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for the next constructive phase following this work that will consist of devel-
oping a solution for implementing model management for MPM based on the
knowledge captured by the ontology.
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Chapter 5

An Integrated Ontology for
Multi-Paradigm Modeling
for Cyber-Physical Systems

Author(s): Dominique Blouin, Rima Al-Ali, Holger Giese, Stefan Klikovits,
Soumyadip Bandyopadhyay, Ankica Barǐsić, Ferhat Erata

5.1 Introduction

This chapter presents the MPM4CPS ontology that integrates the Shared, CPS
and MPM ontologies by providing cross-cutting concepts between these do-
mains. In particular, it formalizes a new notion of viewpoint adapted from ex-
isting works. Such viewpoint integrates the concepts of megamodel fragments
of the MPM ontology with stakeholder concerns about the system of the Shared
ontology and with the CPS constituent elements under development of the CPS
ontology. The CPS ontology was specified in Chapter 3 in the form of a meta-
model complemented with a feature model. After conversion of the provided
CPS metamodel and feature model to an OWL ontology, we are able to refer
to classes of the CPS ontology represented in OWL form from our MPM4CPS
viewpoint notion.

We also extend the core notions of workflow processes of the Shared on-
tology to capture model-based development processes. In particular, we relate
these processes to their employed viewpoints. Finally, we refine the notion of
engineering paradigm introduced in the Shared ontology to define our notion of
modeling paradigms, which adapts existing work to take into account our new
viewpoint notion.

In the following, we first briefly introduce the state of the art that served as
starting point to develop the ontology in Section 5.2. Then, we detail the on-
tology that includes our extension of these state of the art works in Section 5.3.
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Section 4.4 illustrates the usage of the ontology with the Ensemble-Based CPS
and HPI CPSLab examples previously introduced in Chapter 2. We finally con-
clude this chapter and this first part of this book on foundations for MPM4CPS
in Section 5.5.

5.2 State of the Art

Integration needs underlying the development of embedded real-time and cyber-
physical systems have been outlined in [142]. These observations and state of the
art work presented in this section will guide the development of the MPM4CPS
ontology in order to cover the needs of the EBCPS and HPI CPSLab example
development environments and their CPS case studies.

The MPM4CPS ontology is centered on a notion of viewpoint that relates
parts of the CPS under study with the employed formalisms, languages and
tools as informally defined in the framework of Broman et al. [48]. As already
mentioned in Section 4.2 of Chapter 4, parts of the framework of Broman et
al. also inspired the MPM ontology. Their framework is itself an adaptation of
the ISO/IEEE standard 42010 standard on architecture descriptions [14], which
we introduced in the Shared ontology presented in Chapter 2 except for its
modeling-related notions that the MPM4CPS ontology redefines.

The MPM4CPS ontology enhances the framework of Broman et al. by en-
riching it with modeling notions of the MPM ontology such as megamodel and
megamodel fragment. In addition, the ontology also considers model-based de-
velopment processes to orchestrate the different modeling activities performed to
develop specific parts of CPS using different megamodel fragments. Finally, the
ontology also adapts an existing notion of modeling paradigms that characterizes
the formalism and development process of these development environments.

Therefore, we divide this state of the art along these three paxis. The first
part presents different existing works on viewpoint-related concepts including
introducing the viewpoint concepts of the ISO/IEEE 42010 standard and that
of the framework of Broman et al. [48]. The second part presents state of the art
on the modeling of model-based development processes. Finally, the third part
proposes a brief state of the art on modeling paradigms including the closely
related topic of programming paradigms.

5.2.1 Viewpoints

We first complete the introduction of the ISO/IEEE 42010 standard by pre-
senting its viewpoint-related notions. As depicted in Figure 2.9, the ISO/IEEE
42010 standard defines its own notion of viewpoint, which associates a set of
stakeholder concerns with a set of model kinds employed to address these con-
cerns in the design of an architecture. These model kinds serve as typing el-
ements for the models employed for specifying the architecture. Architecture
viewpoints are then used to govern the view on the system according to the
concerns and the model kinds.
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The framework of Broman et al. [48] adapts the ISO/IEEE 42010 standard
to CPS design by enriching the provided viewpoint notion. This is achieved
by replacing the Model Kind concept of the ISO/IEEE 42010 standard by the
formalisms supporting the viewpoint to perform the different activities on the
system models (Figure 4.2). In addition, the Broman et al. viewpoint notion
adds a link from the viewpoint to the parts of the system under design rele-
vant to the concerns framed by the viewpoint. This is illustrated in Figure 5.1
where the Control Robustness Design, Control Performance Design and Soft-
ware Design example viewpoints are depicted for an advanced driver assistance
system (ADAS) (e.g., adaptive cruise control) embedded control system. A ma-
trix shows the parts of the system and their concerns along its two axis and
cross-cutting points are defined and grouped to define viewpoints.

Figure 5.1: Example of viewpoints matrix (based on [48])

For instance, the Software Design viewpoint frames the Performance and the
ADAS Algorithm concerns, which are impacted by the Software and Computing
Platform parts of the system. As can be seen in Figure 5.2, such viewpoint
employs the state machines, dataflow and discrete event formalism to address
these concerns in the CPS design.
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Figure 5.2: Example of viewpoints and their employed formalisms (based on
[48])

These notions will be at the heart of our MPM4CPS ontology. Besides, we
also want to relate these viewpoints to the development processes in which they
are used, which is an important characteristic of CPS development approaches
and environments. This is the topic of the next section.

5.2.2 Model-Based Development Process Modeling

MPM advocates to model everything, at the most appropriate level(s) of ab-
straction, using the most appropriate formalisms, for the modeling activities
to be performed. This includes not only the modeling of the system to be de-
veloped (at the micro modeling scale as defined by the MPM ontology) and
the modeling of the models and modeling languages employed to develop the
system (at the megamodeling scale), but also the modeling of model-based de-
velopment processes that orchestrate the various activities performed on models
of the system.

Unfortunately, we do not find many work on this topic in the literature.
This is also the result of a systematic mapping study of MPM for CPS initiated
during the MPM4CPS COST action [156] A main result of this study is that
among the studies that reported a development process, 38% of them describe it
informally often in a partial way; 30% describe it semi-formally, step by step, but
still giving only natural language descriptions; and only 32% provide a formal
model for specifying their process. Therefore, development process modeling
remains an issue in MPM4CPS.

Nevertheless, we find the FTG+PM [137], which as already mentioned in
the state of the art of Chapter 4, is the only model management language that
formalizes development processes. Therefore, it seems to be currently the most
appropriate language to specify engineering processes in MPM. Figure 5.3 shows
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the main concepts of the language. On the left hand side of the figure, we find the
Formalism Transformation Graph (FTG) concepts, which describe a repository
of transformation relations between formalisms. On the right hand side, we
find the Process Model (PM) concepts. Those are based on the UML activity
diagram, which has been adapted so that activities are typed by transformations
defined in the FTG part. In addition, objects representing artifacts processed
by the activities are typed by languages of the FTG side therefore representing
models taken as input by the activities when executing transformations.

Figure 5.3: Overview of the FTG+PM concepts (from [137])

The FTG part can be compared with the megamodel notion of the MPM
ontology of Chapter 4. A difference however is that megamodels can be logi-
cally organized into fragments, which is not the case of the FTG. Besides, only
one kind of relation is defined between formalisms, while the MPM ontology
captures several kinds such as synchronization, traceability and refinement re-
lations. Finally, transformations relate formalisms and not modeling languages
like for the megamodel relations of the MPM ontology. With our definitions of
formalisms and modeling languages, we must relate modeling languages since
they are concrete implementations of formalisms.

The FTG+PM languages, as well as the megamodeling notion of Chapter 4
and the workflow process concepts of the shared ontology of Chapter 2 will serve
as basis for defining model-based process modeling in this MPM4CPS ontology.

5.2.3 Modeling Paradigms

Another important MPM-related notion is that of a modeling paradigm. We
initially found that there was no precise definition of this notion despite that
it originated as early as 1996 [157]. However, the notion of modeling paradigm
can be seen as a generalization of the notion of programming paradigm, since
programming languages can be seen as a subset of modeling languages. Pro-
gramming paradigms, which originated as early as 35 years ago [16, 17] have
been defined to categorize the different approaches or styles used by the different
programming languages. Due to the growing heterogeneity of software systems,
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which results in different kinds of problems to be solved, different approaches or
paradigms to solve these problems had to be developed. Therefore, a plethora
of programming languages have been created and categorized according to their
underlying paradigms. However, the notion of programming paradigm, which
varies from one author to another, was also never made very precise. The
most precise definition that we find is that of [158], which informally defines a
programming paradigm as “...a set of programming concepts, organized into a
simple core language called the paradigm’s kernel language”. Yet, this definition
remains vague.

Such lack of precise definition of programming and modeling paradigms was
an important problem for our ontology of MPM, which triggered some work to
precise the definition [21, 22]. Part of this work has already been introduced
in Chapter 2 that presented the Shared ontology and its paradigm subdomain.
However, only the part that is independent of modeling was presented as its level
of abstraction is adequate for modeling the more general notion of engineering
paradigms.

We will build on the modeling-specific part of this work to precise the no-
tion of modeling paradigm for this MPM4CPS ontology. As can be seed from
Figure 2.11, this work defines a modeling paradigm as a set of properties charac-
terizing the languages (including their semantics) and workflows (development
processes) employed to develop systems. This can be seen as an enlargement
of the notion of a programming paradigm, which typically only characterizes
programming languages and do not say anything about workflows. Examples
of simple paradigms may be object orientation, which only pertains to for-
malisms, or agile development, which only characterizes workflows. More com-
plex paradigms examples discussed in the work of [22] are Synchronous Data
Flow (SDF) and Discrete Event Dynamic Systems (DEv). These will be further
discussed in Section 5.3 where we will introduce our MPM4CPS ontology in
details.

5.3 Ontology

In this section we provide an overview of the OWL MPM4CPS ontology that
defines cross-cutting concepts between the Shared, MPM and CPS ontologies
presented in the previous chapters. We first define the MPM4CPSDC domain con-
cept class as a subclass of the DomainConcept class of the Shared ontology to
organize the classes of the MPM4CPS integrating domain (Figure 5.4). All
classes defined in this section are said to be part of the MPM4CPS domain and
will therefore be made subclasses of this MPM4CPS subdomain class.

Following the state of the art of the previous section, we first define our
viewpoint notion inspired from the framework of Broman et al., but adapted
for the megamodel and megamodel fragments of the MPM ontology. Then, we
refine the workflow process subdomain of the Shared ontology (see Section 2.5
of Chapter 2) to specialize it for model-based development. Finally, we refine
the notion of engineering paradigms of the Shared ontology to define a more

119



specific notion of modeling paradigm.

Figure 5.4: Overview of the OWL MPM4CPS ontology

5.3.1 Viewpoint

We start by defining our notion of Viewpoint, which is inspired from the defi-
nition from the framework of Broman et al. (Figure 4.2 and Figure 5.1). Their
definition is itself an adaptation of the notion of viewpoint from the IEEE 42010
standard [14] (Figure 2.9). Compared to the notion of viewpoint from the IEEE
42010, the notion of the framework of Broman et al. replaces the ModelKind

(Figure 2.9) representing the modeling languages supporting a viewpoint by a
set of Formalism.

However, we have seen in the MPM ontology how we defined the notion
of MegamodelFragment that organizes modeling languages conjointly used with
their appropriate ModelRelations to support an activity of a development pro-
cess (e.g. the Model Test activity of the simulation stage of the HPI CPSLab
development process in Chapter 4). Therefore, we replace the set of formalism
of the Broman et al. framework by a megamodel fragment, and we define the
hasSupportingMegamodelFragments object property to relate a viewpoint to
a set of supporting megamodel fragments.

According to the IEEE 42010 standard, a viewpoint frames the concerns of
stakeholders (Figure 2.9). Therefore we create the hasFramedConcerns object
property to relate a viewpoint to a set of framed concerns as defined in the
Shared ontology (Chapter 2).

In addition, a viewpoint governs an architecture view. We therefore define
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the View class and the hasGovernedView object property to relate a viewpoint
to its view. Finally, we create another object property to relate a view to its
employed models.

An addition of the framework of Broman et al. to the IEEE 42010 stan-
dard is to define a reference from a viewpoint to the system parts being de-
veloped using views of the viewpoint. We adopt this feature and create the
hasSystemConstituentElements object property between a viewpoint and its
system constituents or parts. The range of the property is the ConstituentElement
OWL class, which was generated from feature of the feature model of the CPS
ontology (Figure 3.2).

We note that this makes our notion of viewpoint a cross-cutting concept
between the MPM and CPS domains of our ontological framework. This ex-
plains why the viewpoint-related notions are part of the MPM4CPS integrating
ontology, since they depend on all other ontologies. We also note that the link
between a viewpoint and CPS constituent elements can be seen as being derived
from the standard representedBy relation between a real system and its models
[159].

This completes the definition of our viewpoint-related notions. We then
consider how these viewpoints are used throughout development by introducing
notions related to model-based workflows.

5.3.2 Model-Based Workflows

We have introduced core workflow process modeling notions inspired from the
WFMC-TC-1025 standard in the Shared ontology of Chapter 2. On the other
hand, the FTG+PM process modeling language introduced in Section 5.2.2
defines similar process modeling notions adapted from UML activity diagrams.
An advantage of the WFMC-TC-1025 standard is its wider coverage of the
workflow domain. For instance, embedded and external subprocesses can be
modeled. Besides, the notion of activity performer is included to model tools
or humans performing the activities. In FTG+PM the performer notion is
implicitly embedded within the activity concept, the human / tool characteristic
being declared in the transformation class (auto attribute of the Transformation
class of Figure 5.3).

Such richness of the workflow subdomain is required to model industrial-
strength processes such as the one of the HPI CPSLab example, which reuses
an existing methodology from the automotive domain (Figure 2.19). However,
as opposed to the FTG+PM language, the WFMC-TC-1025 standard does not
say anything about modeling but only links activity performers to the processed
data fields (Figure 2.6), such data fields being typed by associated data types
declared in processes. We already covered the FTG-related notions in our MPM
ontology via megamodels capturing modeling languages and their relationships,
but in a finer way by providing different kinds of transformation relations. Be-
sides our megamodels are hierarchical1 allowing to capture contextual model

1This is not yet covered in this version of the MPM ontology.
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transformation relations.
Therefore, the process notions of our MPM4CPS ontology will reuse the

core process notions of the Shared ontology, reuse the link between the process
model and the FTG of the FTG+PM language, but replace the FTG by the
richer megamodel fragment notion. In the following, we provide an overview of
model-based workflow process notions as part of this MPM4CPS ontology.

Model-Based Process

We first subclass the Process class of the Shared ontology into the ModelBasedProcess
class to represent all processes that manipulate models instead of data fields.
The choice of the model-based name follows the naming of the model-based
engineering paradigm.

As opposed to the WFMC-TC-1025 standard, a ModelBasedProcess does
not declare the types of the data fields processed by activity performers. In-
stead, a set of viewpoints can be linked to a process through an object property
hasViewpoint, so that data types are declared as the elements grouped under
the associated megamodel fragment. Similar to the FTG+PM language, such
types are modeling languages and their relations declared in the megamodel
fragments.

Activity Performers

The ModelingTool class of the MPM ontology was declared as a subclasses of
the Tool class of the Shared ontology. This class was also made a subclass of
Application activity performer class of the workflow subdomain of the Shared
ontology. Therefore, a modeling tool can be directly used as activity performer
by any activity. Similarly, the ModelingHuman resource of the MPM ontology
was also made a subclass of the Application activity performer class of the
workflow subdomain. Therefore, modeling human can be directly used as activ-
ity performer for representing modeling activities that are performed manually.

Finally, the hasTranformationSpecifications object property of the MPM
ontology can be used to relate an activity performer resource to the transfor-
mation relations it executes as declared in the activity’s associated viewpoint.

5.3.3 Modeling Paradigms

In the Shared ontology, we have provided the notion of EngineeringParadigm
defined as a characterization of environments in which engineering takes place.
We refine this definition so that it characterizes model-based engineering envi-
ronments and their employed model-based artifacts.

In order to define our modeling paradigm notion, we first subclass the
EngineeringEnvironment class of the Shared ontology by the ModelBasedEngineeringEnv
class. Similarly, we define the ModelBasedEngineeringArtifact as a subclass
of the EngineeringArtifact. We also make the Model and ModelRelation

classes of the kernel model of the MPM ontology subclasses of ModelBasedEngineeringArtifact.
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Hence, all elements of the MPM ontology that are are subclass of Model are also
ModelBasedEngineeringArtifacts. We also make the ModelBasedProcess

class ModelBasedEngineeringArtifacts as well. Finally, we create the hasModelingArtifacts
subproperty of the hasArtifacts object property having respectively the ModelBasedEngineeringEnv
and ModelBasedEngineeringArtifact classes as domain and range.

We then define the ModelingEngineeringParadigm class as a subclass of the
EngineeringParadigm class of the Shared ontology. As defined in the Shared
ontology, an engineering paradigm declares characteristics of engineering arti-
facts that make the paradigm. Therefore in our refined definition of modeling
paradigm, we refine the scope of the paradigm characteristics to modeling ar-
tifacts. Note that compared to the definition of [22], which was introduced in
the state of the art section, our definition is wider as its scope consisting of any
modeling artifact is not restricted to modeling languages and workflows.

Several ways can be thought of to express the characteristics of a paradigm.
In the Shared ontology, those characteristics are represented as properties in-
cluding their expressions and decision procedures. We have reused these notions
from the work of [22]. We therefore present in greater details their way to ex-
press paradigm characteristics.

As can be seen from Figure 2.11, the properties expressing characteristics are
actually meant to be evaluated over a paradigmatic structure, which expresses
some of the paradigm characteristics as patterns to be checked over formalisms
and workflows. Therefore, the first step in checking that a set of modeling
artifacts implements a paradigm is to match a paradigmatic structure over the
considered modeling artifacts. Once a match is found, paradigmatic properties
can be evaluated against the structure to completely determine if the artifacts
satisfy the paradigm.

In order to express paradigmatic structures, the authors define an adapta-
tion of the metamodel language where classes are placeholders to be matched
by other languages. Therefore, modeling artifacts such as languages and pro-
cesses must also be expressed as metamodels for paradigm satisfaction checking.
The approach also relies on the fact that language semantics are expressed as
semantic domains whose languages are also expressed as metamodels so that
they can also be characterized by paradigmatic structures. In the approach,
it is expected that providers of modeling artifacts are responsible to map their
artifacts to the paradigmatic structure. This is one drawback of the approach,
which may make the evaluation of paradigms satisfaction over industrial het-
erogeneous modeling environments difficult. For languages, workflows and their
semantic domains already expressed as metamodels, this is relatively easier.
However for other metamodeling technical spaces such as grammars, a conver-
sion is required. Besides, a language’s semantics is often not formalized but
embedded into programming code of the tool that executes the language, which
makes the task of identifying paradigms even harder.

Nevertheless, the work of [22] is a first attempt and an ongoing work on
defining modeling paradigms and is therefore subjected to be improved in the
next future. Hence, at this stage, we will not yet precise in this ontology any
approach for expressing paradigm characteristics. Besides, since the scope of

123



our modeling paradigm definition is wider, the paradigmatic structure proposed
in [22] would be too restrictive. Nevertheless, we will present an example of
paradigm characteristics expression for the HPI CPSLab in Section 5.4.3.

Another important remark is the different definitions of the formalism notion
between the authors of [22] and that of our MPM ontology. The authors use
the definition of [47] (Figure 4.1) where a formalism is defined as “a language,
a semantic domain and a semantic mapping function giving meaning to model
in the language”. In the MPM ontology, we followed the framework of Broman
et al. [48] where formalisms are “mathematical objects consisting of an abstract
syntax and a formal semantics”, and where modeling languages are “concrete
implementations of formalisms”. Broman et al. further note that a language’s
semantics may slightly deviate from the semantics of formalisms they realize.

The question is then to understand the difference between our definition of
formalisms and the paradigms of [22], for those paradigms that only charac-
terize formalisms (as per the definition of [47]). This is even more relevant as
[22] use Synchronous Data Flow (SDF) and Discrete Event Dynamic Systems
(DEv) as paradigms examples in their work. At some point, the authors even
consider the SDF paradigm as a “conceptual formalism”. In addition, these two
paradigms are classified as formalisms in the Catalog of Formalisms, Modeling
Languages and Tools [9], which was created during the MPM4CPS COST ac-
tion project. An interesting future work would therefore consists of studying all
other formalisms of the catalog such as Petri Nets, Abstract State Machines, Hy-
brid Automata using exploratory modeling to better understand the formalism
notion.

5.4 Examples

In this section, we illustrate how the MPM4CPS integrated ontology presented
in Section 5.3 covers the needs for a comprehensive modeling of development
environments and their CPS case studies such as the EBCPS and HPI CPSLab
examples. For each of these examples, we first start by modeling some of the
employed viewpoints that we relate to their stakeholder concerns, the employed
megamodel fragments of Chapter 4 and the parts of the CPS of Chapter 3.

Next, we show how the engineering methodologies of each example can be
captured including their different stages and the activities employed at these
stages. Each of these activities makes use of a workflow process that uses one
of the previously defined viewpoints. The process decomposes the root activity
into a sequence of subactivities whose activity performers are set as the proper
modeling tools and humans described in Chapter 4. Note that we do not present
a complete coverage of the engineering methodologies and processes here, but
only the parts needed to illustrate the use of the MPM4CPS integrated ontology.

Finally, we illustrate the modeling of the Synchronous Data Flow (SDF)
paradigm with the integrated ontology characterizing one of the example de-
velopment environment through some of its activities making use of modeling
languages based on SDF.
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5.4.1 EBCPS

We present the modeling details of the EBCPS example with regard to the
MPM4CPS ontology. The EBCPS methodology is a simple methodology that
contains only one stage. A more comprehensive example is provided for the
HPI CPSLab methodology that contains three stages. In this example, we use
the division of the megamodel fragments as defined in Chapter 4, which is per
modeling language rather than per activity as for the case of the HPI CPSLab.
Thus, our viewpoints can employ more than one megamodel fragment, and
activity processes can refer to more than one viewpoint.

Methodology

We define the EBCPSMethodology as an instance of the EngineeringMethodology
class, which contains a set of stages. In our case, the scenario of autonomous
vehicle presented in Chapter 2 employs only one stage that consists of a simu-
lation stage.

Methodology

• EngineeringMethodology: EBCPSMethodology

– hasStages EngineeringStage: EBCPSSimulationStage

Methodology Implementing Process

Per our definition from the workflow subdomain of the shared ontology, a
methodology does not specify how it is implemented since several implemen-
tations could exist for a given methodology. Therefore we define the EBCP-
SProcess as one implementation of the EBCPSMethodology.

This process defines an activity set that specifies activities and transitions to
orchestrate the different root modeling activities of the EBCPSProcess. Each
of these activities also implements the single simulation stage of the EBCPS
methodology. The root activities for the simulation stage are:

ActivitySet

• hasSetActivities SubFlow: RequirementsRootActivity

– isImplementingStage: EBCPSSimulationStage

– hasSubProcess: RequirementsProcess

• hasSetActivities SubFlow: DesignRootActivity

– isImplementingStage: EBCPSSimulationStage

– hasSubProcess: DesignProcess

• hasSetActivities SubFlow: RuntimeRootActivity
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– isImplementingStage: EBCPSSimulationStage

– hasSubProcess: RuntimeProcess

• hasTransitions Transition: Requirements2DesignTransition, Design2RuntimeTransition

The processes presented for each root activity declare finer grained activities
such as editing a model, simulating a model, checking simulation results, etc.
Some activities are performed by humans (i.e. a designer) such as in case of cap-
turing the requirements and implementing the components with self-adaptation
support. Other activities may be performed by tools such as simulation tools.

Each process uses a viewpoint that specifies the concerns addressed by the
process, the part(s) of the CPS that are being developed and their employed
megamodel fragment(s). These megamodel fragments specify the modeling lan-
guages and their relationships that support the process activities. We first
present the viewpoints in the following.

Viewpoints

• Viewpoint: ComponentAutonomyVP

– hasFramedConcerns: SafetyConcern, AdaptabilityConcern, Efficien-
cyConcern

– hasSystemConstituentElements: Controller, Plant, Sensors, Actua-
tors.

– hasSupportingMegaModelFragments: RequirementsMegaModelFrag-
ment, DesginMegaModelFragment, RuntimeMegaModelFragment, Self-
AdaptationMegaModelFragment

• Viewpoint: ComponentsCooperationVP

– hasFramedConcerns: SafetyConcern, EfficiencyConcern

– hasSystemConstituentElements: Communication, Controller, Plant,
Sensors, Actuators

– hasSupportingMegaModelFragments: RequirementsMegaModelFrag-
ment, DesginMegaModelFragment, RuntimeMegaModelFragment, Sim-
ulationMegaModelFragment

Activity Subprocesses

• ModelBasedProcess: RequirementsProcess

– ActivitySet: editing model - To create an IRM model, the developer
needs to define the invariants in the system and their relations to
the processes and knowledge exchange, which can have assumptions.
The processes are associated to a component role that is also part of
the IRM model. After finishing the modeling part, the next activity
is to generate the skeleton of the components and ensembles in Java
code from the IRM model.
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– hasViewPoint: ComponentAutonomyVP, ComponentsCooperationVP

• ModelBasedProcess: DesignProcess

– ActivitySet: editing model - Using the skeleton, the developer im-
plements the processes in the component and the ensembles. In this
part, the developer can support mode-switching in the component.
In the example, the vehicle component have a controller and a plant,
which should be also implemented.

– hasViewPoint: ComponentAutonomyVP, ComponentsCooperationVP

• ModelBasedProcess: RuntimeProcess

– ActivitySet: running model, result model - The developer can execute
the design model and have the components and ensembles running
(i.e. DEECoRuntimeModel) that results with logs as an outputs.
The runtime environment monitors the component and performs the
mode-switching when needed. At the same time, the simulation mod-
els run and synchronous with DEECoRuntimeModel.

– hasViewPoint: ComponentAutonomyVP, ComponentsCooperationVP

5.4.2 HPI CPSLab

The HPI CPSLab and its methodology including several stages supported by
multi-formalisms settings provides a comprehensive example of a development
process where the developed system is gradually built starting from pure models
at the simulation stage and gradually integrating more and more of the real
artifacts in the following prototyping and pre-production stages (Figure 2.19).

We present the modeling of this process and of one of its employed modeling
paradigms with the MPM4CPS ontology. We first present the modeling of the
methodology and its stages. Then, for each stage we present the detailed mod-
eling of the different activities implementing the stage, including the employed
viewpoints. Finally, we present the modeling of a simple modeling paradigm
employed by the HPI CPSLab process and its viewpoints.

Methodology

We define the CPSLabMethodology instance of the EngineeringMethodology

class of the workflow subdomain of shared ontology (Chapter 2) to capture the
HPI CPSLab methodology and its set of stages as depicted in Figure 2.19. This
is achieved by representing each stage as an instance of the EngineeringStage

class and creating instances of the hasNextStage object property defining the
order between the stages.

Methodology

• EngineeringMethodology: CPSLabMethodology
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– hasStages EngineeringStage: CPSLabSimulationStage

∗ hasNextStage: CPSLabPrototypingStage

– hasStages EngineeringStage: CPSLabPrototypingStage

∗ hasNextStage: CPSLabPreproductionStage

– hasStages EngineeringStage: CPSLabPreproductionStage

Methodology Implementing Process

We define the root CPSLabProcess instance of the ModelBasedProcess class to
implement the CPSLabMethodology. This process defines an activity set defin-
ing root activities and transitions to orchestrate them. Each of these activities
contributes to implementing a stage of the CPSLab methodology. In addition,
each root activity is decomposed into finer grained activities as declared with
an associated subprocess.

ActivitySet

• hasSetActivities SubFlow: MTActivity

– isImplementingStage: CPSLabSimulationStage

– hasSubProcess: MTProcess

• hasSetActivities SubFlow: MiLActivity

– isImplementingStage: CPSLabSimulationStage

– hasSubProcess: MiLProcess

• hasSetActivities SubFlow: RPActivity

– isImplementingStage: CPSLabSimulationStage

– hasSubProcess: RPProcess

• hasSetActivities SubFlow: SiLActivity

– isImplementingStage: CPSLabPrototypingStage

– hasSubProcess: SiLProcess

• hasSetActivities SubFlow: HiLActivity

– isImplementingStage: CPSLabPrototypingStage

– hasSubProcess: HiLProcess

• hasSetActivities SubFlow: STActivity

– isImplementingStage: CPSLabPreproductionStage

– hasSubProcess: STProcess
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• hasTransitions Transition: MT2MiLTransition

• hasTransitions Transition: MiL2RPTransition

• hasTransitions Transition: RP2SiLTransition

• hasTransitions Transition: MiL2SiLTransition

• hasTransitions Transition: SiL2HiLTransition

• hasTransitions Transition: HiL2STTransition

Transitions are instantiated with appropriate conditions (not presented here)
to define the order of execution of activities. Note that the declared order must
be overall consistent with the ordering of the implemented stages as defined
by the methodology. Overall consistency means that activities of a stage that
follows another stage should never be executed before the activities of the pre-
ceding stage have already been executed at least once. Indeed, although not
shown in this case, root activity transitions may return back to an activity of
a preceding stage in case the errors discovered during the current stage were
introduced at an earlier stage.

In the next sections, for each stage we present the viewpoints and the root
activity processes that employ them.

Simulation Stage

The purpose of the simulation stage is to define the control laws of the system.
As opposed to the two next stages, its activities only employ models as cap-
tured by the megamodel fragments of Chapter 4 to represent the system and
its environment.

For the HPI CPSLab example, we define a set of viewpoints specific to each
of the root activities. This differs from the EBCPS example where existing
viewpoints (e.g. from a library) are reused to support the activities. In this
case, we define three viewpoints to support each root modeling activity of the
simulation stage as follows:

Viewpoints

• Viewpoint: CPSLabMTControlAlgorithmVP

– hasFramedConcerns: ControlAlgorithm

– hasSystemConstituentElements: Controller, Plant, Sensor, Actuator

– hasSupportingMegaModelFragments: CPSLabMTMMF

• Viewpoint: CPSLabMiLControlAlgorithmVP

– hasFramedConcerns: ControlAlgorithm, Stability, Safety, Reliability

– hasSystemConstituentElements: Controller, Plant, Sensor, Actuator

129



– hasSupportingMegaModelFragments: CPSLabMiLMMF

• Viewpoint: CPSLabRPControlAlgorithmVP

– hasFramedConcerns: ControlAlgorithm, Stability, Safety, Reliability

– hasSystemConstituentElements: Controller, Plant, Sensor, Actuator

– hasSupportingMegaModelFragments: CPSLabRPMMF

Each of these viewpoints addresses the concern of the control algorithm of
the system under design and is using a megamodel fragment defined in the
example section of Chapter 4 of the MPM ontology to capture the employed
modeling languages and their relations. In addition, the CPSLabMiLContro-
lAlgorithmVP and CPSLabRPControlAlgorithmVP also address other concerns
such as stability, safety, reliability, thanks to the plant model providing feedback
to the controller as opposed to the static input data of the model test activity.

Each of these viewpoints describes a cyber-physical setting, at different levels
of abstraction. The abstract control algorithm from the cyber domain captured
by the Matlab/Simulink control model (ControlModel) is confronted with the
physics as represented in the input data plus expected outcomes. This is model
differently for each viewpoint as static data model (MT), plant model (MiL)
and detailed robot model (RP). Therefore, all viewpoints cover the system con-
stituents of interest represented by these models, which are the controller, plant,
sensor and actuator elements. We further have a multi-formalism setting where
the control is discrete while the input data is at least conceptually continuous.

Root Activity Subprocesses

Each root subflow activity is further described by a subprocess specifying its
decomposition in terms of finer grained activities such a editing a model, exe-
cuting a model transformation, etc. Besides, the process, which is responsible
for defining the context for executing its activities is associated with a viewpoint
providing such context. We list below the root activity sub processes and their
associated viewpoints. As an example, we present the fine grained activities of
the model test subprocess in the next section.

• ModelBasedProcess: CPSLabMTProcess

– ActivitySet: ...

– hasViewPoint: CPSLabMTControlAlgorithmVP

• ModelBasedProcess: CPSLabMiLProcess

– ActivitySet: ...

– hasViewPoint: CPSLabMiLControlAlgorithmVP

• ModelBasedProcess: CPSLabRPProcess

– ActivitySet: ...
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– hasViewPoint: CPSLabRPControlAlgorithmVP

Model Test Subprocess (CPSLabMTProcess)

We describe here as an example the set of subactivities that constitute the
CPSLabMTProcess. Like for the process orchestrating root activities, this is
achieved by creating a block activity and its activity set. But we first define
activity performers to perform the activities.

Activity Performers

• ModelingHuman: ControlEngineerPerf

– hasTranformationSpecifications: : EditInputModelOperation, Edit-
ControlModelOperation, EditPlantModelOperation, EditValidityRe-
sultsModel...

• ModelingTool: SimulinkTool

– hasTranformationSpecifications: SimulateModelOperation, ...

Then, we define the fine grained activities as per the list below.

ActivitySet

• hasSetActivities Activity: MTEditInputModel

– hasActivityPerformer: ControlEngineerPerf

• hasSetActivities Activity: MTEditControlModel

– hasActivityPerformer: ControlEngineerPerf

• hasSetActivities Activity: MTSimulateControlModel

– hasActivityPerformer: SimulinkTool

• hasSetActivities Activity: MTCheckSimulationResults

– hasActivityPerformer: ControlEngineerPerf

• hasTransitions Transition: EditInput2EditControlTransition

• hasTransitions Transition: EditControl2SimulateControlTransition

• hasTransitions Transition: CheckResults2EditControlTransition

– hasCondition: ValidResults

• hasTransitions Transition: ...
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Transitions are defined between the different activities. It should be noted
that this is a simplified version of the real workflow as the order of the activ-
ities may depend on several conditions. For example, the transition CheckRe-
sults2EditControlTransition between the MTCheckSimulationResults and MTE-
ditControlModel activities has a condition. Such condition evaluates some
property of the ValidityResultsModel as was set by the designer during the
MTCheckSimulationResults activity and indicating if the results are correct or
not. If not correct, the control may be edited again. If correct, the process ends
and by default returns to the calling subflow root activity.

At deployment, an application megamodel containing the models to be pro-
cessed by activity performers can be bound to this structure for executing the
process on real models.

The definition of the two other CPSLabMiLProcess and CPSLabRPProcess
processes follows the same principles as that of the CPSLabMTProcess detailed
above and is not presented. All details can be found in the ontology files acces-
sible from [8].

Prototyping Stage

Compared to the simulation stage, which only uses models, the focus of the
prototyping stage changes from design to implementation. In this stage, the
source code plays a major role and is gradually incorporated into the system
under development. The purpose is to ensure that implementation constraints
such as discretization of variables and time due to the limited resources of the
execution platform are handled appropriately to meet the system requirements.
The concerns of this stage are therefore related to performance and accuracy
and the activities of this stage are used to optimize related parameters such as
data representation format, scheduling periods, sensor sampling rates, etc.

For this prototyping stage and the next pre-production stage of the HPI
CPSLab methodology, we will only present the viewpoints specification. The
modeling of root activity subprocesses is straight forward and follows the same
principles as that of the simulation stage.

Like for the simulation stage, we define a viewpoint for each of the two root
activities implementing the prototyping stage (Figure 2.19). Therefore for each
stage activity, we first present the activity and then define its supporting view-
point.

Software in the Loop (SiL)

For the Software in the Loop (SiL) activity, the tool TargetLink, which is fully
integrated into MATLAB Simulink, is used to generate C code from the Simulink
behavior model. This allows to seamlessly migrate the functions and control al-
gorithm from continuous behavior of the model level to a discrete approximation
implementation in software. Several parameters for code generation can be con-
figured for the characteristics of the desired target platform. Different effects
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can be analyzed and results can be compared to results obtained during the
simulation stage.

The prototyping stage includes two forms of SiL activities. The first form
consists of executing the developed software on a desktop computer against a
simulator as depicted in Figure 4.29. The detailed control algorithm from the
cyber domain captured by the Matlab/Simulink and AUTOSAR SystemDesk
models (SystemModels) are brought together with the physics as present in the
sophisticated robot model of the simulator (RobotModel). Therefore, we clearly
have a cyber-physical setting. We again have a multi-formalism setting as the
control is discrete while the sophisticated robot mode is at least conceptually
continuous. Consistency is checked via co-simulation as the software for the
robot control runs in parallel with the sophisticated robot simulator.

The second form of SiL also consists of executing the software on a desktop
computer but in this case against a real robot remotely controlled as depicted
in Figure 4.30. In this case, real sensor values are read from the robot and real
actuators are controlled therefore including other effects such as sensor noise.
The same detailed control algorithm from the cyber domain is this time brought
together with the physics of the real remotely controlled robot. Consistency is
checked via co-execution as the software for the robot control runs in parallel
with the remotely controlled robot.

Hardware in the Loop (HiL)

The hardware in the loop (HiL) activity consists of executing the software ei-
ther on the robot as depicted in Figure 4.30 or on special evaluation boards with
debugging and calibration interfaces, which are similar to the final hardware ex-
ecution platform. The almost unlimited execution resource of the desktop com-
puter is replaced by the constrained resources of the final platform. Therefore
concerns such as resources consumption could be added to this activity.

With its megamodel fragment, this activity ensures that the detailed con-
trol algorithm from the cyber domain captured by the Matlab/Simulink model
(ControlModel) is brought together with the physics as present in the robot
and thus we have clearly a cyber-physical setting. Consistency is checked via
executing the software on the robot.

All these SiL and HiL activities actually address similar concerns about the
system. The difference resides in the fact that different models at different lev-
els of abstraction (including real hardware) are used. Therefore we define the
viewpoints of the following list:

Viewpoints

• Viewpoint: CPSLabSiLSoftwareDesignVP

– hasFramedConcerns: ControlAlgorithm, Stability, Safety, Reliability

– hasSystemConstituentElements: Software (Cyber in feature model),
ExecutionPlatform (Control in feature model)
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– hasSupportingMegaModelFragments: CPSLabSiLMMF

• Viewpoint: CPSLabHiLSoftwareDesignVP

– hasFramedConcerns: ControlAlgorithm, Stability, Safety, Reliability,
Resources Consumption

– hasSystemConstituentElements: Software (Cyber in feature model),
ExecutionPlatform (Control in feature model)

– hasSupportingMegaModelFragments: CPSLabHiLMMF

5.4.3 Modeling Paradigms

We present here an example the modeling of one of the paradigms employed
by the HPI CPSLab, which is Synchronous Data Flow (SDF), following its
description in [22]. Then we present the modeling of the overall HPI CP-
SLab model-based development environment employing this paradigm within
the MATLAB/Simulink tool captured in its megamodel.

SDF is a special case of the Data Flow paradigm [160]. It specifies a directed
graph of computations nodes (also called blocks) exchanging signals represent-
ing infinite streams of data. Computation units execute whenever input data
becomes available. Such units without input can fire at any time. They can be
atomic or composite by encapsulating a subgraph. Arcs connect nodes together
and describe how streams of data flow through the computation nodes. Execu-
tion consists of accumulating enough samples within the system as produced by
blocks without inputs and performing the subsequent nodes computations thus
consuming sample data on inputs and concurrently producing outputs.

The SDF Paradigm [161] is a specialization of Data Flow where all compu-
tation nodes are synchronous, meaning that each block explicitly defines how
many samples are consumed and produced. In their work, [22] describe the SDF
paradigm as exhibiting the following characteristics:

• SignalProperty: Signals composed of an infinite ordered stream of Samples
are present.

• DirectedGraphProperty: A directed graph with Blocks as nodes and Arcs
are present.

• BlocksPortsProperty: Blocks possess Ports that explicitly define how many
Samples are used (consumed by Inputs, or produced by Outputs).

• ArcsProperty: Arcs connect Ports and instantaneously transmit Signals.
Note that a Port may be plugged to several Arcs but shortcuts are prohib-
ited. Arcs are forbidden to connect as source and target Ports of the same
Type.

• MemoryFullProperty: A MemoryFull Block should always define an extra
Port corresponding to initial conditions.
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Following this, we define an engineering paradigm to represent SDF as fol-
lows:

Engineering Paradigms

• ModelingEngineeringParadigm: SDFParadigm

– hasCharacteristics: SDFParadigmCharacteristics

∗ hasProperties: SignalProperty, DirectedGraphProperty, Block-
sPortsProperty, ArcsProperty, MemoryFullProperty

There are several ways such properties could be specified. If all languages
and their semantics expressed as semantic domains are encoded using the same
technical space such as Ecore metamodels, then these properties could be en-
coded as graph patterns using tools such as Henshin2 or SDM3.

It should be noted that the aforementioned Catalog of Formalisms, Modeling
Languages and Tools already declares SDF as being a formalism and not a
paradigm. Besides, several modeling languages of the catalog such as Simulink
are declared as being based on SDF. Therefore, the question of whether SDF
should be classified as a formalism or a paradigm remains. A deeper study of
the catalog’s formalisms could help answer that question.

Next, we model the HPI CPSLab model-based engineering environment,
which uses the CPSLabMM megamodel presented in the HPI CPSLab example
of Chapter 4 and the CPSLabProcess development process defined in the pre-
vious section:

Engineering Environment

• ModelBasedEngineeringEnv: CPSLabEngineeringEnv

– hasModelingArtifacts: CPSLabMM, CPSLabProcess

– isBasedOnParadigms: SDFParadigm

It should be noted that the isBasedOnParadigms property at the engineer-
ing environment level is derived from the same property of Simulink language
captured in the mega model. This can be determined from the SDFParadigm
and its properties evaluated onver the language and its semantics.

5.5 Conclusion

This chapter presented an integrated ontology for MPM4CPS that captures
cross-cutting concepts between the Shared, CPS and MPM ontologies respec-
tively presented in Chapters 2, 3 and 4. It defines notions such as model-based
development processes, their employed viewpoints supported by megamodel

2https://www.eclipse.org/henshin/
3https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/

story-diagram-tools/
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fragments of the MPM ontology and the CPS parts under development cov-
ered by these viewpoints and defined in the CPS ontology. It finally introduced
modeling paradigm notions at the heart of MPM4CPS as a refinement of the
more general notions of engineering paradigms define in the Shared ontology.
All these elements are captured under the model-based engineering environment
concept defined in this integrating ontology.

As much as possible, these notions of the ontological framework have been
grounded on existing works and standards such as the Workflow Management
Coalition (WfMC) WFMC-TC-1025 [10] and the IEEE 42010 [14] standards,
which have been extended / adapted for the MPM4CPS domains. Besides
benefiting from the maturity of these works, this also allows stakeholders already
familiar with these standards to understand and use the framework with less
effort.

In addition, the adopted exploratory modeling approach based on the charac-
terization of existing development settings such as the EBCPS and HPI CPSLab
with their CPSs case studies triggered several adjustments of the ontologies to
account for existing setups. For instance, the comparison of the modeling of the
two examples shows that the framework needs to be flexible enough to be able
to capture the heterogeneous practices of industry. Despite that both examples
come from the academic world, we have seen that yet they do not organize
their megamodel fragments according to the same criteria; per language for the
EBCPS and per root process activity for the HPI CPSLab. Besides, viewpoints
can be constructed with different objectives such as those of the EBCPS that
pre-exist the development process and that must be used as is, while for the HPI
CPSLab, the viewpoints are specially constructed to support specific process ac-
tivities. An even larger heterogeneity can be expected from legacy industrial
settings and therefore, being able to cover a large spectrum of practices is essen-
tial for this framework to be useful for industry, otherwise disrupting existing
industrial settings to adjust to the framework would limit its adoption.

Like for the case of biological science, the classification proposed in this
work is not final and will evolve as new MPM4CPS environments are discov-
ered. In particular, the notion of engineering paradigm, its modeling paradigm
specialization, the notion of formalism versus paradigm and in multi-paradigm
modeling further needs to be investigated, first to be able to discover and un-
derstand paradigms from existing development settings and second to support
a constructive way of building new MPM4CPS engineering settings based on
a set of given paradigms. We hope that our framework can form a solid foun-
dation for implementing a model management solution to relate and combine
modeling languages and tools supporting MPM4CPS, as per the original goal
of the MPM4CPS COST action project. This will be considered in future work
where constructive modeling will be used to build the envisaged solution using
the ontology as foundation.
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and Óscar Pastor López, editors, Conceptual Modeling, pages 317–325,
Cham, 2015. Springer International Publishing.

[126] Xavier Blanc, Alix Mougenot, Isabelle Mounier, and Tom Mens. Incre-
mental Detection of Model Inconsistencies Based on Model Operations. In
CAiSE ’09: Proceedings of the 21st International Conference on Advanced
Information Systems Engineering, Amsterdam, The Netherlands, volume
5565/2009, pages 32–46, Berlin, Heidelberg, 8-12 June 2009. Springer Ver-
lag.

[127] VIATRA Project Homepage. https://www.eclipse.org/viatra/, ac-
cessed 2020.

[128] Zoltan Ujhelyi, Gabor Bergmann, Abel Hegedus, Akos Horvath, Benedek
Izso, Istvan Rath, Zoltan Szatmari, and Daniel Varro. EMF-IncQuery:
An integrated development environment for live model queries. Science of
Computer Programming, 98, Part 1:80–99, 2015. Fifth issue of Experimen-
tal Software and Toolkits (EST): A special issue on Academics Modelling
with Eclipse (ACME2012).

148

http://www.kermeta.org/mdk/kompose
http://atlanmod.github.io/emfviews/
http://atlanmod.github.io/emfviews/
https://www.eclipse.org/viatra/


[129] Alexander Egyed. Instant Consistency Checking for the UML. In ICSE
’06: Proceedings of the 28th International Conference on Software Engi-
neering, pages 381–390, Shanghai, China, 20-28 May 2006.

[130] Iris Groher, Alexander Reder, and Alexander Egyed. Incremental Con-
sistency Checking of Dynamic Constraints. In DavidS. Rosenblum and
Gabriele Taentzer, editors, Fundamental Approaches to Software Engi-
neering, volume 6013 of Lecture Notes in Computer Science, pages 203–
217. Springer Berlin Heidelberg, 2010.

[131] Jordi Cabot and Ernest Teniente. Incremental Evaluation of OCL Con-
straints. In CAiSE’06: 18th International Conference on Advanced
Information Systems Engineering, Luxembourg, Luxembourg, volume
4001/2006 of Lecture Notes in Computer Science (LNCS), pages 81–95.
Springer Verlag, 5-9 June 2006.

[132] AM3 Project Homepage. https://wiki.eclipse.org/AM3, 2014.

[133] ATL Project Homepage. https://eclipse.org/atl/, 2015.

[134] Andrés Vignaga, Frédéric Jouault, MaŕıaCecilia Bastarrica, and Hugo
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Gorroñogoitia, et al. The megam@ rt2 ecsel project: Megamodelling at
runtime–scalable model-based framework for continuous development and
runtime validation of complex systems. Microprocessors and microsys-
tems, 61:86–95, 2018.

[151] Regina Hebig, Andreas Seibel, and Holger Giese. On the Unification of
Megamodels. In Vasco Amaral, Hans Vangheluwe, Cécile Hardebolle, Las-
zlo Lengyel, Tiziana Magaria, Julia Padberg, and Gabriele Taentzer, ed-
itors, Proceedings of the 4th International Workshop on Multi-Paradigm
Modeling (MPM 2010), volume 42 of Electronic Communications of the
EASST, 2011.

150

http://www.isis.vanderbilt.edu/projects/gme/
http://www.isis.vanderbilt.edu/projects/gme/
http://www.adventiumlabs.com/our-work/products-services/fused-informational-video/
http://www.adventiumlabs.com/our-work/products-services/fused-informational-video/
http://open-services.net/
https://github.com/adisandro/MMINT
https://github.com/adisandro/MMINT
https://megamart2-ecsel.eu/


[152] Dominique Blouin, Gilberto Ochoa Ruiz, Yvan Eustache, and Jean-
Philippe Diguet. Kaolin: a System-level AADL Tool for FPGA Design
Reuse, Upgrade and Migration. In NASA/ESA International Conference
on Adaptive Hardware and Systems (AHS), Montréal, Canada, June 2015.
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