
HAL Id: hal-03167825
https://hal.science/hal-03167825v1

Submitted on 14 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating the Usability of Domain-Specific Languages
Ankica Barisic, Vasco Amaral, Miguel Goulão, Bruno Barroca

To cite this version:
Ankica Barisic, Vasco Amaral, Miguel Goulão, Bruno Barroca. Evaluating the Usability of Domain-
Specific Languages. Software Design and Development, IGI Global, pp.2120-2141, 2014, �10.4018/978-
1-4666-4301-7.ch098�. �hal-03167825�

https://hal.science/hal-03167825v1
https://hal.archives-ouvertes.fr

Evaluating the Usability of Domain-

Specific Languages
Ankica Barišić, Vasco Amaral, Miguel Goulão, Bruno Barroca

CITI - Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

ABSTRACT
We can regard Domain-Specific Languages (DSLs) as User Interfaces (UIs) because they bridge the gap

between the domain experts and the computation platforms. Usability of DSLs by domain experts is a key

factor for their successful adoption. The few reports supporting improvement claims are persuasive, but

mostly anecdotal. Systematic literature reviews show that evidences on the effects of the introduction of

DSLs are actually very scarce. In particular, the evaluation of usability is often skipped, relaxed, or at

least omitted from papers reporting the development of DSLs. The few exceptions mostly take place at

the end of the development process, when fixing problems is already too expensive. A systematic

approach, based on techniques for the experimental evaluation of UIs, should be used to assess suitability

of new DSLs. This chapter presents a general experimental evaluation model, tailored for DSLs’

experimental evaluation, and instantiates it in several DSL’s evaluation examples.

INTRODUCTION

Software Languages Engineering (SLE) is becoming a mature and systematic activity, building upon the

collective experience of a growing community, and the increasing availability of supporting tools

(Kleppe, 2009). A typical SLE process starts with the domain engineering phase, in order to elicit the

domain concepts. The next phase consists in the actual design of the language, by capturing the referred

concepts and their relationships. This is followed by its implementation, evaluation, deployment,

evolution, and finally its retirement. Although this process is becoming streamlined, it still presents a

serious gap in what should be a crucial phase - language evaluation, which includes acceptance testing.

A good DSL is hard to build because it requires domain knowledge and language development expertise,

and few people have both (Mernik, Heering & Sloane, 2005). We should evaluate claims such as “our

new language brings efficiency to the process”, or that “our new language is usable and effective”, with

an unbiased and objective process.

DSLs are meant to close the gap between the Domain Experts and the computation-platforms. As such,

DSLs can be used as a structured/comprehensive means to achieve Human/Computer (H/C) Interaction.

Most of the requirements concerning the evaluation of User Interfaces (UI) are actually associated with a

qualitative software characteristic called Usability, which is defined by the quality standards in terms of

achieving the Quality in Use (ISO, 2001a).

Usability evaluation involves a phase of acceptance testing with actual users, which is typically a very

costly process. A poorly conceived evaluation process can ultimately undermine the conclusions about the

quality of the UI under analysis. This generic UI problem also applies to the realm of DSL’s construction.

In our opinion, usability can be fostered from the beginning of the DSL development cycle by adopting

user centered methods. The objective is to ensure that the developed DSLs can be used by real people (the

domain experts) to perform their tasks in the real world. This requires not only intuitive UIs, but also the

appropriate functionality and support for the activities and workflows that are to be specified with the

DSLs.

In this chapter, we discuss how user-centered design can be adapted to the context of DSL’s development.

In general, working with languages involves not only physical and perceptual activities, but also cognitive

activities such as learning, understanding and remembering. Experimenters in human factors have

2

developed a list of tasks to capture those particular aspects. The process is complex and must be tailored

case-by-case (Reisner, 1988). We will further discuss these issues, and show how they fit into the DSL’s

development process. Following that, we will define a general model for the DSL’s experimental

evaluation. This model will help us planning and designing the DSL’s evaluation processes, as well as

conducting post-mortem analysis of other DSL’s evaluation efforts in a systematic way, thus fostering the

aggregation of several DSL’s evaluation results. As discussed in (Basili, 2007), a single study outside the

context of a larger set of studies has limited value, but combined, they can be a valuable increment to the

existing body of knowledge.

The usage of our model is illustrated through the systematic analysis of several evaluations of DSLs

found in the literature. Our comparative analysis will help identifying the commonalities, differences,

strengths and weaknesses of the compared studies. The usage of our model in future replications of this

comparative study to other DSL evaluations has the potential for fostering meta-analysis, leading to sound

increments of the body of knowledge in DSLs and their evaluation.

BACKGROUND

In general, the software industry does not report investment on the usability evaluation of DSLs, as shown

in a recent systematic literature review (Gabriel, Goulão & Amaral, 2010). This conveys a perception that

there is an insufficient understanding of the SLE process which, in our opinion, must include the

evaluation of the produced DSLs. Many language engineers may perceive the investment in usability

evaluation as an unnecessary cost and prefer to risk providing a solution which has not been properly

validated, namely with respect to its usability, by the end users. This apparent state of practice contrasts

with the return of investment on usability reported for other software products (Nielsen & Gilutz, 2003).

In general, these benefits span from a reduction of development and maintenance costs, to increased

revenues brought by an improved effectiveness by the end users (Marcus, 2004).

Software language evaluation

Comparing the impact of different languages in the software development process has some tradition in

the context of General Purpose Languages (GPLs) (e.g., (Prechelt, 2000)), namely concerning their

impact on developer’s productivity. Typically, the popularity (see, for an instance of a popularity index,

http://lang-index.sourceforge.net/) of a language is used as a surrogate for its usability. The rationale for

this informal assessment is that, if there are so many people using a particular GPL, then that must say

something about its usability. Naturally, usability is only one of several factors that make a language

popular. Historic reasons, for instance, also play a major role. In any case, this kind of indirect usability

assessment is not adequate to be applied to DSLs as they are often intended for a small number of users,

and it is generally not easy to know neither the size of the community that is actually using a DSL nor the

potential size of that community (i.e. other domain experts that might use the DSL in the future). In any

case, it would only make sense to use community size for comparing DSLs within the same domain.

Other sorts of evaluations on GPLs include benchmarks, feature-based comparisons and heuristic-based

evaluations (Prechelt, 2000). These language comparisons are done on different versions of the same

language or on different languages, focusing on a subset of characteristics that indicate the suitability of

languages to a specific intended Context of Use. There are also Heuristic-based evaluations that provide

guidelines for evaluating syntax of visual languages based on the studies of cognitive effectiveness

(Moody, 2009). Because the end users of the GPLs are the people who are usually close to computation

concepts, while the ones of DSLs are closer to domain concepts of the context of use, these methods are

not appropriate for DSLs in all cases. However, it is necessary to take in consideration these methods and

adapt them for DSLs.

When usability problems are identified too late, a common approach to mitigate them is to build tool

support that minimizes their effect on users’ productivity (Bellamy, John, Richards & Thomas, 2010;

http://lang-index.sourceforge.net/

3

Phang, Foster, Hicks & Sazawal, 2009). There is an increasing awareness to the usability of languages,

fostered by the competition of language providers. Better usability is a competitive advantage, although

evaluating it remains challenging: it is hard to interpret existing metrics in a fair, unbiased way, which is

resistant to external validity threats concerning the broad user groups, or internal ones – it is very easy to

end up comparing apples with oranges, when evaluating competing languages.

The increased productivity achieved by using DSLs, when compared to using GPLs, is one of the

strongest claims by the DSL community. With anecdotal reports of 3-10 times productivity improvements

of DSLs, (Kelly & Tolvanen, 2000; MetaCase, 2007b; Weiss & Lai, 1999), or “clearly boosted

development speeds” (MetaCase, 2007a) in industrial settings, why bother with their validation?

The problem, of course, is that those anecdotal reports on improvements lack external validity. Other

reports, such as (Batory, Johnson, MacDonald & Von Heeder, 2002), present maintainability and

extensibility improvements brought by a combination of DSLs and Software Product Lines (SPL), but it

is unclear which share of the merits belongs to DSLs and which should be credited to SPLs. The usage of

DSLs has been favorably compared to the usage of templates in code generation, with respect to

flexibility, reliability and usability (Kieburtz, McKinney, Bell, Hook, Kotov, Lewis, Oliva, Sheard, Smith

& Walton, 1996). Another success story can be found in (Hermans, Pinzger & Deursen, 2009), where a

survey conducted with users of a particular DSL clearly reports on noticeable improvements in terms of

reliability, development costs, and time-to-market. The usability of that particular DSL and its toolset are

among the most important success factors of DSL introduction in that context. But are these

improvements typical, or exceptional? The honest answer can only be one: we do not know. Comparisons

can also be made among competing DSLs: for instance, (Murray, Paton, Goble & Bryce, 2000) compare a

visual DSL against the textual language for which it is a front-end.

The incremental nature of a typical DSL life cycle may give to the language engineers an erroneous

feeling that their language is being validated through the interaction with the domain experts that are

helping to build the language. The problem is that these domain experts are not necessarily the language’s

end users, so they may introduce biases in the perception of the language’s usability.

Domain-Specific languages as User Interfaces

Intuitively, a language is a means for communication between peers. For instance, two persons can

communicate with each other by exchanging sentences. These sentences are composed by signs in a

particular order. According to the context of a conversation, these sentences can have different

interpretations. If the context is not clear, we call these different interpretations ambiguous. Here, we

focus our attention in the communication between humans and computers. We only consider languages

that are used as communication interfaces between humans and machines i.e. UIs. Human-human

languages (e.g., natural languages) and machine-machine languages (e.g., communication protocols) are

not discussed this chapter. Examples of UIs range from compilers, to command shells and sophisticated

graphical applications. In each of those examples we can deduce the (H/C) language that is being used to

perform that communication: in compilers we may have a programming language; in a graphical

application, we may have an application specific language with some visual syntax, and so on. Moreover,

we argue that any UI is a realization of a language. This view is in line with that of a growing community,

built around the PLATEAU workshop series (http://ecs.victoria.ac.nz/Events/PLATEAU/WebHome), that

aims to bridge the gap between language engineers and UIs experts, so that the former can build

languages that are easier to use, leading to increased productivity by their users. In this perspective, we

define DSLs as being languages that reduce the use of computation domain concepts and focus on the

domain concepts of the contexts of use’s problem.

Usability is a key characteristic for evaluating the Quality of UIs. Since we defined H/C languages as UIs,

in our perspective, we should also use it for evaluating the Quality of this family of languages. The

difference between usability and the other software qualities is that to achieve it, one has to concentrate

http://ecs.victoria.ac.nz/Events/PLATEAU/WebHome

4

not only on system features but specifically on user-system interaction characteristics. The term usability

is overloaded and has been given several interpretations and definitions. The need for a generally

accepted usability definition is discussed in several references (Bevan, 1999, 2009; Petrie & Bevan,

2009).

ISO 9241-11 provides the definition of usability that is used in subsequent related ergonomic standards

(ISO, 2001b). ISO 9126 (ISO, 2001a) extends that definition by introducing the notion of Quality in Use,

i.e., the quality as perceived by the user during actual utilization of a product in a real Context of Use.

Quality in Use is measured in terms of the result of using the software, rather than on properties of the

software itself. The ISO standard states that achievement of Quality in Use can be assured by achieving

internal and external Quality. These two types of Quality provide us metrics that can be used early in

software development process.

The complete Quality model for achieving Quality in Use is given by ISO IEC CD 25010.3 (Petrie &

Bevan, 2009) and is discussed in the context of DSL evaluation in (Barišić, Amaral, Goulão & Barroca,

2011a). This model provides us with a complete structure of quality, but we cannot take general

conclusions about which characteristics will lead us to final usability, as they are dependent on the DSLs

intended context of use.

EVALUATING A DSL

Evaluation with users, also known as Empirical Evaluation, is recommended (Nielsen & Molich, 1990) at

all stages of development, if possible, or at least in the final stage of development. Formative methods

focus on understanding the user’s behavior, intentions and expectations in order to understand any

problems encountered, and typically employ a ’think-aloud’ protocol. Summative methods measure the

product usability, and can be used to establish and test user requirements. Testing may be based on the

principles of standards and measure a range of usability components. Each type of measure is usually

regarded as a separate factor with a relative importance that depends on the Context of Use (Barišić,

Amaral, Goulão & Barroca, 2011c). Iterative testing with small numbers of participants is usually

preferable, starting early in design and development process.

Iterative User Centered Evaluation Practices

User Centered Design can reduce development and support costs, increase sales, and reduce staff cost for

employers by allowing significant changes to correct deficiencies along the development process instead

of just evaluating at the end of it, when it might be too late (Catarci, 2000). The essential activities

required to implement User Centered Design are described in ISO 13407 (Bevan, 2005).

Usability has two complementary roles in design: as an attribute that must be designed into the product,

and as the highest level quality objective, which should be the overall objective of design. In the first

phase it is important to study existing style guidelines, or standards for a particular type of system.

Interviewing current or potential users about the current approach they are using to accomplish their tasks,

can also help identifying its strengths and weaknesses, and their expectations for a new or re-designed

system. It is also important to assess the Context of Use of a particular situation. All these contribute to an

initial understanding of what the system should do for the users and how it should be designed. Initial

design ideas can then be explored, considering alternative designs and how they meet user’s needs. After

developing potential designs it is time to build the prototypes that should be obviously simple and

unfinished, as that allows people involved in evaluations to realize that it is acceptable to criticize them.

In contrast, a prototype very close to the final product is likely to inhibit evaluators from openly

criticizing it, which might lead to a loss of valuable feedback from those evaluators. It is important to

explore particular design problems before considerable effort is put into full implementation and

integration of components of the system. A number of iterations of evaluation, designing and prototyping

may be required before acceptable levels of Usability are reached. Once the design of various components

5

of the system has reached acceptable levels, the integration of components and final implementation of

the interactive system may be required. Finally, once the system is released to users, an evaluation of its

use in real contexts may be highly beneficial (Petrie & Bevan, 2009). This kind of iterative evaluation

approach should be merged with the DSL development cycle (Barišić, Amaral, Goulão & Barroca,

2011a).

Cognitive factors involved

In order to know the users we should identify the characteristics of the target user population. For several

kinds of end users we should analyze these characteristics using techniques like questionnaires, interviews

and observations. Understanding “how” and “why” should give us a deeper knowledge about the tasks.

Performing task analysis by studying the way people perform tasks with existing systems, or by having a

high level abstraction study of cognitive processes, we should identify what are the individual tasks that

the language should enable to perform. From this, we can model the desired cognitive model for the

language context based on user-task scenarios. For each task we should identify: Goal, Pre-conditions,

Dependencies, User background and Sub tasks.

The cognitive activities that should be analyzed in the study of cognitive processes are:

• Learning both syntax and semantics;

• Composition of the syntax required to perform a function;

• Comprehension of function syntax composed by someone else;

• Debugging of syntax or semantics written by ourselves or others;

• Modification of a function written by ourselves or others.

Experimenters in human factors have developed a list of tasks to capture these particular aspects (Reisner,

1988): Sentence writing, Sentence reading, Sentence interpretation, Comprehension, Memorization and

Problem solving. To evaluate these tasks, we can use tests like: Final exams, Immediate Comprehension,

Reviews, Productivity, Retention and Re-learning.

Testing different tasks in the language usage is interesting, but to perform an exhaustive evaluation of all

of them would be very expensive. Therefore, the evaluation usually concerns only the most critical

activities.

Evaluation process experiments

We argue that the quality in use of a DSL should be assessed experimentally. In Software Engineering, a

controlled experiment can be defined as “a randomized experiment or quasi-experiment in which

individuals or teams (the experimental units) conduct one or more Software Engineering tasks for the

sake of comparing different populations, processes, methods, techniques, languages or tools (the

treatments).” (Sjøberg, Hannay, Hansen, Kampenes, Karahasanovic, Liborg & Rekdal, 2005). For our

purposes, this can be instantiated with developers typically conducting software construction, or evolution

tasks, for the sake of comparing different languages – including the DSL under evaluation and any

existing baseline alternatives to that DSL.

Experiment activity model
Figure 1 outlines the activities needed to perform an experimental evaluation of a software engineering

claim, following the scientific method. During requirements definition, the problem statement (i.e.

research questions), experimental objectives and context are defined. The next step is to perform design

planning, where context parameters and hypotheses are refined, subjects are identified, a grouping

strategy for subjects is selected, and a sequence and synchronization of observations and treatments for

each of the experimental groups is planned. The sequencing and synchronization of such interventions,

their nature (observations or treatments) and the group definition policy, define the experimental design.

The data collection activities plan is also set during design planning. This is followed with data

collection, which often includes a pilot session, to correct any remaining issues, and the evaluation itself,

6

following the designed plan. This step is followed with data analysis where data is described in the form

of statistical tables and graphs, and, if necessary, the data set is reduced. Hypotheses are then tested.

Finally, during results packaging, the results are interpreted and possible validity threats and lessons

learned are identified. A detailed discussion on how this process can be followed in a software

engineering experimentation context can be found in (Miguel Goulão, 2008; Goulão & Abreu, 2007).

Experimental reporting guidelines, generally followed by the experimental software engineering

community, are also available (Jedlitschka, Ciolkowski & Pfahl, 2008). By reporting a given language’s

quality in use, and the evaluations adhering to such guidelines, the overall ability to make study

replications (for independent validation and validity threats mitigation) and its meta-analysis (for building

a body of knowledge supported by the evidence collected in different contexts) is expected to increase.

Figure 1. Experiment Activity Model Overview.

Experiment Design Model
In order to contrast the selected DSL experimental validations, we start by modeling their relevant

information. This is captured in the class diagrams, adapted and extended from (M. Goulão, 2008). In a

nutshell, this model partially captures some of the essential information of an experimental language

evaluation, namely the details on evaluation requirements and planning.

Before conducting an experimental language evaluation, one should start by clearly defining the problem

that the evaluation will address as modeled in Figure 2. This includes identifying where this problem can

be observed (i.e., its context, typically where the language will be used), and by whom (i.e., the

stakeholder who is affected by the problem – e.g., the language user). It is also important to state how

solving the identified problem is expected to impact on those who observe it, and which quality attributes

will be affected. The class QualityAttribute can take values that are defined in Quality model from ISO

Standards (Barišić, Amaral, Goulão & Barroca, 2011a).

Figure 2. Problem Statement design model.

When conducting language evaluation experiments, one should clearly define the experiments’

objectives. Building upon Basili’s earlier work (Basili, 1996), Wohlin et al. proposed a framework to

guide the experiment definition (Wohlin, Runeson, Höst, Ohlsson, Regnell & Wesslén, 1999). The

7

framework is to be mapped into a template with the following elements: the object of study under

analysis, the purpose of the experiment, its quality focus, the perspective from which the experiment

results are being interpreted, and the context under which the experiment is run.

While the experiment definition expresses something about why a particular language evaluation was

performed, the experiment planning expresses something about how it will be performed. Before starting

the experiment, decisions have to be made concerning the context of the experiment, the hypotheses

under study, the set of independent and dependent variables that will be used to evaluate the

hypotheses, the selection of subjects participating in the experiment, the experiment’s design and

instrumentation, and also an evaluation of the experiment’s validity. Only after all these details are

sorted out should the experiment be performed. The outcome of planning is the experimental language

evaluation design, which should encompass enough details in order to be independently replicable.

Figure 3. Context design model.

Figure 3 includes information on the context, including where the experimental language evaluation will

take place. The context of an experiment determines our ability to generalize from the experimental

results to a wider context. Experiments can be conducted in different contexts, each of them with their

own benefits, costs, and risks. These constraints have to be made explicit, in order to ensure the

comparability among different studies, and to allow practitioners to evaluate the extent to which the

results obtained in a study, or set of studies, are applicable to their own particular needs. Throughout the

experiment, there are a number of context parameters that remain stable and their value is the same for all

the subjects in the experiment during the whole process. Therefore, we can safely assume that differences

observed in the results cannot be attributed to these parameters, while the actual parameters to be reported

may vary (Wohlin, Runeson, Höst, Ohlsson, Regnell & Wesslén, 1999). Concerning their integration

within the language development process, experiments can be conducted either online, or offline. The

former, carried as part of the software process in a professional environment, involve an element of risk,

since experiments may become intrusive in the underlying development activity. This intrusiveness may

even manifest itself through resources and time overheads on a real project. A common alternative is to

carry out the experiment offline.

An experimental language evaluation design prescribes the division of our sample into a set of groups,

according to a given strategy. Each of those groups receives a set of interventions, which may be either

observations where data is collected, or treatments, where the groups receive some sort of input (e.g.,

training in using a language). The association class with the time stamp allows this data to be ordered in

time, so that a sequence of observations and treatments can be established. The sequencing and

synchronization of such interventions, their nature, and the group definition policy, define the

experimental design.

The instrument design presented in Figure 4 includes the definition of the artifacts that will be used in

the experiment. For instance, in a language evaluation experiment, the syntactical problem instantiation

specified with a language can be used as an artifact that will then be changed by the evaluation

participants. These changes could be monitored, using a collection instruments such as those depicted in

8

Figure 4 – e.g., a combination of a test with a post-test questionnaire. This kind of evaluation allows

addressing the instrument perspectives as cognitive activities that are fundamental to assessing the

usability of a language, and the quality of instantiation, especially during modification (see, for instance

the usage of cognitive dimensions in (Kosar, Mernik & Carver, 2012; Kosar, Oliveira, Mernik, Pereira,

Črepinšek, Cruz & Henriques, 2010). The instrumentation also concerns the production of guidelines, and

tools (not necessarily computer-based ones) that will support the measurements performed in the

experiment. The rationale is to foster the comparability of the collected data by streamlining data

collection in a consistent way. Note that instrumentation may also include any training material

distributed to the participants, before their participation in the experiment.

Figure 4. Instrument design model.

In Figure 5, we can see the sample design model that includes the participants’ profile and the artifacts

used in the language evaluation. An orthogonal classification of context concerns the people involved in

the language evaluation. One may choose among performing the language evaluation with professional

practitioners, or with surrogates for those practitioners (e.g., students). The first option leads to results that

are more easily comparable to others obtained in a professional context, but care must be taken to reduce

potential overheads to practitioners’ activities. Using students as surrogates for professional practitioners

is less expensive, but makes the experimental results harder to extrapolate for a professional community.

In order to reduce this gap between the students and the practitioners, the researcher should prefer using

graduate students, whose expertise is closer to that of novice practitioners.

Figure 5. Sample design model.

It is common to use a frame of the population, if it is not feasible to identify all the population’s members.

In contrast, all members of the chosen population frame are identified. For example, rather than

considering all the language components available, one can use a frame that considers only the selected

language components as the population. Often, it is not possible to perform the evaluation using all the

9

relevant framed population as evolution subjects. Instead, a sample of that framed population is chosen

using a selected sampling technique, with the objective of being as much representative of the framed

population as possible, considering the available resources of the experimenter.

Yet another dimension constraining the language evaluation is the usage of toy vs. real problems. There

are at least two issues that motivate the usage of toy problems: the resources available for the language

evaluation and the risks concerned with the outcome of the evaluation. The former results from the often

very limited amount of time that the subjects can devote to the evaluation. The latter relates to the

potential harm caused by the outcome of the evaluation (e.g. while experimenting with using different

languages on a real problem, a language that leads to worse productivity can lead to additional costs to a

customer). The question, here, is whether the results obtained with a toy problem will scale up to real

problems, or not. Toy problems are often used in early evaluations, as their usage is less expensive. If the

results of evaluations conducted with toy examples are satisfactory, the risk of scaling up the problem to a

real one may be mitigated to a certain extent, although it will not be completely eradicated.

The artifacts used in these evaluations can be generic or domain-specific. When comparing programming

languages it is common for these artifacts to be domain-specific, regardless of the original language they

were built with. This means, that we can use this model, taking in the consideration this attribute

specification, to compare GPLs, DSLs, or GPLs vs. DSLs.

Figure 6. Hypothesis and Variables design model.

Figure 6 includes the hypotheses tested and the variables used with their characteristics, such as type,

scale, and level. The hypothesis formulation should be stated as clearly as possible and pesented in the

context of the theoretical background it is derived from. The null hypothesis states that there is no

observable pattern in the experimental evaluation setting, so any variations found are resulting from

coincidence. This is the hypothesis that the researcher is trying to reject. The alternative is that the

variations observed are not resulting from coincidence. When the null hypothesis is rejected, we can

conclude that the null hypothesis is false. However, if we cannot reject the null hypothesis, we can only

say that there is no statistical evidence to reject it. Conversely, if we reject the null hypothesis, we can

accept its alternative. If we cannot reject the null hypothesis, we cannot accept the alternative.

Hypothesis testing always assumes a given level of significance denoted by alpha, which represents a

fixed probability of wrongly rejecting the null hypothesis, if it is in fact true. The probability value (p-

value) of a statistical hypothesis test is the probability of getting a value of the test statistic as extreme as

or more extreme than that observed by chance alone, if the null hypothesis is true. Figure 6 presents the

relationships between the main concepts involved in hypotheses definitions, starting from the overall

10

objectives of the research, through the specific goals of the experiment, and the questions that will allow

assessing the achievement of the goals. The hypotheses are then assessed using metrics.

The language evaluator selects both dependent and independent variables. Dependent variables should

be explicitly tied to the research goals (in the context of this chapter, these typically involve evaluating

DSLs), and chosen for their relevance with respect to those goals. When it is not feasible to collect direct

measures of the level of achievement of the research goals, surrogates can be used, although such

replacement is to be avoided, when possible, and clearly justified. When not – e.g. when assessing the

usability of a DSL – we may use effectiveness in specifying a system with it as a surrogate for the DSL’s

usability. Similarly, independent variables are chosen according to their relevance to the research goals.

The analysis techniques chosen for the language evaluation experiment depend on the adopted language

evaluation design, the variables defined earlier, and the research hypotheses being tested. More than one

technique may be assigned to each of the research hypotheses, if necessary, so that the analysis results can

be cross-checked later. Furthermore, each of the hypotheses may be analyzed with a different technique.

This may be required if the set of variables involved in that hypothesis differs from the set being used in

the other hypotheses under tested. Discussions relating statistical tests (in particular, parametric vs. non-

parametric ones) with variable types can be found in statistics text books, such as (Maroco, 2003).

By capturing a rich set of data of an language evaluation, we can pave the way for further analysis, where

the information collected in several independently conducted language evaluations can be combined. To

do so, the next step is to instantiate this model. In Figure 7, we illustrate a partial instantiation of this

model, using information collected from the family of language evaluation experiments described (Kosar,

Mernik & Carver, 2012). This particular example is chosen for illustration because that family of

evaluation experiments is an excellent example of how DSL properties validation can be performed in a

sound way. The instantiation is only partial, as the whole instantiation would be extremely cluttered.

Experiments overview
The main point in streamlining the evaluation of DSLs and making information available in a common

framework is that we can build upon that framework an evidence-based body of knowledge on DSLs and

their properties with respect to their usability. To illustrate this, we present a systematic comparison of

four language evaluation experiments. As noted earlier in this chapter, these evaluations are currently

exceptional in the realm of DSLs and are chosen precisely for that: they are examples of best practices in

languages evaluation with a concern on usability, from which we can perform some meta-analysis,

leading not only to a collection of lessons learned “from the trenches”, but also to the identification of

opportunities to further improve existing validation efforts. Table 1 outlines our comparison. The selected

studies are (Barišić, Amaral, Goulão & Barroca, 2011b; Kieburtz, McKinney, Bell, Hook, Kotov, Lewis,

Oliva, Sheard, Smith & Walton, 1996; Kosar, Mernik & Carver, 2012; Murray, Paton, Goble & Bryce,

2000). In this table, the first column represents a specific criterion that we will use in our comparative

overview of these studies. The four remaining columns provide information on each of the selected

studies. Kosar et al. conducted a family of three experiments, while the remaining selected studies are

single experiments. The generic lack of families of experiments, rather than single experiments is a long

identified shortcoming in the experimental validation of software engineering claims, so this should be

highlighted as a very strong point in this work. Families of experiments help mitigating validity threats

that occur in single experiments. In this particular case, the fact that the tested hypotheses have consistent

results in all the three experiments in the experiment family increases the confidence in the soundness of

the obtained results. Ideally, there should also be experiments within the family run by completely

separate research groups, so that any biases by the experiment team that might exist would also be

removed. Independent replication of experiments is a standard practice in other domains. For example,

the Cochrane Collaboration (http://www.cochrane.org/) supports a common repository for health care

evidence, which is fed by independently run families of experiments.

http://www.cochrane.org/

11

12

Figure 7. Experiment design model instantiation, built from info in (Kosar, 2012).

Back in 1997, Brooks advocated that meta-analysis should be used to combine the results of independent

study replications in Software Engineering (Brooks, 1997). Miller attempted to perform meta-analysis on

a set of independent defect detection experiments, but found serious difficulties concerning the diversity

of the experiments and heterogeneity of their data sets, and was unable to derive a consistent view on the

overall results (Miller, 2000).A noticeable feature in the quality concerns row is that, either directly or

indirectly, all these studies are concerned with the quality in use of a DSL, including perspectives such as

its effect on the productivity of practitioners, which is sometimes indirectly assessed through the

effectiveness and efficiency of the language usage. This is, of course, not surprising, as these examples

were chosen precisely because they illustrate how such evaluation can be performed, in different contexts.

Kosar et al.’s work is an independent evaluation of several DSLs, and is mostly concerned with program

comprehension correctness and efficiency while using the DSLs, when compared with using GPLs. A

detailed analysis of their data could be used to identify opportunities for improving the tested DSLs.

Kieburtz et al.’s experiment addresses DSL evolution as part of the concern with flexibility, while the

remaining two experiments explicitly look for opportunities for improving the respective DSLs under

scrutiny.

The four studies are run in vitro (i.e., in the laboratory, under controlled conditions), off-line. This context

is particularly interesting in that the researchers can better control extraneous factors that would otherwise

bring validity threats to each of the experiment. Being off-line, the risks for the organizations where the

studies are conducted are also mitigated, in the sense that if anything goes wrong with the

experimentation, this will have no visible effect to external stakeholders (e.g., clients that were

considering using a DSL). The downside for this is that there are validity threats concerning the realism of

an assessment performed in vitro, as well as that of conducting the experiment off-line. Clearly, there are

interesting research opportunities to mitigate these threats, by evaluating the same DSLs in a real-world,

uncontrolled environment, to strengthen the external validity of the obtained results. The same holds for

selection of participants in the experiment, where, whenever possible, real users of the DSL should be

involved (as it happened, for instance, with the experienced participants in the PHEASANT experiment).

The number of participants is also an issue, due to the relatively high costs of engaging real users in the

validation of languages. Concerning this, we would highlight Kieburtz’s experiment as it shows how a

meaningful assessment can be performed, even with a very low number of participants (only 4). Of

course, for statistical soundness, larger numbers of subjects should be used, but, as noted by usability

experts, a small number of users can still detect a high number of usability improvement opportunities in

a product (Nielsen, 1993). Using a small number of participants is an interesting option in early

evaluations aimed at identifying defects of the language, to reduce costs. In order to draw more definitive

conclusions (with high reliability and validity) that state if the language is better than the previous

baseline it is necessary to use a larger number of participants. For instance, in Kieburtz’s experiment, the

conclusions were sound with respect to the participants, but had a threat with respect to their external

validity: with only 4 participants, it was not possible to rule out the possibility of their individual skills

playing a role in how the competing languages were evaluated. A similar comment might be made for the

evaluation experiments described by Murray and Barišić, with 10 and 15 participants, respectively. In

isolation, each of these experiments has its own external validity threats. Interestingly, if we combine the

results in all these experiments, a consistent pattern of DSL success starts to emerge. Last, but not the

least, several of these evaluation experiments uses academic examples for validation, rather than “real-

world” problems. This is, of course, a convenience constraint which entails the obvious threat of external

validity, if the examples are not representative of the actual tasks real users will have to perform with the

DSLs. Even with real-world examples, the (lack of) coverage of the DSL language with those examples is

also a common threat.

13

Criteria Kieburzt1996 Murray1998 Kosar2012 Barišić2011

Experiment runs Single Single Family of 3 runs Single

Quality concerns Flexibility,

productivity,

reliability, usability

Learnability,

understandability, usability,

user satisfaction and language
evolution

Effectiveness, time frame,

efficiency, usability, perceived

complexity

Effectiveness, efficiency,

self-confidence in results

and language evolution

Context In-vitro, offline In-vitro, offline In-vitro, offline In-vitro, offline

Comparison DSL vs. GPL Visual DSL vs. Textual DSL DSL vs. GPL DSL vs.GPL

Participants

profile

Professionals Graduate students? Graduate students Graduate students

Participants #

(DSL/Baseline)

(4/4) (10/10) (108/107) (15/15)

Domain(s) Messages translation
and validation for

military command,

control, and
communications

Object databases query
specification

Feature diagrams, graph
descriptions, and graphical

user interfaces

High energy physics
analysis

DSL MTV-G Kaleidoquery FDL, DOT, XAML PHEASANT

Baseline ADA templates OQL (textual DSL) FD library in Java, GD library

in C, Windows form Library
in C#

BEE/C++

Tasks/Participant

(DSL/Baseline)

(31/31) (12/12) (22/22) (4/4)

Tasks kind New+Evolution New Evolution New

Materials origin Industry-level Academic Academic Academic

Pre-test/Interview Implicit (Yes?) Implicit (Yes?) Yes Yes

Training in DSL Yes Yes Yes Yes

Training in

Baseline

Yes Yes Yes For inexperienced users

Group

participants

2 similar groups 4 similar groups 6 similar groups 4 similar groups

Group assignment Stratified by gender,
so that each group 1

woman and 1 man, and

each group had a
different training

order.

Stratified, so that all
combinations of

programming expertise

(programmers vs. non
programmers) and training

order (Kaleidoquery first vs.

last) have 5 elements.

Convenience, based on
university courses classes;

arrangements made so that

half of the participants started
learning the DSL first, and

then the GPL, while the other

half did the opposite.

Stratified, so that all
combinations of

programming expertise

(programmers vs. non
programmers) and training

order (PHEASANT first vs.

last) have a similar number
of elements

Independent

variables

Language type,

participant

Language type, language

factor, experience

Language type,

domain, question type,

experience

Language type, question

type, experience

Dependent

variables

Effort, effort/task,

acceptance test

failures, task difficulty
classification, and

perceptions on

flexibility,
productivity and

confidence.

Correctness, user preferences

concerning both languages

Program comprehension, time,

efficiency, simplicity of use,

test complexity

Time

Correctness

Confidence scale

Evaluation type

(Pre/Eval/Post)

(None/Tool-based

evaluation /
Questionnaire)

(Interview – implicit, in the

paper / Paper and pencil test /
Questionnaire)

(Questionnaire/Multi choice

Questionnaire/ Questionnaire)

(Interview/Tool-based

test/Questionnaire)

Analysis ANOVA Paired sample T-test,

independent samples T-Test

Wilcoxon Signed Ranks Test Wilcoxon Signed Ranks

Test, Sign Test

Results summary Increased productivity,
reliability, flexibility,

with MTV-G. Users
preferred its usability

to the alternative

baseline.

Increased effectiveness and
self confidence in results with

Kaleidoquery for non-
programmers, who clearly

preferred Kaleidoquery. No

significant difference with
programmers, who generally

outperformed non-

programmers

Increased effectiveness and
efficiency of programs written

in DSLs when compared to
baseline GPL

Increased effectiveness,
efficiency, self-confidence

in results with
PHEASANT, when

compared to the baseline

C++/BEE. Experts
generally outperformed

non-experts.

Table 1. Experiments overview.

14

In all these DSLs, there is a high variability of domains and techniques to build DSLs, suggesting that the

lessons learned from this collection of language evaluation experiments should, in principle, apply to

DSLs from other domains. All the selected studies compare DSLs with an existing baseline which is, in

most cases, a GPL-based solution. The noticeable exception is Murray’s experiment, where a graphical

DSL is contrasted with the textual notation it is built upon. This illustrates how, in most reported cases,

the usability evaluation of DSLs is performed once. In a user-centered design process, this should not be

the case. As such, we would expect to find DSL usability assessments covering several versions of the

same language, thus supporting the language evolution. Language evolution is covered in some of these

studies, usually in the final questionnaire that is prepared for participants, in the end of the evaluation.

This feedback can be valuable for language engineers, but the effect of implementing the changes

suggested by participants’ feedback should ideally also be assessed by a new replica of the experiment, to

run with the new version of the DSL.

Figure 8. Experiments design: Observations and Treatments.

Concerning the experimental designs (see Figure 8), whether implicitly or explicitly, they all report

collecting some background information. In some of them, domain training was necessary, while in

others, it was not. One of the common concerns in all experiments was to cancel possible learning effects,

by splitting participants into at least a couple of groups, so that one of the groups would learn the baseline

first and then the DSL, while the other group would have its training and testing path in the reverse order.

Whenever more than one category of participants existed (e.g., programmers vs. non-programmers), the

groups were further split so that there was a balanced number of experienced and non-experienced

subjects following each of the training and testing paths. Experiments usually ended with a questionnaire,

15

so that participant’s perceptions on their performance in the experiment, as well as suggestions for

improvement in the languages, or other relevant information could be recorded.

All experiments used some statistical approach to assess the extent to which the differences in collected

data between using the DSL, or the baseline, were significant. In all cases, some statistically significant

differences in the results were reported. These differences should be regarded as indicators of a tendency,

rather than as definitive, due to the already discussed external validity issues of these experiments, when

considered in isolation, but their overall consistency gives us some trust on the observed trends. In all

experiments, the quality impacts of using DSLs vs. using the existing baselines are noticeable, and

strengthen the claims concerning a stronger usability using DSLs, when compared to their baselines, with

an impact on the productivity of professionals using them, in these tests. We also note how, whenever

there is a separation among experienced and non-experienced test participants, the improvement effects

are more noticeable in the non-experienced participants. The overall feedback, usually collected through a

mix of Likert-scale questionnaires (e.g., each answer is encoded in a symmetric scale expressing the level

of agreement with a given statement, ranging from a strong agreement to a strong disagreement), and

open questions is, in general, favorable to DSLs, or indifferent, but only rarely favorable to the baseline.

The obvious conclusion of all these studies is that, in general, the analyzed DSLs outperformed their

baselines, confirming the anecdotal stories on the benefits of DSLs, with varying differences between the

baselines and the DSLs. This is not surprising for at least two motives: (i) those DSLs were built to be a

better alternative than the baselines they were compared with, in most cases, so the language engineers

had a grasp of how to improve on the existing baselines – the DSLs were built to be good at those tasks

they were tested with so, the tests showed that this objective was met; (ii) taking a skeptic’s view, it is

also arguable that, due to publication bias, we are mostly bound to have access to success stories, rather

than failure ones. A proponent of a new language is less likely to write a report explaining how the

language fails to meet some of its goals, whereas the author of a successful language is interested in

illustrating, through validation, the advantages of using the new language. This skeptic’s view is a strong

argument for the independent validation of claims on DSLs’ advantages over existing baselines. That

said, it should be noted that Kosar’s family of validation experiments is an independent one, in the sense

that the evaluators are not simultaneously the developers of the solutions under comparison.

FUTURE RESEARCH DIRECTIONS

The research focus on the problem of Evaluating the Quality of DSLs, so far, has only been scratched

very superficially. Although we have presented a way to systematize the evaluation process, so that we

could fight its complexity, we need to go further and derive an integrated and effective set of tools to

support this phase in a cost effective way. Further research is also required to prove that the user centered

design process is a good way to reduce costs in DSL development – we need to organize case studies so

that we collect more experimental evidences supporting that claim. We foresee new developments and an

emerging community in this area in the near future.

CONCLUSION

Under the perspective of a Software Language Engineer, in order to experimentally evaluate a DSL, we

need to know what are the criteria involved, understand the notion of Quality, and understand the

evaluation process itself. This is usually complex, and a challenge with respect to reuse, because this is

tailored to the specificity of the language under evaluation and its context.

In this chapter, we covered all the aspects mentioned before, and we brought some light to the systematic

approach to do so. With general models of DSL’s experimental evaluation such as the one we presented

in this chapter, the Software Language Engineer is able to effectively reason about his experimental

process and eventually detect flaws before it is applied and analyzed.

16

REFERENCES
Atkinson, C. & Kühne, T. (2003). Model-Driven Development: A Metamodeling Foundation. IEEE

Software, 20(5), 36-41.

Barišić, A., Amaral, V., Goulão, M. & Barroca, B. (2011a). How to reach a usable DSL? Moving

toward a Systematic Evaluation. Electronic Communications of the EASST (MPM).

Barišić, A., Amaral, V., Goulão, M. & Barroca, B. (2011). Quality in Use of Domain Specific

Languages: a Case Study. in 3rd ACM SIGPLAN workshop on Evaluation and Usability of

Programming Languages and Tools (PLATEAU 2011) Portland, USA. (pp. 65-72).

Barišić, A., Amaral, V., Goulão, M. & Barroca, B. (2011c). Quality in Use of DSLs: Current

Evaluation Methods. in 3rd INForum - Simpósio de Informática (INForum2011), Coimbra,

Portugal.

Basili, V. R. (1996). The role of experimentation in software engineering: past, current, and future.

in 18th International Conference on Software Engineering (ICSE 1996). (pp. 442-449).

Basili, V. R. (2007). The Role of Controlled Experiments in Software Engineering Research. In V.

R. Basili, D. Rombach, K. Schneider, B. Kitchenham, D. Pfahl & R. Selby (Eds.), Empirical

Software Engineering Issues. Critical Assessment and Future Directions (pp. 33-37):

Springer Berlin / Heidelberg.

Batory, D., Johnson, C., MacDonald, B. & Von Heeder, D. (2002). Achieving extensibility through

product-lines and domain-specific languages: A case study. ACM Transactions on Software

Engineering and Methodology (TOSEM), 11(2), 191-214.

Bellamy, R., John, B., Richards, J. & Thomas, J. (2010). Using CogTool to model programming

tasks. in 2nd ACM SIGPLAN workshop on Evaluation and Usability of Programming

Languages and Tools (PLATEAU 2010), Reno, Nevada, USA.

Bevan, N. (1999). Quality in use: meeting user needs for quality. Journal of Systems and Software,

49(1), 89-96.

Bevan, N. (2005). Cost benefits framework and case studies. Cost-Justifying Usability: An Update

for the Internet Age. Morgan Kaufmann.

Bevan, N. (2009). Extending quality in use to provide a framework for usability measurement.

Human Centered Design, 13-22.

Brooks, A. (1997). Meta Analysis -A Silver Bullet - for Meta-Analysts. Empirical Software

Engineering, 2(4), 333-338.

Catarci, T. (2000). What happened when database researchers met usability. Information Systems,

25(3), 177-212.

Gabriel, P., Goulão, M. & Amaral, V. (2010). Do Software Languages Engineers Evaluate their

Languages? in XIII Congreso Iberoamericano en "Software Engineering" (CIbSE'2010),

ISBN: 978-9978-325-10-0, Cuenca, Ecuador. (pp. 149-162).

Goulão, M. (2008). Component-Based Software Engineering: a Quantitative Approach. PhD

Dissertation, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisboa,

Portugal.

Goulão, M. & Abreu, F. B. (2007). Modeling the Experimental Software Engineering Process. in

6th International Conference on the Quality of Information and Communications

Technology (QUATIC'2007), Lisbon, Portugal. (pp. 77-90).

17

Hermans, F., Pinzger, M. & Deursen, A. V. (2009). Domain-Specific Languages in Practice: A

User Study on the Success Factors. in 12th International Conference on Model Driven

Engineering Languages and Systems, Denver, Colorado, USA. (pp. 423-437).

ISO9126. (2001). ISO/IEC 9126: Information Technology - Software Product Evaluation -

Software Quality Characteristics and Metrics. Geneva, Switzerland: International

Organization for Standardization.

ISO. (2001a). ISO/IEC 9126-1 Quality model.

ISO. (2001b). ISO/IEC 9241-11 Ergonomic requirements for office work with visual display

terminals (VDTs) -- Part 11: Guidance on usability.

Jedlitschka, A., Ciolkowski, M. & Pfahl, D. (2008). Reporting Experiments in Software

Engineering. In F. Shull, J. Singer & D. I. K. Sjøberg (Eds.), Guide to advanced empirical

software engineering (Vol. 5971). London: Springer-Verlag.

Kelly, S. & Tolvanen, J.-P. (2000). Visual domain-specific modelling: benefits and experiences of

using metaCASE tools. in International Workshop on Model Engineering, at ECOOP'2000.

Kieburtz, R. B., McKinney, L., Bell, J. M., Hook, J., Kotov, A., Lewis, J., Oliva, D. P., Sheard, T.,

Smith, I. & Walton, L. (1996). A Software Engineering Experiment in Software Component

Generation. in 18th International Conference on Software Engineering (ICSE'1996), Berlin,

Germany. (pp. 542-552).

Kleppe, A. G. (2009). Software language engineering: creating domain-specific languages using

metamodels: Addison-Wesley.

Kosar, T., Mernik, M. & Carver, J. (2012). Program comprehension of domain-specific and general-

purpose languages: comparison using a family of experiments. Empirical Software

Engineering, 17(3), 276-304.

Kosar, T., Oliveira, N., Mernik, M., Pereira, M. J. V., Črepinšek, M., Cruz, D. & Henriques, P. R.

(2010). Comparing General-Purpose and Domain-Specific Languages: An Empirical Study.

Computer Science and Information Systems, 7(2), 247-264.

Marcus, A. (2004). The ROI of Usability. In Bias & Mayhew (Eds.), Cost-Justifying Usability:

North- Holland: Elsevier.

Maroco, J. (2003). Análise Estatística - Com Utilização do SPSS (2nd ed.). Lisbon: Edições Sílabo.

Mernik, M., Heering, J. & Sloane, A. M. (2005). When and How to Develop Domain-Specific

Languages. ACM Computing Surveys, 37(4), 316-344.

MetaCase. (2007a). EADS Case Study, http://www.metacase.com/papers/MetaEditinEADS.pdf.

MetaCase. (2007b). Nokia Case Study, http://www.metacase.com/papers/MetaEditinNokia.pdf.

Miller, J. (2000). Applying Meta-Analytical Procedures to Software Engineering Experiments.

Journal of Systems and Software, 54(11), 29-39.

Moody, D. L. (2009). The “physics” of notations: Toward a scientific basis for constructing visual

notations in software engineering. IEEE Transactions on Software Engineering, 756-779.

Murray, N. S., Paton, N. W., Goble, C. A. & Bryce, J. (2000). Kaleidoquery--a flow-based visual

language and its evaluation. Journal of Visual Languages & Computing, 11(2), 151-189.

Nielsen, J. (1993). Usability Engineering: Academic Press.

Nielsen, J. & Gilutz, S. (2003). Usability Return on Investment (4th ed.). Nielsen Norman Group.

Nielsen, J. & Molich, R. (1990). Heuristic evaluation of user interfaces. in SIGCHI conference on

Human factors in computing systems: Empowering people (CHI'90), Seattle, Washington,

United States. (pp. 249-256).

http://www.metacase.com/papers/MetaEditinEADS.pdf
http://www.metacase.com/papers/MetaEditinNokia.pdf

18

Petrie, H. & Bevan, N. (2009). The evaluation of accessibility, usability and user experience. In C.

Stephanidis (Ed.), The Universal Access Handbook: CRC Press.

Phang, K. Y., Foster, J. S., Hicks, M. & Sazawal, V. (2009). Triaging Checklists: a Substitute for a

PhD in Static Analysis. in 1st ACM SIGPLAN wokshop on evaluation and Usability of

Programming Languages and Tools (PLATEAU 2009).

Prechelt, L. (2000). An Empirical Comparison of Seven Programming Languages. IEEE Computer,

33(10), 23-29.

Reisner, P. (1988). Query languages Handbook of Human-Computer Interaction (pp. 257-280).

Amsterdam, The Netherlands: North-Holland.

Sjøberg, D. I. K., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic, A., Liborg, N.-K. &

Rekdal, A. (2005). A survey of controlled experiments in software engineering. IEEE

Transactions on Software Engineering, 31(9), 733-753.

Weiss, D. M. & Lai, C. T. R. (1999). Software Product-Line Engineering: A Family-Based

Software Development Process: Addison Wesley Longman, Inc.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. & Wesslén, A. (1999).

Experimentation in Software Engineering: An Introduction (Vol. 6): Kluwer Academic

Publishers.

ADDITIONAL READING SECTION

Benestad, H. C., Arisholm, E., & Sjøberg, D. I. K. (2005). How to Recruit Professionals as Subjects in

Software Engineering Experiments. Paper presented at the Information Systems Research in

Scandinavia (IRIS), Kristiansand, Norway.

Cao, L., Ramesh, B., & Rossi, M. (2009). Are Domain-Specific Models Easier to Maintain than UML

Models? IEEE Software, 26(4), 19-21.

Cook, S., Jones, G., Kent, S., & Wils, A. C. (2007). Domain-Specific Development with Visual Studio

DSL Tools: Addison-Wesley Professional.

Deursen, A. V., & Klint, P. (1998). Little Languages: Little Maintenance? Journal of Software

Maintenance: Research and Practice, 10(2), 75-92.

Deursen, A. V., Klint, P., & Visser, J. (2000). Domain-Specific Languages: An Annotated Bibliography.

ACM SIGPLAN Notices, 35(6), 26-36.

GME. (2007). GME: Generic Modeling Environment. Vanderbilt University.

Gray, J., Rossi, M., & Tolvanen, J.-P. (2004). Preface. Journal of Visual Languages and Computing,

Elsevier, 15, 207-209.

Guizzardi, G., Ferreira Pires, L., & van Sinderen, M. (2005). An Ontology-Based Approach for

Evaluating the Domain Appropriateness and Comprehensibility Appropriateness of Modeling

Languages. Paper presented at the Model Driven Engineering Languages and Systems

(MoDELS'2005), Montego Bay, Jamaica, 691-705.

Johnson, P. (1992). Human computer interaction: psychology, task analysis, and software engineering:

McGraw-Hill.

Kelly, S., Lyytinen, K., & Rossi, M. (1996). MetaEdit+ A fully configurable multi-user and multi-tool

CASE and CAME environment. Paper presented at the 8th International Conference on Advanced

Information Systems Engineering, CAiSE'96.

Kelly, S., & Pohjonen, R. (2009). Worst Practices for Domain-Specific Modeling. IEEE Software, 26(4),

22-29.

19

Kitchenham, B. A., Dybå, T., & Jørgensen, M. (2004). Evidence-based Software Engineering. Paper

presented at the 26th International Conference on Software Engineering (ICSE 2004), Edinburgh,

Scotland, 273-281.

Kitchenham. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering:

Keele University and Durham University Joint Report.

Kitchenham, B. A., Al-Khilidar, H., Babar, M. A., Berry, M., Cox, K., Keung, J., Kurniawati, F., Staples,

M., Zhang, H., & Zhu, L. (2008). Evaluating guidelines for reporting empirical software

engineering studies. Empirical Software Engineering, 13(1), 97-121.

Kosar, T., Martínez López, P. E., Barrientos, P. A. & Mernik, M. (2008). A preliminary study on various

implementation approaches of domain-specific language. Information and Software Technology,

50(5), 390-405.

Luoma, J., Kelly, S., & Tolvanen, J.-P. (2004). Defining Domain-Specific Modeling Languages:

Collected Experiences. in OOPSLA Workshop on Domain-Specific Modeling, Vancouver, British

Columbia, Canada.

Moore, W., Dean, D., Gerber, A., Wagenknecht, G., & Vanderheyden, P. (2004). Eclipse Development

using the Graphical Editing Framework and the Eclipse Modeling Framework. IBM Redbooks.

Seffah, A., Donyaee, M., Kline, R. B., & Padda, H. K. (2006). Usability measurement and metrics: A

consolidated model. Software Quality Journal, 14(2), 159-178.

Smolander, K., Tahvanainen, V.-P., & Marttiin, P. (1991). MetaEdit - A flexible graphical environment

for methodology modelling. in International Conference on Advanced Information Systems

Engineering, CAISE'91.

White, J., Hill, J. H., Tambe, S., Gokhale, A., & Schmidt, D. C. (2009). Improving Domain-Specific

Language Reuse With Software Product Line Techniques. IEEE Software, 26(4), 47-53.

KEY TERMS & DEFINITIONS

Language: a theoretical object (a model) that describes the allowed terms and how to compose them into the

sentences involved in a given communication.

Semiotics: the study of the structure and meaning of languages. It is a part of linguistics that studies the

dependencies and influences among the following parts: Pragmatics, Syntax, and Semantics.

Syntax: defines what signs can be used in a language, and how those signs can be composed to form

sentences.

Semantics: defines the meaning of the sentences of a language. In the case of DSLs, we are interested in

languages which have computational meaning, where its semantics is specified by stating how the sentences

in such kind of languages can be logically interpreted by a machine.

Contexts of Use: the set of users, tasks, equipment (hardware, software and materials), and the physical and

social environments in which a product is used’ (ISO, 2001a). It is one of the characteristics that we can use

to evaluate a product’s usability. In fact, we can use this characteristic to pragmatically distinguish between

different products: in DSLs, different languages may have different Contexts of Use (Atkinson & Kühne,

2003). Moreover, if they have different Contexts of Use, then we can infer that the users of those languages

20

(the humans) most likely will have different knowledge sets, each one with a minimum amount of ontological

concepts required in order to actually be able to use each language.

Usability: the extent to which a product can be used by specified users to achieve specified goals – “Goal

Quality”. It has to be evaluated through the Quality in Use that is perceived by the user during actual

utilization of a product in real Context of Use. Achieving Quality in Use is dependent on achieving the

necessary External quality, which in turn is dependent on achieving the necessary Internal quality (ISO9126,

2001).

Effectiveness: Usability characteristic that determines the accuracy with which a developer completes

language sentences.

Efficiency: Usability characteristic which tells us what level of effectiveness is achieved at the expense of

various resources, such as mental and physical effort, time or financial cost, commonly measured in the sense

of time spent to complete a sentence.

Satisfaction: Usability characteristic which captures freedom from inconveniences and positive attitude

towards the use of a product (in the context of DSLs, the use of a language).

