 cm, and
of four different inner sizes: 2h = 400 µm, 2h = 200 µm,
2h = 100 µm and 2h = 80 µm. The capillaries are either used
native, or silanized beforehand. h is then defined as half the
inner dimension of the capillary.

2. Circular glass capillaries (Figure 3 (b)) of length 10 cm, and
of two different inner sizes: 2h = 200 µm and 2h = 100 µm,
all silanized. h is then defined as the radius of the capillary.
To make possible the imaging through the curved shape of
these capillaries, the observation section is immersed into
glycerol whose refractive index is close to glass.

3. Stretched circular capillaries (Figure 4) of length 3-5 cm,
whose inner radius varies continuously along their length
between 2h = 100 µm (at both ends), and a constriction of
diameter 2hmin, in the middle of the capillary, with a typi-
cal gradient of diameter dh

dx = ±0.02. Thus they present a
convergent region followed by a divergent one. These cap-
illaries are designed from circular glass capillaries of inner
size 2h = 100 µm that are stretched by hand by locally heat-
ing and stretching a portion of the capillary of typically 0.5
cm. These stretched capillaries are silanized.

Three sets of experiments are conducted.

i. For the first set of experiments, images of a droplet inside
a square or circular capillary are acquired using a AZ100
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Nikon macroscope, equipped with x1 air objective. The cam-
era is a black and white camera Dalsa Falcon II, with a res-
olution of 4096 x 3072 pixels, and an acquisition frequency
of 1 Hz. The macroscope has a continuous zoom between
x1 and x8, and thus has a variable resolution, which is mea-
sured before each experiment by using a calibration slide.
Typically, to visualize an area of 1 cm in diameter, we use
the x3 zoom, which gives a resolution of 0.3 pix/µm. The
droplet motion in the capillary is then tracked in the frame
of reference of the laboratory, and its shape is detected using
an intensity threshold algorithm.

ii. A second set of experiments is conducted to measure the
flow field around a droplet inside a circular capillary, using a
Particle Image Velocimetry (PIV) technique. Red fluorescent
colloids tracers (Fluoro-MaxT M , 0.6 µm Red Fluorescent
Polymer Microspheres, Thermo scientific) are added in
the oil phase. The seeding is set to approximately 0.25
colloids/µm 3, which corresponds in an illumination plane
of depth 5 µm to little more than one colloid per µm 2, or
one colloid per two pixels2. The images are acquired with
a CCD camera (Andor Zyla 5.5) in the median plane of the
droplet using confocal microscopy with a x10 objective, and
a laser beam at 540 nm, which is the absorption wavelength
of the tracers. The acquisition frequency is 10 frames/s and
the exposure time is 50 ms. The spatial resolution in the
plane is 0.65µm/pixel. For each experiment, 100 images
of the droplet and the surrounding flow field are acquired.
The PIV analysis is performed using the PIVlab48 code on
©Matlab. Pre-processing is done using a Wiener filter of
window size 3 pixels. Then the PIV is performed by using
cross-correlation between two successive images in two
passes of respective interrogation areas of 50 pixels and 25
pixels (which corresponds typically to a window containing
ten tracer particles). Post-processing validation is not used.
The final spatial resolution of the mapping of the flow field
is then 16 µm/pixel. This provides us with the velocity field
in Cartesian coordinates attached to the lab frame at each
time step. We then average in time the instantaneous flow
fields obtained from PIV, thereby reducing the experimental
noise.

iii. Finally, a third set of experiments focus on the dynamics of
the rear of the droplet. Images are acquired using a Leica
microscope equipped with a x10 air objective, and a fast
camera Photron Fastcam SA3 with varying acquisition fre-
quencies between 1000 Hz and 10000 Hz. The same image
processing than for the first set of experiments is used to
detect the droplet interface.

B Numerical applications
In this section, we give the numerical values used to do the nu-
merical applications done in the main text which are based on the
ones used in18.

Peclet number : using a swollen micelle radius of δ = 2 nm,
the oil viscosity η = 40 mPa.s, the diffusion constant is evaluated

as D = kT
6πηδ

∼ 10−12m2/s, kB=1.38 10−23 J/K is the Boltzmann

constant and T= 300 K is the temperature. We compute φ = V h
2 =

1.510−10m2/s using the experimental parameters in Fig. 1, V = 3
µm/s being the velocity of the droplet and h= 50 µm is the height
of the channel. Then Pe = φ/D∼ 100.

Capillary number : the surface tension is measured
to be γ= 1.7 10−3 Pa · m. The viscosity of the fluid is
η = 40 10−3 Pa · s. The Marangoni constant K is derived from
the relation K = kBT λ , where λ =10 10−9 m is the typical dis-
tance of interaction between the solute and the interface. Then
K ∼ 10−29J.m. The activity, or surface flux A, is derived from the
relation A = 3

4π

κ

δ 3 , where κ=5 10−8 m/s is the decrease rate of
the radius of an unconfined droplet, and δ=2 10−9 m is the size
of a swollen micelle. Then A∼ 1018m−2.s−1. Finally, the capillary
number can be evaluated as Ca =

√
ηKA
γ
∼ 10−3.

C Uniform solution
In this section, we write the stationary solution of the solute trans-
port equations. We make the following ansatz for the concentra-
tion field and thickness evolution

c̃(x̃, ỹ) = A0 +A1x̃+A3ỹ3, ẽ(x̃) = E. (17)

Injecting this solution in Eqs. (6), (7) and (8), one find the
following coefficient

A1 =−1, A3 =
1
6
, E =

√
2, (18)

and A0 is a free parameter.
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