
HAL Id: hal-03167819
https://hal.science/hal-03167819v1

Submitted on 9 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An integrated ontology for multi-paradigm modelling for
cyber-physical systems

Dominique Blouin, Rima Al-Ali, Holger Giese, Stefan Klikovits, Soumyadip
Bandyopadhyay, Ankica Barisic, Ferhat Erata

To cite this version:
Dominique Blouin, Rima Al-Ali, Holger Giese, Stefan Klikovits, Soumyadip Bandyopadhyay, et al..
An integrated ontology for multi-paradigm modelling for cyber-physical systems. Bedir Tekinerdogan;
Dominique Blouin; Hans Vangheluwe; Miguel Goulão; Paulo Carreira; Vasco Amaral. Multi-Paradigm
Modelling Approaches for Cyber-Physical Systems, Elsevier, pp.123-145, 2021, 978-0-12-819105-7.
�10.1016/B978-0-12-819105-7.00010-6�. �hal-03167819�

https://hal.science/hal-03167819v1
https://hal.archives-ouvertes.fr


for the next constructive phase following this work that will consist of devel-
oping a solution for implementing model management for MPM based on the
knowledge captured by the ontology.

113



Chapter 5

An Integrated Ontology for
Multi-Paradigm Modeling
for Cyber-Physical Systems

Author(s): Dominique Blouin, Rima Al-Ali, Holger Giese, Stefan Klikovits,
Soumyadip Bandyopadhyay, Ankica Barǐsić, Ferhat Erata

5.1 Introduction

This chapter presents the MPM4CPS ontology that integrates the Shared, CPS
and MPM ontologies by providing cross-cutting concepts between these do-
mains. In particular, it formalizes a new notion of viewpoint adapted from ex-
isting works. Such viewpoint integrates the concepts of megamodel fragments
of the MPM ontology with stakeholder concerns about the system of the Shared
ontology and with the CPS constituent elements under development of the CPS
ontology. The CPS ontology was specified in Chapter 3 in the form of a meta-
model complemented with a feature model. After conversion of the provided
CPS metamodel and feature model to an OWL ontology, we are able to refer
to classes of the CPS ontology represented in OWL form from our MPM4CPS
viewpoint notion.

We also extend the core notions of workflow processes of the Shared on-
tology to capture model-based development processes. In particular, we relate
these processes to their employed viewpoints. Finally, we refine the notion of
engineering paradigm introduced in the Shared ontology to define our notion of
modeling paradigms, which adapts existing work to take into account our new
viewpoint notion.

In the following, we first briefly introduce the state of the art that served as
starting point to develop the ontology in Section 5.2. Then, we detail the on-
tology that includes our extension of these state of the art works in Section 5.3.

114



Section 4.4 illustrates the usage of the ontology with the Ensemble-Based CPS
and HPI CPSLab examples previously introduced in Chapter 2. We finally con-
clude this chapter and this first part of this book on foundations for MPM4CPS
in Section 5.5.

5.2 State of the Art

Integration needs underlying the development of embedded real-time and cyber-
physical systems have been outlined in [142]. These observations and state of the
art work presented in this section will guide the development of the MPM4CPS
ontology in order to cover the needs of the EBCPS and HPI CPSLab example
development environments and their CPS case studies.

The MPM4CPS ontology is centered on a notion of viewpoint that relates
parts of the CPS under study with the employed formalisms, languages and
tools as informally defined in the framework of Broman et al. [48]. As already
mentioned in Section 4.2 of Chapter 4, parts of the framework of Broman et
al. also inspired the MPM ontology. Their framework is itself an adaptation of
the ISO/IEEE standard 42010 standard on architecture descriptions [14], which
we introduced in the Shared ontology presented in Chapter 2 except for its
modeling-related notions that the MPM4CPS ontology redefines.

The MPM4CPS ontology enhances the framework of Broman et al. by en-
riching it with modeling notions of the MPM ontology such as megamodel and
megamodel fragment. In addition, the ontology also considers model-based de-
velopment processes to orchestrate the different modeling activities performed to
develop specific parts of CPS using different megamodel fragments. Finally, the
ontology also adapts an existing notion of modeling paradigms that characterizes
the formalism and development process of these development environments.

Therefore, we divide this state of the art along these three paxis. The first
part presents different existing works on viewpoint-related concepts including
introducing the viewpoint concepts of the ISO/IEEE 42010 standard and that
of the framework of Broman et al. [48]. The second part presents state of the art
on the modeling of model-based development processes. Finally, the third part
proposes a brief state of the art on modeling paradigms including the closely
related topic of programming paradigms.

5.2.1 Viewpoints

We first complete the introduction of the ISO/IEEE 42010 standard by pre-
senting its viewpoint-related notions. As depicted in Figure 2.9, the ISO/IEEE
42010 standard defines its own notion of viewpoint, which associates a set of
stakeholder concerns with a set of model kinds employed to address these con-
cerns in the design of an architecture. These model kinds serve as typing el-
ements for the models employed for specifying the architecture. Architecture
viewpoints are then used to govern the view on the system according to the
concerns and the model kinds.

115



The framework of Broman et al. [48] adapts the ISO/IEEE 42010 standard
to CPS design by enriching the provided viewpoint notion. This is achieved
by replacing the Model Kind concept of the ISO/IEEE 42010 standard by the
formalisms supporting the viewpoint to perform the different activities on the
system models (Figure 4.2). In addition, the Broman et al. viewpoint notion
adds a link from the viewpoint to the parts of the system under design rele-
vant to the concerns framed by the viewpoint. This is illustrated in Figure 5.1
where the Control Robustness Design, Control Performance Design and Soft-
ware Design example viewpoints are depicted for an advanced driver assistance
system (ADAS) (e.g., adaptive cruise control) embedded control system. A ma-
trix shows the parts of the system and their concerns along its two axis and
cross-cutting points are defined and grouped to define viewpoints.

Figure 5.1: Example of viewpoints matrix (based on [48])

For instance, the Software Design viewpoint frames the Performance and the
ADAS Algorithm concerns, which are impacted by the Software and Computing
Platform parts of the system. As can be seen in Figure 5.2, such viewpoint
employs the state machines, dataflow and discrete event formalism to address
these concerns in the CPS design.

116



Figure 5.2: Example of viewpoints and their employed formalisms (based on
[48])

These notions will be at the heart of our MPM4CPS ontology. Besides, we
also want to relate these viewpoints to the development processes in which they
are used, which is an important characteristic of CPS development approaches
and environments. This is the topic of the next section.

5.2.2 Model-Based Development Process Modeling

MPM advocates to model everything, at the most appropriate level(s) of ab-
straction, using the most appropriate formalisms, for the modeling activities
to be performed. This includes not only the modeling of the system to be de-
veloped (at the micro modeling scale as defined by the MPM ontology) and
the modeling of the models and modeling languages employed to develop the
system (at the megamodeling scale), but also the modeling of model-based de-
velopment processes that orchestrate the various activities performed on models
of the system.

Unfortunately, we do not find many work on this topic in the literature.
This is also the result of a systematic mapping study of MPM for CPS initiated
during the MPM4CPS COST action [156] A main result of this study is that
among the studies that reported a development process, 38% of them describe it
informally often in a partial way; 30% describe it semi-formally, step by step, but
still giving only natural language descriptions; and only 32% provide a formal
model for specifying their process. Therefore, development process modeling
remains an issue in MPM4CPS.

Nevertheless, we find the FTG+PM [137], which as already mentioned in
the state of the art of Chapter 4, is the only model management language that
formalizes development processes. Therefore, it seems to be currently the most
appropriate language to specify engineering processes in MPM. Figure 5.3 shows

117



the main concepts of the language. On the left hand side of the figure, we find the
Formalism Transformation Graph (FTG) concepts, which describe a repository
of transformation relations between formalisms. On the right hand side, we
find the Process Model (PM) concepts. Those are based on the UML activity
diagram, which has been adapted so that activities are typed by transformations
defined in the FTG part. In addition, objects representing artifacts processed
by the activities are typed by languages of the FTG side therefore representing
models taken as input by the activities when executing transformations.

Figure 5.3: Overview of the FTG+PM concepts (from [137])

The FTG part can be compared with the megamodel notion of the MPM
ontology of Chapter 4. A difference however is that megamodels can be logi-
cally organized into fragments, which is not the case of the FTG. Besides, only
one kind of relation is defined between formalisms, while the MPM ontology
captures several kinds such as synchronization, traceability and refinement re-
lations. Finally, transformations relate formalisms and not modeling languages
like for the megamodel relations of the MPM ontology. With our definitions of
formalisms and modeling languages, we must relate modeling languages since
they are concrete implementations of formalisms.

The FTG+PM languages, as well as the megamodeling notion of Chapter 4
and the workflow process concepts of the shared ontology of Chapter 2 will serve
as basis for defining model-based process modeling in this MPM4CPS ontology.

5.2.3 Modeling Paradigms

Another important MPM-related notion is that of a modeling paradigm. We
initially found that there was no precise definition of this notion despite that
it originated as early as 1996 [157]. However, the notion of modeling paradigm
can be seen as a generalization of the notion of programming paradigm, since
programming languages can be seen as a subset of modeling languages. Pro-
gramming paradigms, which originated as early as 35 years ago [16, 17] have
been defined to categorize the different approaches or styles used by the different
programming languages. Due to the growing heterogeneity of software systems,

118



which results in different kinds of problems to be solved, different approaches or
paradigms to solve these problems had to be developed. Therefore, a plethora
of programming languages have been created and categorized according to their
underlying paradigms. However, the notion of programming paradigm, which
varies from one author to another, was also never made very precise. The
most precise definition that we find is that of [158], which informally defines a
programming paradigm as “...a set of programming concepts, organized into a
simple core language called the paradigm’s kernel language”. Yet, this definition
remains vague.

Such lack of precise definition of programming and modeling paradigms was
an important problem for our ontology of MPM, which triggered some work to
precise the definition [21, 22]. Part of this work has already been introduced
in Chapter 2 that presented the Shared ontology and its paradigm subdomain.
However, only the part that is independent of modeling was presented as its level
of abstraction is adequate for modeling the more general notion of engineering
paradigms.

We will build on the modeling-specific part of this work to precise the no-
tion of modeling paradigm for this MPM4CPS ontology. As can be seed from
Figure 2.11, this work defines a modeling paradigm as a set of properties charac-
terizing the languages (including their semantics) and workflows (development
processes) employed to develop systems. This can be seen as an enlargement
of the notion of a programming paradigm, which typically only characterizes
programming languages and do not say anything about workflows. Examples
of simple paradigms may be object orientation, which only pertains to for-
malisms, or agile development, which only characterizes workflows. More com-
plex paradigms examples discussed in the work of [22] are Synchronous Data
Flow (SDF) and Discrete Event Dynamic Systems (DEv). These will be further
discussed in Section 5.3 where we will introduce our MPM4CPS ontology in
details.

5.3 Ontology

In this section we provide an overview of the OWL MPM4CPS ontology that
defines cross-cutting concepts between the Shared, MPM and CPS ontologies
presented in the previous chapters. We first define the MPM4CPSDC domain con-
cept class as a subclass of the DomainConcept class of the Shared ontology to
organize the classes of the MPM4CPS integrating domain (Figure 5.4). All
classes defined in this section are said to be part of the MPM4CPS domain and
will therefore be made subclasses of this MPM4CPS subdomain class.

Following the state of the art of the previous section, we first define our
viewpoint notion inspired from the framework of Broman et al., but adapted
for the megamodel and megamodel fragments of the MPM ontology. Then, we
refine the workflow process subdomain of the Shared ontology (see Section 2.5
of Chapter 2) to specialize it for model-based development. Finally, we refine
the notion of engineering paradigms of the Shared ontology to define a more

119



specific notion of modeling paradigm.

Figure 5.4: Overview of the OWL MPM4CPS ontology

5.3.1 Viewpoint

We start by defining our notion of Viewpoint, which is inspired from the defi-
nition from the framework of Broman et al. (Figure 4.2 and Figure 5.1). Their
definition is itself an adaptation of the notion of viewpoint from the IEEE 42010
standard [14] (Figure 2.9). Compared to the notion of viewpoint from the IEEE
42010, the notion of the framework of Broman et al. replaces the ModelKind

(Figure 2.9) representing the modeling languages supporting a viewpoint by a
set of Formalism.

However, we have seen in the MPM ontology how we defined the notion
of MegamodelFragment that organizes modeling languages conjointly used with
their appropriate ModelRelations to support an activity of a development pro-
cess (e.g. the Model Test activity of the simulation stage of the HPI CPSLab
development process in Chapter 4). Therefore, we replace the set of formalism
of the Broman et al. framework by a megamodel fragment, and we define the
hasSupportingMegamodelFragments object property to relate a viewpoint to
a set of supporting megamodel fragments.

According to the IEEE 42010 standard, a viewpoint frames the concerns of
stakeholders (Figure 2.9). Therefore we create the hasFramedConcerns object
property to relate a viewpoint to a set of framed concerns as defined in the
Shared ontology (Chapter 2).

In addition, a viewpoint governs an architecture view. We therefore define

120



the View class and the hasGovernedView object property to relate a viewpoint
to its view. Finally, we create another object property to relate a view to its
employed models.

An addition of the framework of Broman et al. to the IEEE 42010 stan-
dard is to define a reference from a viewpoint to the system parts being de-
veloped using views of the viewpoint. We adopt this feature and create the
hasSystemConstituentElements object property between a viewpoint and its
system constituents or parts. The range of the property is the ConstituentElement
OWL class, which was generated from feature of the feature model of the CPS
ontology (Figure 3.2).

We note that this makes our notion of viewpoint a cross-cutting concept
between the MPM and CPS domains of our ontological framework. This ex-
plains why the viewpoint-related notions are part of the MPM4CPS integrating
ontology, since they depend on all other ontologies. We also note that the link
between a viewpoint and CPS constituent elements can be seen as being derived
from the standard representedBy relation between a real system and its models
[159].

This completes the definition of our viewpoint-related notions. We then
consider how these viewpoints are used throughout development by introducing
notions related to model-based workflows.

5.3.2 Model-Based Workflows

We have introduced core workflow process modeling notions inspired from the
WFMC-TC-1025 standard in the Shared ontology of Chapter 2. On the other
hand, the FTG+PM process modeling language introduced in Section 5.2.2
defines similar process modeling notions adapted from UML activity diagrams.
An advantage of the WFMC-TC-1025 standard is its wider coverage of the
workflow domain. For instance, embedded and external subprocesses can be
modeled. Besides, the notion of activity performer is included to model tools
or humans performing the activities. In FTG+PM the performer notion is
implicitly embedded within the activity concept, the human / tool characteristic
being declared in the transformation class (auto attribute of the Transformation
class of Figure 5.3).

Such richness of the workflow subdomain is required to model industrial-
strength processes such as the one of the HPI CPSLab example, which reuses
an existing methodology from the automotive domain (Figure 2.19). However,
as opposed to the FTG+PM language, the WFMC-TC-1025 standard does not
say anything about modeling but only links activity performers to the processed
data fields (Figure 2.6), such data fields being typed by associated data types
declared in processes. We already covered the FTG-related notions in our MPM
ontology via megamodels capturing modeling languages and their relationships,
but in a finer way by providing different kinds of transformation relations. Be-
sides our megamodels are hierarchical1 allowing to capture contextual model

1This is not yet covered in this version of the MPM ontology.

121



transformation relations.
Therefore, the process notions of our MPM4CPS ontology will reuse the

core process notions of the Shared ontology, reuse the link between the process
model and the FTG of the FTG+PM language, but replace the FTG by the
richer megamodel fragment notion. In the following, we provide an overview of
model-based workflow process notions as part of this MPM4CPS ontology.

Model-Based Process

We first subclass the Process class of the Shared ontology into the ModelBasedProcess
class to represent all processes that manipulate models instead of data fields.
The choice of the model-based name follows the naming of the model-based
engineering paradigm.

As opposed to the WFMC-TC-1025 standard, a ModelBasedProcess does
not declare the types of the data fields processed by activity performers. In-
stead, a set of viewpoints can be linked to a process through an object property
hasViewpoint, so that data types are declared as the elements grouped under
the associated megamodel fragment. Similar to the FTG+PM language, such
types are modeling languages and their relations declared in the megamodel
fragments.

Activity Performers

The ModelingTool class of the MPM ontology was declared as a subclasses of
the Tool class of the Shared ontology. This class was also made a subclass of
Application activity performer class of the workflow subdomain of the Shared
ontology. Therefore, a modeling tool can be directly used as activity performer
by any activity. Similarly, the ModelingHuman resource of the MPM ontology
was also made a subclass of the Application activity performer class of the
workflow subdomain. Therefore, modeling human can be directly used as activ-
ity performer for representing modeling activities that are performed manually.

Finally, the hasTranformationSpecifications object property of the MPM
ontology can be used to relate an activity performer resource to the transfor-
mation relations it executes as declared in the activity’s associated viewpoint.

5.3.3 Modeling Paradigms

In the Shared ontology, we have provided the notion of EngineeringParadigm
defined as a characterization of environments in which engineering takes place.
We refine this definition so that it characterizes model-based engineering envi-
ronments and their employed model-based artifacts.

In order to define our modeling paradigm notion, we first subclass the
EngineeringEnvironment class of the Shared ontology by the ModelBasedEngineeringEnv
class. Similarly, we define the ModelBasedEngineeringArtifact as a subclass
of the EngineeringArtifact. We also make the Model and ModelRelation

classes of the kernel model of the MPM ontology subclasses of ModelBasedEngineeringArtifact.

122



Hence, all elements of the MPM ontology that are are subclass of Model are also
ModelBasedEngineeringArtifacts. We also make the ModelBasedProcess

class ModelBasedEngineeringArtifacts as well. Finally, we create the hasModelingArtifacts
subproperty of the hasArtifacts object property having respectively the ModelBasedEngineeringEnv
and ModelBasedEngineeringArtifact classes as domain and range.

We then define the ModelingEngineeringParadigm class as a subclass of the
EngineeringParadigm class of the Shared ontology. As defined in the Shared
ontology, an engineering paradigm declares characteristics of engineering arti-
facts that make the paradigm. Therefore in our refined definition of modeling
paradigm, we refine the scope of the paradigm characteristics to modeling ar-
tifacts. Note that compared to the definition of [22], which was introduced in
the state of the art section, our definition is wider as its scope consisting of any
modeling artifact is not restricted to modeling languages and workflows.

Several ways can be thought of to express the characteristics of a paradigm.
In the Shared ontology, those characteristics are represented as properties in-
cluding their expressions and decision procedures. We have reused these notions
from the work of [22]. We therefore present in greater details their way to ex-
press paradigm characteristics.

As can be seen from Figure 2.11, the properties expressing characteristics are
actually meant to be evaluated over a paradigmatic structure, which expresses
some of the paradigm characteristics as patterns to be checked over formalisms
and workflows. Therefore, the first step in checking that a set of modeling
artifacts implements a paradigm is to match a paradigmatic structure over the
considered modeling artifacts. Once a match is found, paradigmatic properties
can be evaluated against the structure to completely determine if the artifacts
satisfy the paradigm.

In order to express paradigmatic structures, the authors define an adapta-
tion of the metamodel language where classes are placeholders to be matched
by other languages. Therefore, modeling artifacts such as languages and pro-
cesses must also be expressed as metamodels for paradigm satisfaction checking.
The approach also relies on the fact that language semantics are expressed as
semantic domains whose languages are also expressed as metamodels so that
they can also be characterized by paradigmatic structures. In the approach,
it is expected that providers of modeling artifacts are responsible to map their
artifacts to the paradigmatic structure. This is one drawback of the approach,
which may make the evaluation of paradigms satisfaction over industrial het-
erogeneous modeling environments difficult. For languages, workflows and their
semantic domains already expressed as metamodels, this is relatively easier.
However for other metamodeling technical spaces such as grammars, a conver-
sion is required. Besides, a language’s semantics is often not formalized but
embedded into programming code of the tool that executes the language, which
makes the task of identifying paradigms even harder.

Nevertheless, the work of [22] is a first attempt and an ongoing work on
defining modeling paradigms and is therefore subjected to be improved in the
next future. Hence, at this stage, we will not yet precise in this ontology any
approach for expressing paradigm characteristics. Besides, since the scope of

123



our modeling paradigm definition is wider, the paradigmatic structure proposed
in [22] would be too restrictive. Nevertheless, we will present an example of
paradigm characteristics expression for the HPI CPSLab in Section 5.4.3.

Another important remark is the different definitions of the formalism notion
between the authors of [22] and that of our MPM ontology. The authors use
the definition of [47] (Figure 4.1) where a formalism is defined as “a language,
a semantic domain and a semantic mapping function giving meaning to model
in the language”. In the MPM ontology, we followed the framework of Broman
et al. [48] where formalisms are “mathematical objects consisting of an abstract
syntax and a formal semantics”, and where modeling languages are “concrete
implementations of formalisms”. Broman et al. further note that a language’s
semantics may slightly deviate from the semantics of formalisms they realize.

The question is then to understand the difference between our definition of
formalisms and the paradigms of [22], for those paradigms that only charac-
terize formalisms (as per the definition of [47]). This is even more relevant as
[22] use Synchronous Data Flow (SDF) and Discrete Event Dynamic Systems
(DEv) as paradigms examples in their work. At some point, the authors even
consider the SDF paradigm as a “conceptual formalism”. In addition, these two
paradigms are classified as formalisms in the Catalog of Formalisms, Modeling
Languages and Tools [9], which was created during the MPM4CPS COST ac-
tion project. An interesting future work would therefore consists of studying all
other formalisms of the catalog such as Petri Nets, Abstract State Machines, Hy-
brid Automata using exploratory modeling to better understand the formalism
notion.

5.4 Examples

In this section, we illustrate how the MPM4CPS integrated ontology presented
in Section 5.3 covers the needs for a comprehensive modeling of development
environments and their CPS case studies such as the EBCPS and HPI CPSLab
examples. For each of these examples, we first start by modeling some of the
employed viewpoints that we relate to their stakeholder concerns, the employed
megamodel fragments of Chapter 4 and the parts of the CPS of Chapter 3.

Next, we show how the engineering methodologies of each example can be
captured including their different stages and the activities employed at these
stages. Each of these activities makes use of a workflow process that uses one
of the previously defined viewpoints. The process decomposes the root activity
into a sequence of subactivities whose activity performers are set as the proper
modeling tools and humans described in Chapter 4. Note that we do not present
a complete coverage of the engineering methodologies and processes here, but
only the parts needed to illustrate the use of the MPM4CPS integrated ontology.

Finally, we illustrate the modeling of the Synchronous Data Flow (SDF)
paradigm with the integrated ontology characterizing one of the example de-
velopment environment through some of its activities making use of modeling
languages based on SDF.

124



5.4.1 EBCPS

We present the modeling details of the EBCPS example with regard to the
MPM4CPS ontology. The EBCPS methodology is a simple methodology that
contains only one stage. A more comprehensive example is provided for the
HPI CPSLab methodology that contains three stages. In this example, we use
the division of the megamodel fragments as defined in Chapter 4, which is per
modeling language rather than per activity as for the case of the HPI CPSLab.
Thus, our viewpoints can employ more than one megamodel fragment, and
activity processes can refer to more than one viewpoint.

Methodology

We define the EBCPSMethodology as an instance of the EngineeringMethodology
class, which contains a set of stages. In our case, the scenario of autonomous
vehicle presented in Chapter 2 employs only one stage that consists of a simu-
lation stage.

Methodology

• EngineeringMethodology: EBCPSMethodology

– hasStages EngineeringStage: EBCPSSimulationStage

Methodology Implementing Process

Per our definition from the workflow subdomain of the shared ontology, a
methodology does not specify how it is implemented since several implemen-
tations could exist for a given methodology. Therefore we define the EBCP-
SProcess as one implementation of the EBCPSMethodology.

This process defines an activity set that specifies activities and transitions to
orchestrate the different root modeling activities of the EBCPSProcess. Each
of these activities also implements the single simulation stage of the EBCPS
methodology. The root activities for the simulation stage are:

ActivitySet

• hasSetActivities SubFlow: RequirementsRootActivity

– isImplementingStage: EBCPSSimulationStage

– hasSubProcess: RequirementsProcess

• hasSetActivities SubFlow: DesignRootActivity

– isImplementingStage: EBCPSSimulationStage

– hasSubProcess: DesignProcess

• hasSetActivities SubFlow: RuntimeRootActivity

125



– isImplementingStage: EBCPSSimulationStage

– hasSubProcess: RuntimeProcess

• hasTransitions Transition: Requirements2DesignTransition, Design2RuntimeTransition

The processes presented for each root activity declare finer grained activities
such as editing a model, simulating a model, checking simulation results, etc.
Some activities are performed by humans (i.e. a designer) such as in case of cap-
turing the requirements and implementing the components with self-adaptation
support. Other activities may be performed by tools such as simulation tools.

Each process uses a viewpoint that specifies the concerns addressed by the
process, the part(s) of the CPS that are being developed and their employed
megamodel fragment(s). These megamodel fragments specify the modeling lan-
guages and their relationships that support the process activities. We first
present the viewpoints in the following.

Viewpoints

• Viewpoint: ComponentAutonomyVP

– hasFramedConcerns: SafetyConcern, AdaptabilityConcern, Efficien-
cyConcern

– hasSystemConstituentElements: Controller, Plant, Sensors, Actua-
tors.

– hasSupportingMegaModelFragments: RequirementsMegaModelFrag-
ment, DesginMegaModelFragment, RuntimeMegaModelFragment, Self-
AdaptationMegaModelFragment

• Viewpoint: ComponentsCooperationVP

– hasFramedConcerns: SafetyConcern, EfficiencyConcern

– hasSystemConstituentElements: Communication, Controller, Plant,
Sensors, Actuators

– hasSupportingMegaModelFragments: RequirementsMegaModelFrag-
ment, DesginMegaModelFragment, RuntimeMegaModelFragment, Sim-
ulationMegaModelFragment

Activity Subprocesses

• ModelBasedProcess: RequirementsProcess

– ActivitySet: editing model - To create an IRM model, the developer
needs to define the invariants in the system and their relations to
the processes and knowledge exchange, which can have assumptions.
The processes are associated to a component role that is also part of
the IRM model. After finishing the modeling part, the next activity
is to generate the skeleton of the components and ensembles in Java
code from the IRM model.

126



– hasViewPoint: ComponentAutonomyVP, ComponentsCooperationVP

• ModelBasedProcess: DesignProcess

– ActivitySet: editing model - Using the skeleton, the developer im-
plements the processes in the component and the ensembles. In this
part, the developer can support mode-switching in the component.
In the example, the vehicle component have a controller and a plant,
which should be also implemented.

– hasViewPoint: ComponentAutonomyVP, ComponentsCooperationVP

• ModelBasedProcess: RuntimeProcess

– ActivitySet: running model, result model - The developer can execute
the design model and have the components and ensembles running
(i.e. DEECoRuntimeModel) that results with logs as an outputs.
The runtime environment monitors the component and performs the
mode-switching when needed. At the same time, the simulation mod-
els run and synchronous with DEECoRuntimeModel.

– hasViewPoint: ComponentAutonomyVP, ComponentsCooperationVP

5.4.2 HPI CPSLab

The HPI CPSLab and its methodology including several stages supported by
multi-formalisms settings provides a comprehensive example of a development
process where the developed system is gradually built starting from pure models
at the simulation stage and gradually integrating more and more of the real
artifacts in the following prototyping and pre-production stages (Figure 2.19).

We present the modeling of this process and of one of its employed modeling
paradigms with the MPM4CPS ontology. We first present the modeling of the
methodology and its stages. Then, for each stage we present the detailed mod-
eling of the different activities implementing the stage, including the employed
viewpoints. Finally, we present the modeling of a simple modeling paradigm
employed by the HPI CPSLab process and its viewpoints.

Methodology

We define the CPSLabMethodology instance of the EngineeringMethodology

class of the workflow subdomain of shared ontology (Chapter 2) to capture the
HPI CPSLab methodology and its set of stages as depicted in Figure 2.19. This
is achieved by representing each stage as an instance of the EngineeringStage

class and creating instances of the hasNextStage object property defining the
order between the stages.

Methodology

• EngineeringMethodology: CPSLabMethodology

127



– hasStages EngineeringStage: CPSLabSimulationStage

∗ hasNextStage: CPSLabPrototypingStage

– hasStages EngineeringStage: CPSLabPrototypingStage

∗ hasNextStage: CPSLabPreproductionStage

– hasStages EngineeringStage: CPSLabPreproductionStage

Methodology Implementing Process

We define the root CPSLabProcess instance of the ModelBasedProcess class to
implement the CPSLabMethodology. This process defines an activity set defin-
ing root activities and transitions to orchestrate them. Each of these activities
contributes to implementing a stage of the CPSLab methodology. In addition,
each root activity is decomposed into finer grained activities as declared with
an associated subprocess.

ActivitySet

• hasSetActivities SubFlow: MTActivity

– isImplementingStage: CPSLabSimulationStage

– hasSubProcess: MTProcess

• hasSetActivities SubFlow: MiLActivity

– isImplementingStage: CPSLabSimulationStage

– hasSubProcess: MiLProcess

• hasSetActivities SubFlow: RPActivity

– isImplementingStage: CPSLabSimulationStage

– hasSubProcess: RPProcess

• hasSetActivities SubFlow: SiLActivity

– isImplementingStage: CPSLabPrototypingStage

– hasSubProcess: SiLProcess

• hasSetActivities SubFlow: HiLActivity

– isImplementingStage: CPSLabPrototypingStage

– hasSubProcess: HiLProcess

• hasSetActivities SubFlow: STActivity

– isImplementingStage: CPSLabPreproductionStage

– hasSubProcess: STProcess

128



• hasTransitions Transition: MT2MiLTransition

• hasTransitions Transition: MiL2RPTransition

• hasTransitions Transition: RP2SiLTransition

• hasTransitions Transition: MiL2SiLTransition

• hasTransitions Transition: SiL2HiLTransition

• hasTransitions Transition: HiL2STTransition

Transitions are instantiated with appropriate conditions (not presented here)
to define the order of execution of activities. Note that the declared order must
be overall consistent with the ordering of the implemented stages as defined
by the methodology. Overall consistency means that activities of a stage that
follows another stage should never be executed before the activities of the pre-
ceding stage have already been executed at least once. Indeed, although not
shown in this case, root activity transitions may return back to an activity of
a preceding stage in case the errors discovered during the current stage were
introduced at an earlier stage.

In the next sections, for each stage we present the viewpoints and the root
activity processes that employ them.

Simulation Stage

The purpose of the simulation stage is to define the control laws of the system.
As opposed to the two next stages, its activities only employ models as cap-
tured by the megamodel fragments of Chapter 4 to represent the system and
its environment.

For the HPI CPSLab example, we define a set of viewpoints specific to each
of the root activities. This differs from the EBCPS example where existing
viewpoints (e.g. from a library) are reused to support the activities. In this
case, we define three viewpoints to support each root modeling activity of the
simulation stage as follows:

Viewpoints

• Viewpoint: CPSLabMTControlAlgorithmVP

– hasFramedConcerns: ControlAlgorithm

– hasSystemConstituentElements: Controller, Plant, Sensor, Actuator

– hasSupportingMegaModelFragments: CPSLabMTMMF

• Viewpoint: CPSLabMiLControlAlgorithmVP

– hasFramedConcerns: ControlAlgorithm, Stability, Safety, Reliability

– hasSystemConstituentElements: Controller, Plant, Sensor, Actuator

129



– hasSupportingMegaModelFragments: CPSLabMiLMMF

• Viewpoint: CPSLabRPControlAlgorithmVP

– hasFramedConcerns: ControlAlgorithm, Stability, Safety, Reliability

– hasSystemConstituentElements: Controller, Plant, Sensor, Actuator

– hasSupportingMegaModelFragments: CPSLabRPMMF

Each of these viewpoints addresses the concern of the control algorithm of
the system under design and is using a megamodel fragment defined in the
example section of Chapter 4 of the MPM ontology to capture the employed
modeling languages and their relations. In addition, the CPSLabMiLContro-
lAlgorithmVP and CPSLabRPControlAlgorithmVP also address other concerns
such as stability, safety, reliability, thanks to the plant model providing feedback
to the controller as opposed to the static input data of the model test activity.

Each of these viewpoints describes a cyber-physical setting, at different levels
of abstraction. The abstract control algorithm from the cyber domain captured
by the Matlab/Simulink control model (ControlModel) is confronted with the
physics as represented in the input data plus expected outcomes. This is model
differently for each viewpoint as static data model (MT), plant model (MiL)
and detailed robot model (RP). Therefore, all viewpoints cover the system con-
stituents of interest represented by these models, which are the controller, plant,
sensor and actuator elements. We further have a multi-formalism setting where
the control is discrete while the input data is at least conceptually continuous.

Root Activity Subprocesses

Each root subflow activity is further described by a subprocess specifying its
decomposition in terms of finer grained activities such a editing a model, exe-
cuting a model transformation, etc. Besides, the process, which is responsible
for defining the context for executing its activities is associated with a viewpoint
providing such context. We list below the root activity sub processes and their
associated viewpoints. As an example, we present the fine grained activities of
the model test subprocess in the next section.

• ModelBasedProcess: CPSLabMTProcess

– ActivitySet: ...

– hasViewPoint: CPSLabMTControlAlgorithmVP

• ModelBasedProcess: CPSLabMiLProcess

– ActivitySet: ...

– hasViewPoint: CPSLabMiLControlAlgorithmVP

• ModelBasedProcess: CPSLabRPProcess

– ActivitySet: ...

130



– hasViewPoint: CPSLabRPControlAlgorithmVP

Model Test Subprocess (CPSLabMTProcess)

We describe here as an example the set of subactivities that constitute the
CPSLabMTProcess. Like for the process orchestrating root activities, this is
achieved by creating a block activity and its activity set. But we first define
activity performers to perform the activities.

Activity Performers

• ModelingHuman: ControlEngineerPerf

– hasTranformationSpecifications: : EditInputModelOperation, Edit-
ControlModelOperation, EditPlantModelOperation, EditValidityRe-
sultsModel...

• ModelingTool: SimulinkTool

– hasTranformationSpecifications: SimulateModelOperation, ...

Then, we define the fine grained activities as per the list below.

ActivitySet

• hasSetActivities Activity: MTEditInputModel

– hasActivityPerformer: ControlEngineerPerf

• hasSetActivities Activity: MTEditControlModel

– hasActivityPerformer: ControlEngineerPerf

• hasSetActivities Activity: MTSimulateControlModel

– hasActivityPerformer: SimulinkTool

• hasSetActivities Activity: MTCheckSimulationResults

– hasActivityPerformer: ControlEngineerPerf

• hasTransitions Transition: EditInput2EditControlTransition

• hasTransitions Transition: EditControl2SimulateControlTransition

• hasTransitions Transition: CheckResults2EditControlTransition

– hasCondition: ValidResults

• hasTransitions Transition: ...

131



Transitions are defined between the different activities. It should be noted
that this is a simplified version of the real workflow as the order of the activ-
ities may depend on several conditions. For example, the transition CheckRe-
sults2EditControlTransition between the MTCheckSimulationResults and MTE-
ditControlModel activities has a condition. Such condition evaluates some
property of the ValidityResultsModel as was set by the designer during the
MTCheckSimulationResults activity and indicating if the results are correct or
not. If not correct, the control may be edited again. If correct, the process ends
and by default returns to the calling subflow root activity.

At deployment, an application megamodel containing the models to be pro-
cessed by activity performers can be bound to this structure for executing the
process on real models.

The definition of the two other CPSLabMiLProcess and CPSLabRPProcess
processes follows the same principles as that of the CPSLabMTProcess detailed
above and is not presented. All details can be found in the ontology files acces-
sible from [8].

Prototyping Stage

Compared to the simulation stage, which only uses models, the focus of the
prototyping stage changes from design to implementation. In this stage, the
source code plays a major role and is gradually incorporated into the system
under development. The purpose is to ensure that implementation constraints
such as discretization of variables and time due to the limited resources of the
execution platform are handled appropriately to meet the system requirements.
The concerns of this stage are therefore related to performance and accuracy
and the activities of this stage are used to optimize related parameters such as
data representation format, scheduling periods, sensor sampling rates, etc.

For this prototyping stage and the next pre-production stage of the HPI
CPSLab methodology, we will only present the viewpoints specification. The
modeling of root activity subprocesses is straight forward and follows the same
principles as that of the simulation stage.

Like for the simulation stage, we define a viewpoint for each of the two root
activities implementing the prototyping stage (Figure 2.19). Therefore for each
stage activity, we first present the activity and then define its supporting view-
point.

Software in the Loop (SiL)

For the Software in the Loop (SiL) activity, the tool TargetLink, which is fully
integrated into MATLAB Simulink, is used to generate C code from the Simulink
behavior model. This allows to seamlessly migrate the functions and control al-
gorithm from continuous behavior of the model level to a discrete approximation
implementation in software. Several parameters for code generation can be con-
figured for the characteristics of the desired target platform. Different effects

132



can be analyzed and results can be compared to results obtained during the
simulation stage.

The prototyping stage includes two forms of SiL activities. The first form
consists of executing the developed software on a desktop computer against a
simulator as depicted in Figure 4.29. The detailed control algorithm from the
cyber domain captured by the Matlab/Simulink and AUTOSAR SystemDesk
models (SystemModels) are brought together with the physics as present in the
sophisticated robot model of the simulator (RobotModel). Therefore, we clearly
have a cyber-physical setting. We again have a multi-formalism setting as the
control is discrete while the sophisticated robot mode is at least conceptually
continuous. Consistency is checked via co-simulation as the software for the
robot control runs in parallel with the sophisticated robot simulator.

The second form of SiL also consists of executing the software on a desktop
computer but in this case against a real robot remotely controlled as depicted
in Figure 4.30. In this case, real sensor values are read from the robot and real
actuators are controlled therefore including other effects such as sensor noise.
The same detailed control algorithm from the cyber domain is this time brought
together with the physics of the real remotely controlled robot. Consistency is
checked via co-execution as the software for the robot control runs in parallel
with the remotely controlled robot.

Hardware in the Loop (HiL)

The hardware in the loop (HiL) activity consists of executing the software ei-
ther on the robot as depicted in Figure 4.30 or on special evaluation boards with
debugging and calibration interfaces, which are similar to the final hardware ex-
ecution platform. The almost unlimited execution resource of the desktop com-
puter is replaced by the constrained resources of the final platform. Therefore
concerns such as resources consumption could be added to this activity.

With its megamodel fragment, this activity ensures that the detailed con-
trol algorithm from the cyber domain captured by the Matlab/Simulink model
(ControlModel) is brought together with the physics as present in the robot
and thus we have clearly a cyber-physical setting. Consistency is checked via
executing the software on the robot.

All these SiL and HiL activities actually address similar concerns about the
system. The difference resides in the fact that different models at different lev-
els of abstraction (including real hardware) are used. Therefore we define the
viewpoints of the following list:

Viewpoints

• Viewpoint: CPSLabSiLSoftwareDesignVP

– hasFramedConcerns: ControlAlgorithm, Stability, Safety, Reliability

– hasSystemConstituentElements: Software (Cyber in feature model),
ExecutionPlatform (Control in feature model)

133



– hasSupportingMegaModelFragments: CPSLabSiLMMF

• Viewpoint: CPSLabHiLSoftwareDesignVP

– hasFramedConcerns: ControlAlgorithm, Stability, Safety, Reliability,
Resources Consumption

– hasSystemConstituentElements: Software (Cyber in feature model),
ExecutionPlatform (Control in feature model)

– hasSupportingMegaModelFragments: CPSLabHiLMMF

5.4.3 Modeling Paradigms

We present here an example the modeling of one of the paradigms employed
by the HPI CPSLab, which is Synchronous Data Flow (SDF), following its
description in [22]. Then we present the modeling of the overall HPI CP-
SLab model-based development environment employing this paradigm within
the MATLAB/Simulink tool captured in its megamodel.

SDF is a special case of the Data Flow paradigm [160]. It specifies a directed
graph of computations nodes (also called blocks) exchanging signals represent-
ing infinite streams of data. Computation units execute whenever input data
becomes available. Such units without input can fire at any time. They can be
atomic or composite by encapsulating a subgraph. Arcs connect nodes together
and describe how streams of data flow through the computation nodes. Execu-
tion consists of accumulating enough samples within the system as produced by
blocks without inputs and performing the subsequent nodes computations thus
consuming sample data on inputs and concurrently producing outputs.

The SDF Paradigm [161] is a specialization of Data Flow where all compu-
tation nodes are synchronous, meaning that each block explicitly defines how
many samples are consumed and produced. In their work, [22] describe the SDF
paradigm as exhibiting the following characteristics:

• SignalProperty: Signals composed of an infinite ordered stream of Samples
are present.

• DirectedGraphProperty: A directed graph with Blocks as nodes and Arcs
are present.

• BlocksPortsProperty: Blocks possess Ports that explicitly define how many
Samples are used (consumed by Inputs, or produced by Outputs).

• ArcsProperty: Arcs connect Ports and instantaneously transmit Signals.
Note that a Port may be plugged to several Arcs but shortcuts are prohib-
ited. Arcs are forbidden to connect as source and target Ports of the same
Type.

• MemoryFullProperty: A MemoryFull Block should always define an extra
Port corresponding to initial conditions.

134



Following this, we define an engineering paradigm to represent SDF as fol-
lows:

Engineering Paradigms

• ModelingEngineeringParadigm: SDFParadigm

– hasCharacteristics: SDFParadigmCharacteristics

∗ hasProperties: SignalProperty, DirectedGraphProperty, Block-
sPortsProperty, ArcsProperty, MemoryFullProperty

There are several ways such properties could be specified. If all languages
and their semantics expressed as semantic domains are encoded using the same
technical space such as Ecore metamodels, then these properties could be en-
coded as graph patterns using tools such as Henshin2 or SDM3.

It should be noted that the aforementioned Catalog of Formalisms, Modeling
Languages and Tools already declares SDF as being a formalism and not a
paradigm. Besides, several modeling languages of the catalog such as Simulink
are declared as being based on SDF. Therefore, the question of whether SDF
should be classified as a formalism or a paradigm remains. A deeper study of
the catalog’s formalisms could help answer that question.

Next, we model the HPI CPSLab model-based engineering environment,
which uses the CPSLabMM megamodel presented in the HPI CPSLab example
of Chapter 4 and the CPSLabProcess development process defined in the pre-
vious section:

Engineering Environment

• ModelBasedEngineeringEnv: CPSLabEngineeringEnv

– hasModelingArtifacts: CPSLabMM, CPSLabProcess

– isBasedOnParadigms: SDFParadigm

It should be noted that the isBasedOnParadigms property at the engineer-
ing environment level is derived from the same property of Simulink language
captured in the mega model. This can be determined from the SDFParadigm
and its properties evaluated onver the language and its semantics.

5.5 Conclusion

This chapter presented an integrated ontology for MPM4CPS that captures
cross-cutting concepts between the Shared, CPS and MPM ontologies respec-
tively presented in Chapters 2, 3 and 4. It defines notions such as model-based
development processes, their employed viewpoints supported by megamodel

2https://www.eclipse.org/henshin/
3https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/

story-diagram-tools/

135

https://www.eclipse.org/henshin/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/story-diagram-tools/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/story-diagram-tools/


fragments of the MPM ontology and the CPS parts under development cov-
ered by these viewpoints and defined in the CPS ontology. It finally introduced
modeling paradigm notions at the heart of MPM4CPS as a refinement of the
more general notions of engineering paradigms define in the Shared ontology.
All these elements are captured under the model-based engineering environment
concept defined in this integrating ontology.

As much as possible, these notions of the ontological framework have been
grounded on existing works and standards such as the Workflow Management
Coalition (WfMC) WFMC-TC-1025 [10] and the IEEE 42010 [14] standards,
which have been extended / adapted for the MPM4CPS domains. Besides
benefiting from the maturity of these works, this also allows stakeholders already
familiar with these standards to understand and use the framework with less
effort.

In addition, the adopted exploratory modeling approach based on the charac-
terization of existing development settings such as the EBCPS and HPI CPSLab
with their CPSs case studies triggered several adjustments of the ontologies to
account for existing setups. For instance, the comparison of the modeling of the
two examples shows that the framework needs to be flexible enough to be able
to capture the heterogeneous practices of industry. Despite that both examples
come from the academic world, we have seen that yet they do not organize
their megamodel fragments according to the same criteria; per language for the
EBCPS and per root process activity for the HPI CPSLab. Besides, viewpoints
can be constructed with different objectives such as those of the EBCPS that
pre-exist the development process and that must be used as is, while for the HPI
CPSLab, the viewpoints are specially constructed to support specific process ac-
tivities. An even larger heterogeneity can be expected from legacy industrial
settings and therefore, being able to cover a large spectrum of practices is essen-
tial for this framework to be useful for industry, otherwise disrupting existing
industrial settings to adjust to the framework would limit its adoption.

Like for the case of biological science, the classification proposed in this
work is not final and will evolve as new MPM4CPS environments are discov-
ered. In particular, the notion of engineering paradigm, its modeling paradigm
specialization, the notion of formalism versus paradigm and in multi-paradigm
modeling further needs to be investigated, first to be able to discover and un-
derstand paradigms from existing development settings and second to support
a constructive way of building new MPM4CPS engineering settings based on
a set of given paradigms. We hope that our framework can form a solid foun-
dation for implementing a model management solution to relate and combine
modeling languages and tools supporting MPM4CPS, as per the original goal
of the MPM4CPS COST action project. This will be considered in future work
where constructive modeling will be used to build the envisaged solution using
the ontology as foundation.

136



Bibliography

[1] Thomas Kühne. Unifying explanatory and constructive modeling: To-
wards removing the gulf between ontologies and conceptual models. In
Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, MODELS ’16, page 95–102,
New York, NY, USA, 2016. Association for Computing Machinery.

[2] K. Kang, S. Cohen, J. Hess, W. Nowak, and A. Spencer Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineering Institute, 1990.

[3] B. Tekinerdogan and K. Öztürk. Feature-Driven Design of SaaS Archi-
tectures, pages 189–212. Springer London, London, 2013.

[4] K. Czarnecki, Chang Hwan, P. Kim, and K. T. Kalleberg. Feature mod-
els are views on ontologies. In 10th International Software Product Line
Conference (SPLC’06), pages 41–51, 2006.

[5] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing? International Journal of Human-Computer Studies,
43(5):907 – 928, 1995.

[6] Hai H. Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff Pan.
Verifying feature models using owl. Journal of Web Semantics, 5(2):117
– 129, 2007. Software Engineering and the Semantic Web.

[7] Rima Al-Ali, Moussa Amrani, Soumyadip Bandyopadhyay, Ankica
Barisic, Fernando Barros, Dominique Blouin, Ferhat Erata, Holger Giese,
Mauro Iacono, Stefan Klikovits, Eva Navarro, Patrizio Pelliccione, Kuldar
Taveter, Bedir Tekinerdogan, and Ken Vanherpen. COST IC1404 WG1
Deliverable WG1.2: Framework to Relate / Combine Modeling Languages
and Techniques. Technical report, 2020.

[8] Multi-paradigm modeling for cyber-physical systems website. http://

mpm4cps.eu/, 2020.

[9] Stefan Klikovits, Rima Al-Ali, Moussa Amrani, Ankica Barisic, Fernando
Barros, Dominique Blouin, Etienne Borde, Didier Buchs, Holger Giese,

137

http://mpm4cps.eu/
http://mpm4cps.eu/


Miguel Goulao, Mauro Iacono, Florin Leon, Eva Navarro, Patrizio Pel-
liccione, and Ken Vanherpen. COST IC1404 WG1 Deliverable WG1.1:
State-of-the- art on Current Formalisms used in Cyber-Physical Systems
Development. Technical report, 2020.

[10] WFMC-TC-1025 Workflow Management Coalition Workflow Standard:
Process Definition Interface – XML Process Definition Language, 2005.

[11] Mathias Weske. Business Process Management: Concepts, Languages,
Architectures (Third Edition). Springer-Verlag, Berlin, Heidelberg, 2019.

[12] ISO 21500:2012: Guidance on Project Management, 2012.

[13] H. G. Gurbuz and B. Tekinerdogan. Analyzing systems engineering con-
cerns in architecture frameworks – a survey study. In 2018 IEEE Inter-
national Systems Engineering Symposium (ISSE), pages 1–8, 2018.

[14] ISO/IEC/IEEE 42010:2011. Systems and software engineering - Archi-
tecture description, the latest edition of the original IEEE Std 1471:2000,
Recommended Practice for Architectural Description of Software-intensive
Systems, 2011.

[15] Cees Lanting and Antonio Lionetto. Smart systems and cyber physical
systems paradigms in an iot and industrie/y4.0 context. page S5002, 11
2015.

[16] Brent Hailpern. Guest editor’s introduction multiparadigm languages and
environments. IEEE Software, 3(01):6–9, jan 1986.

[17] Pamela Zave. A compositional approach to multiparadigm programming.
IEEE Software, 6(05):15–18, sep 1989.

[18] Thomas Kuhn. The Structure of Scientific Revolutions. Chicago Press,
2012.

[19] Erik W. Aslaksen. The engineering paradigm. International Journal of
Engineering Studies, 5(02):29–154, 2013.

[20] Johannes Halbe, Jan Adamowski, and Claudia Pahl-Wostl. The role of
paradigms in engineering practice and education for sustainable develop-
ment. Journal of Cleaner Production, 106:272 – 282, 2015. Bridges for a
more sustainable future: Joining Environmental Management for Sustain-
able Universities (EMSU) and the European Roundtable for Sustainable
Consumption and Production (ERSCP) conferences.

[21] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe, and
A. Wortmann. Towards a formal specification of multi-paradigm mod-
elling. In 2019 ACM/IEEE 22nd International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C),
pages 419–424, 2019.

138



[22] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe, and
A. Wortmann. Multi-Paradigm Modeling for Cyber-Physical Systems: A
Descriptive Framework. Manuscript submitted for publication. 2020.

[23] Rima Al Ali, Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka,
Jaroslav Keznikl, Michal Kit, and Frantisek Plasil. Deeco: An ecosystem
for cyber-physical systems. In Companion Proceedings of the 36th Interna-
tional Conference on Software Engineering, ICSE Companion 2014, pages
610–611, New York, NY, USA, 2014. ACM.

[24] Rocco De Nicola, Diego Latella, Alberto Lluch Lafuente, Michele Loreti,
Andrea Margheri, Mieke Massink, Andrea Morichetta, Rosario Pugliese,
Francesco Tiezzi, and Andrea Vandin. The SCEL Language: Design, Im-
plementation, Verification, pages 3–71. Springer International Publishing,
Cham, 2015.

[25] Rima Al-Ali. Uncertainty-Aware Self-Adaptive Component Design in
Cyber-Physical System. Technical Report D3S-TR-2019-02, Department
of Distributed and Dependable Systems, Charles University, 2019.

[26] M. Kit, F. Plasil, V. Matena, T. Bures, and O. Kovac. Employing do-
main knowledge for optimizing component communication. In 2015 18th
International ACM SIGSOFT Symposium on Component-Based Software
Engineering (CBSE), pages 59–64, May 2015.

[27] Nicklas Hoch, Henry-Paul Bensler, Dhaminda Abeywickrama, Tomáš
Bureš, and Ugo Montanari. The E-mobility Case Study, pages 513–533.
Springer International Publishing, Cham, 2015.

[28] Filip Krijt, Zbynek Jiracek, Tomas Bures, Petr Hnetynka, and Frantisek
Plasil. Automated dynamic formation of component ensembles - tak-
ing advantage of component cooperation locality. In Proceedings of the
5th International Conference on Model-Driven Engineering and Software
Development - Volume 1: MODELSWARD,, pages 561–568. INSTICC,
SciTePress, 2017.

[29] Tomas Bures, Vladimir Matena, Raffaela Mirandola, Lorenzo Pagliari,
and Catia Trubiani. Performance modelling of smart cyber-physical sys-
tems. In Companion of the 2018 ACM/SPEC International Conference on
Performance Engineering, ICPE ’18, pages 37–40, New York, NY, USA,
2018. ACM.

[30] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl,
Michal Kit, and Frantisek Plasil. Gossiping Components for Cyber-
Physical Systems, pages 250–266. Springer International Publishing,
Cham, 2014.

[31] F. Krijt, Z. Jiracek, T. Bures, P. Hnetynka, and I. Gerostathopoulos. Intel-
ligent ensembles - a declarative group description language and java frame-
work. In 2017 IEEE/ACM 12th International Symposium on Software

139



Engineering for Adaptive and Self-Managing Systems (SEAMS), pages
116–122, May 2017.

[32] Rima Al Ali, Tomas Bures, Ilias Gerostathopoulos, Jaroslav Keznikl, and
Frantisek Plasil. Architecture adaptation based on belief inaccuracy esti-
mation. 2014 IEEE/IFIP Conference on Software Architecture (WICSA),
00(undefined):87–90, 2014.

[33] Jaroslav Keznikl, Tomas Bures, Frantisek Plasil, Ilias Gerostathopoulos,
Petr Hnetynka, and Nicklas Hoch. Design of ensemble-based component
systems by invariant refinement. In Proceedings of the 16th Interna-
tional ACM Sigsoft Symposium on Component-based Software Engineer-
ing, CBSE ’13, pages 91–100, New York, NY, USA, 2013. ACM.

[34] Tomas Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl,
Michal Kit, and Frantisek Plasil. Deeco: An ensemble-based component
system. In Proceedings of the 16th International ACM Sigsoft Symposium
on Component-based Software Engineering, CBSE ’13, pages 81–90, New
York, NY, USA, 2013. ACM.

[35] Michal Kit, Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, and
Frantisek Plasil. An architecture framework for experimentations with
self-adaptive cyber-physical systems. In Proceedings of the 10th In-
ternational Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’15, pages 93–96, Piscataway, NJ, USA, 2015.
IEEE Press.

[36] Vladimir Matena, Tomas Bures, Ilias Gerostathopoulos, and Petr Hne-
tynka. Model problem and testbed for experiments with adaptation in
smart cyber-physical systems. In Proceedings of the 11th International
Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’16, pages 82–88, New York, NY, USA, 2016. ACM.

[37] Bart Broekman and Edwin Notenboom. Testing Embedded Software. Ad-
dison Wesley, 2003.

[38] Sebastian Wätzoldt, Stefan Neumann, Falk Benke, and Holger Giese. In-
tegrated Software Development for Embedded Robotic Systems. In Itsuki
Noda, Noriaki Ando, Davide Brugali, and James Kuffner, editors, Pro-
ceedings of the 3rd International Conference on Simulation, Modeling, and
Programming for Autonomous Robots (SIMPAR), volume 7628 of Lecture
Notes in Computer Science, pages 335–348. Springer Berlin Heidelberg,
October 2012.

[39] Bedir Tekinerdogan and Ömer Köksal. Pattern based integration of inter-
net of things systems, volume 10972 of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pages 19–33. Springer Verlag, 6 2018.

140



[40] G. Giray, B. Tekinerdogan, and E. Tüzün. IoT System Development Meth-
ods, pages 141–159. CRC Press/Taylor & Francis, 1 2018.

[41] Freek van den Berg, Vahid Garousi, Bedir Tekinerdogan, and Boudewijn
R. Haverkort. Designing cyber-physical systems with adsl: A domain-
specific language and tool support. In 13th System of Systems Engineer-
ing Conference, SoSE 2018, pages 225–232. Institute of Electrical and
Electronics Engineers Inc., 8 2018.

[42] David Sinreich. An architectural blueprint for autonomic computing. 2006.

[43] P.J. Mosterman and H. Vangheluwe. Computer automated multi-
paradigm modeling: An introduction. Simulation, 80(9):433–450, 2004.
cited By 0.

[44] Jean Bézivin, Frédéric Jouault, Peter Rosenthal, and Patrick Valduriez.
Modeling in the Large and Modeling in the Small. In Model Driven Archi-
tecture, volume 3599/2005 of Lecture Notes in Computer Science (LNCS),
pages 33–46. Springer-Verlag, 2005.

[45] Jean-Marie Favre. Foundations of Model (Driven) (Reverse) Engineer-
ing – Episode I: Story of The Fidus Papyrus and the Solarus. In Post-
Proceedings of Dagstuhl Seminar on Model Driven Reverse Engineering,
2004.

[46] D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all
that stuff, part i: The basic stuff. Technical report, ISR, 2000.

[47] Holger Giese, Tihamer Levendovszky, and Hans Vangheluwe, editors.
Summary of the Workshop on Multi-Modelling Paradigms: Concepts and
Tools, 2006.

[48] David Broman, Edward A. Lee, Stavros Tripakis, and Martin Törngren.
Viewpoints, formalisms, languages, and tools for cyber-physical systems.
In Proceedings of the 6th International Workshop on Multi-Paradigm Mod-
eling, MPM ’12, pages 49–54, New York, NY, USA, 2012. ACM.

[49] F. Dandashi, V. Lakshminarayan, and N. Schult. Multiformalism, mul-
tiresolution, multiscale modeling. volume 2016-February, pages 2622–
2631, 2016. cited By 0.

[50] H. Reza and E. Grant. Model oriented software architecture. volume 2,
pages 4–5, 2004. cited By 0.

[51] Mauro Iacono Marco Gribaudo. An introduction to multiformalism mod-
eling. In Marco Gribaudo and Mauro Iacono, editors, Theory and Ap-
plication of Multi-Formalism Modeling, pages 1–16. IGI Global, Hershey,
2014.

141



[52] S. Lacoste-Julien, H. Vangheluwe, J. De Lara, and P.J. Mosterman. Meta-
modelling hybrid formalisms. pages 65–70, 2004. cited By 6.

[53] H. Vangheluwe and J. De Lara. Computer automated multi-paradigm
modelling: Meta-modelling and graph transformation. volume 1, pages
595–603, 2003. cited By 14.

[54] B.P. Zeigler and H. Praehofer. Interfacing continuous and discrete models
for simulation and control. SAE Technical Papers, 1998. cited By 0.

[55] B.P. Zeigler. Embedding dev&dess in devs: Characteristic behaviors of
hybrid models. pages 125–132, 2006. cited By 0.

[56] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Modeling hy-
brid systems in {SIMTHESys}. Electronic Notes in Theoretical Computer
Science, 327:5 – 25, 2016.

[57] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Simulating Hy-
brid Systems Within SIMTHESys Multi-formalism Models, pages 189–203.
Springer International Publishing, Cham, 2016.

[58] S. Balsamo, G. Dei Rossi, and A. Marin. A survey on multi-formalism
performance evaluation tools. pages 15–23, 2012.

[59] Kishor S. Trivedi. Sharpe 2002: Symbolic hierarchical automated relia-
bility and performance evaluator. In DSN ’02: Proceedings of the 2002
International Conference on Dependable Systems and Networks, page 544,
Washington, DC, USA, 2002. IEEE Computer Society.

[60] G. Ciardo and A. S. Miner. Smart: the stochastic model checking analyzer
for reliability and timing. In Quantitative Evaluation of Systems, 2004.
QEST 2004. Proceedings. First International Conference on the, pages
338–339, Sept 2004.

[61] Gianfranco Ciardo, Andrew S. Miner, and Min Wan. Advanced features in
smart: The stochastic model checking analyzer for reliability and timing.
SIGMETRICS Perform. Eval. Rev., 36(4):58–63, March 2009.

[62] G. Ciardo, R. L. Jones, III, A. S. Miner, and R. I. Siminiceanu. Logic and
stochastic modeling with smart. Perform. Eval., 63:578–608, June 2006.

[63] Falko Bause, Peter Buchholz, and Peter Kemper. A toolbox for func-
tional and quantitative analysis of deds. In Proceedings of the 10th In-
ternational Conference on Computer Performance Evaluation: Modelling
Techniques and Tools, TOOLS ’98, pages 356–359, London, UK, 1998.
Springer-Verlag.

[64] W. H. Sanders. Integrated frameworks for multi-level and multi-formalism
modeling. In Petri Nets and Performance Models, 1999. Proceedings. The
8th International Workshop on, pages 2–9, 1999.

142



[65] Graham Clark, Tod Courtney, David Daly, Dan Deavours, Salem Derisavi,
Jay M. Doyle, William H. Sanders, and Patrick Webster. The mobius
modeling tool. In Proceedings of the 9th international Workshop on Petri
Nets and Performance Models (PNPM’01), pages 241–, Washington, DC,
USA, 2001. IEEE Computer Society.

[66] Tod Courtney, Shravan Gaonkar, Ken Keefe, Eric Rozier, and William H.
Sanders. Möbius 2.3: An extensible tool for dependability, security, and
performance evaluation of large and complex system models. In DSN,
pages 353–358. IEEE, 2009.

[67] Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly, Salem
Derisavi, Jay M. Doyle, William H. Sanders, and Patrick G. Webster.
The Möbius framework and its implementation, 2002.

[68] Juan de Lara and Hans Vangheluwe. Atom3: A tool for multi-formalism
and meta-modelling. In Ralf-Detlef Kutsche and Herbert Weber, editors,
FASE, volume 2306 of Lecture Notes in Computer Science, pages 174–188.
Springer, 2002.

[69] M. Del V. Sosa, S.T. Acuna, and J. De Lara. Metamodeling and multifor-
malism approach applied to software process using atom [enfoque de meta-
modelado y multiformalismo aplicado al proceso software usando atom3].
pages 367–374, 2007.

[70] F. Franceschinis, M. Gribaudo, M. Iacono, N. Mazzocca, and V. Vittorini.
Towards an Object Based Multi-Formalism Multi-Solution Modeling Ap-
proach. In Proc. of the Second International Workshop on Modelling of
Objects, Components, and Agents (MOCA’02), Aarhus, Denmark, August
26-27, 2002 / Daniel Moldt (Ed.), pages 47–66. Technical Report DAIMI
PB-561, aug 2002.

[71] V. Vittorini, G. Franceschinis, M. Gribaudo, M. Iacono, and N. Mazzocca.
DrawNet++: Model Objects to Support Performance Analysis and Sim-
ulation of Complex Systems. In Proc. of the 12th Int. Conference on
Modelling Tools and Techniques for Computer and Communication Sys-
tem Performance Evaluation (TOOLS 2002), London, UK, April 2002.

[72] Giuliana Franceschinis, Marco Gribaudo, Mauro Iacono, Stefano Marrone,
Nicola Mazzocca, and Valeria Vittorini. Compositional modeling of com-
plex systems: Contact center scenarios in OsMoSys. In ICATPN’04, pages
177–196, 2004.

[73] G. Franceschinis, M. Gribaudo, M. Iacono, S. Marrone, F. Moscato, and
V. Vittorini. Interfaces and binding in component based development of
formal models. In Proceedings of the Fourth International ICST Con-
ference on Performance Evaluation Methodologies and Tools, VALUE-
TOOLS ’09, pages 44:1–44:10, ICST, Brussels, Belgium, Belgium, 2009.

143



ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering).

[74] G. Gribaudo, M. Iacono, M. Mazzocca, and V. Vittorini. The Os-
MoSys/DrawNET Xe! Languages System: A Novel Infrastructure for
Multi-Formalism Object-Oriented Modelling. In ESS 2003: 15th Euro-
pean Simulation Symposium And Exhibition, 2003.

[75] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Defining For-
malisms for Performance Evaluation With SIMTHESys. Electr. Notes
Theor. Comput. Sci., 275:37–51, 2011.

[76] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. A performance
modeling language for big data architectures. In Webjorn Rekdalsbakken,
Robin T. Bye, and Houxiang Zhang, editors, ECMS, pages 511–517. Eu-
ropean Council for Modeling and Simulation, 2013.

[77] Mauro Iacono and Marco Gribaudo. Element based semantics in multi
formalism performance models. In MASCOTS, pages 413–416, 2010.

[78] M. Iacono, E. Barbierato, and M. Gribaudo. The SIMTHESys multifor-
malism modeling framework. Computers and Mathematics with Applica-
tions, (64):3828–3839, 2012.

[79] Mauro Pezze and Michal Young. Constructing multi-formalism state-space
analysis tools: Using rules to specify dynamic semantics of models. pages
239–249, 1997. cited By 0.

[80] Enrico Barbierato, Gian-Luca Dei Rossi, Marco Gribaudo, Mauro Iacono,
and Andrea Marin. Exploiting product forms solution techniques in mul-
tiformalism modeling. Electronic Notes in Theoretical Computer Science,
296(0):61 – 77, 2013.

[81] C.-V. Bobeanu, E.J.H. Kerckhoffs, and H. Van Landeghem. Modeling
of discrete event systems: A holistic and incremental approach using
petri nets. ACM Transactions on Modeling and Computer Simulation,
14(4):389–423, 2004. cited By 0.

[82] J.T. Bradley, M.C. Guenther, R.A. Hayden, and A. Stefanek. GPA: A
multiformalism, multisolution approach to efficient analysis of Large-Scale
population models. 2013. cited By 0.

[83] Aniello Castiglione, Marco Gribaudo, Mauro Iacono, and Francesco
Palmieri. Exploiting mean field analysis to model performances of big
data architectures. Future Generation Computer Systems, 37(0):203–211,
2014.

[84] A.H. Levis and B. Yousefi. Multi-formalism modeling for evaluating the
effect of cyber exploits. pages 541–547, 2014. cited By 0.

144



[85] A.M. Abusharekh and A.H. Levis. Performance evaluation of soa in clouds.
pages 614–620, 2016. cited By 0.

[86] Mauro Iacono and Stefano Marrone. Model-based availability evaluation of
composed web services. Journal of Telecommunications and Information
Technology, (4):5–13, 2014.

[87] A.I. Hernandez, V. Le Rolle, A. Defontaine, and G. Carrault. A multi-
formalism and multiresolution modelling environment: Application to the
cardiovascular system and its regulation. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
367(1908):4923–4940, 2009. cited By 0.

[88] S. Chiaradonna, P. Lollini, and F.D. Giandomenico. On a modeling frame-
work for the analysis of interdependencies in electric power systems. pages
185–194, 2007. cited By 0.

[89] Francesco Flammini, Stefano Marrone, Mauro Iacono, Nicola Maz-
zocca, and Valeria Vittorini. A multiformalism modular approach to
ERTMS/ETCS failure modelling. International Journal of Reliability,
Quality and Safety Engineering, 21(01):1450001–1–1450001–29, 2014.

[90] Marco Gribaudo, Mauro Iacono, and Stefano Marrone. Exploiting
bayesian networks for the analysis of combined attack trees. Electronic
Notes in Theoretical Computer Science, 310(0):91 – 111, 2015. Proceed-
ings of the Seventh International Workshop on the Practical Application
of Stochastic Modelling (PASM).

[91] Enrico Barbierato, Marco Gribaudo, Mauro Iacono, and Stefano Marrone.
Performability modeling of exceptions-aware systems in multiformalism
tools. In ASMTA, pages 257–272, 2011.

[92] Enrico Barbierato, Andrea Bobbio, Marco Gribaudo, and Mauro Iacono.
Multiformalism to support software rejuvenation modeling. In ISSRE
Workshops, pages 271–276. IEEE, 2012.

[93] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Performance
evaluation of NoSQL big-data applications using multi-formalism models.
Future Generation Computer Systems, 37(0):345–353, 2014.

[94] Daniele Codetta Raiteri, Mauro Iacono, Giuliana Franceschinis, and Vale-
ria Vittorini. Repairable fault tree for the automatic evaluation of repair
policies. In DSN, pages 659–668, 2004.

[95] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Exploiting multi-
formalism models for testing and performance evaluation in SIMTHESys.
In Proceedings of 5th International ICST Conference on Performance
Evaluation Methodologies and Tools - VALUETOOLS 2011, 2011.

145



[96] A. Qamar, S.J.I. Herzig, C.J.J. Paredis, and M. Torngren. Analyzing
semantic relationships between multiformalism models for inconsistency
management. pages 84–89, 2015.

[97] Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. On the Need for
Megamodels. In Proceedings of the OOPSLA/GPCE: Best Practices for
Model-Driven Software Development workshop, 19th Annual ACM Con-
ference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, 2004.

[98] CoEST Project Homepage. http://www.coest.org/, accessed 2016.

[99] AMW Project Homepage. https://projects.eclipse.org/projects/

modeling.gmt.amw/, 2015.

[100] Epsilon Project Homepage. http://eclipse.org/epsilon/, 2020.

[101] Jean-Marie Favre, Ralf Lämmel, and Andrei Varanovich. Modeling the lin-
guistic architecture of software products. In Proceedings of the 15th inter-
national conference on Model Driven Engineering Languages and Systems,
MODELS’12, pages 151–167, Berlin, Heidelberg, 2012. Springer-Verlag.

[102] Henrik Lochmann and Anders Hessellund. An Integrated View on Mod-
eling with Multiple Domain-Specific Languages. In Proceedings of the
IASTED International Conference Software Engineering (SE 2009), pages
1–10. ACTA Press, February 2009.

[103] Sebastian J.I. Herzig, Ahsan Qamar, and Christiaan J.J. Paredis. An Ap-
proach to Identifying Inconsistencies in Model-based Systems Engineering.
Procedia Computer Science, 28(0):354 – 362, 2014. 2014 Conference on
Systems Engineering Research.

[104] Gabor Simko, Tihamer Levendovszky, Sandeep Neema, Ethan Jackson,
Ted Bapty, Joseph Porter, and Janos Sztipanovits. Foundation for model
integration: Semantic backplane. In ASME 2012 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, pages 1077–1086. American Society of Mechani-
cal Engineers, 2012.

[105] Mark Boddy, Martin Michalowski, August Schwerdfeger, Hazel Shackle-
ton, Steve Vestal, and Adventium Enterprises. FUSED: A Tool Integra-
tion Framework for Collaborative System Engineering. In Analytic Virtual
Integration of Cyber-Physical Systems Workshop, 2011.

[106] MoTE Project Homepage. http://www.mdelab.org/mdelab-projects/
mote-a-tgg-based-model-transformation-engine/, 2015.

[107] Andreas Seibel, Stefan Neumann, and Holger Giese. Dynamic hierarchical
mega models: comprehensive traceability and its efficient maintenance.
Software and Systems Modeling, 9(4):493–528, 2010.

146

http://www.coest.org/
https://projects.eclipse.org/projects/modeling.gmt.amw/
https://projects.eclipse.org/projects/modeling.gmt.amw/
http://eclipse.org/epsilon/
http://www.mdelab.org/mdelab-projects/mote-a-tgg-based-model-transformation-engine/
http://www.mdelab.org/mdelab-projects/mote-a-tgg-based-model-transformation-engine/


[108] Andreas Seibel, Regina Hebig, and Holger Giese. Traceability in Model-
Driven Engineering: Efficient and Scalable Traceability Maintenance. In
Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman, editors, Software
and Systems Traceability, pages 215–240. Springer London, 2012.

[109] Thomas Beyhl, Regina Hebig, and Holger Giese. A Model Management
Framework for Maintaining Traceability Links. In Stefan Wagner and
Horst Lichter, editors, Software Engineering 2013 Workshopband, vol-
ume P-215 of Lecture Notes in Informatics (LNI), pages 453–457, Aachen,
February 2013. Gesellschaft für Informatik (GI).

[110] D. Langsweirdt, N. Boucke, and Yolande Berbers. Architecture-
Driven Development of Embedded Systems with ACOL. In
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops (ISORCW), 2010 13th IEEE International Symposium on,
pages 138–144, May 2010.

[111] Anders Hessellund and Andrzej Wasowski. Interfaces and Metainterfaces
for Models and Metamodels. In Krzysztof Czarnecki, Ileana Ober, Jean-
Michel Bruel, Axel Uhl, and Markus Wolter, editors, Model Driven En-
gineering Languages and Systems, volume 5301 of Lecture Notes in Com-
puter Science, pages 401–415. Springer Berlin Heidelberg, 2008.

[112] Stefan Jurack and Gabriele Taentzer. A Component Concept for Typed
Graphs with Inheritance and Containment Structures. In Graph Trans-
formations - 5th International Conference, ICGT 2010 Enschede, The
Netherlands, September 27 - - October 2, 2010. Proceedings, pages 187–
202, 2010.

[113] SmartEMF Project Homepage. http://www.itu.dk/~hessellund/

smartemf/, 2008.

[114] Composite EMF Models Project Homepage. http://www.mathematik.

uni-marburg.de/~swt/compoemf/, accessed 2015.

[115] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Systematic composition of independent language
features. Journal of Systems and Software, 152:50 – 69, 2019.

[116] MontiCore Project Homepage. http://www.monticore.de/, 2008.

[117] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and
Andreas Wortmann. Modeling language variability with reusable language
components. In Proceedings of the 22nd International Systems and Soft-
ware Product Line Conference - Volume 1, SPLC ’18, page 65–75, New
York, NY, USA, 2018. Association for Computing Machinery.

[118] Kompren Project Homepage. http://people.irisa.fr/Arnaud.

Blouin/software_kompren.html, 2014.

147

http://www.itu.dk/~hessellund/smartemf/
http://www.itu.dk/~hessellund/smartemf/
http://www.mathematik.uni-marburg.de/~swt/compoemf/
http://www.mathematik.uni-marburg.de/~swt/compoemf/
http://www.monticore.de/
http://people.irisa.fr/Arnaud.Blouin/software_kompren.html
http://people.irisa.fr/Arnaud.Blouin/software_kompren.html


[119] Kompose Project Homepage. http://www.kermeta.org/mdk/kompose,
2009.

[120] Anne Etien, Alexis Muller, Thomas Legrand, and Xavier Blanc. Combin-
ing Independent Model Transformations. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, pages 2237–2243, New York,
NY, USA, 2010. ACM.

[121] EMF Views Project Homepage. http://atlanmod.github.io/

emfviews/, accessed 2015.

[122] Dominique Blouin, Yvan Eustache, and Jean-Philippe Diguet. Extensible
Global Model Management with Meta-model Subsets and Model Synchro-
nization. In Proceedings of the 2nd International Workshop on The Glob-
alization of Modeling Languages co-located with ACM/IEEE 17th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
GEMOC@Models 2014, Valencia, -, pages 43–52, 2014.

[123] Davide Di Ruscio, Ivano Malavolta, Henry Muccini, Patrizio Pelliccione,
and Alfonso Pierantonio. Model-driven techniques to enhance architec-
tural languages interoperability. In Juan de Lara and Andrea Zisman,
editors, Fundamental Approaches to Software Engineering, pages 26–42,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[124] Arnaud Blouin, Benoit Combemale, Benôıt Baudry, and Olivier Beau-
doux. Kompren: modeling and generating model slicers. Software &
Systems Modeling, 14(1):321–337, 2015.

[125] Hugo Bruneliere, Jokin Garcia Perez, Manuel Wimmer, and Jordi Cabot.
Emf views: A view mechanism for integrating heterogeneous models. In
Paul Johannesson, Mong Li Lee, Stephen W. Liddle, Andreas L. Opdahl,
and Óscar Pastor López, editors, Conceptual Modeling, pages 317–325,
Cham, 2015. Springer International Publishing.

[126] Xavier Blanc, Alix Mougenot, Isabelle Mounier, and Tom Mens. Incre-
mental Detection of Model Inconsistencies Based on Model Operations. In
CAiSE ’09: Proceedings of the 21st International Conference on Advanced
Information Systems Engineering, Amsterdam, The Netherlands, volume
5565/2009, pages 32–46, Berlin, Heidelberg, 8-12 June 2009. Springer Ver-
lag.

[127] VIATRA Project Homepage. https://www.eclipse.org/viatra/, ac-
cessed 2020.

[128] Zoltan Ujhelyi, Gabor Bergmann, Abel Hegedus, Akos Horvath, Benedek
Izso, Istvan Rath, Zoltan Szatmari, and Daniel Varro. EMF-IncQuery:
An integrated development environment for live model queries. Science of
Computer Programming, 98, Part 1:80–99, 2015. Fifth issue of Experimen-
tal Software and Toolkits (EST): A special issue on Academics Modelling
with Eclipse (ACME2012).

148

http://www.kermeta.org/mdk/kompose
http://atlanmod.github.io/emfviews/
http://atlanmod.github.io/emfviews/
https://www.eclipse.org/viatra/


[129] Alexander Egyed. Instant Consistency Checking for the UML. In ICSE
’06: Proceedings of the 28th International Conference on Software Engi-
neering, pages 381–390, Shanghai, China, 20-28 May 2006.

[130] Iris Groher, Alexander Reder, and Alexander Egyed. Incremental Con-
sistency Checking of Dynamic Constraints. In DavidS. Rosenblum and
Gabriele Taentzer, editors, Fundamental Approaches to Software Engi-
neering, volume 6013 of Lecture Notes in Computer Science, pages 203–
217. Springer Berlin Heidelberg, 2010.

[131] Jordi Cabot and Ernest Teniente. Incremental Evaluation of OCL Con-
straints. In CAiSE’06: 18th International Conference on Advanced
Information Systems Engineering, Luxembourg, Luxembourg, volume
4001/2006 of Lecture Notes in Computer Science (LNCS), pages 81–95.
Springer Verlag, 5-9 June 2006.

[132] AM3 Project Homepage. https://wiki.eclipse.org/AM3, 2014.

[133] ATL Project Homepage. https://eclipse.org/atl/, 2015.

[134] Andrés Vignaga, Frédéric Jouault, MaŕıaCecilia Bastarrica, and Hugo
Brunelière. Typing artifacts in megamodeling. Software & Systems Mod-
eling, 12:105–119, 2013.

[135] José E. Rivera, Daniel Ruiz-Gonzalez, Fernando Lopez-Romero, José
Bautista, and Antonio Vallecillo. Orchestrating ATL Model Transfor-
mations. In Frédéric Jouault, editor, In Proc. of MtATL 2009: 1st In-
ternational Workshop on Model Transformation with ATL, pages 34–46,
Nantes, France, July 2009.

[136] ATLFlow Project Homepage. http://opensource.urszeidler.de/

ATLflow/, accessed 2020.

[137] Moharram Challenger, Ken Vanherpen, Joachim Denil, and Hans
Vangheluwe. FTG+PM: Describing Engineering Processes in Multi-
Paradigm Modelling, pages 259–271. Springer International Publishing,
Cham, 2020.

[138] AToMPM Project Homepage. https://atompm.github.io/, accessed
2020.

[139] AMW Project Homepage. https://wiki.eclipse.org/ATL/EMFTVM/,
accessed 2020.

[140] Csaba Debreceni, Akos Horvath, Abel Hegedus, Zoltan Ujhelyi, Istvan
Rath, and Daniel Varro. Query-driven Incremental Synchronization of
View Models. In Proceedings of the 2Nd Workshop on View-Based, Aspect-
Oriented and Orthographic Software Modelling, VAO ’14, pages 31:31–
31:38, New York, NY, USA, 2014. ACM.

149

https://wiki.eclipse.org/AM3
https://eclipse.org/atl/
http://opensource.urszeidler.de/ATLflow/
http://opensource.urszeidler.de/ATLflow/
https://atompm.github.io/
https://wiki.eclipse.org/ATL/EMFTVM/


[141] Andreas Seibel, Regina Hebig, Stefan Neumann, and Holger Giese. A Ded-
icated Language for Context Composition and Execution of True Black-
Box Model Transformations. In 4th International Conference on Software
Language Engineering (SLE 2011) , Braga, Portugal, July 2011.

[142] Holger Giese, Stefan Neumann, Oliver Niggemann, and Bernhard Schätz.
Model-Based Integration. In Holger Giese, Gabor Karsai, Edward Lee,
Bernhard Rumpe, and Bernhard Schätz, editors, Model-Based Engineer-
ing of Embedded Real-Time Systems - International Dagstuhl Workshop,
Dagstuhl Castle, Germany, November 4-9, 2007. Revised Selected Papers,
volume 6100 of Lecture Notes in Computer Science, pages 17–54. Springer,
2011.

[143] GME Project Homepage. http://www.isis.vanderbilt.edu/

projects/gme/, accessed 2020.

[144] FUSED Project Homepage. http://www.adventiumlabs.com/

our-work/products-services/fused-informational-video/, 2015.

[145] OSLC Project Homepage. http://open-services.net/, accessed 2020.

[146] Sebastian JI Herzig and Christiaan JJ Paredis. Bayesian Reasoning Over
Models. In 11th Workshop on Model Driven Engineering, Verification and
Validation MoDeVVa 2014, page 69, 2014.

[147] An Eclipse-based workbench for INTeractive Model Management. https:
//github.com/adisandro/MMINT, 2014.

[148] Alessio Di Sandro, Rick Salay, Michalis Famelis, Sahar Kokaly, and Mar-
sha Chechik. Mmint: A graphical tool for interactive model management.
In P&D@ MoDELS, pages 16–19, 2015.

[149] MegaM@Rt2 framework. https://megamart2-ecsel.eu/, 2017.

[150] Wasif Afzal, Hugo Bruneliere, Davide Di Ruscio, Andrey Sadovykh, Silvia
Mazzini, Eric Cariou, Dragos Truscan, Jordi Cabot, Abel Gómez, Jesús
Gorroñogoitia, et al. The megam@ rt2 ecsel project: Megamodelling at
runtime–scalable model-based framework for continuous development and
runtime validation of complex systems. Microprocessors and microsys-
tems, 61:86–95, 2018.

[151] Regina Hebig, Andreas Seibel, and Holger Giese. On the Unification of
Megamodels. In Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Las-
zlo Lengyel, Tiziana Magaria, Julia Padberg, and Gabriele Taentzer, ed-
itors, Proceedings of the 4th International Workshop on Multi-Paradigm
Modeling (MPM 2010), volume 42 of Electronic Communications of the
EASST, 2011.

150

http://www.isis.vanderbilt.edu/projects/gme/
http://www.isis.vanderbilt.edu/projects/gme/
http://www.adventiumlabs.com/our-work/products-services/fused-informational-video/
http://www.adventiumlabs.com/our-work/products-services/fused-informational-video/
http://open-services.net/
https://github.com/adisandro/MMINT
https://github.com/adisandro/MMINT
https://megamart2-ecsel.eu/


[152] Dominique Blouin, Gilberto Ochoa Ruiz, Yvan Eustache, and Jean-
Philippe Diguet. Kaolin: a System-level AADL Tool for FPGA Design
Reuse, Upgrade and Migration. In NASA/ESA International Conference
on Adaptive Hardware and Systems (AHS), Montréal, Canada, June 2015.

[153] R. Hilliard, I. Malavolta, H. Muccini, and P. Pelliccione. On the composi-
tion and reuse of viewpoints across architecture frameworks. In 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, pages 131–140, Aug 2012.

[154] Rich Hilliard, Ivano Malavolta, Henry Muccini, and Patrizio Pelliccione.
Realizing architecture frameworks through megamodelling techniques. In
Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering (ASE2010), pages 305–308, New York, NY, USA,
2010. ACM.

[155] T. Bures, P. Hnetynka, J. Kofron, R. A. Ali, and D. Skoda. Statistical
approach to architecture modes in smart cyber physical systems. In 2016
13th Working IEEE/IFIP Conference on Software Architecture (WICSA),
pages 168–177, April 2016.

[156] Ankica Barǐsić, Dušan Savić, Rima Al-Ali, Ivan Ruchkin, Dominique
Blouin, Antonio Cicchetti, Raheleh Eslampanah, Oksana Nikiforova,
Mustafa Abshir, Moharram Challenger, Claudio Gomes, Ferhat Erata,
Bedir Tekinerdogan, Vasco Amaral, and Miguel Goulao. Systematic Lit-
erature Review on Multi-Paradigm Modeling for Cyber-Physical Systems,
December 2018.

[157] Hans Vangheluwe, Ghislain Vansteenkiste, and Eugene Kerckhoffs. Sim-
ulation for the Future: Progress of the ESPRIT Basic Research working
group 8467. In European Simulation Symposium (ESS). SCS, 1996.

[158] Peter Van Roy. Concepts, Techniques, and Models of Computer Pro-
gramming, chapter Programming Paradigms for Dummies: What Every
Programmer Should Know, pages 9–47. MIT Press, 04 2012.

[159] Jean Bézivin. On the Unification Power of Models. Software and Systems
Modeling, 4(2):171–188, 2005.

[160] Ian Watson and John G. Gürd. A Practical Data Flow Computer. IEEE
Computer, 15:51–57, 1982.

[161] Edward A. Lee and David G. Messerschmitt. Static Scheduling of Syn-
chronous Data Flow Programs For Digital Signal Processing. IEEE Trans-
actions on Computers, 36(1):24–35, 1987.

151


	An Integrated Ontology for Multi-Paradigm Modeling for Cyber-Physical Systems
	Introduction
	State of the Art
	Viewpoints
	Model-Based Development Process Modeling
	Modeling Paradigms

	Ontology
	Viewpoint
	Model-Based Workflows
	Modeling Paradigms

	Examples
	EBCPS
	HPI CPSLab
	Modeling Paradigms

	Conclusion


