
HAL Id: hal-03168029
https://hal.science/hal-03168029v2

Submitted on 3 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Swimming droplet in 1D geometries, an active
Bretherton problem

Charlotte de Blois, Vincent Bertin, Saori Suda, Masatoshi Ichikawa, Mathilde
Reyssat, Olivier Dauchot

To cite this version:
Charlotte de Blois, Vincent Bertin, Saori Suda, Masatoshi Ichikawa, Mathilde Reyssat, et al.. Swim-
ming droplet in 1D geometries, an active Bretherton problem. Soft Matter, 2021, 17, pp.6646-6660.
�10.1039/D1SM00387A�. �hal-03168029v2�

https://hal.science/hal-03168029v2
https://hal.archives-ouvertes.fr


Journal Name

Swimming droplet in 1D geometries, an active Brether-
ton problem†

Charlotte de Blois,a,b,‡ Vincent Bertin,a,c,‡ Saori Suda,d,‡ Masatoshi Ichikawa,d Mathilde
Reyssat,a and Olivier Dauchota

We investigate experimentally the behavior of self-propelled water-in-oil droplets, confined in cap-
illaries of different square and circular cross-sections. The droplet’s activity comes from the forma-
tion of swollen micelles at its interface. In straight capillaries the velocity of the droplet decreases
with increasing confinement. However at very high confinement, the velocity converges toward
a non-zero value, so that even very long droplets swim. Stretched circular capillaries are then
used to explore even higher confinement. The lubrication layer around the droplet then takes
a non-uniform thickness which constitutes a significant difference with usual flow-driven passive
droplets. A neck forms at the rear of the droplet, deepens with increasing confinement, and even-
tually undergoes successive spontaneous splitting events for large enough confinement. Such
observations stress the critical role of the activity of the droplet interface on the droplet’s behavior
under confinement. We then propose an analytical formulation by integrating the interface activity
and the swollen micelles transport problem into the classical Bretherton approach. The model
accounts for the convergence of the droplet’s velocity to a finite value for large confinement, and
for the non-classical shape of the lubrication layer. We further discuss on the saturation of the
micelles concentration along the interface, which would explain the divergence of the lubrication
layer thickness for long enough droplets, eventually leading to the spontaneous droplet division.

1 Introduction
Biological micro-swimmers exhibit a number of fascinating swim-
ming strategies, to compensate for the absence of inertia. Even
more intriguing is the way such organisms manage to probe and
explore their environment, probing the presence of external fields
such as temperature, nutriment concentration, gravity, etc. In
many cases, they also manage to explore narrow channel-like
passages, such as in soil1 or in the organism2 of their host; or
because they are placed in artificial micro-fluidic channels3,4 to
steer their motion5,6 with application in drug delivery. The eu-
glenids7 is a striking example of such microorganisms, which are
able to adapt its swimming strategy from flagellar propulsion to
crawling. During this transition, the euglenids don’t touch the
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wall, and are sensitive to the confinement through hydrodynamic
interactions only. Another amazing example is that of parame-
cium8,9, when they take a cylindrical shape to swim in narrow
capillaries.

In the context of artificial micro-swimmers, a now classical
strategy is to exploit phoretic effects10,11 to ensure propulsion
by locally inducing gradients that generate a flow field around
the swimmer, which in turn ensures its propulsion. The gradi-
ent can be induced by engineering an asymmetry in the swim-
ming body – the so called Janus particles – and thereby obtain
auto-phoretic swimmers (diffusio-phoresis12, thermo-phoresis13,
electro-phoresis14). More recently, it was shown that a sponta-
neous symmetry breaking of the flow field, non linearly coupled
to the advection-diffusion of the scalar field, can also lead to self-
sustained propulsion15,16. Swimming droplets, generating a so-
lute gradient around them, are the prototypical experimental re-
alization of this mechanism17–20.

The presence of walls or obstacle can alter the swimming mo-
tion in different ways. The most common and unavoidable one
is the disturbance of the hydrodynamic flow field. The case of
weakly confined swimmers interacting with the boundaries only
via the far-field hydrodynamics flow has been intensively stud-
ied theoretically21–28. In this situation, the flow field around the
swimmer is affected through the no-slip condition at the bound-
aries. Theoretical studies for spherical swimmers23,24 demon-
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strated that the behavior of the swimmer (helical vs straight tra-
jectory - attraction vs repulsion by the boundary) then strongly
depends on its nature (pusher - puller - neutral). Experimental in-
vestigations on biological swimmers29 have revealed the diversity
of the flow field developing around a micro-swimmer under such
confinement. In the case of the phoretic swimmers, the trans-
port of the scalar field will also be altered and thereby modify the
swimming motion. The way a single flat boundary (a wall) alters
the swimmer motion has been documented both theoretically and
experimentally30–34. In the case of the swimming droplets the so-
lute is composed of micelles, the diffusion of which is way slower
than molecular solutes. As a result, advection, which cannot be
neglected in the transport of the solute, leads to a yet more com-
plex situation because of the nonlinear coupling between the flow
field dynamics and the advection-diffusion of the solute. The re-
sponse of the swimmer motion to the proximity of the wall then
depends on the relative importance of the advection and the diffu-
sion of the scalar field. Quantitative measurements of the velocity
field around a droplet swimming close to a wall could recently be
analyzed and described theoretically35, but little is known about
the swimming motion in more confined geometries such as micro-
fluidic channels36,37.

In the present work, we study experimentally the motion of a
pure water swimming droplet18, in square and cylindrical capil-
laries with different levels of confinement. Amazingly, the droplet
keeps its ability to swim under very strong confinement L/2h= 10,
where 2h is the width of the capillary and L is the length of the
strongly elongated droplet. This is not only observed for square
capillaries, but also for cylindrical ones, for which the droplet
body is separated from the lateral boundaries by a lubrication
film of a few microns in thickness. Furthermore for even larger
confinement, we observe the spontaneous division of the droplet
at its rear part. Both observations stress the crucial role of the
active stresses at the droplet interface. The main goal of the
present work is to quantify these new features, qualitatively dif-
ferent from that of flow-driven passive droplets and unveil the
Marangoni-stress driven mechanisms coupled to the interface dy-
namics, responsible for them.

The paper is organized as follow. After a thorough description
of the experimental setting, we characterize the swimming mo-
tion of the droplet in different channel-like geometries. We then
propose a theoretical description, which accounts for the main
observations, despite some important simplifications. Discussion
about these simplifications and perspective for future investiga-
tions conclude the paper.

2 Experimental setting
The experimental system is made of a water droplet inside a glass
capillary, filled with a continuous oil-surfactant phase, a squalane
solution of mono-olein at a concentration c = 25 mmol/L, that is
far above the critical micellar concentration (CMC ' 5 mmol/L).

In chambers18 of diameter and thickness much larger than the
droplet size and filled with the same oil-surfactant solution, such
water droplets of typical size a = 100 µm spontaneously start
swimming. The swimming motion results from the combina-
tion of two ingredients. First, the system is far from its physico-

chemical thermodynamic equilibrium, which is a micro-emulsion
made of inverse micelles filled with water, in the oil phase. As a
result, a flux of water takes place continuously from the droplet to
the inverse micelles38. Secondly, the resulting isotropic concen-
tration field of inverse swollen micelles happens to be unstable
against an infinitesimal flow disturbance: in the presence of any
tiny gradient of swollen micelles in the vicinity of the interface,
Marangoni stresses and phoretic flows take place which induce
a mobility of the droplet towards regions of small concentration,
and therefore enhance the initial disturbance. For this instability
to take place15,16,18, the Péclet number Pe =U∗a/D must exceed
some critical value Pec =O(1), where a is the radius of the droplet,
D is the diffusion coefficient of the micelles. and U∗ = AM

D is the
characteristic auto-phoretic velocity11, with A the activity of the
droplet and M the motility of the micelles. In other words for
self-propulsion to occur, the diffusion of the micelles must be slow
as compared to their advection by the Marangoni flow.

Here we confine such droplets in micro-channels, of typical
length ∼ 2cm much longer than the droplet size and with differ-
ent cross-sectional geometries of typical inner size h in the range
40µm < h <200µm, comparable to or smaller than the droplet
size. Three different 1D geometries are used: square glass cap-
illaries (Figure 1 (a)), h is then defined as half the inner dimen-
sion of the capillary, circular glass capillaries (Figure 1 (c)), h is
then defined as the radius of the capillary, and stretched circu-
lar capillaries (Figure 4) whose inner radius varies continuously
along their length between h = 100 µm (at both ends), and a
constriction of radius hmin that ranges from 30 µm to 80 µm, in
the middle of the capillary, with a typical gradient of diameter
dh
dx = ±0.02. Then relative to the swimming of the droplet, these
capillaries present a convergent region followed by a divergent
one.

At the beginning of each experiment, one droplet is produced
at one end of a capillary previously filled with the oil-surfactant
solution. The droplet spontaneously starts swimming. Both capil-
lary ends are left open to the air. No external flow is imposed, and
we ensure that there is no global flow by checking that the oil-air
interface is not moving. This will be confirmed in section 3.2,
through flow field measurements. During the experiment, the
droplet swims from one end of the capillary to the other in typ-
ically one hour. Three sets of experiments are conducted. The
first set focuses on the shape detection and the tracking of the
droplet in square, circular and stretched capillaries (section 3.1
and 3.4), with an image acquisition rate of facq = 1 Hz. A sec-
ond set of experiments is dedicated to the study of the flow field
around the droplet in circular capillaries using particle image ve-
locimetry (PIV) (section 3.2). The image acquisition frequency is
then facq = 10 Hz. For the third set of experiments, a high-speed
camera is used to capture the dynamics of the rear of the droplet
in stretched capillaries during splitting events (section 3.5), with
an acquisition rates facq = 1 kHz or facq = 10 kHz. A complete de-
scription of the materials and methods is given in the appendix A.

3 Experimental results
We start by conducting experiments in glass capillaries of square
or circular cross-section of comparable inner size between h =
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Fig. 1 Droplet velocity in square (top) and cylindrical (bottom) capillaries (a) Sketch of a droplet in a square capillary, with snapshots of three
droplets under increasing confinement L

2h = 0.5, L
2h = 1, L

2h = 8.5 in a square capillary of half-width h = 100 µm. (b) Velocity V of droplets of various
lengths L swimming alone in square capillaries of different half-heights h, as a function of the confinement L

2h . (c) Sketch of a droplet in a circular
capillary, and snapshots of three droplets under increasing confinement L

2h = 0.5, L
2h = 1.5, L

2h = 4 in a circular capillary of radius h = 50 µm. (d) Velocity
V of droplets of various lengths L swimming alone in circular capillaries of different radii h, as a function of the confinement L

2h . The straight horizontal
dotted line stresses the fact that even for the largest confinement, the droplet velocity is non-zero. The inset is a zoom of the same data on the low
velocity values.

40 µm and h = 200 µm. Upon production, in square capillaries,
all the droplets start swimming. In circular ones, droplets of size
up to six times the capillary diameter also swim. We observe that
the droplets produced with longer sizes spontaneously divide into
two droplets which each starts swimming in opposite directions:
the one swimming toward the closest end of the capillary imme-
diately gets stuck on the oil-air interface, while the other swims
until the other end of the capillary. After less than a minute, all
swimming droplets reach a stationary state, and keep a persistent
direction with the exception of the very small droplets, essen-
tially unconfined ( L

2h < 0.2), that sometime change direction. In
the following, we focus on droplets swimming persistently in one
direction.

3.1 Droplet Velocity vs. Confinement

The behaviour of a swimming droplet strongly depends on the
confinement, but is similar for different capillary geometries.
A video of the swimming of three droplets of different sizes
(L = 50 µm, 90 µm or 400 µm) in circular capillaries of radius
h = 50 µm is provided in the electronic supplementary informa-
tion. Typical shapes of droplets in square and circular capillaries
are shown in Figure 1, together with the dependence of their ve-
locity with the confinement L

2h . For all droplets, we measure the

velocity averaged in time 〈V 〉, together with its standard deviation√
〈V 2〉−〈V 〉2.

Droplets smaller than the capillary inner size are spherical of di-
ameter L ( L

2h < 1). Such droplets oscillate between the two sides
of the channel (in the median plane perpendicular to gravity). Be-
cause of buoyancy, they follow the bottom wall, thus performing
a 2D motion on the bottom plane of a square capillary, and a 3D
motion on the curved bottom surface of a circular capillary. The
velocity of the droplet varies during an oscillation: it is minimum
when the droplet reaches a side wall, and maximum far from
the walls. The variations of the velocity during an oscillation pe-
riod explain the large standard deviation of the velocity. Existing
theoretical works23,24 on the behavior of swimmers in channels
of circular section have predicted the existence of helical trajec-
tories for neutral squirmers. Identifying precisely whether the
observed oscillations pertains to this class of dynamics would re-
quire extracting the 3D trajectories of the droplets, together with
their surrounding flow field, an interesting perspective for future
studies.

Droplets larger than the capillary inner size take an elongated
shape ended with two spherical caps. The total length of the
droplet is denoted L ( L

2h ≥ 1). The elongated part of the droplet is
separated from the glass wall by a film of oil (the droplet is never

Journal Name, [year], [vol.],1–15 | 3



Fig. 2 PIV of the flow field around droplets swimming in circular capillaries: PIV around (a) a circular droplet ( L
2h = 1) and (b) a long droplet

( L
2h = 3) in a circular capillary of radius h = 50 µm. The two first rows display the color-map of the velocities ux (direction of swimming) and uy around

the droplet in the reference frame of the lab. The black arrows point the swimming direction of the droplet. The third row shows several streamlines
around the droplet, with blue arrows that show the local direction of the flow. The inside of the droplet, masked during the PIV, is delimited by black
dashed lines. x is the direction of swimming of the droplet, (xy) is the visualisation plane, orthogonal to the direction of the gravity z. The droplet’s mask
used for the PIV analysis is slightly smaller than the droplet size (for PIV requirement). As a result the gap between the drop and the wall is seen larger
than in reality in this representation. The flow field is to be understood as being integrated over the thickness of the PIV depth of field of a few microns.

observed to wet the glass). Inside a square capillary, the gutters
of the square cross-section give space for the outer fluid to flow.
Inside a cylindrical capillary, the droplet is separated from the
wall by a lubrication film of up to a few micro-meters in thickness
only. We observe that the cross-section of the droplet has a radius
that varies along its length, reaching a local minimum at the rear
of the droplet. The region where the droplet radius is the thinnest
is called the neck in what follows.

As expected, the velocity decreases with increasing confine-
ment. More surprisingly, for confinement greater than 1 (elon-
gated droplets), the droplet velocity rapidly converges toward a
small but finite value. As a matter of fact, the velocity remains
constant while further increasing the confinement, up to L

2h = 9
in square capillaries and L

2h = 6.5 in circular capillaries. This is all
the more intriguing in the case of the cylindrical capillaries, for
which the mass conservation imposes that a significant amount of
fluid must be driven through the thin lubrication film, leading to
a potentially strong dissipation.

In the following, we focus on the behaviour of long droplets
( L

2h > 2) in circular capillaries, the most intriguing situation and
also the simplest geometry to handle theoretically.

3.2 Flow field

We start with PIV measurements of the flow field around the
droplet. PIV is performed in the median plane, perpendicular
to the gravity, of droplets swimming in cylindrical capillaries of
radius h = 50. Figure 2 displays, from top to bottom, the com-
ponent ux and uy of the flow field and a few selected streamlines

around (a) a spherical droplet of typically the size of the capillary,
L
2h = 1, and (b) a long droplet of size L

2h = 3. Note that, although
the ux velocity component, strictly at the apex of the droplet, is
expected to be positive and equal to the droplet velocity, we mea-
sure a slightly negative value for ux in front of the droplet. It
is likely that we do not resolve well enough the velocity field at
the interface of the droplet because of the conjugated effects of
the non-zero thickness of the illumination plane, the resolution
of the PIV, and the 3D recirculation flow that takes place close to
the interface. This observation calls for a careful interpretation
of our PIV observations, which should be taken as a qualitative
image of the flow field, and not a quantitative 3D description as
done by some of us in35, when characterizing the dynamics of
droplet swimming above a bottom wall. Similarly the resolution
of the PIV (10 µm/pixel), is not large enough to resolve the flux
in the lubrication film on the side of the droplet, and therefore
only gives a global indication of the flow direction,thanks to the
depth of field of the PIV setting.

This being said, the first crucial observation is that there is no
flow far from the droplet (although the two ends of the capillary
are left open to the air). All flows take place close to the droplet
interface, up to a distance of typically the droplet size.

In the case of spherical droplets, the flow is symmetric in y,
and two recirculating regions are observed at the front and back
of the droplet. The velocity of the fluid in these regions is similar
in magnitude to the droplet velocity (∼ 3 µm/s). It is also worth
noting that the dominant symmetry of the flow field around the
droplet is quadripolar, in contrast with the flow field aroung 3D
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Fig. 3 Shape of an elongated droplet: (a), (b) and (c), image and corresponding shape of droplets of size (a) L
2h = 0.5, (b) L

2h = 1.7, (c) L
2h = 4.

Long droplets present a neck of radius rn located at a position ln from the back of the droplet. (d) Evolution of the dimensionless neck radius rn
h with

the confinement L
2h . (e) Evolution of the dimensionless neck position ln

2h with the confinement L
2h . The continuous black lines correspond to a linear

regression of the data.

unconfined squirmers, where the dipolar symmetry is dominant,
and with that of swimming droplets close to a wall35, where the
monopolar symmetry is dominant.

In the case of long droplets, a large recirculating region is ob-
served at the front of the droplet, breaking the symmetry along
the y axis. The direction of the recirculation is stable during one
experiment but switches between the two possible directions from
one experiment to another. The physical origin of the recircula-
tion remains unclear, but it may result from an instability of the
stagnation point of the flow at the apex of the droplet. The ve-
locity of the fluid in this region (ux ∼ 10 µm/s) is larger than the
droplet velocity (U ∼ 3 µm/s). Finally, we notice that the PIV at
the back of the droplet is disturbed by an agglomeration of the
tracers at a stagnation point located at the extremity of the back
cap, which makes the precise flow profile not fully resolved in
this region. One can still observe a strong asymmetry between
the front and rear in the amplitude of the flow, contrasting with
the case of the spherical droplets. A more advanced interpreta-
tion of the above descriptions would require a better knowledge
of the flow field around a confined active droplet, which is not
the purpose of this paper, and is left for future work.

3.3 Shape of the long droplets

Typical shapes for different droplet sizes are illustrated in Fig-
ure 3, (a), (b) and (c). The shape of a droplet is stable and
averaged over the duration of the experiment. Droplets smaller
than the capillary diameter ( L

2h ) are spherical (a) while longer
droplets take an elongated shape ((b) and (c)). This elongated
shape present two particularities. First the thickness of the lu-
brication film is not constant, but increases toward the back of
the droplet; this is a tiny but systematic effect. Second, for con-
finement larger than L

2h = 1.5, a neck appears at the rear of the
droplet. Figure 3 (d) and (e) display the neck radius rn, and its
distance from the back of the droplet ln. At the smallest confine-
ment, the neck forms at a distance ln

2h ' 0.5. The neck is then
shallow, rn

h . 1. As the confinement increases, the neck goes fur-
ther away from the rear of the droplet, and deepens. The shape
of the droplet rear hence depends on the droplet length.

The fact that the film thickens from the front to the rear of the
droplet and that the neck shape depends on the droplet length
contrast with the standard Bretherton phenomenology39, which
describes the shape and motion of passive droplets driven exter-
nally. This underlines the conceptual difference with the present
case, where active droplets are driven by self-induced local flows
and calls for investigation at even higher confinement.
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Fig. 4 Elongation of a swimming droplet in a stretched capillary:
(a) Sketch of the geometry and images of the droplet at three different
times corresponding to three positions in the stretched capillary. At 460s,
the droplet is at the position where the confinement is the highest. (b)
to (f) provide the evolution of several quantities with the position x of the
droplet in the capillary. (b) Height of the capillary at the center of mass of
the droplet, (c) confinement of the droplet, (d) velocity of the droplet, (e)
dimensionless radius of the neck, (f) dimensionless distance of the neck
from the front of the droplet. The vertical black dashed line marks the
position of the minimum capillary diameter. The two colors correspond to
two different experiments made with different droplet sizes and capillary
shapes.

3.4 Further confinement
Very long droplets ( L

2h > 7) in circular capillaries are not stable at
production and spontaneously divide into two or more droplets.
A way to explore higher confinement and to probe continuously
its effects on the droplet behavior, is to conduct experiments in
stretched circular capillaries. Such devices keep the ideal circular
cross-section and mimic perfectly situations where real swimmers
have to experience confinement gradient.

Upon production at one end of the capillary (h =50 µm),
the droplet (of typical length between 50 and 150 µm) starts
swimming. As it swims down the convergent part of the capil-
lary, the local radius of the capillary decreases and the length of
the droplet increases per conservation of the droplet volume V

(L ∝
V
h2 ), as does the confinement ( L

2h ∝
V
h3 ). Two different fea-

tures are observed, a simple elongation of the droplet, followed
by a contraction after the constriction, or spontaneous division,
presented respectively in Figures 4 and 6. A video of the swim-
ming of two droplets in the two cases is provided in the electronic
supplementary information. For each experiment, the droplet is
tracked, and its shape detected along its motion. At each time,

Fig. 5 Convergent vs. Divergent dynamics: Evolution of (a) the droplet
velocity, (b) the dimensionless neck radius and (c) the dimensionless
neck position with the confinement; for droplets in straight circular cap-
illaries of half height h = 50 µm (green squares), for one droplet in a
stretched capillary, in the convergent section (dark brown filled diamond),
and in the divergent section (dark brown empty circles).

the radius of the capillary h at the position of the droplet center
of mass (b), the confinement of the droplet L

2h (c), the velocity of
the droplet V (d), the dimensionless neck radius rn (e) and the
dimensionless neck position ln (f) are measured as a function of
the position of the droplet center of mass x.

Let us first focus on the simple elongation of the droplet. Fig-
ure 4 shows in (a) three snapshots of a droplet swimming in a
stretched circular capillary, when it is in the convergent region,
at the constriction, and when it is in the divergent region. Two
different experiments are shown in Figure 4, corresponding to dif-
ferent stretched capillaries, with a minimal radius of hmin = 55µm
and hmin = 71µm respectively. Throughout the experiment, the
droplet swims from one end of the capillary to the other. We note
a small variation of the droplet velocity and a more significant de-
pendence of the neck position and radius with the confinement.
More importantly, although the thickness profiles of the stretched
capillary in the converging and diverging regions are symmetric,
the shape and speed of the droplet are not. This is further en-
lighten on Figure 5, where we compare the dependence on the
confinement of (a) the velocity of the droplet, (b) the neck radius
and (c) the neck position between the convergent and divergent
part of the capillary for the constriction, hmin = 55 µm (brown
diamonds and circles) and the straight circular capillaries (green
squares).

The velocity slightly increases with the confinement, but also

6 | 1–15Journal Name, [year], [vol.],



presents an hysteresis between the convergent (brown diamonds)
and divergent (brown circles) regions of the capillary. This vari-
ation is most likely due to the gradient of capillary radius and
would also exist for passive droplets : the difference of curvature
between the front and back meniscus induces a capillary-induced
pressure gradient inside the droplet, which, for passive droplets,
makes the droplet move toward the highest radius. For an active
droplet, this effect slows down the droplet in a convergent tube,
while it accelerates it in a divergent one. This effect remains how-
ever weak, and comparable in magnitude to the variability of the
velocity from one experiment to another (see inset of Fig 1.d).

Figure 5 (b) and (c) exhibits the dependence of the shape of
the droplet rear with the confinement : the radius of the neck
decreases linearly, and its position goes further away from the
back of the droplet, for increasing confinement. This evolution
is reversible when the confinement is decreasing in the diver-
gent region, indicating that the dynamics can safely be considered
quasi-static, and that the influence of the capillary-induced pres-
sure gradient is not significant here. Finally, further increasing
the confinement, the neck is expected to narrow, until the droplet
eventually divides spontaneously.

3.5 Spontaneous division of the droplet

The spontaneous division of droplets has been observed system-
atically for a dozen of different experiments with a number of
successive divisions ranging from one to fourteen. For the sake of
conciseness, the results in this section are presented in Figure 6
using the data from one typical experiment, but all following ob-
servations are valid for all experiments. At first the droplet swims
and elongates as it moves toward the convergent region of the
capillary. This behavior is similar to the one observed in the pre-
vious experiment described in Figure 4. When the droplet be-
comes "too confined" (at time t = 40s in the presented experiment
and in the supplementary video), it undergoes a spontaneous di-
vision at the position of the neck, as can be seen in Figure 6 (a).
The daughter droplet (formed by the previous rear of the droplet)
does not swim, which suggests that there is no fuel anymore for
propulsion, namely that all micelles present in its environment
have been saturated with water. The main droplet that shrunk
in volume keeps swimming in the same direction. As the con-
finement of the droplet further increases, the droplet eventually
divides a second time or more. Once the main droplet reaches
the divergent region, its length decreases due to volume conser-
vation. No division is observed in the divergent region. The be-
haviour of the droplet only differs from the simple elongation case
at the approach of a division event (∼ 50 s before division).

Let us describe a succession of spontaneous divisions (Figure 6
(b) to (f)). Right before the division, the neck rapidly shrinks
(e), until its radius reaches 0 at division. The confinement (c)
at which the division occurs, L

2h ∼ 10 for the presented experi-
ment, slightly decreases with the successive divisions. This last
observation has yet to be understood. We speculate that the gra-
dient of height of the capillary, which decreases slightly in the
area of division, could play a role. More generally for all exper-
iments, the divisions occur for a confinement level in the range

Fig. 6 Division of a droplet in a stretched capillary: (a) images of
a droplet at different positions in the stretched capillary: successive di-
visions occur. (b) to (f) give the evolution of quantities depending of the
position x of the droplet in the capillary, for the corresponding experiment.
(b) Height of the capillary at the center of mass of the droplet, (c) droplet
confinement, (d) droplet velocity, (e) dimensionless radius of the neck,
(f) dimensionless distance of the neck from the front of the droplet. The
pink dashed lines correspond to a division. The black dashed line corre-
sponds to the position of the minimum height in the capillary.

L
2h = [8− 20], where the disparity amongst experiments can here
also be attributed to variations in the imposed height gradients,
from one capillary to another.

In this series of experiments, the time and spatial resolutions
are not large enough to give access to the precise dynamics of a di-
vision. Another series of experiments have thus been conducted,
using a microscope and a high-speed camera, and focusing on the
first division of a long droplet. Because the field of view is lim-
ited, to a square of size of typical size 2h, the position of the neck
ln cannot be quantitatively resolved, but the radius of the neck
rn is measured precisely. The dynamical evolution of rn for two
experiments are presented in Figure 7, one conducted at an ac-
quisition frequency of 1000 Hz, with a spatial resolution of 1.692
µm/pix (orange top oriented triangles), and another conducted
at an acquisition frequency of 10000 Hz, with a spatial resolution
of 0.840 µm/pix (red down oriented triangles). Figure 7 also
shows the dynamical evolution of rn for the first division of the
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Fig. 7 Dynamic evolution of the neck: (a) linear plot and (b) logarith-
mic plot of the evolution of the dimensionless neck radius with time. The
red and orange triangles and the pink empty circles correspond to exper-
iments at different acquisition frequencies of droplet dividing, considering
only the data up to the first division. t = 0 corresponds to the time of divi-
sion. The brown full circles correspond to an experiment with no division,
t = 0 is then chosen so that the convergent part of the experiment aligns
with the others. The continuous black lines provide a lower and upper
bound for the power law behaviors of the two fast regimes.

droplet in the previous experiment conducted at a frequency of 1
Hz (pink empty circles), and the dynamical evolution of rn during
an experiment without division (dark brown full circles). In the
figure, the time t = 0 corresponds to the division time (evaluated
with the temporal resolution of each experiment). For the experi-
ment without division, it is set such that the neck radius match in
the converging part of the capillary. Figure 7 (a) presents the data
in a linear plot, while the Figure 7 (b) presents the same data in
a log-log plot.

The radius of the neck follows three successive regimes; the
first one (t . −10s) corresponds to the adaptation of the droplet
shape to the confinement gradient, as discussed is the section 3.4.
For droplets that do not undergo division, this regime is reversible
when the confinement increases again. In this regime, the evo-
lution of the shape of the droplet is quasi-static, and controlled
by the geometry of the problem. The second and third regimes
lead to the division of the droplet. Once the droplet enters these
regimes, the division always take place. The second regime is

very well characterized by a power-law dependence of the neck
radius with time −t, rn

h & 0.1, rn
h ∼ |t|β with β ∈ [1/8− 1/6] over

almost 3 decades in time. For rn
h . 0.1, the radius of the neck

deviates from the latter power law and deepens faster, entering
a third regime that also follows an apparent power-law rn

h ∼ |t|α
with α ∈ [2/3−1].

Such power-law behaviours are naturally found in the ultimate
fate of the break-up process for a droplet, because of the absence
of characteristic length-scale but also in transient regimes40. The
value of the exponent is dictated by which effects dominate
and balance amongst surface tension, viscous and inertial forces.
Here, the viscosity of the outer fluids dominates, and one expects
the simple self-similar form to be broken by the presence of log-
arithmic terms. Finally, the presence of active stresses is likely to
alter the already numerous possible scaling regimes. Investigat-
ing such a fascinating question is beyond the scope of the present
paper. It would require even much faster acquisition rate, and
dedicated experiments. The exponents provided here should be
seen as indicative and a source of motivation for future work.

Let us recap our main findings, which we now aim at captur-
ing theoretically, on the basis of the reformulation of the classical
Bretherton problem in the realm of active droplets. Two unex-
pected phenomena have been observed: the convergence of the
droplet velocity towards a constant value when the droplet be-
comes longer than the capillary height, and the spontaneous di-
vision of the droplets under high confinement. In the following
section, we introduce a simple theoretical framework that will
allow to grasp the physics at play behind such observations.

4 Theoretical approach

4.1 Introduction

The motion of confined droplets or bubbles under the action of
an external flow has been widely studied since its original de-
scription by F.P. Bretherton in a cylindrical tube39 and are usu-
ally called Bretherton models in tribute to the British professor.
With the emergence of droplet-based microfluidics, a particular
interest has been devoted to squared channels41,42. Pressure, or
gravity driven flows are not the only way to induce droplet mo-
tions in a channel. Marangoni stresses can also induce the migra-
tion of such confined droplets as described and observed in the
presence of external thermal gradients43. In our case, the motion
of the droplets is not externally driven, neither by pressure nor
a temperature gradient as there is no observable flow far from
the droplet (U∞ = 0), but is the result of local flows induced by
the spontaneous establishment of solutes concentration gradients
around the droplet. To the best of our knowledge, such a problem
has never been considered theoretically before, and is the primary
subject of the following section.

The flow around the droplet is driven by a combination of
phoretic and Marangoni effects: concentration gradients of all
present solute along the interface generates shear stress (denoted
σ) and velocity (denoted u) jumps at the interface10. For sim-
plicity purpose, we consider in the following that the velocity and
stress jumps through the interface result only from the concen-
tration gradient in swollen micelles in the outer fluid, but one
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should keep in mind that more complex and realistic models of
the physico-chemical interactions at the interface have been pro-
posed44, taking into account the surfactant concentration at the
interface. Then the velocity and stress jumps can be expressed as:
σoil,‖−σwater,‖ = −K∇‖c and uoil,‖− uwater,‖ = M∇‖c, where c is
the solute concentration field, ∇‖ is the gradient operator tangent
to the interface, K ≈ kBT λ and M ≈ kBT λ 2/ηoil where kBT is the
thermal energy, λ the typical interaction distance between the so-
lute and the interface and ηoil is the oil viscosity. Under the above
assumptions, the Marangoni effects dominate with respect to the
phoretic ones18, so that, in what follows, we will assume conti-
nuity of the velocity across the interface and the presence of a
stress jump at the interface. We further notice that the magnitude
of the viscous shear stress in the water phase ∼ ηwaterv/h is much
smaller than the one in the oil phase ∼ ηoilv/e, where v is a typi-
cal velocity in the film and e is a typical lubrication film thickness
as the viscosity ratio ηwater/ηoil ≈ 1/40 and the film thickness to
capillary height ratio is small with respect to unity, e≈ 1 µm and
h ≈ 100µm. Therefore, the tangential stress balance simplifies to
σoil,‖ = σ(x) = −K∇‖c. We can thus focus on the flow in the oil
phase only, and we refer to the oil viscosity as η to lighten the
notations. The peculiarity, and difficulty of this problem lies in
that the hydrodynamic and the transport of the chemical species
(surfactant molecules and swollen micelles) in the solution are
non-linearly coupled via the Marangoni stress σ(x), which varies
along the interface.

The present theoretical description deals with highly elongated
droplets, swimming in cylindrical tubes that are axially invariant,
leaving aside the case of squared channel43,45. In such confined
environment, various lengths of different magnitude are at play :
the radius of the capillary h, the length of the droplet L, the thick-
ness of the lubrication film e(x) and, at the microscopic level, the
typical distance of interaction between the solute and the inter-
face λ 10. Given the large scale separation between these lengths,
L > h� e� λ , it is a standard approach to separate the prob-
lem in different regions and match the corresponding solutions
asymptotically39,43. Usually, five zones are distinguished, as ex-
hibited in Fig. 8: the front (I) and rear (V) caps that are supposed
spherical, the front (II) and rear (IV) dynamical menisci of vari-
able curvature, and in between the lubrication film (III) that is
defined as the limiting solution of the dynamical menisci with a
uniform thickness.

We propose to use here a similar approach. In section 4.2, we
derive a lubrication model for the velocity field, coupled to the
transport of solute. Then, in section 4.3, we focus on the lubrica-
tion film dynamics (zone III) where capillary flows are negligible
behind Marangoni flows and we propose a numerical resolution
of the resulting system of equations. This allows to identify the
typical scales of the Marangoni stress and the film thickness in the
problem. Lastly, in the section 4.4, we simplify the equation in the
dynamical meniscus by assuming a uniform Marangoni stress, of
typical magnitude equal to the one identified in the zone III, and
we find a Landau-Levich type equation. The matching of this so-
lution to the spherical cap allows to obtain a scaling relation of
the droplet velocity, which we finally compare to the experimental
data.

Fig. 8 Sketch of an elongated droplet in a circular capillary, in the
lab frame : the droplet is divided into five regions, two spherical caps (I)
and (V) of radius h, two dynamical meniscus, the front dynamical menis-
cus (II) of typical size ` and the rear dynamical meniscus (IV) where a
neck forms, and a lubrication film (III) of variable thickness e(x), where
a Marangoni stress σ(x) at the interface induces local flows of velocity
v(x,y). The resulting droplet velocity is denoted V . Far from the droplet,
there is no flow U∞ = 0.

4.2 Lubrication model in the zone II-III-IV

We consider the steady motion of a water droplet in oil that is
assumed to behave as a Newtonian fluid. The Reynolds number
Re= ρV h/η , where ρ is the oil density is much smaller than unity
so that fluid inertia is neglected. The water-oil interface position,
denoted e(x), depends on x and is almost parallel to the direction
of motion x in the regions II-III-IV so that one can use the lubri-
cation approximation to describe the flow. Therefore the pressure
field p is independent of the normal direction y and is given by
the Laplace pressure, via the normal stress continuity:

p(x) =−γe′′(x)− γ/h, (1)

where γ denotes the water-oil interfacial tension. We have ne-
glected the non-linear terms in the curvature in accordance with
the lubrication approximation. We also suppose that the in-
terfacial tension is uniform, on the basis that the surface ten-
sion difference resulting from the chemical activities is small (of
the order of one tenth) with respect to the equilibrium surface
tension (γwater/oil−micelles ' 2 mN/m and ∆γactivity ∼ 0.2 mN/m).
The momentum balance in the direction of motion reduces to
∂x p = η∂ 2

y ux, where ux is the velocity component in x. The shear-
stress continuity at water-oil interface gives η ∂yux

∣∣
y=e(x) = σ(x)

at leading order in the lubrication scaling, where σ(x) is the
Marangoni stress. In the reference frame of the moving droplet,
the no-slip boundary condition at the wall reads ux|y=0 =−V . As
a consequence of the global flux conservation, the flux of water
must balance the oil flux, which means that the typical velocity in
the film v is of the order of V h/e, where e is the typical lubrication
film thickness. Hence, the typical velocity in the film is hundred
times larger than the drop velocity and we can safely approximate
the no-slip boundary condition to ux|y=0 = 0. The resulting flow is
a linear combination of a Poiseuille and Couette terms and reads:

ux(x,y) =
p′(x)
2η

(
y2−2ye(x)

)
+

σ(x)y
η

, (2)

uy(x,y) =−
p′′(x)
2η

(
y3

3
− y2e(x)

)
+

p′(x)e′(x)y2

2η
− σ ′(x)y2

2η
. (3)

Computing the pressure gradient from (1) and integrating the
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flow in y allows us to express the flux conservation. We find:

γe3(x)e′′′(x)
3η

+
σ(x)e2(x)

2η
=−φ , (4)

where the oil flux per unit of orthoradial length is denoted −φ ,
such that φ is a positive quantity. The first term on the left hand
side of this equation corresponds to the driving by capillarity and
the second one to the Marangoni ones. The global mass conser-
vation in a plane perpendicular to the capillary axis implies that
the flux of advected oil in the lubrication layer must balance the
longitudinal water flux

πh2V = 2πhφ . (5)

The Marangoni stress originates microscopically from the gradi-
ents of swollen micelles interacting with the interface. The trans-
port of swollen micelles obeys the stationary advection-diffusion
equation

ux(x,y)
∂c
∂x

+uy(x,y)
∂c
∂y

= D
(

∂ 2c
∂x2 +

∂ 2c
∂y2

)
≈ D

∂ 2c
∂y2 , (6)

where D is the diffusion constant of swollen micelles in solution
and c(x,y) denotes the concentration fields of solute. In what fol-
lows, the diffusion terms in x are neglected with respect to the
ones in y in agreement with the lubrication approximation. The
swollen micelles are produced at the water-oil interface with a
rate A, also called the droplet activity, which is assumed to be
constant, and gives the boundary conditions at the water-oil in-
terface

D
∂c
∂y

∣∣∣∣
y=e(x)

= A. (7)

The wall is assumed to be impermeable such that the diffusive
flux vanishes at the wall, i.e.− ∂c

∂y

∣∣∣
y=0

= 0. The Marangoni stress

is induced by the concentration gradient tangent to the interface
as

σ(x) =−K (~t.~∇)c
∣∣∣
y=e(x)

=−K (∂x + e′(x)∂y)c
∣∣
y=e(x) . (8)

In the following we shall not solve the general lubrication prob-
lem but focus on the dominant swimming mechanism with the
aim at identifying the scaling governing the droplet velocity. In
the next section, we focus on the solution in the lubrication film,
which corresponds to the zone III in Fig. 8.

4.3 Scaling and numerical solution in zone III.

In this region, the water-oil interface is nearly flat, although we
stress that the film thickness is not necessarily uniform in the lu-
brication film zone, which is the major difference with classical
Bretherton models. The goal of this section is to provide a solu-
tion of the lubrication model in the zone III.

A first step is to identify the proper length and stress scales at
play. The dimensionless ratio φ/D is the ratio between horizontal
and vertical transport scales. According to Eq. (6), ux/D∼ x∗/e∗2,
where e∗ and x∗ denote the characteristic thickness of the film
and x scales, so that φ/D ∼ x∗/e∗. This ratio compares advection
to diffusion and is therefore analogous to a local Péclet number.

In the experiments presented here, its typical magnitude is large
Pe = φ/D ∼ 100 (see Appendix B). One finds from equation (7)
a concentration scale c∗ = A

D e∗ and, from equation (8), a stress
scale σ∗ = KA

PeD = KA
φ

. The lengthscale e∗ is chosen such that the

Marangoni driving dominates in equation (4) so that σ ∗e∗2

η
= φ ,

and one obtains:

e∗ = φ

√
η

KA
, x∗ = e∗φ/D, σ

∗ =
KA
φ

, c∗ =
φ

D

√
Aη

K
, (9)

Coming back to equation (4), we then find that the Marangoni
driving dominates as soon as σ∗e∗2 � γe∗4

x∗3 , or, in other words

when x∗ � `∗, with `∗ = e∗
(√

ηKA
γ

)−1/3
. One notices that the

length scale `∗ has a similar scaling form as the dynamical menis-
cus length in the classical Landau-Levich-Derjaguin-Bretherton
problem. A nice way to see the analogy is to understand the
ratio Ca =

√
ηKA
γ

as the ratio of two velocities, the Marangoni

driving velocity v∗ =
√

KA
γ

and the capillary one Vγ = γ

η
exactly

as in the classical problem where the driving velocity is externally
set and CaB =V/Vγ = ηV/γ. In the experimental system, the cap-
illary number is estimated to Ca∼ 10−3 (see Appendix B), which
is small with respect to unity. Therefore it justifies the use of the
Bretherton type scale separations in the present work.

We introduce the dimensionless variables with ·̃ as e(x)= e∗ẽ(x̃),
y = e∗ỹ, x = x∗x̃, c(x,y) = c∗c̃(x̃, ỹ), σ(x) = σ∗σ̃(x̃) and the equa-
tions (4)(6)(7)(8) become:

− 2ỹ
ẽ2

∂ c̃
∂ x̃

+
2ẽ′y2

ẽ3
∂ c̃
∂ ỹ

=
∂ 2c̃
∂ ỹ2 , (10)

∂ c̃
∂ ỹ

∣∣∣∣
ỹ=ẽ

= 1,
∂ c̃
∂ ỹ

∣∣∣∣
ỹ=0

= 0, (11)

σ̃(x̃) =− 2
ẽ2(x)

= (∂x̃ + ẽ′(x̃)∂ỹ)c̃
∣∣
ỹ=ẽ . (12)

The later equations are solved numerically using a volume-of-
fluid method46. The Eq. (10) is analogous to a 1D heat equa-
tion where −x̃ represents time. Therefore, we set “initial condi-
tions” at x̃ = 0 and solve for negative x̃. In this model, the initial
conditions represents an arbitrary x position near the boundary
between the zone II and III in Fig. 8. There we assume that the
solute has not diffused over the full lubrication film and is local-
ized near the water/oil interface. We proceed as follows: we first
choose an initial thickness ẽ(x̃ = 0) and we take a initial concen-
tration fields as c̃(x̃ = 0, ỹ) ∝ exp( ẽ(x̃=0)−ỹ

L ), where L is a dimen-
sionless length scale that would correspond to the length over
which the solute has diffused on the region I-II in Fig. 8. The
prefactor of the initial concentration is set to be consistent with
the flux boundary condition Eq. (11).

Fig. 9 displays the numerical solution of Eq. (10). We ex-
hibit four solutions with a subscript i = (1,2,3,4) that differs via
their initial conditions, plotted in Fig. 9(a). Panel (b) shows
the evolution of the lubrication film thickness along the x-axis
for these four different initial conditions. The lubrication film
converges toward a uniform solution, with a constant thickness
e∞'

√
2e∗=

√
2φ
√

η/(KA), a constant concentration gradient ∂xc
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Fig. 9 (a) Initial conditions at x/x∗ = 0 for the concentration fields given
by c̃(x̃ = 0, ỹ) ∝ exp( ẽ(x̃=0)−ỹ

L ). The initial thickness is set to ẽ(x̃ = 0) = 0.5
(resp. 1.8) in the initial conditions denoted 1− 2 (resp. 3− 4) and the
dimensionless length L = 0.05 (resp. 0.1) in 1− 3 (resp. 2− 4). (b)
Evolution of the non-dimensional film thicknesses along the x-axis in the
numerical simulation for the different initial conditions. The inset shows
a zoom near x = 0. (c) Colormap of the non-dimensional concentration
field of solute c(x,y)/c∗ resulting from the numerical integration with the
initial condition 1. The thickness profile is highlighted in black.

and a Marangoni stress σ∞ =−σ∗ =−KA/φ , whatever the initial
film thickness and concentration. The exact prefactor

√
2 is ob-

tained analytically in Appendix C, injecting an uniform solution
ansatz in Eqs. (6), (7) and (8). The concentration field of the
solution 1 is displayed in Fig.9(c). As already stressed, the film
thickness is not uniform; the uniform solution is obtained only for
|x| & x∗, that is when the solute diffusing front reaches the wall
at y = 0. The concentration fields in this regime is in very good
agreement with the uniform solution computed in Appendix C. At
this stage the problem is not closed as the flux Φ is still unknown.

4.4 Scaling of the droplet velocity.

In this section, we aim at deriving a scaling law for the droplet
velocity using the aforementioned scales. Solving the lubrication
problem in zone II, requires the full resolution of equation (4),
which has no simple or scaling solution. We therefore assume
that the Marangoni stress in zone II does not change much and
we give it a uniform value set by that of the uniform solution of
the lubrication film σ(x) = σ∞ =−σ∗. This is a strong assumption
which will only be validated by comparison with the experimental
data. Having done so, Eq. (4) is written in a closed form and one
can then use e∞ =

√
2e∗ and `∗ as a thickness and x scale and

write the resulting flux conservation in a universal form using the
dimensionless variables E(X) = e(x)/(

√
2e∗), X = x/`∗ :

2
3

d3E
dX3 =

E2−1
2E3 . (13)

The latter equation admits a trivial solution E = 1, which corre-
sponds to the uniform film usually found in Bretherton models
and which is identical to the uniform solution found at |x|> x∗ in
the previous section. We solve Eq. (13) numerically following the
standard Landau-Levich approach. We assume an uniform film at
X →−∞, and linearize Eq. (13) as E = 1+ ε, where ε � 1, which
gives 2

3 ε ′′′(X) = ε(X). The solution compatible with the flat film

at −∞ is ε(X) = ε0 exp
(
( 3

2 )
1/3X

)
, where ε0 is an arbitrary con-

stant. We then solve the initial value problem defined by Eq. (13)
using a Runge-Kutta scheme of order 4 and with the linear so-
lution as an initial condition. The numerical solution is found
to diverge at X → ∞ with a finite second derivative, leading to
limx→∞ e′′(x) = 2.125

e∗ (σ ∗e∗
γ

)2/3 for the dimensional variables. The
limit curvature must be matched to the curvature of the spherical
caps 1

h in order to preserve the continuity of the pressure in the
region I and II, which yields to the following relationship

e∗

h
= 2.125

(
σ∗e∗

γ

)2/3
. (14)

Note that, although the right hand side term of eq. (13) dif-
fers from the standard Landau-Levich-Derjaguin and Bretherton
one, the film thickness scaling law remains of the same form, as
σ∗e∗/γ =

√
ηKA/γ = Ca. The reason is that the exponent 2/3 re-

sults from the presence of the third order derivative in the left
hand side of eq. (13) and the fact that the asymptotic matching
with the spherical caps involves the curvature, hence the second
derivative of e(x), two aspects which are common to our prob-
lem and the classical one. The product of Marangoni stress and
film thickness appears as the relevant traction force that deforms
the interface, analogous to ηV in the standard Bretherton frame-
work. Finally, recalling the global mass conservation Eq. (5), one
finds the swimming velocity V = 2φ/h = σ ∗e∗

η

e∗
h . Combining this

expression with Eq. (14), we find:

V = 2.125
σ∗e∗

η

(
σ∗e∗

γ

)2/3
∼
√

KA
η

(√
ηKA
γ

)2/3
(15)
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or, in a more compact form,

V
v∗
∼ Ca2/3. (16)

A first validation of the present scaling relation is that it pre-
dicts a swimming velocity which does not depend on the capillary
height h, as observed experimentally. Second, we can compute an
estimation of the ratio between the film thickness and capillary
radius e∗/h ∼ (σ∗e∗/γ)2/3 ∼ 1/100, that implies a film thickness
of the order of 1 micron which is consistent with experimental
observation. Finally, a numerical evaluation (using the numerical
values given in Appendix B) leads to a droplet velocity in the mi-
cron per second range, which is consistent with what is observed
in the experiments.

4.5 Saturation of the solute
The above description finds that the interface profile saturates
once the solute has diffused over the film, at a position −x ∼ x∗.
We evaluate x∗

2h ∼ 0.1. This contrasts with the experimental obser-
vation of an increasingly deep neck with increasing confinement,
that leads to division for L

2h & 10. Beside, we observe experimen-
tally that the daughter droplets that have detached themselves at
the rear of the main droplet don’t swim. This suggests that there
is no more fuel for the propulsion - all micelles in solution have
been saturated with water. We speculate that the spontaneous
division of the droplet is related to this saturation of swollen mi-
celles at the rear of the droplet, an ingredient absent so far from
our theoretical description.

As a matter of fact, one expects the presence of swollen micelles
near the water-oil interface to disturb the sorption kinetic of the
surfactant molecules and to slow down the emission of swollen
micelles44. In the model, the lubrication film thickness at large
−x is found to scales as e∞ ∝ 1/

√
A, and thus is expected to in-

crease as the emission rate decreases. A precise description of a
physico-chemistry that trigger the saturation is beyond the scope
of the paper, but as a minimal description, the model is consistent
with the scenario of a growing lubrication film, at the rear of the
droplet, where the non-uniformity is now driven by the saturation
of swollen micelles.

Let us simply point out a few elements of thoughts. For droplets
that are not too long, we expect a continuous matching between
a modest increase of the lubrication film thickness and the rear
meniscus, where the active stresses have vanished. In such a case,
the dynamics remains steady and the evolution of the droplet
shape should be reversible when entering and escaping a con-
striction zone, as observed experimentally. On the contrary for
very long droplets, the diverging lubrication film thickness gener-
ates strong curvatures, which will eventually trigger a Rayleigh-
Plateau instability and lead to an irreversible dynamical regime
the ultimate fate of which is the division of the droplet.

5 Conclusions
In this work, we presented first-of-a-kind experimental measure-
ments of the behavior of a swimming droplet in one-dimensional
capillaries of different geometries, namely square capillary, circu-
lar capillaries and stretched circular capillaries. For high enough

confinement, the velocity of the droplet converges toward a small
but non-zero value, while the lubrication layer, which separates
the droplet from the wall, becomes of non-constant thickness and
a neck forms at the rear of the droplet. Under continuously in-
creasing confinement, the deepening of the neck is observed to
lead to successive spontaneous divisions of the droplet. A brief
study of its dynamic shows a rich behaviors that can be the ground
for future works.

We introduce a simplified model for the motion of such a con-
fined droplet following the standard Bretherton approach, with
the major difference that the flow is locally driven by solute con-
centration gradient at the interface of the droplet. We focus on
the front dynamical meniscus and the lubrication layer. The latter
is treated using the lubrication layer approximation, and we find
that the solute concentration converges toward a uniform solu-
tion far from the front meniscus with a uniform thickness. The
front dynamical meniscus is only treated partially, simplifying the
transport equation and assuming a uniform stress at the droplet
interface. The matching of these two regions, using the afore-
mentioned uniform solution, allows us to find a scaling relation
for the emerging velocity of the droplet, which, as observed ex-
perimentally, does not depend on the confinement. Finally we
argue that the saturation of the swollen micelles at the rear of
the droplet, decreases the solute emission flux, giving rise to in-
creasing film thickness, which ultimately is prone to induce the
spontaneous division of long enough droplets.

As the theoretical approach presented in this work was meant
to be kept simple, a certain number of hypothesis have been used.
Among them, the assumption of a uniform Marangoni stress in
the dynamical meniscus is the strongest one. Ideally one would
need to solve the advection-diffusion problem also in this region
to find the precise prefactor for the droplet velocity and check the
robustness of the scaling law derived here.

The experimental measurement of the flow field around a con-
fined swimming droplet, Figure 2 (b) shows that the hydrody-
namics in front of the droplet is also more complex that what we
considered theoretically. More specifically, we observe a large re-
circulation area, which breaks the axisymmetry of the problem.
How to capture this symmetry breaking and coupling it to the
above description is a completely open question. Not only does it
most likely alter the droplet velocity but is also bounded to have
consequences on the interactions between two droplets.

Finally, the spontaneous division of the droplet under increas-
ing confinement is an unexpected consequences of the limited
amount of empty reverse micelles in solution. In this work, we
kept the initial concentration of micelles constant. In a complex
environment where the concentration of reverse micelles could
vary with time and space, this instability would be triggered only
in region where the "food" is scarce, an amazing behavior to ob-
serve, especially in the perspective of using simple physical sys-
tems in the design of probiotic systems.
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A Material and Methods
The experimental system is a water droplet inside a glass capil-
lary filled with a continuous oil-surfactant phase consisting of a
surfactant mixed in squalane. The surfactant is the mono-olein,
a nonionic surfactant at a concentration c = 25 mmol/L, which is
far above its critical micellar concentration (CMC ' 5 mmol/L).
The droplets are produced using a ©Femtojet apparatus by in-
jecting a single droplet of controlled size in the micro-channel
previously filled with the oil-surfactant solution, and left opened
at both ends. The length of the droplet formed varies between
0.25 and 8 times the capillary inner size (for reference, it would
correspond to equivalent spherical droplets of radius between 25
µm and 250 µm.) The droplets are made from a (milli-Q) water
solution of 15%wt NaCl. The continuous phase is a 25 mM mono-
oleine surfactant (MO; 1-oleoylrac-glycerol, 99%, Sigma-Aldrich)
solution in squalane (Sq; 99%, Sigma-Aldrich). The room tem-
perature is kept above 25oC in order to avoid mono-oleine crys-
tallization47.

Three different 1D geometries are used:

1. Square glass capillaries (Figure 3 (a)) of length 5 cm, and
of four different inner sizes: 2h = 400 µm, 2h = 200 µm,
2h = 100 µm and 2h = 80 µm. The capillaries are either used
native, or silanized beforehand. h is then defined as half the
inner dimension of the capillary.

2. Circular glass capillaries (Figure 3 (b)) of length 10 cm, and
of two different inner sizes: 2h = 200 µm and 2h = 100 µm,
all silanized. h is then defined as the radius of the capillary.
To make possible the imaging through the curved shape of
these capillaries, the observation section is immersed into
glycerol whose refractive index is close to glass.

3. Stretched circular capillaries (Figure 4) of length 3-5 cm,
whose inner radius varies continuously along their length
between 2h = 100 µm (at both ends), and a constriction of

diameter 2hmin, in the middle of the capillary, with a typi-
cal gradient of diameter dh

dx = ±0.02. Thus they present a
convergent region followed by a divergent one. These cap-
illaries are designed from circular glass capillaries of inner
size 2h = 100 µm that are stretched by hand by locally heat-
ing and stretching a portion of the capillary of typically 0.5
cm. These stretched capillaries are silanized.

Three sets of experiments are conducted.

i. For the first set of experiments, images of a droplet inside
a square or circular capillary are acquired using a AZ100
Nikon macroscope, equipped with x1 air objective. The cam-
era is a black and white camera Dalsa Falcon II, with a res-
olution of 4096 x 3072 pixels, and an acquisition frequency
of 1 Hz. The macroscope has a continuous zoom between
x1 and x8, and thus has a variable resolution, which is mea-
sured before each experiment by using a calibration slide.
Typically, to visualize an area of 1 cm in diameter, we use
the x3 zoom, which gives a resolution of 0.3 pix/µm. The
droplet motion in the capillary is then tracked in the frame
of reference of the laboratory, and its shape is detected using
an intensity threshold algorithm.

ii. A second set of experiments is conducted to measure the
flow field around a droplet inside a circular capillary, using a
Particle Image Velocimetry (PIV) technique. Red fluorescent
colloids tracers (Fluoro-MaxT M , 0.6 µm Red Fluorescent
Polymer Microspheres, Thermo scientific) are added in
the oil phase. The seeding is set to approximately 0.25
colloids/µm 3, which corresponds in an illumination plane
of depth 5 µm to little more than one colloid per µm 2, or
one colloid per two pixels2. The images are acquired with
a CCD camera (Andor Zyla 5.5) in the median plane of the
droplet using confocal microscopy with a x10 objective, and
a laser beam at 540 nm, which is the absorption wavelength
of the tracers. The acquisition frequency is 10 frames/s and
the exposure time is 50 ms. The spatial resolution in the
plane is 0.65µm/pixel. For each experiment, 100 images
of the droplet and the surrounding flow field are acquired.
The PIV analysis is performed using the PIVlab48 code on
©Matlab. Pre-processing is done using a Wiener filter of
window size 3 pixels. Then the PIV is performed by using
cross-correlation between two successive images in two
passes of respective interrogation areas of 64 pixels and 32
pixels, (which corresponds typically to a window containing
ten tracer particles) and with a window overleap of 50%.
The walls and the inside of the droplet are excluded from
the PIV by designing a moving mask for each image. The
droplet’s mask is designed to be slightly smaller than the
droplet size, and is moving with the droplet. Post-processing
validation is not used. The final spatial resolution of the
mapping of the flow field is then 16 µm/pixel. This provides
us with the velocity field in Cartesian coordinates attached
to the lab frame at each time step. We then average in time
the instantaneous flow fields obtained from PIV, thereby
reducing the experimental noise.
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iii. Finally, a third set of experiments focus on the dynamics of
the rear of the droplet. Images are acquired using a Leica
microscope equipped with a x10 air objective, and a fast
camera Photron Fastcam SA3 with varying acquisition fre-
quencies between 1000 Hz and 10000 Hz. The same image
processing than for the first set of experiments is used to
detect the droplet interface.

B Numerical applications
In this section, we give the numerical values used to do the nu-
merical applications done in the main text which are based on the
ones used in18.

Peclet number : using a swollen micelle radius of
δ=2 10−9 m, the oil viscosity η = 40 10−3 Pa.s, the diffusion con-
stant is evaluated as D = kT

6πηδ
∼ 10−12m2/s, kB=1.38 10−23 J/K

is the Boltzmann constant and T= 300 K is the temperature. We
compute φ = V h

2 = 1.5 10−10m2/s using the experimental param-
eters in Fig. 1, V = 3 µm/s being the velocity of the droplet and
h = 50 µm is the height of the channel. Then Pe = φ/D∼ 100.

Capillary number : the surface tension of the water-oil in-
terface is γ = 1.710−3 Pa.m, measured using the pendant drop
method49. The Marangoni constant K is derived from the relation
K = kBT λ , where λ =10 10−9 m is the typical distance of inter-
action between the solute and the interface. Then K ∼ 10−29J.m.
The activity, or surface flux A, is derived from the relation
A = 3

4π

κ

δ 3 , where κ=5 10−8 m/s is the decrease rate of the ra-
dius of an unconfined droplet. Then A ∼ 1018m−2.s−1. Finally,
the capillary number can be evaluated as Ca =

√
ηKA
γ
∼ 10−3.

C Uniform solution
In this section, we write the stationary solution of the solute trans-
port equations. We make the following ansatz for the concentra-
tion field and thickness evolution

c̃(x̃, ỹ) = A0 +A1x̃+A3ỹ3, ẽ(x̃) = E. (17)

Injecting this solution in Eqs. (6), (7) and (8), one find the
following coefficient

A1 =−1, A3 =
1
6
, E =

√
2, (18)

and A0 is a free parameter.
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