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Abstract— This paper presents a novel approach to de-
sign control for traffic on large-scale urban networks by
analyzing the structure of one single partial differential
equation (PDE). In particular, we elaborate a method that
represents a curvilinear coordinate transformation trans-
lating a 2D conservation law into a parametrized set of
equations each having a structure of inhomogeneous 1D
LWR equation. This resulting system can be explicitly an-
alyzed for traffic evolving on urban networks of arbitrary
size. As an application example, we demonstrate how the
2D model in curvilinear coordinates can be used to design
two different controllers for urban traffic. First, a boundary
controller is designed to track any desired space- and time-
dependent vehicle density profile with the help of Hamilton-
Jacobi formalism. Second, we design an in-domain variable
speed limit (VSL) controller that steers traffic flow such
that any space-varying equilibrium can be achieved. We
validate the control results numerically using the structure
of Grenoble downtown.

Index Terms— boundary control, Hamilton-Jacobi, con-
servation law, urban traffic control, variable speed limit.

I. INTRODUCTION

CONTINUING urbanization caused by ever-growing pop-
ulation of the planet implies a growing demand for trans-

portation. This entails formation of severe traffic congestions
that cost people hundreds of hours per year and that also
have a significant negative impact on the environment, see
Urban Mobility Report for 2019 in USA [34]. This requires
development of scalable models able to predict congestion
formations and control techniques to resolve them.

The most common and simple model to describe traffic
behaviour is the LWR model presented by Lighthill, Whitham
[1] and Richards [2] in the fifties. This macroscopic model
describes temporal evolution of aggregated quantities (traffic
density and kinematic wave speed) as fluids. In particular, the
LWR model is based on the conservation principle, where the
conserved quantity is the density of vehicles. Mathematically,
this model is a first-order hyperbolic PDE with a concave flux
function that represents an empirical relation between flow and
density, see [23] for a review on flow-density functions.
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However, the LWR model was originally designed to de-
scribe traffic flow on a single infinite road. Thus, additional
conditions and constraints had to be imposed in order to model
traffic flow on networks that consist of links (roads) and nodes
(junctions). A methodology for intersection modelling within
LWR framework was proposed, e.g., in [16]. For a general
theory of traffic flow on networks see [18]. The Cauchy
problem for complex networks (with more than two incoming
and outgoing roads at junctions) was considered in [24].

The main challenge in this link-level representation of traffic
networks is a large computational time that significantly exag-
gerates optimization of large networks consisting of thousands
of roads [12]. Moreover, these models are often not scalable
and mathematically intractable. Alternatively, for modelling of
urban traffic one can use two-dimensional continuous models.
These models describe urban traffic as if it were a fluid
evolving on a continuum plane in R2, and the urban network
(collection of roads and junctions) is embedded into this plane.
The advantages of using such continuous models is that they
do not require a high computational effort and require much
less data to tune than road-by-road models.

The first works describing transportation networks in terms
of aggregated variables appeared several decades ago, see
[3], [6]. These early models, however, failed in capturing
traffic flow dynamics during a rush hour due to the lack of
any knowledge on a flow-density function. The existence of
a Macroscopic Fundamental Diagram (MFD) in congested
urban regions has been observed empirically [22], and was
generalized in [21]. This discovery led to appearance of
reservoir models, which describe traffic as evolution of the
total number of cars in some zone (reservoir) depending on
its inflows and outflows. For a detailed review on several
MFD-based models see [37]. Their main drawback is that in
case of heterogeneously congested links, MFD might not be
well-defined, see [28] for properties of well-defined MFDs.
In general, there must exist only one flow value for a given
number of vehicles. This feature is preserved only in regions
that consist of links characterized by similar congestion levels.
To overcome this limitation, [32] presented partitioning algo-
rithms to divide a urban area into multiple zones each having
its own well-defined MFD. However, these reservoir models
are non-adaptive to changing traffic conditions, as partitioning
depends on the current level of congestion in each zone, see
also [38] for more details.

An alternative way to describe the propagation of urban
traffic is to use models based on 2D conservation laws that
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describe traffic state by its density, see [37] for a review.
Recently, [35] proposed an extension of the original LWR
model to two dimensions assuming that the direction of traffic
flow is determined by geometry and infrastructure of the
underlying urban network. This is captured by introducing
space-dependency into the flow-density function.

Transportation networks are controlled in order to improve
their overall efficiency, e.g., decrease total travel time. There
exists a vast choice on literature devoted to practical network
control techniques, such as routing of traffic [15], traffic light
control [30], ramp metering [7], variable speed limits [33],
see also [11] for a review. However, most of them are based
on the first-discretize-then-optimize procedure or require using
much of traffic data. On the contrary, being able to derive a
controller for a PDE-like model without discretizing it, allows
to obtain analytical results in a closed form.

In this paper we propose a new technique that brings a 2D
conservation law model into a form that can be analyzed in
a similar way as the well-known LWR model. Information
on boundary flow data and network (its infrastructure and
geometry) is incorporated as model parameters. This modified
model represents a single equation that can be used for a pure
analytic control design. Hence, two different control designs
are performed: boundary control for tracking any desired
space- and time-varying profile, and in-domain VSL control
to steer traffic to any desired space-varying equilibrium.

Our main contributions are the following:
1) We present a method of transforming the 2D LWR

model [35] into a parametrized set of 1D systems,
which enables an explicit elaboration of control strate-
gies for various tasks to solve on arbitrarily large urban
networks. The only limitation thereby is that this 2D
conservation law is applicable only to urban traffic with
a preferred direction of motion.

2) We explicitly derive a boundary controller for this 2D
LWR equation to track a space- and time-dependent tra-
jectory that admits discontinuities. This is the first time
such a general control result is obtained in the context of
large-scale traffic. For this we use the Hamilton-Jacobi
framework, as it was done in [40], but extending it
to 2D and handling explicit space-dependency of the
fundamental diagram by applying the viability theory
for the case of space-dependent Hamiltonians explained
in [29], [27]. There is also another boundary controller
for 2D LWR [39] for a special case of congested traffic
regime with a stationary desired state.

3) We explicitly derive a VSL controller for a 2D con-
servation law that drives traffic to any space-dependent
desired equilibrium: we extend the work of [36], who
treated 1D LWR, to two dimensions that implies space-
varying equilibria. These are steady states that are non
trivial due to space-dependency of the flux function in
2D. Compared to [36], we also consider more gen-
eral fundamental diagrams: space-dependent and non-
monotonically depending on speed limits, which are
more realistic (see [25]). We also design a desired equi-
librium, at which urban networks are used at maximal
capacity by the maximal possible number of drivers.

II. 2D LWR MODEL

We use a macroscopic model described in [35] that predicts
traffic evolution in a urban network represented by a 2D con-
tinuum plane (x, y) ∈ Ω ⊂ R2 that is a bounded rectangular
domain, i.e., Ω = [xmin, xmax] × [ymin, ymax]. The size
of this domain is determined by the size of urban network,
i.e., xmin is related to an intersection with the minimal x
space coordinate among all intersections (the rest is defined
similarly). This 2D model can be seen as an extension of
the classical LWR model to two dimensions, and it describes
traffic over a continuum plane ∀(x, y, t) ∈ Ω× R+ as:

∂ρ(x, y, t)

∂t
+∇ · ~Φ(x, y, ρ(x, y, t)) = 0,

~Φ(x, y, t) =

{
φin(x, y, t)~dθ(x, y), ∀(x, y) ∈ Γin

φout(x, y, t)~dθ(x, y), ∀(x, y) ∈ Γout

ρ(x, y, 0) = ρ0(x, y),

(1)

where ρ(x, y, t) : Ω× R+ → R+ is a 2D density that aggre-
gates the number of vehicles per square meter, ρ0(x, y) is its
value at initial time (a function of bounded variation). The flux
function ~Φ(x, y, ρ) in (1) is a space-dependent vector function
with magnitude Φ(x, y, ρ) : E → R+, and its set of departure
is E = {(x, y, ρ) : (x, y) ∈ Ω, ρ ∈ [0, ρmax(x, y)]}. The flux
magnitude Φ(x, y, ρ) is a concave Lipschitz continuous func-
tion with the maximum φmax(x, y) ∀(x, y) ∈ Ω (capacity)
achieved at the critical density ρc(x, y), and the minimum
is achieved at Φ(x, y, 0) = Φ(x, y, ρmax(x, y)) = 0 with
ρmax(x, y) being the space-dependent traffic jam density.

Function Φ(x, y, ρ) is known as a fundamental diagram
(FD) that reflects an empirically established law relating the
average flow φ with the average density ρ in a 2D plane, i.e.,
Φ (x, y, ρ) = φ(x, y, t). There exist a lot of shapes for FDs,
see [23] for a review. The most simple FD has a triangular
shape suggested in [9], and it is defined as:

Φ(x, y, ρ) =

{
vρ ρ ∈ [0, ρc],
−ω(ρ− ρmax) ρ ∈ (ρc, ρmax],

(2)

where ρc, ρmax, v and ω are space-dependent functions. For
triangular FD, the critical density and the maximal flow are
given ∀(x, y) ∈ Ω as

ρc =
ω

v + ω
ρmax, φmax =

vω

v + ω
ρmax. (3)

Triangular FD is characterized by having only two slopes:
Φ′(ρ) = v > 0 for traffic in the free-flow regime achieved for
ρ(x, y) ∈ [0, ρc(x, y)], and Φ′(ρ) = −ω < 0 for the congested
traffic regime when ρ(x, y) ∈ (ρc(x, y), ρmax(x, y)]. These
slopes v and −ω are kinematic wave speeds.

The flux vector function ~Φ in (1) is then defined as a product
of its magnitude Φ (2) and direction vector ~dθ (unit vector):

~Φ(x, y, ρ) = Φ(x, y, ρ)~dθ(x, y), (4)

where
~dθ =

(
cos(θ(x, y))
sin(θ(x, y))

)
(5)

is a vector that depends on network geometry given by angle
θ(x, y) : Ω → [0, 2π) that is a differentiable function, i.e.,
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θ ∈ C1. Angle θ(x, y) is related to the orientation of roads in
a network, thus, it determines the direction of traffic flow. We
call ~dθ the direction field to stress its physical meaning.

Let us now explain the boundary conditions in (1). These
are defined on a set Γ ⊂ Ω that is the boundary of domain Ω.
It consists of two subsets Γ = Γin ∪ Γout. Thereby, Γin is a
set of boundary points (x, y) for which ~n(x, y) · ~dθ(x, y) > 0,
where ~n(x, y) is a unit normal vector to the boundary oriented
inside the domain. In a similar way, we also define Γout such
that ∀(x, y) ∈ Γout : ~n(x, y) · ~dθ(x, y) < 0. Further, inflows
φin(x, y, t) and outflows φout(x, y, t) are respectively defined
∀(x, y) ∈ Γin and ∀(x, y) ∈ Γout as{

φin(x, y, t) = min {D(ρin(x, y, t)), S (ρ(x, y, t))} ,
φout(x, y, t) = min {D (ρ(x, y, t)) , S (ρout(x, y, t))} ,

(6)

where D(ρ) and S(ρ) are demand and supply functions:

D(ρ) =

{
Φ(x, y, ρ), if 0 ≤ ρ ≤ ρc(x, y),

φmax(x, y), if ρc(x, y) < ρ ≤ ρmax(x, y),
(7)

S(ρ) =

{
φmax(x, y), if 0 ≤ ρ ≤ ρc(x, y),

Φ(x, y, ρ), if ρc(x, y) < ρ ≤ ρmax(x, y).
(8)

Note that boundary control for system (1) is usually imple-
mented by actuating D(ρin(x, y, t)) or S(ρout(x, y, t)). We
will do this later, for now these functions should be seen as
some given exterior signals.

The existence and uniqueness of solutions for multi-variable
conservation laws like (1) were shown in [4] (see p.223 for the
conditions of uniqueness, and existence is discussed on p.230).
The boundary conditions (6) are given in a weak form [19]
that is needed to guarantee the uniqueness of (weak) solution,
as will be shown later.

A continuous model like (1) requires applying some in-
terpolation techniques to define its parameters everywhere
from the corresponding values at real roads. Thus, we define
∀(x, y) ∈ Ω the direction field ~dθ(x, y) and the kinematic
wave speed v(x, y) by Inverse Distance Weighting, see [38],
[35]. Thereby, we assume that ~dθ(x, y) depends on v(x, y)
and on a weighted distance to physical roads, and the weights
can be tuned depending on the desired sensitivity of flux to
follow precisely the location of roads. We also define the
maximal density ρmax(x, y) ∀(x, y) ∈ Ω by placing vehicles
on every road of a network as densily as possible (here we
assume that the headway distance is 6 m). Then, density
is reconstructed from vehicle positions, while treating every
vehicle as a Gaussian kernel with standard deviation of 50 m
centred at its position (see [35]).

The main limitation of model (1): it is applicable only
to networks without loops. In particular, all roads need to
be uni-directional, and there exists a preferred direction of
motion. Otherwise there would be no possibility to define a
differentiable vector field ~dθ on the whole domain Ω. Indeed,
if there would be a loop, then there would be a point inside
of every loop where θ is undefined, since integral lines cannot
cross each other (these should be seen as unique solutions
to a differential equation governed by ~dθ). Thus, we require
that any integral line of ~dθ begins and ends at the boundary of

the domain. Moreover, any loop would have no boundary, thus
cars following this path would never be created nor destroyed.

This model can indeed predict real traffic evolution in
some particular scenarios, which was validated in [35], [38].
It has a structure of a conservation law with state being
the vehicle density. The maximum density is constructed to
approximate the maximal possible number of cars in every area
of the corresponding urban network, and velocity vectors are
reconstructed from real roads. In the free-flow regime vehicles
move freely at speeds approximating speed limits of the roads,
while in the congested regime a traffic jam starts to propagate
according to the approximate maximal car density. The model
restriction to networks with no loops limits its applicability for
general traffic although being still useful in several situations,
e.g., imagine a rush hour, when many people are driving to a
business district located in some particular point.

III. COORDINATE TRANSFORMATION

A. General idea

The structure of 2D LWR model (1) implies that the
direction field ~dθ (5) depends only on network geometry and
not on state. This enables us to describe traffic flow trajectories
that do not change with time. These trajectories are integral
lines obtained by building tangents to ~dθ. In the following,
we will perform a curvilinear coordinate transformation that
translates these integral curves into a set of straight parallel
lines as illustrated in Fig. 1. Afterwards, state evolution along
a straight line can be treated as a 1D system, which is
significantly easier to analyze than the 2D system (1). This
idea is related to rectification of vector fields from [5] with a
difference that here we want to define a global transformation
valid for traffic in the whole domain.

We introduce new coordinates (ξ, η) in a differential form:(
dξ
dη

)
= C(x, y)Rθ(x, y)

(
dx
dy

)
, (9)

where Rθ(x, y) is a rotation matrix given by

Rθ(x, y) =

(
cos (θ(x, y)) sin (θ(x, y))
− sin (θ(x, y)) cos (θ(x, y))

)
, (10)

and C(x, y) is a diagonal scaling matrix given by

C(x, y) =

(
α(x, y) 0

0 β(x, y)

)
, (11)

where α(x, y) and β(x, y) are positive and bounded scaling
parameters needed for the existence of the coordinate trans-
formation (see Lemma 1).

In Fig. 1a) we have used the geometry of Grenoble down-
town (grey arrows). The direction at each road is set such that
loops are impossible. On a global scale, motion is oriented
towards North-East of the city. Matrix Rθ provides rotation of
the integral lines (in green) in (x, y)-plane, and scaling matrix
C acts such that these lines have the same metric.
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Fig. 1. Coordinate transformation mapping: a) curved trajectories in
Grenoble downtown in (x, y)-plane into b) straight lines in (ξ, η)-plane.

B. Intuition: straight lines
In case of straight lines depicted in Fig. 1b) we would have

θ = 0 ∀(x, y) ∈ Ω, which implies that rotation (10) and scaling
matrices (11) become identity matrices, i.e., C = Rθ = I. By
(9) the new coordinates (ξ, η) would completely coincide with
(x, y) up to a constant shift. In this case, the direction field in
(5) becomes ~dθ(ξ, η) = (1, 0), and by (4) we obtain:

~Φ = Φ(ξ, η, ρ)

(
1
0

)
, (12)

which can be inserted into the divergence term in (1):(
∂
∂ξ ,

∂
∂η

)(1
0

)
Φ(ξ, η, ρ) =

∂Φ(ξ, η, ρ)

∂ξ
. (13)

Thus, in case of straight lines the divergence (13) contains
only one term instead of two as it was in (1). Flow evolves
only along ξ coordinates, which are tangent to the flow motion,
and there is no motion in the orthogonal direction of η, which
can be treated as a parameter (a label that numbers flow path).
Afterwards, we can treat each such line of constant η as a 1D
equation, for which we will solve different control tasks.

C. Coordinate transformation
Let us provide the necessary and sufficient condition on the

existence of this curvilinear coordinate transformation.

Lemma 1. Assume θ ∈ C1(Ω) and α, β ∈ C1(Ω). Then there
exists a bijective transformation (ξ, η) in C2(Ω) satisfying (9)
if and only if the following PDEs hold ∀(x, y) ∈ Ω:

− sin θ
∂ (lnα)

∂x
+ cos θ

∂ (lnα)

∂y
= cos θ

∂θ

∂x
+ sin θ

∂θ

∂y
, (14)

cos θ
∂ (lnβ)

∂x
+ sin θ

∂ (lnβ)

∂y
= sin θ

∂θ

∂x
− cos θ

∂θ

∂y
. (15)

Proof. For any function in C2 mixed partial derivatives must
be equal by the Schwarz theorem. In our case this is equivalent
to the invariance in the order of taking partial derivatives of ξ
and η w.r.t. x and y, i.e.,

∂

∂y

(
∂ξ(x, y)

∂x

)
=

∂

∂x

(
∂ξ(x, y)

∂y

)
, (16)

and
∂

∂y

(
∂η(x, y)

∂x

)
=

∂

∂x

(
∂η(x, y)

∂y

)
. (17)

By applying (16) and (17) to (9) using the definitions (10)
and (11) we obtain (14)-(15). Finally, ξ and η can be obtained
by integrating (9). Bijectivity follows since the determinant of
the Jacobian (9) is given by α(x, y)β(x, y), and by (14)-(15)
both α(x, y) and β(x, y) are strictly positive.

Note that α(x, y) and β(x, y) being functions of ~dθ(x, y)
only can be computed from the network geometry.

D. Model in (ξ, η)-space
Let us now perform this coordinate transformation to the

original system (1) to turn it into a parametrized set of 1D
LWR equations. According to Chapter 2 of [10], we can apply
the divergence formula to calculate ∇ · ~Φ in (ξ, η)-space:

∇ · ~Φ(ξ, η, ρ) =
1

hξhη

∂
(
~Φξhη

)
∂ξ

+
∂
(
~Φηhξ

)
∂η

 , (18)

where hξ and hη are known as Lamé coefficients, which
correspond to the lengths of basis vectors in (ξ, η)-space:

~hξ =
(
∂x
∂ξ ,

∂y
∂ξ

)T
and ~hη =

(
∂x
∂η ,

∂y
∂η

)T
. (19)

A detailed calculation of ∇ · ~Φ(ξ, η, ρ) is given in [38], thus,
we will directly state the result that reads:

∇ · ~Φ(ξ, η, ρ) = α(ξ, η)β(ξ, η)

[
∂(Φ(ξ, η, ρ)/β)

∂ξ

]
. (20)

Thus, we have shown that the curvilinear coordinate trans-
formation (9) makes the divergence operator uni-dimensional.
This means that the temporal change of density in a 2D plane
is caused only by the change of flow along η-lines, as we were
showing by (13) for the case of straight lines.

We rescale all density-, flow- and velocity-related functions:

ρ̄ =
ρ

αβ
, Φ̄ =

Φ

β
, v̄ = αv. (21)

Finally, we define a spatial domain, on which the system in
new coordinates will evolve as:

Ω̄ = {(ξ, η) : ∃ (x, y) ∈ Ω, ξ = ξ(x, y), η = η(x, y)} .

Then, the domain boundary in (x, y)-space can be uniquely
projected into the boundary in (ξ, η)-space, i.e., ΓΩ → ΓΩ̄. In
particular, ΓΩ̄ consists of points (ξmin(η), ξmax(η)) such that

ξmin(η) = min
(x,y)∈Ω,
η(x,y)=η

ξ(x, y), ξmax(η) = max
(x,y)∈Ω,
η(x,y)=η

ξ(x, y).

and we can also define maximal and minimal values of η as

ηmin = min{η | ∃ξ : (ξ, η) ∈ Ω̄},
ηmax = max{η | ∃ξ : (ξ, η) ∈ Ω̄}.

Using the divergence term in (ξ, η)-space (20), we can now
rewrite the 2D model (1) that reads ∀(ξ, η, t) ∈ Ω̄× R+:

∂ρ̄(ξ, η, t)

∂t
+
∂Φ̄(ξ, η, ρ̄)

∂ξ
= 0,

φ̄in(η, t) = min
{
D̄ (ρ̄in(η, t)) , S̄ (ρ̄ (ξmin(η), η, t))

}
,

φ̄out(η, t) = min
{
D̄ (ρ̄ (ξmax(η), η, t)) , S̄ (ρ̄out(η, t))

}
,

ρ̄(ξ, η, 0) = ρ̄0(ξ, η),
(22)
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where Φ̄(ξ, η, ρ̄) is now a scalar function that preserves all the
FD properties such as being Lipschitz continuous and concave.

Traffic flow evolves only along lines of constant η in (ξ, η)-
space. Thus, (22) is a continuous set of inhomogeneous 1D
LWR equations each following a path parametrized by η. This
means that one can also analyze its solution in the same
way as in case of 1D LWR. Notice that boundary conditions
φ̄in(η, t) and φ̄out(η, t) are formulated using the demand-
supply concept (weak formulation). Thus, the initial boundary
value problem (22) is well-posed, see more details in [20],
[31] for entropy conditions for inhomogeneous LWR model.
In the following, we will always refer to the system in (ξ, η)-
space (22). For simplicity of notations, bars are omitted for
the rest of the paper, it is left only for domain Ω̄.

IV. BOUNDARY CONTROL

The system in new coordinates (22) offers a variety of
possibilities for explicit control design for urban networks by
analyzing only its structure. Let us now formulate the follow-
ing boundary control problem as an application example.

A. Problem Statement
Boundary control for the system in (ξ, η)-space (22) implies

setting actuators at entry and exit of η-lines, along which the
solution propagates. Thus, we control traffic by modifying
demand and supply functions, i.e., ∀(η, t) ∈ [ηmin, ηmax]×R+

uin(η, t) = D (ρin(η, t)) , uout(η, t) = S (ρout(η, t)) . (23)

Problem 1. Design ∀(η, t) ∈ [ηmin, ηmax] × R+ boundary
controllers uin(η, t) and uout(η, t) such that density ρ(ξ, η, t)
governed by (22) tracks a desired trajectory as t→∞.

In [40] a similar problem was posed for one road with a
homogeneous FD. Here we extend this result by solving the
tracking problem for a large urban area whose infrastructure
is captured by an explicit space-dependency of FD.

B. Assumptions
Let us introduce capacity of the strongest bottleneck along

the η-line ∀η ∈ [ηmin, ηmax] as

φminmax(η) = min
ξ∈[ξmin(η),ξmax(η)]

φmax(ξ, η). (24)

To solve Problem 1, we need to assume the following:

Assumption 1. Inflows φin(η, t) and outflows φout(η, t) from
(22) must satisfy ∀(η, t) ∈ [ηmin, ηmax]× R+

φin(η, t) ≤ φminmax(η), φout(η, t) ≤ φminmax(η), (25)

where φminmax(η) is defined in (24). Moreover, there exists ε > 0
such that φin(η, t) and φout(η, t) additionally satisfy

t+tc(η)∫
t

φin(η, τ)dτ ≤ tc(η)φminmax(η)− ε and

t+tc(η)∫
t

φ̄out(η, τ)dτ ≤ tc(η)φminmax(η)− ε,

(26)

where tc(η) is time needed for a solution evolving from one
end of η-line to reach the opposite end:

tc(η) = min


ξmax(η)∫
ξmin(η)

1

v(ξ̂)
dξ̂,

ξmax(η)∫
ξmin(η)

1

ω(ξ̂)
dξ̂

 . (27)

It means that inflows and outflows at each η-line are not
allowed to pass the capacity of the strongest bottleneck of the
corresponding line instantly (see (25)). Moreover, they must
be strictly lower during the time interval given by tc(η) (see
(26)), i.e., a road is never filled with the maximal number of
vehicles, which gives more possibilities for control.

Assumption 2. Solution of (22) is determined only by bound-
ary data, i.e., the influence of initial conditions left the system.

Influence of initial condition is meant in sense of episolution
evolving from initial data. For example, if a road gets blocked
at a boundary, then cars from initial condition propagate until
the boundary and become a part of boundary data.

Remark 1. If Assumption 1 is satisfied, then by taking
t ≥ tmin, where tmin is derived in (84), Assumption 2 holds
trivially, as it is shown in Appendix I-E.

C. Boundary Control Design
We are now going to solve Problem 1, where the goal is

formulated in terms of tracking a desired trajectory ρd. This
is a time- and space-dependent function of bounded variation
ρd(ξ, η, t) governed by the same system (22) ∀(ξ, η, t) ∈ Ω̄×
R+, and its maximal value is also bounded by ρmax that is
given by network geometry. Boundary flows φind

(η, t) and
φoutd(η, t) correspond to weak boundary conditions in (22).

Theorem 1. Consider density ρ(ξ, η, t) governed by system
(22) ∀(ξ, η, t) ∈ Ω̄×R+, for which Assumptions 1 and 2 hold.
The desired density ρd(ξ, η, t) is also governed by (22), for
which Assumption 2 holds. Then if ∀(η, t) ∈ [ηmin, ηmax] ×
R+ the controls (23) are set to

(1) uin(η, t) = φind
(η, t)− ke(η, t),

(2) uout(η, t) = φoutd(η, t) + ke(η, t),
with k > 0

and e(η, t) =

ξmax(η)∫
ξmin(η)

(
ρ(ξ̂, η, t)− ρd(ξ̂, η, t)

)
dξ̂,

(28)
then ∀a, b: ξmin(η) ≤ a < b ≤ ξmax(η) we obtain ∀η

lim
t→∞

b∫
a

(
ρ(ξ̂, η, t)− ρd(ξ̂, η, t)

)
dξ̂ = 0.

Remark 2. Here we consider vehicle density governed by
system (22), which is analyzed in Hamilton-Jacobi formulation
(H-J) given in Appendix I. Thereby, traffic is described in
terms of cumulative vehicle number rather than flow and
density. The solution of (22) with triangular FD (2) is obtained
explicitly in H-J formulation, and it is given by (85). Its
step-by-step derivation being quite technical is presented in
Appendix I. It is then used to analyze properties of system
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(22) in a cumulative (integral) form. In particular, it enables
treatment of weak boundary conditions that are given by the
minimum between demand and supply in (22). These imply
that control (28) may not be accepted at boundaries at any
time. Thus, (85) is used to analyze the time during which
controls are not accepted by the system in terms of control
restriction functions, similarly as it was done in [40].

Remark 3. Control gain k determines the convergence rate
towards the desired trajectory, i.e., the larger it gets the faster is
convergence. However, due to weak boundary conditions, for
high k values the convergence rate remains almost constant.

Remark 4. Note that the integral convergence of densities
stated in Theorem 1 implies that the state approximates the
desired trajectory as time goes to infinity, since a and b can
be arbitrarily close in space, i.e., ρ ≈ ρd as t→∞.

Proof of Theorem 1. The proof is quite technical and would
take several pages. It follows the same major steps as in 1D
case in [40], and it shows that the convergence is exponential
for controller (28). However, since we deal with a multi-
dimensional inhomogeneous system, we list the differences
that need to be taken into account.

1) Length L of a 1D road varies as a function of line num-
ber η, i.e., [0, L] → [ξmin(η), ξmax(η)]. This implies
that L

v → Tv(ξmax(η), η) and L
ω → Tω(ξmin(η), η)

where Tv(ξmax(η), η) should be taken from (70) for ξ =
ξmax(η) and Tω(ξmin(η), η) from (74) for ξ = ξmin(η).

2) Every occurrence of Lρmax should be substituted by
ξmax(η)∫
ξmin(η)

ρmax(ξ̂, η)dξ̂.

3) Equation (28) of [40] should be rewritten as:

gin(η, t) = 0 ⇒ ∀t′ ∈ [t− Tω(ξmin(η), η), t] :

R(η, t′) ≥
ξmax(η)∫
ξmin(η)

ρc(ξ̂, η)dξ̂,

gout(η, t) = 0 ⇒ ∀t′ ∈ [t− Tv(ξmax(η), η), t] :

R(η, t′) ≤
ξmax(η)∫
ξmin(η)

ρc(ξ̂, η)dξ̂.

(29)

We obtain (29) by using the following upper bound:

t′∫
t−Tω(ξmin(η),η)

φout(η, τ)dτ +

t∫
t′

φin(η, τ)dτ ≤

Tω(ξmin(η), η)φminmax(η) ≤
ξmax(η)∫
ξmin(η)

φmax(ξ̂, η)

ω(ξ̂, η)
dξ̂

=

ξmax(η)∫
ξmin(η)

(
ρmax(ξ̂, η)− ρc(ξ̂, η)

)
dξ̂.

D. Numerical Example
The efficiency of boundary controller (28) is demonstrated

on a numerical example, where the controller is used to track
a desired density profile that is space-dependent and periodic
in time. The controller is set to boundaries of a urban area that
has the same structure as an area of Grenoble downtown of
size 1.4×1 km2 (the selected area is shown in grey in Fig. 3).
Road directions were (numerically) modified such that there
is a preferred direction of motion in this area (here towards
North-East). Speed limits are set as in the selected area: some
roads are 30 km/h and other roads are 50 km/h.

We define a numerical grid in Ω̄×R+ and deploy the Go-
dunov scheme in 2D for (22). First, discretize the η dimension
into m = 180 cells. Then, we use the 2D Godunov scheme
for every j ∈ {1, . . . ,m} with a discretization step ∆ξ = 5
m (space cell size in ξ dimension). We also set the time cell
size ∆t = 0.1 s, which provides that the CFL condition is
satisfied. In order to compute the integral in (28) we perform
the Riemann summation for every j ∈ {1, . . . ,m} over all ξ
cells, i.e., i ∈ {1, . . . , nj}, where nj is the number of ξ cells
contained in each cell j.

For triangular FD (2) we use ρc = ρmax/3. The system to
be controlled is initially given as a traffic jam, see Fig. 2a):

ρ0(ξ, η) = ρmax(ξ, η), ∀(ξ, η) ∈ Ω̄.

We set the desired inflow demand D(ρind
)(η, t) and outflow

supply S(ρoutd)(η, t) to be time-periodic functions:

D(ρind
)(η, t) =φminmax(η)

[
0.6+

0.4 sin
(

2π
( t

1200
+ 2

η − ηmin
ηmax − ηmin

))]
,

S(ρoutd)(η, t) =φminmax(η)
[
0.6+

0.4 sin
(

2π
( t

2400
+ 2

η − ηmin
ηmax − ηmin

))]
.

Hence, these boundary flow functions will never exceed the
minimal capacity on the corresponding η-line. They were
chosen such to generate a desired trajectory ρd with a period
of τ = 2400 seconds, as drawn on the right column in Fig.
3. We demonstrate here, how the boundary control law from
Theorem 1 enhances traffic state if there is a feedback, i.e.,
k > 0 in (28). Control is applied at domain boundaries, and it
physically corresponds to demand at the entry and supply of
the exit, as illustrated in Fig. 2a).

Fig. 3 shows evolution of traffic density within the time
interval of 2τ = 4800 sec. The top row is related to desired
trajectory with the boundary data described above. The middle
and bottom row correspond to density evolution for k = 5 ·
10−5 and k = 0, respectively. We observe convergence to the
desired profile for the case with feedback (middle row) that
becomes visible already at t = 2τ , while this does not happen
for the case without feedback (bottom row).

In Fig. 2b) the L1 error norm is depicted as a function of
time for different control gains. It can be computed as follows:

‖ρ− ρd‖1 =

ηmax∫
ηmin

ξmax(η)∫
ξmin(η)

|ρ(ξ, η, t)− ρd(ξ, η, t)|dξdη. (30)
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Fig. 2. a) Initial state to be controlled from the boundaries (black
arrows). b) L1 error as a function of time for different control gains.

a) t = 0 b) t = 0.5τ c) t = 1τ d) t = 2τ

Fig. 3. Control of density in a network with the structure of Grenoble
downtown. Top: desired density ρd; middle: evolution of ρ with k =
5 · 10−5; bottom: evolution of ρ with k = 0. Color bar denotes the
ratio of the current density to the maximal density over the network.

We see that a higher control gain k = 10−3 provides a higher
convergence speed in comparison to k = 5 · 10−5. Notice that
we do not obtain higher convergence speed than for k = 10−3

due to weak boundary conditions (control is sometimes not
imposed). In general, we achieve exponential convergence with
control (23). On the contrary, k = 0 does not work even if
we start from an empty network unless the initial data is the
same as in the desired profile (hardly ever possible).

V. VARIABLE SPEED LIMIT CONTROL

Let us now demonstrate how to solve control tasks using
variable speed limit in a 2D-plane by stating a new problem in
(ξ, η)-space. We consider the following initial-boundary value
problem given ∀(ξ, η, t) ∈ Ω̄× R+ as

∂ρ(ξ, η, t)

∂t
+
∂Φ(ξ, η, ρ(ξ, η, t), u)

∂ξ
= 0, (31)

where the initial and boundary data are the same as in (22).
The only difference is that the flux function Φ now depends
also on a control parameter u ∈ [0, 1] that represents a variable
speed limit ratio. Applying VSL should be understood as
a flexible restriction on speed at which vehicles can drive
on a given road stretch. Its value varies according to the
current environmental and road conditions and is displayed on

electronic traffic signs. Setting u = 1 implies that vehicles can
drive at speeds bounded by the legal maximum (e.g., 130 km/h
on French highways). Moreover, if u = 0, then no movement
is allowed and Φ(ξ, η, ρ, 0) = 0. One should see u as an in-
domain controller that affects the flux. It is applied in the
whole domain including its boundaries. Note that Φ is still a
concave function wrt ρ, and Φ is continuous in u.

A. Contribution
The material of this chapter was inspired by a previous

work [36]. However, there are some major points that were
not considered in [36], and thus will be addressed here:

1) 2D systems: this is the first time that VSL control
is applied on a large-scale network directly using the
intrinsic properties of the model only (no discretization).

2) Space-dependent FD: we extend the result of [36] by
considering space-dependent FD that imply obtaining
non trivial desired equilibria (with space-dependency).
This is an essential extension, since space-dependent
equilibria necessarily arise in urban networks that in
general do not have a homogeneous structure.

3) Realistic FDs: in [36] ∂Φ(ξ, η, ρ, u)/∂u > 0 holds, see
Fig. 4a). This assumption was made for simplicity to
avoid multi-valued functions (always only one value of
u for each flow φ). Here we omit this condition by
allowing more general forms of FD. In general, applying
speed limits (u < 1) can shift the critical density towards
larger values in realistic FDs. This is schematically
depicted in Fig. 4b), see red FD for u = 0.7 and
green FD for u = 0.5 and compare ρc3 and ρc2 with
ρc1 achieved with u = 1. This means that applying
speed limits can increase the range of vehicle density, for
which the free-flow regime is preserved. There it is also
shown how VSL can enhance flow for some densities
in the congested regime, e.g., compare flows φ2 with
φ1 that can be achieved with different speed limits for
the same density ρc2. These VSL effects on FD were
validated by real data collected from European VSL-
equipped motorway, see [25].

4) Study the controller smoothness: considering a general
class of fundamental diagrams may lead to irregular
control policies. We investigate whether any conditions
must be imposed on the functional dependence of FD
on VSL in order to provide smoothness.

B. Problem Statement
Let us also introduce the following notations:

min
η

, min
η∈[ηmin,ηmax]

, min
ξ

, min
ξ∈[ξmin(η),ξmax(η)]

,

and now we can formulate the stabilization problem as follows.

Problem 2. Given ∀(ξ, η) ∈ Ω̄ the fundamental diagram
Φ(ξ, η, ρ, u) and initial density ρ0(ξ, η) with dynamics gov-
erned by (31), find a VSL controller u such that

lim
t→∞

ρ̃(ξ, η, t) = 0, ∀(ξ, η) ∈ Ω̄, (32)

where ρ̃ = ρ− ρd is the deviation from a desired equilibrium
ρd(ξ, η) ∈ (0, ρmax(ξ, η)).
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ρ

Φ(ρ)
a)

0 ρc ρmax 0
ρ

Φ(ρ)
b)

ρc1 ρc2 ρc3 ρmax

f(ρ)
φ1

φ2

Fig. 4. FDs and their dependence on VSL: a) monotonic dependence
∂Φ(ξ, η, ρ, u)/∂u > 0 used in [36]; b) dependence we assume here,
i.e., possible increase of ρc for stronger speed limits (from real data, see
[25]). Blue line: u = 1. Red line: u = 0.7. Green line: u = 0.5. Bold
dashed line: maximal flow function defined in (33).

C. VSL Control Design
Let us define ∀(ξ, η) ∈ Ω̄ and ∀ρ ∈ [0, ρmax(ξ, η)] a maxi-

mal flow function f(ξ, η, ρ), which is the maximum possible
flow that can be achieved at a given point for a given density
over all the VSL values (see the thick dashed line in Fig. 4):

f(ξ, η, ρ) = max
u∈[0,1]

Φ(ξ, η, ρ, u). (33)

We also introduce a multi-valued function G(ξ, η, ρ, φ), which
is the inverse image of FD with respect to speed limit:

G(ξ, η, ρ, φ) = {u ∈ (0, 1] : Φ(ξ, η, ρ, u) = φ}. (34)

In general, it is possible that several values of speed limits
u provide the same flow value, see the black dot in Fig. 4.
Therefore, G(ξ, η, ρ, φ) for a fixed set of parameters represents
a set, not a single value.

Theorem 2. Assume ρd ∈ C1(Ω̄). Let the controller u(ξ, η, ρ)
be given ∀(ξ, η) ∈ Ω̄ and for ρ = ρ(ξ, η, t) by the following
inclusion

u(ξ, η, ρ) ∈ G(ξ, η, ρ, φd(ξ, η, ρ)), with

φd(ξ, η, ρ) = B(ξ, η, ρ) min
ξ′

f(ξ′, η, ρ(ξ′, η, t))

B(ξ′, η, ρ)

and B(ξ, η, ρ) = 1 + γ

ξ∫
ξmin(η)

ρ̃(ξ̂, η, t)dξ̂,

(35)

where control gain γ is a positive constant defined as

0 < γ < min
η

 ξmax(η)∫
ξmin(η)

ρmax(ξ̂, η)dξ̂


−1

.

Then there exists c = c(γ, ρ0) > 0 such that ∀ρ0 ∈ C1(Ω̄) the
system (31) with initial condition ρ(ξ, η, 0) = ρ0(ξ, η) has a
unique solution ρ ∈ C1(Ω̄× R+) which satisfies

max
(ξ,η)∈Ω̄

|ρ̃(ξ, η, t)| ≤ e−ct max
(ξ,η)∈Ω̄

|ρ̃(ξ, η, 0)| ∀t ∈ R+, (36)

and, moreover, ∀(ξ, η) ∈ Ω̄

lim
t→∞

Φ(ξ, η, ρ(ξ, η, t), u(ξ, η, ρ)) = min
ξ′

f(ξ′, η, ρd(ξ′, η)). (37)

Remark 5. Note that u(ξ, η, ρ) depends on state (feedback).
Let us give several comments on its structure:

1) Such a controller choice (35) assures that the system
flow is immediately set to desired flow φd, i.e.

Φ (ξ, η, ρ, u) = φd(ξ, η, ρ), ∀(ξ, η, t) ∈ Ω̄× R+.

2) The desired flow φd(ξ, η, ρ) is designed such that it
does not exceed the maximal flow function f(ξ, η, ρ) at
any point of space-time. The space-dependency of the
desired flow is incorporated into function B(ξ, η, ρ).

3) Function B(ξ, η, ρ) acts as a feedback linearization for
system (31), which loses the conservation law structure,
and we do not have to handle discontinuities in the
solution. This will be shown in the proof of Theorem 2.

4) The lower and upper bound on control gain γ are set
such to guarantee that B(ξ, η, ρ) is positive, i.e., B :
Ω̄ × R+ → R+. The upper bound on γ is required for
situations when the density error ρ̃ is negative, which can
appear since we design a general controller that drives
any state to any desired equilibrium.

Proof of Theorem 2. First of all, we need to prove that con-
troller (35) is well-defined. Namely, we will show that the set
G(ξ, η, ρ, φd(ξ, η, ρ)) is not empty, i.e., the desired flow takes
values in a bounded range that can be achieved by the VSL
control. Indeed, for all (ξ, η) ∈ Ω̄ we obtain from (35) that

φd(ξ, η, ρ)

B(ξ, η, ρ)
= min

ξ′

f(ξ′, η, ρ)

B(ξ′, η, ρ)
≤ f(ξ, η, ρ)

B(ξ, η, ρ)
, (38)

and by positivity of B(ξ, η, ρ) we get φd(ξ, η, ρ) ∈
[0, f(ξ, η, ρ)] ∀(ξ, η, t) ∈ Ω̄×R+. This interval exactly corre-
sponds to the range of function Φ(ξ, η, ρ, u(ξ, η, ρ)) w.r.t. u,
therefore the set function G(ξ, η, ρ, φd(ξ, η, ρ)) is not empty.

Then, we substitute the constructed flux function

Φ(ξ, η, ρ, u(ξ, η, ρ)) = B(ξ, η, ρ) min
ξ′

f(ξ′, η, ρ)

B(ξ, η, ρ)
(39)

into system (31) and obtain

∂ρ̃(ξ, η, t)

∂t
+ min

ξ′

f(ξ′, η, ρ)

B(ξ′, η, ρ)

∂B(ξ, η, ρ)

∂ξ
= 0.

By inserting the definition of B(ξ, η, ρ) from (35), this equa-
tion can be further simplified as

∂ρ̃(ξ, η, t)

∂t
= −γρ̃(ξ, η, t) min

ξ′

f(ξ′, η, ρ)

B(ξ′, η, ρ)
. (40)

Equation (40) does not contain any partial space derivatives,
and thus the conservation law structure is lost in the closed-
loop system. This dynamic equation has a stable equilibrium
at zero. By [36] we obtain smoothness and an exponential
convergence to a desired equilibrium with rate c(γ, ρ0).

Finally, we see that density convergence ∀(ξ, η) ∈ Ω̄
ρ(ξ, η, t)→ ρd(ξ, η) as t→ +∞ implies that B(ξ, η, ρ)→ 1,
and thus (39) results into

Φ(ξ, η, ρ(ξ, η, t), u(ξ, η, ρ))→ min
ξ′

f(ξ′, η, ρd(ξ
′, η)),

which coincides with (37), and thus concludes the proof.
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u

Φ(u)
a)

0 1

ρ in ff

0

Φ(u)
b)

u

ρ in cong

1

Fig. 5. FD as a function of u: a) monotonic dependence for a fixed ρ in
free-flow; b) concave dependence for a fixed ρ in congested regime.

Remark 6. Property (37) means that the highest possible equi-
librium flow is achieved for a given ρd(ξ, η). With definition
(33), the following double inequality holds ∀η ∈ [ηmin, ηmax]

min
ξ

Φ(ξ, η, ρd, 1) ≤ min
ξ
f(ξ, η, ρd) ≤ φminmax(η), (41)

where the left inequality implies that the same or higher traffic
flow can be achieved with lower speed limits than for u = 1.

D. Smoothness of VSL Controller
VSL controller (35) is defined via inclusion, and in general

it can result in a discontinuous function in space. For example,
imagine there are two different speed limits able to provide
the desired flow. In this case, one should fear that speed limits
jump from one value to another along a road infinitely many
times. However, if we assume additional properties on how the
flux function should depend on speed limit, we will obtain that
u(ξ, η, ρ) is differentiable almost everywhere.

Theorem 3. Assume that ∀(ξ, η) ∈ Ω̄, ∀ρ ∈ [0, ρ̄max(ξ, η)]
and ∀u ∈ [0, 1] flux Φ(ξ, η, ρ, u) is differentiable. Moreover,
assume that it is either strictly concave in u (congested regime)
or monotonic in u and reaches its maximum at u = 1 (free-
flow regime). Then using controller provided in Theorem 2 and
assuming ρ ∈ C1(Ω̄) ∀t ∈ R+, we can choose u(ξ, η, ρ) such
that it is differentiable almost everywhere w.r.t. ξ.

Remark 7. This additional assumption on functional depen-
dence of Φ(ξ, η, ρ, u) on u can be interpreted as follows. In
the congested regime when speed limit decreases, the flow
can first increase for a fixed density as in Fig. 5b), and then
it drops to zero as the speed limit approaches zero. In the
free-flow regime, flow is maximal for u = 1 and decreases
monotonically as u decreases as in Fig. 5a).

Remark 8. Notice that by Theorem 2, density is a differen-
tiable function ρ ∈ C1(Ω̄) ∀t ∈ R+ if the initial condition
function of system (31) is differentiable, i.e., ρ0 ∈ C1(Ω̄).

Proof of Theorem 3. Let us fix time t and line η, and consider
an interval of all possible ξ values and split it in two subsets
H1 and H2 as [ξmin(η), ξmax(η)] = H1 ∪H2, where

H1 =

{
ξ ∈ [ξmin(η), ξmax(η)]

∣∣∣∣∣ ∂Φ(ξ, ρ(ξ), u(ξ, ρ))

∂u
6= 0

}
,

H2 =

{
ξ ∈ [ξmin(η), ξmax(η)]

∣∣∣∣∣ ∂Φ(ξ, ρ(ξ), u(ξ, ρ))

∂u
= 0

}
.

We introduce also interiors of H1 and H2 as:

E1 = int(H1), E2 = int(H2).

Moreover, we introduce a complementary subset E0 as

E0 = (H1 \ E1) ∪ (H2 \ E2),

such that E0 ∪ E1 ∪ E2 = H1 ∪H2 = [ξmin(η), ξmax(η)].
It is clear that sets E1 and E2 have the same Lebesgue

measure as sets H1 and H2, respectively. This implies that set
E0 is of measure zero. Thus, showing that controller u(ξ) =
u(ξ, ρ(ξ)) is differentiable on E1 and E2 would imply that it
is differentiable almost everywhere. Let us first consider set
E1 with the following function defined from (39):

F1(ξ, u) = Φ(ξ, ρ(ξ), u)−
(

min
ξ′

f(ξ′, ρ(ξ′))

B(ξ′, ρ(ξ′))

)
B(ξ, ρ(ξ)).

This function is differentiable by the assumptions made in
Theorem 3 and is equal to zero by (39). Moreover, the
derivative of Φ(ξ, ρ(ξ), u) w.r.t. u is non-zero on set E1 by
its definition. This immediately implies that the derivative of
F1(ξ, u) with respect to u is also non-zero. Therefore, we can
use the Implicit Function Theorem, which assures that there
exists a differentiable function u(ξ) on this set satisfying (39).

On the second set E2 we define another function as

F2(ξ, u) =
∂Φ(ξ, ρ(ξ), u)

∂u
.

Notice that F2(ξ, u) is zero by the definition of set E2, and it
has a negative derivative w.r.t. u, since we assumed concavity
of the flux function for the congested traffic regime (in a
pure free-flow regime set E2 would be empty). This means
that we can use the Implicit Function Theorem again, thus a
differentiable function u(ξ) exists on set E2 as well.

Combining these results, we obtain that function u(ξ) is
differentiable on E1 ∪ E2, i.e., almost everywhere.

Proposition 1. In case of concave dependence of FD on speed
limits, u(ξ, η, ρ) can sometimes be chosen from two values
G(ξ, η, ρ, φd) for ρ being in congested regime, see Fig. 5 b).
Then the most appropriate choice is the minimal value, since
it provides the free-flow traffic regime:

u(ξ, η, ρ) := min{G(ξ, η, ρ, φd)}.

As an example, consider the intersection point (black dot in
Fig. 4b)) corresponding to a flow-density pair that can be
achieved using either u = 1 or u = 0.7. In this case we
choose u = 0.7, since this provides the free-flow regime and,
thus, a more smooth traffic motion.

E. Parametrization of Fundamental Diagram
Before applying the designed VSL controller (35) in prac-

tice (or in our case it will be a numerical example), we should
first discuss flux functions depending on u by suggesting an
explicit relation satisfying assumptions made in Theorem 3.

Let us consider triangular FD as in (2), which should be
modified due to the dependence on speed limits. We assume a
linear dependence of kinematic wave speeds on speed limits:{

v(ξ, η, u) = u v1(ξ, η),
ω(ξ, η, u) = ω1(ξ, η) + (1− u)ωadd(ξ, η),

(42)
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where v1(ξ, η) and ω1(ξ, η) are kinematic wave speeds for
u = 1, and ωadd(ξ, η) is an additional value expressing the
effect of speed limit on the kinematic wave speed in the
congested regime. Thus, if speed limits are high (u � 1),
drivers are moving slowly, and therefore start braking late
(larger safety distance for lower speeds). Let us estimate a
range of reasonable values for ωadd(ξ, η) such that ∀(ξ, η) ∈ Ω̄

∂φmax(ξ, η, u)

∂u
≥ 0. (43)

Condition (43) means that it is not possible to enhance the
transportation capacity by applying speed limits, see (41).
Transportation capacity is a property of network geometry,
i.e., φmax is determined by the number of lanes and free-flow
kinematic wave speed, and thus it should not be changed with
a VSL. In the following we skip the dependence on (ξ, η) in
notations. We insert ω(u) and v(u) from (42) into (3) and get

φmax(u) = v1ρmax
u (ω1 + (1− u)ωadd)

ω1 + v1u+ (1− u)ωadd
. (44)

We take the partial derivative of (44) w.r.t. u and obtain

∂φmax(u)

∂u
= v1ρmax

(ω1 + (1− u)ωadd)2 − u2v1ωadd
(ω1 + v1u+ (1− u)ωadd)2

. (45)

In accordance with (43), we need to find such range of ωadd
that (45) is positive. We distinguish two different cases for
which nominator of (45) takes non-negative values ∀u ∈ [0, 1]:

1) ωadd ≤ 0: then ∂φmax(u)/∂u > 0 holds always.
2) ωadd > 0: then we must provide that

ω1 + (1− u)ωadd ≥ u
√
ωaddv1

⇒ ω1 + ωadd ≥ u (ωadd +
√
ωaddv1) .

In the worst case this inequality must be satisfied for u = 1,
which results into ωadd ≤ ω2

1/v1 (upper bound for ωadd). By
definition (42) and the fact that ω(u) should be non-negative,
the lower bound is −ω1. Thus, a reasonable range reads

ωadd ∈
[
− ω1,

ω2
1

v1

]
.

For a numerical example, we will pick the largest value ωadd =
ω2

1/v1, since by (45) it provides ∂φmax(u)/∂u = 0 at u = 1.
This choice implies the biggest influence of VSL on FD in
congested regime (the largest surface enclosed by the blue
line in congested regime and the thick dashed line in Fig. 4).

F. Optimal Equilibrium
The controller given by (35) can be applied to achieve

any type of desired equilibrium ρd(ξ, η) ∈ (0, ρmax(ξ, η))
∀(ξ, η) ∈ Ω̄. However, for the upcoming numerical example,
we seek to design an optimal equilibrium ρoptd that corresponds
to throughput maximization and, at the same time, to density
maximization, i.e., the highest possible number of cars should
be able to pass a network at maximal flow. Thereby, the
number of cars in a urban area is directly related to its density
in this area that can be increased due to a change in the shape
of FD caused by u(ξ, η, ρ), as it is shown in Fig. 6.

A method to find equilibrium profiles providing the maximal
flow in the system was presented in [39]. However, there it was

ρ

Φ(ρ)

0 ρmaxρoptd
ρ1

φminmax(uopt)

Fig. 6. Blue line: FD for u = 1. Red line: FD for u = uopt.

done for u = 1 (no speed limits). With the help of speed limits,
we are now able to extend the result of [39] by maximizing
also the number of vehicles. In particular, we seek to find
∀(ξ, η) ∈ Ω̄ speed limits uopt(ξ, η) such that

φmax(ξ, η, uopt) = φminmax(η, 1).

The VSL controller must provide that this steady state flow is
achieved, and at the same time

ρoptd (ξ, η) = ρc(ξ, η, u
opt).

Thus, desired density corresponds to the critical density
achieved for uopt. In terms of Fig. 6, if φminmax(u = 1) =
φmax(uopt) for some (ξ, η) ∈ Ω̄, then uopt is such that
ρoptd = ρc(u

opt). In terms of Theorem 2, the desired flow
φd = φmax(uopt). Hence, the controller should provide the
same maximal possible flow, while the density is increased,
since ρoptd > ρ1. Notice that due to the change of FD shape, at
the desired equilibrium traffic operates only at critical density,
i.e., there are no congestions in the whole area. Let us again
skip (ξ, η) in the notations for simplicity. In order to find uopt
∀(ξ, η) ∈ Ω̄, we use (44) and (3), and obtain

φmax(uopt) = v1
v1 + ω1

ω1
ρc

uopt
(
ω1 + (1− uopt)ωadd

)
ω1 + v1uopt + (1− uopt)ωadd

,

(46)
where ρc corresponds to the critical density as in (3) for v = v1
and ω = ω1. Further, we use ρcv1 = φmax1

with φmax1
being

the highest possible flow for some (ξ, η) ∈ Ω̄ reached with
u = 1, and ωadd = ω2

1/v1 to rewrite (46) as

φmax(uopt) = φmax1
uopt

(
v1 + (1− uopt)ω1

)
ω1 + (v1 − ω1)uopt

. (47)

Let us now introduce a coefficient κ ∈ (0, 1] to denote the
ratio of the flow at the strongest bottleneck along η-line to the
maximal possible flow at space point (ξ, η) for u = 1:

κ(ξ, η) =
φminmax(η, 1)

φmax(ξ, η, 1)
.

From (47) we get the following equation ∀(ξ, η) ∈ Ω̄ to be
solved for uopt:

κ =
uopt (v1 + (1− uopt)ω1)

ω1 + (v1 − ω1)uopt
,

which can be further expanded as(
uopt

)2
+ uopt

(
κ

(
v1

ω1
− 1

)
− v1

ω1
− 1

)
+ κ = 0.
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This is a quadratic equation with respect to uopt, which
yields two solutions. We pick the one with the minus sign,
since this guarantees that uopt remains below 1:

uopt =
µ+ 1− κ(ν − 1)−

√
(ν + 1− κ(ν − 1))2 − 4κ

2
, (48)

with ν = v1/ω1. Finally, the optimal equilibrium is the critical
density defined in (3) obtained for uopt from (48):

ρoptd =
ω(uopt)

v(uopt) + ω(uopt)
ρmax, (49)

where v(uopt) and ω(uopt) can be taken from (42) for u =
uopt and ωadd = ω2

1/v1.

G. Numerical Setup
As a network we again take the structure of Grenoble

downtown with its real infrastructure parameters. The critical
density in triangular FD is again ρc = ρmax/3. The initial
datum is given ∀(ξ, η) ∈ Ω̄ by

ρ0(ξ, η) = 3ρmax(ξ, η)/4,

thus, it is in the congested traffic regime. Inflow demand and
outflow supply are set to the maximal possible steady state
flows for u = 1, that is

D (ξmin, η, ρin(η), u) = S (ξmax, η, ρout(η), u) = φminmax(η, 1),

which should be chosen to maximize system’s throughput.
The desired optimal steady state (49) is constructed fol-

lowing the steps described above, and it is depicted in Fig.
7b). This state is characterized by the maximal possible flow
through the system achieved for the maximal possible number
of vehicles. The numerical scheme needed to discretize the
PDE system is again the Godunov scheme in 2D as in the
previous numerical example. The only difference is that the
for every grid point in space-time ∀(i, j, k) ∈ {1, . . . ,m} ×
{1, . . . , nj}×Z+, the flux function must include dependence
on VSL controller as in (42) for u = uopt from (48).

In (35) there exists an upper bound for the controller gain
γ that guarantees that B(ξ, η, ρ) > 0 ∀(ξ, η, t) ∈ Ω̄ × R+.
However, one can accelerate the convergence rate by choosing
the maximal possible γ(η, t) for each line of constant η and
for each time. Thus, we will compare control results obtained
with two different control gains:

1) A constant control gain γ = 0.14 that is the largest
possible value for a given urban network (Grenoble) that
matches the bounds stated in Theorem 2.

2) A time- and space-varying control gain γ(η, t):

γ(η, t) =
1− ε

max
{
−min

η

ξ∫
ξmin(η)

ρ̃(ξ̂, η, t)dξ̂, δ
} , (50)

where δ > 0 is chosen to get γ > 0 even if the minimum
is positive (and in this case an arbitrarily large γ can be
used), and ε > 0 provides the lower bound for B(ξ, η, ρ).

Notice that Theorem 2 was proved for the case of constant
γ (as in item 1). However, convergence can be accelerated also
with γ that depends on η and t as in (50). The only issue is

a) L1 error b) ρoptd c) t = 0

d) t = 10 min e) t = 30 min f) t = 2 hours
Fig. 7. a) L1 norm of density error as a function of time for different
control gains, b) the desired optimal equilibrium as in (49). Traffic flow
control by VSL in Grenoble downtown. Density ρ(x, y, t) at: c) t = 0;
d) t = 10 min; e) t = 30 min; f) t = 2 hours.

that function B must be always positive, and also that γ can
not depend on dimension ξ, since in this case the feedback
linearization would not work such that the dynamic equation
turns into (40) due to an additional derivative term w.r.t. ξ.

Fig. 7c) - f) illustrates the temporal evolution of traffic
density under the VSL control (48) with a time-varying gain
given by (50) with ε = 0.01 and δ = 0.1. Thereby, at every
time step, demand and supply functions at domain boundaries
are set to the desired (maximal possible) flow of every η-line.
State converges to the desired equilibrium, which becomes
visible already after t = 2 hours of simulation time, (compare
plots b) and f)).

Remark 9. At the desired equilibrium the critical density
at each point of space will be higher than at initial time,
since the VSL control changes the FD shape and affects the
desired density as in (49). Therefore, results presented in Fig.
7 may look like driving traffic towards more congested regime,
although it is still in free-flow (recall that at the desired
equilibrium traffic operates at critical density that becomes
higher under VSL control). Traffic flow corresponds to the
maximal possible steady state flow determined by the network
geometry (capacities at strongest bottlenecks).

Further, we compute L1 error norm as in (30) with
ρoptd (ξ, η) from (49) being the desired state. Its evolution
within under control within 3 hours is shown in Fig. 7a) for
two different control gains. As in the previous example, we
again observe that a larger control gain (50) provides a higher
convergence speed in comparison to constant γ = 0.14. Recall
that as soon as we start applying control, the traffic system is
completely set to the free-flow regime, since we always choose
the minimal VSL value (see Proposition 1).

VI. CONCLUSIONS

We have elaborated control of traffic on urban networks of
any size. We found an approach to analyze the 2D conservation
law model such that one gets information about vehicle
trajectories in urban area. Such analysis became possible since
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by its structure this model is applicable only for networks
that consist of uni-directional roads and have no loops. The
direction field depends only on network geometry and not on
state. Thus, we were able to define a curvilinear coordinate
transformation that transforms the 2D traffic system into a
parametrized set of 1D systems with space-dependent FD,
which is similar to inhomogeneous 1D LWR. Although this co-
ordinate transformation could be defined due to specific model
restrictions, it can still be used to predict traffic evolution in
several frequently occurring situations, e.g., when during a
morning rush hour all vehicles stream to the business district.

Further, we have elaborated two control strategies to demon-
strate the benefits of rewriting the system in curvilinear coordi-
nates. First, we have posed a boundary control design problem
for this system to approximate a desired vehicle trajectory in
asymptotic time. The problem was solved using the Hamilton-
Jacobi formalism that enabled us to handle discontinuities that
always occur in mixed-regime traffic. An additional difficulty
was caused by the explicit space-dependency in the FD such
that we had to apply the viability theory for space-dependent
Hamiltonians. For a numerical example, we took the structure
of Grenoble downtown as a urban network. The simulation
results confirmed the effectiveness of the boundary controller
in achieving convergence towards a desired density profile.

Second, we analyzed the system in curvilinear coordinates
to design an in-domain controller using VSL that affects traffic
flow by imposing temporary restrictions on allowed speed. It
acts as a feedback linearization such that the state equation
loses its conservation law structure. This VSL controller is
able to stabilize the 2D system to any desired space-varying
equilibrium. We have shown that the controller is differentiable
almost everywhere in space if FD depends on VSL in a special
(physically reasonable) way. We have also designed an optimal
steady state that corresponds to throughput maximization
achieved for the maximal possible number of cars. In a numer-
ical example, it was shown how vehicle density convergences
to the desired equilibrium under the VSL controller.

An appealing direction for future studies might be to extend
this analysis for truly multi-directional traffic that includes
flow crossings and loops.

APPENDIX I
HAMILTON-JACOBI PDE FOR SPACE-DEPENDENT FD

Here we consider the system in (ξ, η)-space (22) in
Hamilton-Jacobi formulation (H-J). It has been known [13],
[14], [17] that an LWR-type equation can be solved exactly in
H-J formalism, which is an integral formulation of LWR. Its
solution does not contain shocks, which facilitates analysis of
its properties (see [40]). H-J formalism for (22) is not trivial
due to explicit space-dependency of FD and additional space
parameter η ∈ [ηmin, ηmax] used as a flow path label.

In H-J formulation, traffic is described in terms of cumula-
tive number of vehicles M(ξ, η, t) counted at a given position
after a given time. This function is called the Moskowitz func-
tion named after an engineer who first used it to investigate
traffic, although it was first mentioned only some decades later
in [8]. In the following, we skip writing η in the arguments

to make the notations less heavy. Since all functions in this
section depend on η in the same way, all the following steps
hold for each line of constant η. Derivatives of M(ξ, η, t) w.r.t.
time and space correspond to flow φ (value of flux function
Φ(ρ) for a fixed ρ) and density ρ, respectively:

ρ(ξ, t) = −∂M(ξ, t)

∂ξ
, φ(ξ, t) =

∂M(ξ, t)

∂t
. (51)

Let us now express M(ξ, t) through the boundary values
(inflows φin(t), outflows φout(t) and initial condition ρ0(ξ)),
as well as through the current state ρ(ξ, t). This can be simply
done by using the definitions from (51). Namely, we can define
a conservative field (−ρ(ξ, t), φ(ξ, t)), which is a gradient of
M(ξ, t) ∀(ξ, t) ∈ [ξmin, ξmax]×R+. By the gradient theorem,
it follows that the value of line integral of this field does not
depend on a particular chosen path, and equals only to the
difference in the values of the Moskowitz function between
ending and starting points of the path in space-time. Since
M(ξ, t) is an integral function that is defined up to a constant,
we are free to assign a reference value to this function at
some particular point in space-time. Let us choose a starting
point (ξmax, 0) corresponding to the end of traffic line at
inital time. Then, we also set M(ξmax, 0) = 0, since this
is a decreasing function of position and increasing function of
time, see Chapter 14 of [27]. Thus, taking the ending point of
the path as (ξ, t), one possible integration path is (ξmax, 0)→
(ξmax, t)→ (ξ, t), which yields ∀(ξ, t) ∈ [ξmin, ξmax]× R+

M(ξ, t) =

t∫
0

φout(τ)dτ +

ξmax∫
ξ

ρ(ξ̂, t)dξ̂. (52)

or taking another integration path (ξmax, 0) → (ξmin, 0) →
(ξmin, t)→ (ξ, t) results into

M(ξ, t) =

ξmax∫
ξmin

ρ0(ξ̂)dξ̂+

t∫
0

φin(τ)dτ−
ξ∫

ξmin

ρ(ξ̂, t)dξ̂. (53)

Let us use (51) to rewrite the fundamental flow-density
relation Φ (ξ, ρ) = φ(ξ, t) as

∂M(ξ, t)

∂t
− Φ

(
ξ,−∂M(ξ, t)

∂ξ

)
= 0. (54)

This is a Hamilton-Jacobi PDE (or Moskowitz PDE in the
context of traffic). In terms of viability theory, its state M(ξ, t)
can also be called the congestion function (see [27]), since (54)
can be viewed as an optimal control problem minimizing a
congestion functional M(ξ, t), i.e., vehicles tend to minimize
congestion by adapting their individual (microscopic) veloci-
ties to the kinematic wave velocity (a macroscopic quantity).
In (54) Φ plays the role of a Hamiltonian.

A. General Solution of H-J

The Moskowitz PDE (54) can be solved analytically in
accordance with the variational principle using the boundary
data. This requires to specify the initial MIni(ξ) and the
boundary condition functions MUp(t), MDown(t).
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For convenience of notation, let us introduce the value
condition function c(ξ, t) : Dom(c) → R+, where Dom(c) =
({ξmin, ξmax} × R+) ∪ ([ξmin, ξmax]× {0}), which aggre-
gates the initial and boundary conditions of (54):

c(ξ, t) =


MIni(ξ, ) t = 0,

MUp(t) ξ = ξmin,

MDown(t) ξ = ξmax.

(55)

Note that due to (52) and (53), function c is well-defined and
continuous on its domain. The IBVP (54)-(55) represents an
integral form of (22). The boundary conditions are meant to
be given in a weak sense (demand-supply problem), and H-J
IBVP is well-posed. Let us solve it explicitly.

First, we specify the value condition function (55) by
calculating MUp(t), MDown(t) and MIni(ξ). Thus, the upstream
boundary condition MUp(t) can be obtained by considering
(53) for ξ = ξmin, which results ∀t ∈ R+ into

MUp(t) = c(ξmin, t) =

t∫
0

φin(τ)dτ +

ξmax∫
ξmin

ρ0(ξ̂)dξ̂. (56)

Then, MDown(t) can be expressed from (52) for ξ = ξmax:

MDown(t) = c(ξmax, t) =

t∫
0

φout(τ)dτ, ∀t ∈ ×R+. (57)

Finally, MIni(ξ) can be expressed from (53) or (52) for t = 0:

MIni(ξ) = c(ξ, 0) =

ξmax∫
ξ

ρ0(ξ̂)dξ̂. (58)

Second, we introduce a Legendre-Fenchel transform of the
flux function Φ(ξ, ρ):

∀v′ ∈ [−ω(ξ), v(ξ)] :

L(ξ, v′) = sup
ρ∈[0,ρmax(ξ)]

(Φ(ξ, ρ)− v′ρ), (59)

where v and −ω are kinematic wave speeds (slopes of FD) in
case of ρ = 0 and ρ = ρmax, respectively. From Chapter 14.3
of [27] we get the Legendre transform (59) of a triangular FD:

L(ξ, v′) = φmax(ξ)− ρc(ξ)v′, ∀v′ ∈ [−ω(ξ), v(ξ)]. (60)

The closed-form unique solution of (54)-(55) in Barron-
Jensen/Frankowska sense (see Theorem 13.10.3 of [27]) cor-
responds to the infimum among all viable evolutions starting
from a boundary at t−T and arriving at ξ at terminal time t:

M(ξ, t) = inf
(T,v′)∈S

c(ξ̂(0), t− T
)

+

T∫
0

L
(
ξ̂(τ), v′(τ)

)
dτ

 ,

(61)
where the infimum is taken over domain S defined as:

S =
{

(T, v′)
∣∣∣ T ∈ R+, v′(·) ∈ L1(0, T ),

˙̂
ξ(τ) = v′(τ),

ξ̂(T ) = ξ, v′(τ) ∈
[
−ω

(
ξ̂(τ)

)
, v
(
ξ̂(τ)

)]
,(

ξ̂(0), t− T
)
∈ Dom(c)

}
.

(62)

Here ξ̂(τ) denotes trajectory of an observer moving along a
traffic stream at speed v′(τ) that might be non-constant due

to inhomogeneity of network infrastructure. Trajectory ξ̂(τ)
originates at τ = 0 on a boundary of domain of c and arrives
at point ξ at terminal time τ = T .

We introduce two-argument functions MUp(ξ, t),
MDown(ξ, t) and MIni(ξ, t) as viability episolutions [26]
to (61) for corresponding domains of function c, which
are MUp(t) (56), MDown(t) (57) and MIni(ξ) (58). For
example, MUp(ξ, t) is a “solution candidate” that arrives
at space-point (ξ, t) from the upstream boundary with a
given “initial cost” MUp(t), while MDown(ξ, t) and MIni(ξ, t)
are defined similarly. This enables us to restate the unique
solution of (54)-(55) as a minimum of three functions
∀(ξ, t) ∈ [ξmin, ξmax]× R+

M(ξ, t) = min{MUp(ξ, t),MDown(ξ, t),MIni(ξ, t)}. (63)

Notice that in the following we will consider only solutions
for large enough time

t ≥ max


ξmax∫
ξmin

1

v(ξ̂)dξ̂
,

ξmax∫
ξmin

1

ω(ξ̂)dξ̂

 . (64)

In Sections I-B-I-D we calculate episolutions MUp(ξ, t),
MDown(ξ, t) and MIni(ξ, t), and then the unique solution is
the minimum of them (63).

B. Upstream Boundary Condition

MUp(ξ, t) is the minimal cumulative vehicle number that
originates from the upstream boundary ξmin at initial time.

By definition of the value condition function (55) we get
c(ξ̂(0), t− T ) = MUp(t− T ) in (61). The upstream boundary
condition is assigned to ξmin, which implies the following
start and end points of observer trajectory that starts traveling
with non-constant speed v′(τ) ∈ [−ω (ξ(τ)) , v (ξ(τ))]:

ξ̂(0) = ξmin, ξ̂(t) = ξmin +

t∫
0

v′(τ)dτ. (65)

Using (61) with (60) for c
(
ξ̂(0), t− T

)
= MUp(t− T ) from

(56), we get the following infimum problem:

MUp(ξ,t) = inf
(T,v′)∈SUp

( t−T∫
0

φin(τ)dτ +

ξmax∫
ξmin

ρ0(ξ̂)dξ̂

+

T∫
0

φmax
(
ξ̂(τ)

)
dτ −

T∫
0

ρc
(
ξ̂(τ)

)
v′(τ)dτ

)
.

(66)

where infimum is taken over domain SUp defined as in (62)
but with

(
ξ̂(0), t− T

)
∈ Dom(cUp), where cUp = MUp(t) as

in (55). Let us consider the last term in (66). By definition
dξ̂ = v′(τ)dτ , and we perform a change of variables:

T∫
0

ρc

(
ξ̂(τ)

)
v′(τ)dτ =

ξ∫
ξmin

ρc(ξ̂)dξ̂ =: Rc(ξ), (67)
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where Rc(ξ) is a new variable that denotes cumulative critical
density. Further, we can decompose the integrals in (66) as

t−T∫
0

φin(τ)dτ +

T∫
0

φmax(ξ̂(τ))dτ =

t∫
0

φin(τ)dτ +

T∫
0

(
φmax(ξ̂(τ))− φin(t− T + τ)

)
dτ.

(68)

Thus, using (67) and (68) we can rewrite (66) as

MUp(ξ, t) = inf
(T,v′)∈SUp

 T∫
0

(
φmax(ξ̂(τ))− φin(t− T + τ)

)
dτ


+

t∫
0

φin(τ)dτ +

ξmax∫
ξmin

ρ0(ξ̂)dξ̂ −Rc(ξ),

and recall that v′(τ) is related to ξ̂(τ) by (65). By Assumption
1 we have φin(t) ≤ φmax(ξ) ∀(ξ, t) ∈ [ξmin, ξmax] × R+.
Hence, the infimum is achieved when the traveling time T is
minimized, i.e., the solution is assigned to a traveler that moves
with the maximal speed v everywhere, thus (65) becomes

ξ̂(t) = ξmin +

t∫
0

v(ξ̂(τ))dτ. (69)

Thus, in the infimum, T is the solution to (69) for t = T :

∂ξ

∂T
= v(T ) ⇒ ∂T

∂ξ
=

1

v(ξ)
⇒ Tv(ξ) =

ξ∫
ξmin

1

v(ξ̂)
dξ̂. (70)

With (70) the viability episolution yields from (66):

MUp(ξ, t) =

Tv(ξ)∫
0

φmax(ξ̂(τ))dτ +

t−Tv(ξ)∫
0

φin(τ)dτ

+

ξmax∫
ξmin

ρ0(ξ̂)dξ̂ −Rc(ξ).

(71)

We rewrite the first term on the right-hand side of (71) as

Tv(ξ)∫
0

φmax(ξ̂(τ))dτ =

Tv(ξ)∫
0

ρc(ξ̂(τ))v(ξ̂(τ))dτ

=

ξ∫
ξmin

ρc(ξ̂(τ))dξ̂ = Rc(ξ).

where (69) and (67) were used. With this result, two Rc(ξ)
terms with opposite signs in (71) cancel each other, and the
upstream boundary solution reads:

MUp(ξ, t) =

t−Tv(ξ)∫
0

φin(τ)dτ +

ξmax∫
ξmin

ρ0(ξ̂)dξ̂. (72)

C. Downstream Boundary Condition
Now we need to obtain MDown(ξ, t) related to the down-

stream boundary ξmax. Here, viable evolutions are character-
ized by the following start and end points of traveling:

ξ̂(0) = ξmax, ξ̂(t) = ξmax +

t∫
0

v′(τ)dτ,

where v′(τ) ∈ [−ω (ξ(τ)) , v (ξ(τ))].

(73)

Similarly to the previous case, we use MDown(t) from (57) and
the result from (68) to write the following infimum problem

MDown(ξ, t) = inf
(T,v′)∈SDown

(
−

T∫
0

ρc(ξ̂(τ))v′(τ)dτ+

T∫
0

(
φmax(ξ̂(τ))− φout(t− T + τ)

)
dτ
)

+

t∫
0

φout(τ)dτ,

where domain SDown is defined as in (62) with
(
ξ̂(0), t− T

)
∈

Dom(cDown), where cDown = MDown(t) as in (55).
Using Assumption 1, we obtain that the infimum is achieved

for the minimal traveling time T , which corresponds to:

Tω(ξ) =

ξmax∫
ξ

1

ω(ξ̂)
dξ̂ and v′ = −ω. (74)

From the definition of triangular FD (3) we get

ρc =
ρmaxω

v + ω
⇒ ρmaxω = ρc(v + ω),

which is then used together with (74), φmax = ρcv and the
change of variables dξ̂ = ω(τ)dτ to solve the infimum:

MDown(ξ, t) =

t−Tω(ξ)∫
0

φout(τ)dτ +

ξmax∫
ξ

ρmax(ξ̂)dξ̂. (75)

D. Initial Condition
Finally, we calculate MIni(ξ, t) related to vehicle with a

known label at initial time (58) that follows the path of viable
evolution. We can establish that T = t, since the viability
evolution starts its path at initial time. Thus, using (61) with
initial condition (58), we can state the infimum problem as

MIni(ξ, t) = inf
v′∈SIni

( ξmax∫
ξ̂0

ρ0(ξ̂)dξ̂ +

t∫
0

φmax(ξ̂(τ))dξ̂

−
t∫

0

ρc(ξ̂(τ))v′(τ)dτ

)
,

(76)

where the domain SIni is defined as in (62) for T = t:

SIni =
{
v′
∣∣∣ v′(·) ∈ L1(0, t),

˙̂
ξ(τ) = v′(τ),

ξ̂(t) = ξ, v′(τ) ∈
[
−ω

(
ξ̂(τ)

)
, v
(
ξ̂(τ)

)]
,

ξ̂(0) ∈ [ξmin, ξmax]
}
.

(77)
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Notice that now the viable evolution starts its path from ξ̂0 at
initial time with v′(τ) ∈ [−ω (ξ(τ)) , v (ξ(τ))]

ξ̂(0) = ξ̂0, ξ̂(t) = ξ̂0 +

t∫
0

v′(τ)dτ. (78)

Using the change of variables v′(τ)dτ = dξ̂ we rewrite (76)
and estimate the lower bound term by term:

MIni(ξ, t) ≥ 0−
ξmax∫
ξmin

ρc(ξ̂)dξ̂ +

t∫
0

φminmaxdτ, (79)

where φminmax is as in (24). In the following, we will show that
starting from tmin the effect of initial conditions will have left
the system and thus can be excluded from the minimum.

E. Time When Initial Conditions Leave The System
We seek to estimate tmin such that ∀(ξ, t) ∈ [ξmin, ξmax]×

[tmin,+∞): MIni(ξ, t) ≥ MUp(ξ, t) or MIni(ξ, t) ≥
MDown(ξ, t). First, we estimate the time after which
MIni(ξ, t) ≥ MUp(ξ, t), then we do the same for MIni(ξ, t) ≥
MDown(ξ, t), and tmin is the smallest of two values. We
combine the result for MUp(ξ, t) (72) with the lower bound
for MIni(ξ, t) (79), and write

MIni(ξ, t)−MUp(ξ, t) ≥ −
ξmax∫
ξmin

(ρc(ξ̂)− ρ0(ξ̂))dξ̂

+

t−Tv(ξ∫
0

(
φminmax − φin(τ)

)
dτ +

Tv(ξ)∫
0

φminmaxdτ.

Now let us estimate the lower bounds as
Tv(ξ)∫
0

φminmaxdτ ≥ 0, −
ξmax∫
ξmin

ρ0(ξ̂)dξ̂ ≥ −
ξmax∫
ξmin

ρmax(ξ̂)dξ̂,

which yields

MIni(ξ, t)−MUp(ξ, t) ≥ −
ξmax∫
ξmin

(
ρmax(ξ̂) + ρc(ξ̂)

)
dξ̂

+

t−Tv(ξ)∫
0

(
φminmax − φin(τ)

)
dτ.

(80)

Using Assumption 1, we are able to estimate the following
lower bound for the second term on the right-hand side (80):

t−Tv(ξ)∫
0

(
φminmax − φin(τ)

)
dτ ≥

⌊
t− Tv(ξ)

tc

⌋
ε,

with ε > 0 and tc is from (27), which lets us rewrite (80) as

MIni(ξ, t)−MUp(ξ, t) ≥
⌊
t− Tv(ξmax)

tc

⌋
ε

−
ξmax∫
ξmin

(
ρmax(ξ̂) + ρc(ξ̂)

)
dξ̂.

(81)

The right-hand side of (81) becomes always non-negative after

t ≥
ξmax∫
ξmin

1

v(ξ̂)
dξ̂ +


1

ε

ξmax∫
ξmin

(
ρmax(ξ̂) + ρc(ξ̂)

)
dξ̂

Tc. (82)

Afterwards, the same steps are performed to obtain the mini-
mal time, for which MIni(ξ, t)−MDown(ξ, t) ≥ 0 holds:

t ≥
ξmax∫
ξmin

1

ω(ξ̂)
dξ̂+


1

ε

ξmax∫
ξmin

(
ρmax(ξ̂) + ρc(ξ̂)

)
dξ̂

Tc. (83)

Finally, tmin is the minimum between (82) and (83):

tmin = tc

1 +


1

ε

ξmax∫
ξmin

(
ρmax(ξ̂) + ρc(ξ̂)

)
dξ̂


 . (84)

Notice that tmin in (84) is different for every η-line. The
common tmin is then just determined as the maximal value.

F. Unique Solution
The final solution M(ξ, t) of (54)-(55) can be obtained as

a minimum of (72) and (75) ∀t ∈ [tmin,+∞), thus, the effect
of initial conditions is negligible:

M(ξ, t) = min

{ t−Tv(ξ)∫
0

φin(τ)dτ +

ξmax∫
ξmin

ρ0(ξ̂)dξ̂,

t−Tω(ξ)∫
0

φout(τ)dτ +

ξmax∫
ξ

ρmax(ξ̂)dξ̂

}
,

(85)

where Tv(ξ) and Tω(ξ) are given by (70) and (74).
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