
HAL Id: hal-03167984
https://hal.science/hal-03167984

Submitted on 12 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A generalized method for Sparse Partial Least Squares
(Dual-SPLS): theory and applications

Louna Alsouki, Francois Wahl, Laurent Duval, Clément Marteau, Rami
El-Haddad

To cite this version:
Louna Alsouki, Francois Wahl, Laurent Duval, Clément Marteau, Rami El-Haddad. A generalized
method for Sparse Partial Least Squares (Dual-SPLS): theory and applications. jds2021 : JDS 2021 :
52èmes Journées de Statistique de la Société Française de Statistique (SFdS), Jun 2021, Nice, France.
�hal-03167984�

https://hal.science/hal-03167984
https://hal.archives-ouvertes.fr


A generalized method for Sparse Partial Least
Squares (Dual-SPLS): theory and applications

Louna Alsouki1,3, François Wahl1,2, Laurent Duval2, Clément Marteau1 & Rami
El-Haddad3

1 Université Claude-Bernard Lyon 1, 43 boulevard du 11 Novembre 1918, 69100
Villeurbanne, France,

2 IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France,
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Résumé. En analyse des données, la grande dimensionalité est souvent un obstacle
délicat à surmonter qui être résolu en représentant les données dans un espace de dimen-
sion inférieure en utilisant des méthodes de projection comme la régression des moindres
carrés partiels (PLS) [1] ou en ayant recours à des méthodes de sélection de variables
comme l’approche lasso [2]. La Sparse Partial Least Squares (SPLS) combine les deux
dernières afin de mieux interpréter les résultats grâce à la parcimonie imposée sur les
nouvelles directions. Plusieurs implémentations ont été proposées [3, 4, 5]. Cependant,
des problèmes de précision de prédictions et de bonne interprétation des coefficients sur-
gissent dans ces travaux. C’est pourquoi nous avons développé la Dual Sparse Partial
Least Squares, une méthode flexible qui permet d’obtenir des prédictions plus précises
et une meilleure interprétation des coefficients grâce à leur parcimonie. Dans cet article,
nous présentons la théorie derrière Dual-SPLS et certains résultats d’applications sur des
ensembles de données pétrolières réelles.

Mots-clés. Moindres carrés partiels, parcimonie, régression, norme duale, algorithme
lasso.

Abstract. In data analysis, high dimensionality is often a delicate obstacle to over-
come which can be solved by representing the data in a lower dimensional space using
projection methods like the Partial Least Squares regression (PLS) [1] or by resorting to
variable selection methods like the lasso approach [2]. The Sparse Partial Least Squares
(SPLS) combines the two latter in order to better interpret the results due to the sparsity
imposed on the new directions. Several implementations have been proposed [3, 4, 5].
However, problems of accuracy of predictions and correct interpretation of regression co-
efficients arise in these approaches. Hence we developed the Dual Sparse Partial Least
Squares, a flexible method that results in more accurate predictions and better interpre-
tation of the coefficients due to their sparsity. In this paper we present the theory behind
Dual-SPLS and some applicative results on petroleum data sets.

Keywords. Partial Least Squares, sparsity, regression, dual norm, lasso algorithm.
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1 Introduction

Regression analysis helps in inferring relationships between data sets, with the addi-
tional objective of extracting interpretable information. However, a recurrent problem
haunting statistical data analysis is data high dimensionality. One can choose to tackle
this issue by using dimension regression methods, like the PLS procedure [1], allowing to
represent the data in a lower dimensional space. It reduces the dimensionality by select-
ing derived components. It is an iterative method that deals with highly correlated data
and results in accurate outcomes. Algorithms are generally straightforward and simple
to handle without matrix inversion. However, regression coefficients are frequently hard
to interpret (see section 3). Another suggestion often considered is variable selection, like
in the lasso [2]. It performs regularization in order to enhance the prediction accuracy,
while simplifying the interpretation of the regression coefficients due to the sparsity of the
representation. Nevertheless, the lasso is very sensitive to the type of data and does not
always result in interpretable coefficients: in fact, it selects at most n variables before it
saturates [6]. Sparse Partial Least Squares (SPLS) [3, 4, 5] combines both approaches by
adding to the PLS framework a selection step inspired by the lasso. It is represented by
the following optimization problem:

ŵ = argmin
w∈Rp

{−Ĉov(Xw,y) + λs‖w‖1}, for wTw = 1, (1)

under the orthogonality constraint of components, with sparsity parameter λs > 0.
Lê Cao et al. (2008) [3] and Chun and Keleş (2010) [4] developed SPLS approaches

that both give an approximate solution. Thus, Durif et al. [5] conceived a similar method
in the context of classification that solves exactly Problem (1) in the univariate response
case. Nonetheless, it can be applied in the regression. It however appears to be time
consuming on high dimensional data.
Inspired by these methodologies, we devised a new strategy called Dual Sparse Par-
tial Least Squares (Dual-SPLS) that provides prediction accuracy equivalent to the PLS
method along with easier interpretation of regression coefficients thanks to the sparsity of
the results. Moreover, it generalizes the above mentioned approaches on the theoretical
point of view.

We first present the main ingredients of the Dual-SPLS. We then show some results
of applications on petroleum data sets.

2 Dual Sparse Partial Least Squares

The proposed method originated from noticing the similarity between the variational
formulation of the PLS (with the PLS1 methodology) and the expression of the dual norm
of a vector.
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Let Ω(·) be a norm on RP . The associated dual norm, denoted Ω∗(·), is defined, for any
z ∈ RP , as:

Ω∗(z) = max
w

(zTw) s.t. Ω(w) = 1. (2)

Meanwhile, the optimization problem solved by the PLS method for the first component
writes:

max
w

(yTXw) s.t. ‖w‖2 = 1. (3)

Comparing (2) and (3), one notices that optimizing the PLS criterion amounts to finding
the vector w1 that goes with the conjugate of the `2-norm of z where z = XTy, which
can be exploited in evaluating different norm expressions.
As in the lasso approach, we consider the combination of the `1 and `2 norms:

Ω(w) = λ‖w‖1 + ‖w‖2 . (4)

The closed form solution can be expressed with the soft thresholding operator. Since we
are dealing with a vector, we can consider each coordinate p ∈ {1, . . . , P} of w and the
solution can be written as:

wp
‖w‖2

=
1

µ
δp(|zp| − ν)+ (5)

where δ is the vector of the signs of z, µ guarantees the normality constraint in (2) and
ν = λµ. This is relevant since we can compare ν to zp, and therefore shrink to zero the
coefficients that correspond to the small coordinates of z (compared to ν), which enforces
sparse regression coefficients.

However, the main challenge resides in setting the parameter ν, which affects the
amount of shrinkage. We propose to choose it iteratively and adaptively according to
the number of variables that we would like to keep in the active set at each iteration. In
other words, for each number i of desired components, an optimal νi is chosen to impose a
given proportion of null coefficients. The Dual-SPLS method is implemented in the form
of Algorithm 1.

Algorithm 1 Dual-SPLS algorithm for Ω(w) = λ‖w‖1 + ‖w‖2
Input: X1,y, I (number of components)
for i = 1, . . . , I do

zi = XT
i y (weight vector)

Find ν in the adaptive way
zν = (δp(|zp| − ν)+)p∈ (applying the threshold)

µ = ‖zν‖2 λ =
ν

µ
wi =

µ

ν‖zν‖1 + ‖zν‖22
zν (loadings)

ti = Xiwi/‖Xiwi‖ (scores)
Xi+1 = Xi − tTi tiXi (deflation)

end for
Compute β̂.
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3 Results and discussions

3.1 Data sets

The data set is composed of 243 NMR spectra of refined oil samples. Each spectrum is
originally represented by more than 65000 variables. However, we have pretreated them by
eliminating irrelevant parts, removing repeated observations and normalizing amplitudes
between 0 and 1, which leaves us with around 21000 variables and 182 observations. Our
aim is to predict the density of these oil samples.

3.2 Benchmark

We assess the efficiency of the Dual-SPLS by computing the root mean square error
(RMSE) for prediction performance and then we examine the interpretation of the coef-
ficients by comparing them to the original raw spectra. The evaluation is organized as a
benchmark comparing the following methods together: PLS [1], sPLS of Lê Cao et. al.
(as implemented in mixOmics) [3], SPLS of Keleş et. al. (as implemented in spls) [4],
SPLS of Durif et. al. (as implemented in plsgenomics) [5] and lasso in glmnet package
[2]. In Figure 1 the calibration and validation sets are chosen adequately. It is divided
into two parts: the left part corresponds to the RMSE values of the validation set accord-
ing to the number of components and the right part represents the coefficients of each
regression, and for PLS related methods we select 6 components. As for Figure 2, the
calibration and validation sets are chosen randomly. We applied the regression methods
for 100 repetition in order to represent the boxplots and compare the results.

Figure 1: Benchmark of (sparse) PLS methods on the NMR data set: prediction error
according to the number of component (left), raw data and coefficients localization (right).
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In the Figures 1 and 2 , we require a 99 % proportion of null coefficients while applying
the Dual-SPLS and use cross validation to choose the adequate amount of penalization λs
for each of the other cases. Note that the x-axis is not represented with chemically-sound
units due to preprocessing.

From Figure 1 (left), all methods almost match the prediction accuracy of the PLS from
two components on, except for spls from the plsgenomics package [5] whose predictions are
slightly less accurate. The lasso algorithm provides RMSE values around 0.09 according
to the choice of shrinkage parameter. We even notice that the closest results to the
PLS are those from the new approach. To compare coefficients localization, we select
six components for PLS-related methods as the RMSE curves tend to plateau above
this value. On Figure 1 (right), the sparsest results are obtained by the lasso and the
proposed Dual-SPLS. However, the lasso does not properly indicate the location of the
important variables borne by the highest peaks of the NMR spectra. Their location is
better estimated with the Dual-SPLS.

Figure 2: Benchmark of (sparse) PLS methods on the NMR data set: prediction error
boxplots using random calibration.

From Figure 2, where we compare the boxplots of the methods applied for six compo-
nents (for PLS-related methods), we conclude the same: the prediction accuracy of the
PLS is the most similar by using the Dual-SPLS.
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4 Conclusions

The Dual-SPLS introduces a general framework providing a novel family of regression
methods that encompasses the standard PLS method. It offers the possibility to use
a quantity of different norm shapes. In the case of a norm inspired by the lasso, it
already preserves the prediction accuracy of the PLS and previously proposed sparse PLS
methodologies. On NMR data it shows to be even sparser with better localized and more
interpretable coefficients. The next steps will consist first in implementing and sharing
this method as an R package, and second in evaluating the gain in performance by using
other norms mimicking the fused or the group lasso.
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