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1 Introduction 

Regression analysis helps in inferring relationships between data sets, with the additional objective 

of extracting interpretable information. Partial Least Squares [1] (PLS) is often used when dealing 

with NMR or NIR spectra to predict properties of petroleum samples. In spite of its ability to 

operate with high-dimensional data, and its efficiency in predicting responses, PLS lacks in 

considering the functional nature of the data and shows weaknesses in result interpretation. In order 

to improve these two aspects, we developed a new strategy called Dual Sparse Partial Least Squares 

(DS-PLS) that gives equivalent prediction accuracy along with facilitated interpretation of 

regression coefficients, due to the sparsity of the representation. 

2 Theory 

The proposed method was devised from noticing the similarity between finding the PLS 

components (with the PLS1 methodology) and expressing the dual    norm of a vector.  

Let      be a norm. Its dual [2] has the following form:  

         
 

                           

Meanwhile, the optimization problem solved by the PLS method for the first component writes:  

   
 

                           

Comparing     and    , one notices that optimizing the PLS function amounts to finding the vector 

   that goes with the conjugate of the   -norm of    where        
Therefore, we propose to evaluate different norm expressions, notably adding adaptive penalization. 

An example is the norm                  Interestingly, this formulation leads to closed-

form expressions as in [3] and requires only slight modifications of the standard PLS1 algorithm: 

the solution is known as the soft thresholding operator in the lasso [4] literature:       

 
    

 
   

 
 where   is tuned to guarantee that       . 
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Moreover, this framework allows to vary the form of the norm. Another possibility is for example 

                 like in fused lasso, where   is a penalty matrix. These constraints would 

introduce a functional aspect in the treatment.   

3 Material and methods 
We apply the DS-PLS to 208 samples of NIR spectra represented by 2594 variables and to 243 

samples of NMR spectra represented by 20998 variables. After dividing the data sets in two similar 

sets (calibration and validation) and using the R programming platform, we evaluate the prediction 

using both Root Mean Squares and Mean Absolute Errors. We also compare the coefficients for 

each model with the raw data.  

4 Results and discussion 
Comparing methods, the proposed strategy matches the prediction accuracy of the PLS, and 

additionally provides a good interpretation of the coefficients (Figure 1) due to the sparsity of its 

results. In the following figure, we require 99 % of null coefficients while applying DS-PLS and 

use 6 components for both standard and DS-PLS regressions. Note that x-axis units are not 

represented due to data preprocessing. 

 

Figure 1 – Comparing coefficients of regression with the normalized mean MNR spectrum. 

5 Conclusion 
DS-PLS is a novel family of regression methods that provides a general framework: it encompasses 

the standard PLS method, and gives us the possibility to use other norm shapes. At this point, it 

preserves the accuracy of prediction of the PLS method and adds on sparsity in the coefficients for 

interpretation. The next challenge is to evaluate norms like ones for in fused or grouped lasso.   
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