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Abstract

Reasoning about gene networks is essential from various perspectives, such as predicting side effects of drugs or explaining unusual
cellular behavior. Because of the massive size of these gene networks, a biologist can only work on a small part of the network.
Thus, there is an essential requirement for logical representations and automated reasoning on such networks to help biologists to
understand genetic interactions. However, the knowledge about gene networks is always incomplete and sometimes not accurate.
Hence, knowledge has to be continuously revised and extended. In this work, we propose an approach based on non-monotonic
logic programming, and the framework of Answer Set Programming(ASP), to represent and handle gene networks. We show how
to model reasoning, predict events, and explain observations in gene networks. Finally, we show how our approach is applied to
represent and resolve the DNA double-strand breaks, which is one of the most severe genomic lesions.
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1. Introduction

Knowledge of biology is becoming increasingly important. Therefore, it is essential to use mathematical models to
understand the dynamic behavior of a biological system. In this context, several quantitative and qualitative approaches
have been proposed [5] to study gene networks. The quantitative models are often based on differential equations.
The major limitation of these approaches is that numerical values in biology may be difficult to estimate, and the
additional burden in the complexity of the model over the qualitative approach is not often compensated by greater
accuracy. Modeling gene network helps understand the cell behavior. This modelization can lead to drug discovery
and therapeutic procedures. The description of a gene network is often not complete, and this is due to the constant
evolution of biology knowledge. The reactions of genes and the interactions between them are not fully discovered.
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Consequently, the knowledge is not complete and could be inaccurate. Thus, we need to correct and complete it.
Another feature in gene networks modeling is the integration of information coming from different sources that could
be contradictory.

The construction of a knowledge base expressing molecular biology and in particular gene networks has always
been at the center of research in artificial intelligence. There exist several works using logical approaches. For instance,
the system HYPGENE [13, 14] where the knowledge base is implemented using a frame language 1. This approach
aims to resolve the mismatch between predictions calculated from the knowledge base and experimental observations.
On the other hand, TRANSGENE [3, 4] is an approach for the representation of knowledge based on a ”functional
representation” language. This language is chosen to overcome the shortcomings of systems using the frame language.
The goal is to determine if a knowledge base can predict an observation. If not, then the knowledge base must contain
faulty items that can be found and corrected. We also have the system GENEPATH [26] which uses a set of inference
rules which have been formalized and implemented using Prolog. The rules are applied on the basis of the initial
knowledge to build a plausible network that explains the observations. These works share a common characteristic:
they are all built on knowledge representation languages limited to monotonous reasoning.

In this paper, we represent gene networks and address all the features previously mentioned by using the Answer
Set Programming (ASP) paradigm [20]. ASP is a knowledge representation and reasoning framework. It is used to
express and handle a variety of combinatorial problems. Among them graph problems, planning, and model checking.
It is a powerful modeling tool that can encode a significant number of problems. There is a growing number of practical
applications of ASP in different fields [7], especially those related to biology [8, 17, 18]. Using ASP provides several
advantages. First, it is appropriate to model biology information. It is also a robust declarative language for knowledge
representation. It offers the possibility of reasoning on incomplete knowledge, and the last ASP solvers [11] are very
efficient and able to solve significant size problems.

We consider a qualitative approach to design gene networks. For instance, the representation of a protein concen-
tration is assumed to have a finite number of states [15]. A protein is represented when it exceeds a certain threshold.
Gene network is a collection of molecular regulators that interact with each other and with other substances in the cell
to govern the gene expression levels. Biologists, usually express Gene Networks by graphs. It is, in general, the best
way to represent interactions between genes. We use ASP to represent and manage the various interactions between
genes. Gene networks are expressed as sets of rules of logic programs. Our primary concern is to reason on incomplete
or partial information. In addition to that, our approach must be able to update the knowledge base without building a
new model from scratch. We show the working principle of our method on some small biology problems then provide
a biological regulatory network example to showcase that our approach is scalable.

In the remaining of this paper, we recall some notions on gene networks in Section 2. Section 3 gives some back-
ground on ASP and describes the ASP search method that we used to solve problems. We discuss the representation
of a gene network in Section 4. We apply our approach to the DNA double-strand breaks in Section 5. Section 6
concludes the work.

2. Gene Network

The living cells are sources and receptors of chemical signals. An intern signal is initiated when a receptor (a protein
molecule) receives an external one. Then, molecules inside the cell transpose the signal into cellular responses. The
cellular response involves a change in gene expression, which leads the cell to produce a functional molecule, typically
a protein. Almost all of the diseases could be described in terms of alteration in gene networks. An alteration in the
signaling interactions and problems in cellular information processing are responsible for diseases like cancer. For
instance, cancer is caused by the deregulation of networks regulating cell renewal.Each protein is synthesized from
the pieces of information contained in its corresponding gene. For didactic purposes, we assume in this paper that
a protein is present in the cell if the corresponding gene is being transcribed. A genetic network is represented by
a graph where each node corresponds to a protein or a biological process. The arcs correspond to the influences of
proteins from one to another. Biology systems have become an important research focus. The knowledge about the

1 This language is used for knowledge representation in artificial intelligence , the frames are stored in the form of ontologies
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biology and cell interaction mechanisms is growing exponentially. Now, it is complicated for biologists to deal with the
critical number of interactions in a gene network. One could use artificial intelligence techniques that are Knowledge
representation and automated reasoning to help biologists. The proteins execute nearly all functions inside a cell
[1]. The proteins receptors function is to sense the state of the extracellular environment and trigger corresponding
intracellular reactions. Proteins also play the role of regulators of protein activities. They can promote the activity of
others, inhibit reactions, or bind to another protein to create a compound. We illustrate a gene network by a simple
example of the protein p53 signal network and describe the function of p53 during cancer in a cell. Moreover, the
protein p53 plays a vital role as a tumor suppressor. This role is shown in the simplified network depicted in Figure
1, where its interactions with other proteins influence the activity of p53. The notations of Figure 1 are standard in
biological representation. The symbol→ expresses activation and a inhibition. The main interactions are summarized
in Figure 2. The line relaying two entities represent the binding between them. Figure 1 gives a summary example of
interactions in a cell. Ultraviolet (UV) drives the cell to cancer, and an arrow indicates this. On the other hand, the
UV activates the production of the protein p53. This protein blocks the growth of cancer. But in some conditions, p53
bounds to the protein mdm2 causing low concentration of mdm2 and p53, which blocks the functionality of p53. The
main question for a biologist is how to block the binding between mdm2 and p53 to inhibit the tumor (cancer).

Fig. 1. The p53 interaction network Fig. 2. Symbol definitions and map conventions
(a) The double-arrowed line indicates that proteins A and B can bind to each other. The ”node” placed on the line represents the complex A:B

. (b) The representation of multi-molecular complexes: x is A:B and y is (A:B):C. This notation is extensible to any number of components in

a complex. (c) Covalent modification of the protein A. The single-arrowed line indicates that A can exist in a phosphorylated state. The node

represents the phosphorylated species. (d) Stoichiometric conversion of A into B. (e) Degradation of the protein A (i.e. conversion of A to its

degradation product ). (f) Enzymatic stimulation of a reaction. (g) General symbol for stimulation. A bar behind the arrowhead signifies

necessity. (h) General symbol for inhibition. (i) Shorthand symbol for transcriptional activation. (j) Shorthand symbol for transcription

inhibition.

Interactions between genes can be seen as a form of causality. In our approach, we use two binary relations that are
active(A, B) and inhibit(C, B) to express the primary interactions between proteins. The first relation means that the
protein A activate the production of the protein B, while the second relation means that C block the production of the
protein B. This type of relationship gives a kind of causal link between both proteins. Such relations are important for
our logical system, and they are expressed as follows:

1. if A activates B and A is true, then B is true
2. if C inhibits B and C is true, then B is false

Inferences based on cause-and-effect relationships are very useful for reasoning about interactions in a gene net-
work. The form of inference that has been best modeled is deductive reasoning. The paradigm of deductive reasoning
is the modus ponens rule ”If (if A then B) is true, and if A is true then, B is true.” We can approximate this in the
causal relation by ”If A cause B and we observe A, then we must observe B.” The first idea is to express both previous
protein interactions as two classical logic inferences:

1. active(A, B), A→ B
2. inhibit(C, B),C → ¬B

But the causality in this context, could not be seen as a classical logic relation. A basic example is ”If it rains,
the grass gets wet.” The formula Rain → wet means that if it rains, the grass is always wet. But this formula is
too strong. Indeed, there may be exceptions to this rule. For instance, there could be parcels of grass that the rain
could not reach. The formulation in the classical logic of genetic networks is problematic when there is a conflict. For
example, if we know {A,C, active(A, B), inhibit(C, B)}. There is simultaneously activation and inhibition of the protein
B, which results in a conflict that is due to biological reasons. Logically, we infer both B and ¬B at the same time
leading to inconsistency. In classical logic, the existence of one inference rule is sufficient to legitimize the passage
from a premise to a conclusion. However, it is necessary to consider all the rules as a whole because we need to take
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into account all the information already inferred. If new information comes to us, or a new event has been occurred,
making conclusions already drawn to be invalidated. In this case, we have to revise the information and restore its
consistency. To deal with these requirements, one could use non-monotonic reasoning, and more specifically, the ASP
framework.

3. Answer Set Programming

The paradigm ASP [20] is fully declarative, it has a high level capacity of knowledge representation and efficient
solvers. The basic idea of ASP is to represent the knowledge base as a set of rules forming a logic program and then
reason on that program by computing its stable models [9] or its answer sets [10]. A logic program π is a finite set of
rules of the form r:head(r)← body(r). A positive logic program π is a set of rules of the form : r = A0 ← A1, A2, ..., Am,
with (m ≥ 0) and where Ai∈{0,...,m} is an atom. A general logic program π is a set of rules of the form : r = A0 ←

A1, A2, ..., Am, not Am+1, ..., not An, (0 ≤ m < n) where Ai∈{0...n} is an atom and not the symbol expressing the negation as
failure. The positive body of r is body+(r) = {A1, A2, ..., Am} and the negative one is body−(r) = {Am+1, ..., An} . An extended
logic program is a set of rules of the form r = L0 ← L1, L2, ..., Lm, not Lm+1, ..., not Ln, (0 ≤ m < n) where Li∈{0...n} is a
literal (an atom Ai or its negation ¬Ai). The reduct of a general program π with respect to a given set of literals X
is the positive program πX . This program is obtained by deleting each rule containing a literal not Li in its negative
body such that Li ∈ X, and by deleting all the atoms not L j in the remaining rules. The most known semantic for
general logic programs is one of the stable models [9]. A set X of atoms is a stable model of π iff X is identical to
the minimal Herbrand model of the reduct πX obtained from π when considering the set of atoms X. The semantics of
an extended logic program is represented by its answer sets [10]. This latter can be seen as an extension of the stable
model semantics defined for general logic programs [9].

A new semantics is proposed in [2]. Among the advantages of this semantics is the easy characterization of the
stable models and the extension that it provides for the stable model semantics. This semantics use a Horn clausal
representation. It is based on a classical propositional language L composed by two types of variables, a subset of
classical variables V = {Ai : Ai ∈ L} and an other subset nV = {not Ai : not Ai ∈ L}. For each variable Ai ∈ V, there is
a corresponding variable not Ai ∈ nV designing the negation by failure of Ai. A general logic program π={r : A0 ←

A1, A2, ..., Am,not Am+1, ..., not An}, (0 ≤ m < n) is expressed in the propositional language L by a set of Horn clauses
HC(π) = {

⋃
r∈π

(A0 ∨ ¬A1∨, ...,¬Am ∨ ¬not Am+1, ...,¬not An)} . The strong backdoor set (STB) of the logic program π is

formed by the literals of the form not Ai that occur in π. Formally, it is defined by S T B = {not Ai ∈ nV : ∃r ∈ π, not Ai ∈

body−(r)} ⊆ nV . Given a program π and its STB, an extension of HC(π) with respect to the STB or simply an extension
of the pair (HC(π), S T B) is the set of consistent clauses derived from HC(π) when adding a maximal set of literals
not Ai ∈ S T B. Formally:

Definition 1 ([2]). Let HC(π) be the Horn CNF encoding of a logic program π, S T B its strong backdoor and S ′ ⊆
S T B. The set E = HC(π) ∪ S′ of clauses is then an extension of (HC(π),STB) if the following conditions hold

1. E is consistent,
2. ∀not Ai ∈ STB − S′,E ∪ {not Ai} is inconsistent.

It is shown in [2], that each stable model of a logic program π corresponds to an extension E of HC(π) that
satisfies the discriminant condition (∀Ai ∈ V, E |= ¬not Ai ⇒ E |= Ai). The main proved theoretical properties are the
following:

Theorem 1 (See [2]). If X is a stable model of a logic program π, then there exists an extension E of (HC(π), S T B)
satisfying the discriminant condition (∀Ai ∈ V, E |= ¬not Ai ⇒ E |= Ai) such that X = {Ai ∈ V : E |= Ai}.

Theorem 2 (See [2]). If E is an extension of (HC(π), S T B), that verify the discriminant condition: ∀Ai ∈ V, E |=
¬not Ai ⇒ E |= Ai, then X = {Ai : E |= Ai} is a stable model of π.

A positive logic program allows for modeling various problems. However, it turns out that many situations require
the notion of negation. A program becomes general programs when negation as failure is introduced in the body of its
rules. The intuitive meaning of the negation as failure, notL is that L cannot be proved using the rules. The definition of
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notL is different from the fact that L is false, which is expressed by the classical negation ¬L. A useful application of
the classical negation is to express default rules [24]. For example, we can express that bird flies by default with the rule
f lies(X) ← bird(X), not¬ f lies(X). The meaning of this rules is: if bird(X) is true and we cannot prove that f lies(X)
is false ( f lies(X) is possible), we can infer f lies(X). Extended logic programs admit both types of negations, classical
negation, and negation as failure. In this work, we use the extended logic programs to represent gene networks. The
semantics of an extended logic program can be defined by its reduction to a general program. Then, one can use the
semantic summarized previously for general programs [2] to deduce the answer sets of the extended program. An
extended program is composed by rules of the form r = L0 ← L1, L2, ..., Lm, not Lm+1, ..., not Ln, (0 ≤ m < n) where
Li∈{0...n}. To reduce an extended logic program into an equivalent general logic program, we generally replace any
negative literals ¬L appearing in the representation with a new atom L′. We add the clauses of integrity constraint
← L, L′. This constraint prevents both L and ¬L to be simultaneously in the same stable model. The constraints
prohibit that L and ¬L to be true at the same time. We compute the stable models of the resulting general program
from which we can obtain the answer sets of the original extended program.

For the present work, we used the ASP solver presented in [19, 16].

4. Representation of gene networks

In this section, we show how we express gene networks as a logic program that could be handled by ASP solvers.
The use of such logical formalism could naturally express all the information that biologists want to represent. The
advantage of such a logical framework is the possibility of representing knowledge in a declarative way that is close to
a natural language. In our approach, genes and proteins are considered as the same objects. We assume that a protein is
present only if a gene is activated. The protein interactions are described by using a propositional logic Programming
language. This logical representation could be seen as an abstraction of protein interaction reality. We can use, for
example, p53 to say that the protein is expressed. Indeed, the protein concentration is rarely precise, and in practice,
the biologists’ experiments show a qualitative interpretation of increasing or decreasing of the concentration.

The main disadvantage of classical logic is monotonicity. It’s commonly known that they are not entirely adapted
to manage dynamical changes and the evolution of a knowledge base. In monotonic logic, everything that is deduced
from a knowledge base is always deduced when we add new information. That is, if we add a new formula f to a set
of formulas F, then every formula g that is a logic consequence of F remains a logic consequence of F ∪ f . However,
in real life, conclusions established before could turn invalid after the addition of new information. This situation is
frequently met in the field of biology like gene networks where the knowledge increase exponentially. Classical logics
are not appropriate in this case since they could not revise the knowledge regarding new information, could not deal
with uncertain and incomplete information.

To deal with gene networks, one could use non-monotonic reasoning. Several non-monotonic logics are introduced
in the literature ([21, 24, 25]). These logics do not have the monotony property of classical logic. We can employ
them to represent biological systems [25]. They have great expressive power, but they face the problem of efficiency
in practice. For example, the default logic [24] or the hypotheses logic [25] are two compelling non-monotonic frame-
works for knowledge representation, but do not contain effective algorithmic tools to process this knowledge. A good
compromise between the efficiency of tools and the power of expressiveness is to use the ASP framework. It is a rich
non-monotonic formalism that has efficient solvers able to solve industrial problems.

Gene networks are expressed concisely and simply as extended logic programs. General logic programs provide
an excellent language to express knowledge in the situation that justifies the use of the closed world assumption. This
type of program does not represent incomplete and uncertain knowledge. The language should allow a third possibility
for query answers that is the unknown value. The unknown value corresponds to the inability to produce a true or false
answer. Now, we return to the formulas set out in section 3 to represent the ”activate” and ”inhibit” actions established
for gene networks. To avoid conflicts, we can think of weakening them as follows:

1. if A activate B if A is true and we cannot prove that ¬B is true, then B is true
2. if C inhibit B if C is true and we cannot prove that B is true, then B is false

We could therefore naturally express the two interactions in question in the form of rules of an extended logical
program using both the default and the classical negations:

1. B← active(A, B), A, not¬B
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2. ¬B← inhibit(C, B),C, not B
In this work, we are interested in formalizing several reasoning abilities. Especially, predicting the impact of a

particular event, or explaining observations. Each of these abilities has a critical meaning to understand biological
systems. For example, determining the effect of a drug on the production of a particular protein or detecting abnormal
behavior of a cell (for example, a cell that multiplies instead of dying) are two essential facts in biology.

4.1. Predictive Reasoning

The predictive reasoning is the process of finding all the possible explanations derived from a knowledge base, i.e.,
given K a knowledge base and the results R, we want to infer R from K. R are logical consequences of K (K � R). In
ASP, the predictive reasoning consists in computing all the answer sets of a logic program. An answer set could be seen
as a subgraph of the gene network that does not have conflicts. For instance, take K = {A,C, active(A, B), inhibit(C, B)}
as a set of facts. By considering both previous rules, we find two answers set M1 = {active(A, B), inhibit(C, B), A, B} and
M2 = {active(A, B), inhibit(C, B),C,¬B} . We have two different explanations for the given knowledge. By using the ASP
framework, the conflict is resolved, and we obtain two contradictory solutions.

In biological representations, we have to reason with incomplete, uncertain, revisable, and sometimes false infor-
mation. Besides, we have to give all the explanations and possible contradictory conclusions for a given situation.
The main goal of our approach is to handle these types of constraints. The expression of biological beliefs by non-
monotonic frameworks like ASP allows dealing with inherently incompatible configurations in gene networks. The
rules of the form, Head ← Body containing negations as failure, express non-verified and revisable knowledge. In
addition to these rules, we have some specific rules to express either verified knowledge of evident facts. We have two
particular cases, and the first one is when the Head part of a given rule is empty (← Body). The corresponding rule
represents an integrity constraint that could be a mutual exclusion between atoms. The second case is when the Body a
rule is empty (Head ←). Such a rule represents a positive or negative elementary fact. Let us consider the interaction
network presented in Figure 1. We give in the following the formalization of that gene network as a logic program.
The literal Cancer expresses the fact that a tumor exists, and uv encodes the fact that the cell is stressed by ultraviolet.

uv← (1)

mdm2← (2)

p53← uv (3)

mdm2, p53, not¬bind(p53,mdm2) (4)

bind(p53,mdm2)←

P53, not bind(p53,mdm2), not¬inhibit(p53, cancer) (5)

inhibit(p53, cancer)←

¬inhibit(P53, cancer)← bind(p53,mdm2) (6)

cancer ← uv, not inhibit(p53,mdm2), not¬cancer (7)

x← uv, not¬x (8)

bind(x,mdm2)← mdm2, x, not¬bind(x,mdm2) (9)

bind(x, p53)← p53, x, not¬bind(x, p53) (10)

¬bind(p53,mdm2)← bind(x,mdm2) (11)

¬bind(p53,mdm2)← bind(x, p53) (12)

← bind(x,mdm2), bind(x, p53) (13)

The gene network of Figure 1 is expressed by the rules 1 to 7. In Rule 3, uv induces a stress in the cell, which
results in the expression of p53. The rule of line 4 states that p53 can bound to another protein mdm2 to create a
new compound if we don’t have any evidence that the binding between them is inhibited. The rule of line 5 gives the
conditions under which the protein p53 could inhibit cancer. The rule given in line 6 states that the binding of P53
with mdm2 represses the cancer inhibition action of P53. Finally, Rule 7 expresses the conditions under which cancer
is developed. We have constructed a knowledge base representing the interactions presented in Figure 1.

The knowledge base that is represented by an extended logic program that has one answer set M =

{uv,mdm2, p53, bind(p53,mdm2),¬inhibit(p53, cancer), cancer}. We can see, in M, the binding of both p53 and
mdm2, which inhibit the capacity of p53 to suppress the tumor. The biological problem, in that case, is how to favor
the cancer inhibition by p53. For instance, this could be done by preventing the binding between p53 and mdm2.

Biologists established that the level of a protein x is higher in cells subjected to stress. It is then important to give
all the explanations about the influence of such protein x. Thus, we expand the existing knowledge base expressed
previously (Rules 1 to 7) by the rules 8 to 13. Rule 8 expresses the influence of the uv stress on the production of x.
Rule 9 says that if x and mdm2 have high concentrations, then the binding between them is triggered. Rule 10 encodes
the conditions under which the protein x is bound with P53. Rules 11 and 12, express the influence of both compounds
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x − mdm2 and x − p53 on the binding between p53 and mdm2. The last rule expresses the fact that x could not bind
to both mdm2 and p53.

The knowledge base expressed by the extended logic program formed by the rules (1 to 13) has three
answer sets: M1={uv,mdm2, p53, bind(p53,mdm2),¬inhibit(p53, cancer), cancer, x,¬bind(x,mdm2),¬bind(x, p53)} ,
M2={uv,mdm2, p53,¬bind(p53,mdm2), inhibit(p53, cancer), x, bind(x, p53),¬bind(x,mdm2),¬bind(p53,mdm2} and
M3={uv,mdm2, p53,¬bind(p53,mdm2), inhibit(p53, cancer), x, bind(x,mdm2),¬bind(x, P53)} . We can see in M1 that
p53 and mdm2 are binded. This inhibits the inhibition action of P53, thus the cancer is activated. The model M2 is
described in Figure 4. It particularly, expresses the binding between p53 and x which prevents the formation of the
compound mdm2 − p53. This, leads P53 to inhibit the cancer. On the other hand, the formation of mdm2 − p53 is
prevented in M3 by the binding between mdm2 and x. Thus, P53 inhibits the cancer. M3 is presented in Figure 3.

The non-monotonicity of our approach manifests itself in the different results obtained. The knowledge base formed
by the rules 1 − 8 predicts that cancer occurs. The cancer is due to the activation of uv and the binding of P53 and
mdm2. After adding the new rules 8 − 13, two solutions (M2 and M3) of the resulting knowledge base indicates that
cancer may not occur, despite the activation of uv. We can then remark that our reasoning is not monotonic since
cancer is not deduced when extending the knowledge base by new information.

Fig. 3. p53 binds X Fig. 4. mdm2 binds X

4.2. Abductive Reasoning

The term abduction is defined as the process of inference consisting of finding hypothesis that explains observed
phenomena [22], formally :

Definition 2. Let K = (T,H) be a knowledge system where T is a set of formulas representing the knowledge and H
a subset of formulas representing the hypothesis. Let O be a formula representing the observations. A set E ⊆ H is an
explanation of O (with respect to T) if:

1. T ∪ E is consistent, and
2. O is derived from T ∪ E

Several forms of abductions have been defined in logic programming [12]. We based our approach on the work
presented in [6], formally :

Definition 3 ([6]). A logic programming abduction problem is a tuple 〈L,H,O, P〉, where L is a set of literals, H ⊆ L
is a finite set of literals abducibles called hypothesis space; O ⊆ L is a finite set of literals called observations and P
is the logic program. A solution of this problem is a set of literals E, such that:

1. E ⊆ H
2. P ∪ E is consistent
3. P ∪ E |= O

The explanation E of the observations O is a subset of hypothesis literals that are consistent with the program P,
and each stable model of P verifying the literals of E should verify the observations O. Here, we consider H as a set
of ground literals expressed by the fact rules l← and ¬l←, where l ∈ H. Adding all the literals of H to the program,
P would eventually result in an inconsistent program. To remove this inconsistency, one could block the application
of a hypothesis by adding a formula not ¬l and not l to the body of the corresponding fact rule. Thus, we have a pair
of rules for each l ∈ H, denoted by Hr : l← not ¬l and ¬l← not l.
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We can see that these rules have two answer sets, one in which l is false and another one in which l is true. It
is important to note that we seek for all the explanations, not necessarily for the minimal ones. The basic idea is to
explore all the combinations of hypotheses in H that imply O. To do this, we pose the observation O as a query to this
extended logic program.

Exemple 1. Consider the logic program P = {p ← a, not q q ← a, b q ← c}, the set of hypothesis H = {a, b, c} and the
observation O = {p}. We add to P the following hypothesis rules: Hr = {a ← not¬a; ¬a ← nota; b ← not¬b; ¬b ←
notb; c ← not¬c; ¬c ← notc} Let π = P ∪ Hr be the extended logic program formed by the rules of the logic program P and
those of Hr. We obtain the general logic program π′ from π by renaming each negated literal ¬A by a positive atom A′. The Horn
clausal representation of the logic program π′ is HC(π′) = {p ∨ ¬a′ ∨ ¬not q, q ∨ ¬a ∨ ¬b, q ∨ ¬c, a ∨ ¬not a′, a′ ∨ ¬not a, b ∨
¬not b′, b′ ∨¬not b, c∨¬not c′, c′ ∨¬not c} and its strong backdoor is the set S T B = {not q, not a, not b, not c, not a′, not b′, not c′}.
The pair (HC(π′), S T B) admits one extension E′1 = HC(π′) ∪ {not q, not a′}. Indeed, E′1 is maximally consistent with respect to the
set S T B. Besides, the extension E′1 satisfies the discriminant condition. Thus, π′ has one stable model M′

1 = {p, a, b′, c′} and the
corresponding answer set of π is M1 = {p, a,¬b,¬c}. We can see that the observation p is true in M1 and its explanations are the
other atoms E = {a,¬b,¬c} that are true in M1.

The explanation in our context consists of deriving from observed states O, suitable explanations E, which caused
this observation. We can say that E is a possible cause that implied O. Let us now consider the Knowledge presented
in Figure 1 that is expressed by the following rules:

p53← uv (14)

mdm2, p53, not¬bind(p53,mdm2) (15)

bind(p53,mdm2)←

uv, p53, bind(p53,mdm2), not¬cancer (16)

cancer ←

Exemple 2. We want to check if uv and mdm2 are the causes / explanation of cancer. We take then the set H = {uv,mdm2} as the
hypothesis, and O = {cancer} as the observation. We add to the previous rules, the following hypothesis rules:

uv← not¬uv. (17)

¬uv← not uv. (18)

mdm2← not¬mdm2. (19)

¬mdm2← not mdm2. (20)

Thus, we obtain for the resulting logic program the answer sets M = {uv,mdm2, p53, bind(p53,mdm2), cancer)}, where cancer is
true. The explanation for the observation cancer are both uv and mdm2 that are true in M.

5. Application and Results

We have worked on the bibliographic data of the response to DNA double-strand break (DNA-DSBs) represented
on a signaling pathway by Pommier [23]. DNA-DSBs are among the most severe genomic lesions. This representation
is adequate for keeping the flow of information represented by gene expression, receptor, and protein structure through
the apoptosis and cell cycle arrest. The primary mechanism of cancer could be considered as a complex system where
the input is DNA-DSBs, and the output is either apoptosis (programmed cell death) or cancer. The response to DNA-
DSBs is the process that decides the cell’s survival or cell’s death and the proliferation of metastasis (development of
cancer). We first expressed the interaction map [23] into a logic program representation (202 rules represent the whole
signaling pathway). This logic program contains two types of rules. The first type is used to express the elementary
facts, where the dependencies are well understood. The second type is used to handle uncertain and imprecise infor-
mation. The rules are first expressed as those of an extended logic program containing classical and default negations.
Then, we implemented a parser that translate the extended logic program into an equivalent general logic program.

We established that the logic program formed by all the rules expressing the DNA DSBs map and the simulation
of the DNA DSB expressed in one rule as a fact, contain 4 answer sets. Therefore, our main result is a new DNA DSB
map containing only the main reactions that are depicted in Figure 5. This figure gives some valuable information
for biologists, like the influences of proteins on cell death or their renewal. Figure 5 is composed of an input signal
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Fig. 5. DNA DSBs map generated from our results

”DSB” shown at the top of the map and the outputs, ”Cell Cycle Checkpoints” and ”Apoptosis” that is shown at the
bottom. Figure 5 confirms the well-established result in biology, which says that the loss of function of the p53 tumor
suppressor protein is a significant step in the development of cancer. The loss of p53 function could be obtained either
by a direct mutation of the p53 gene or by alterations in p53 regulators. It has been established that the mdm2 protein
is an essential regulator of p53. The protein p53 plays a pivotal role in the regulation of multiple cellular mechanisms,
including apoptosis. Figure 5 shows a map containing the main pathways that are expressed by the two most important
answer sets of the corresponding logic program. One of them leads to the proliferation of metastasis (inhibition of cell
cycle arrest), and the other one conducts cell apoptosis.

The main difference between the two pathways is the activation of chk2. This protein allows the inhibition of the
cdc25 phosphatases that prevents the cell cycle arrest. Furthermore, the chk2 interacts with several other proteins
including p53. The stabilization of p53 by chk2 leads to a cell cycle arrest. In the first pathway, the non-activation
of chk2 leads to the inhibition of cell cycle arrest. In the second pathway, chk2 binds to the tumor suppressor p53 −
bindingprotein1, also known as 53bp1. This binding represents a mandatory condition to the phosphorylation of pml,
which enhances pml-dependent apoptosis. Figure 5 shows that chk2 plays an essential role in the regulation of cell
division and apoptosis in response to DNA damage.

Now, let us try to find an explanation for the observed behavior, for instance, the activation of chk2. One could
retain two main explanations on the activation of the protein chk2. The first one results from the activation of atm
and the second one from the activation of atr. Both atm and atr act near the top of the gene networks. DNA damage
caused by DNA-DSB somehow activates atm, while atr is activated primarily in response to a different set of DNA
lesions, including those caused by UV light. Once activated, atm and atr phosphorylate a set of proteins that lead to
apoptosis. These include p53, chk2, nbs1 and brca1.

6. Conclusion

ASP is a known paradigm in logic programming that allows modeling systems exhibiting non-monotonic behavior.
This framework is used to express gene regulatory networks. Answer sets for the gene networks —represented as logic
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programs—could be computed to show all possible reactions. We introduce a new approach to model gene networks
as extended logic programs. Our logical representation has the advantage of better formalizing gene networks since all
implicit assumptions are explicitly described by the rules forming the logic program. In conventional gene networks,
this knowledge could be hidden, then could take place for some approximations. The approach remains, however,
simple to apply. It does not require any prior knowledge of formal logic from biologists. It help biologists to discover
contradictory information, and guide them during their experiments. A further significant advantage of our method is
its ability to update the knowledge base quite easily. Such capacity is crucial due to the inherent incompleteness of
the biology information. We used the study case of the DNA double strands break to check the effectiveness of our
approach. The obtained results show information on some gene expression and protein structures of the DNA DSBs
that are in apoptosis or cell cycle arrest. In this work, we only deal with synchronous updating. Consequently, all the
events should happen within a one-time step. It is not possible to model interactions that have different speeds. As
future work, we are looking to extend this approach to handle asynchronous updating.
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