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Abstract To understand the role of maternal dengue-specific antibodies in
the development of primary Dengue Hemorrhagic Fever (DHF) in infants, we
investigated a mathematical model based on a system of nonlinear ordinary
differential equations. In this model, we considered the exponential decay of
maternal antibodies, the interactions between susceptible and infected target
cells, the virus, and maternal antibodies. The neutralization and enhancement
activities of maternal antibodies against the virus are represented by a func-
tion derived from experimental data and knowledge from medical literature.
The analytic study of the model shows the existence of two equilibriums, a
disease-free equilibrium and an endemic one. We performed the asymptotic
stability analysis for the two equilibriums. The local asymptotic stability of
the endemic steady state corresponds to the occurrence of DHF. Numerical
results are also presented in order to illustrate the mathematical analysis per-
formed, highlighting the most important parameters that drives the model
dynamics. We defined the age at which DHF occurs as the time when the
infection take-off, that means at the inflection point of the infected cell pop-
ulation. We showed that this age corresponds to the age at which maximum
enhancing activity for dengue infection appears. This critical time for the oc-
currence of DHF is calculated from the model to be approximately 2 months
after the time for maternal dengue neutralizing antibodies to degrade below a
protective level, which correspond to what was observed in the experimental
data from the literature.
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1 Introduction

Dengue virus is a flavivirus primarily transmitted by the hematophagous
mosquitoes of genus Aedes. In human, the disease symptoms can range from an
asymptomatic infection, or a classic Dengue Fever (DF), to severe manifesta-
tions such as Dengue Hemorrhagic Fever (DHF), or Dengue Shock Syndrome
(DSS) [4,22]. The transmission of the dengue virus to the human occurs af-
ter biting by an infected mosquito. The classic infection in human follows the
Susceptible-Infected-Recovered (SIR) dynamics of most epidemiological dis-
eases [2]. Four serotypes of dengue virus are known (DENV 1-4), and they
differ by 30-35% in amino acid identity. Life-long immunity after a primary
infection is obtained for sequential infections with the homologous serotype,
but only a short period of cross-protective immunity is observed against a
heterologous serotype. After this primary infection, a secondary one with a
different serotype can result in DHF or DSS [16,17]. Tertiary or quaternary
infections are rarely reported, suggesting that the broad range of polyclonal
antibodies, generated after two sequential infections with different serotypes,
can promote an effective tetravalent protection [29].

The cofactors associated with the severity of secondary dengue infection
are still not clear. One hypothesis postulates that cross-reactive antibodies
are responsible for the enhancement of the infection, in a phenomenon called
Antibody-Dependent Enhancement (ADE) [4]. The explanation is that the
pre-existing antibodies against a different serotype of DENV, from a previous
infection, bind to the heterologous DENV increasing viral internalization into
Fc-receptor-bearing target cells such as monocytes, macrophages and dendritic
cells. Data from published studies [18,19,23] showed a high number of severe
cases occurring in infants (< 1 year of age) born from dengue-immune mothers.
In a later publication, [3] reported that the age-specific incidence of infant DHF
was 0.5 per 1000 persons over the age of 3-8 months, and it disappeared by
age the 9 months. These infants are supposed to develop DHF after a primary
infection with DENV. The observed distribution of DHF cases with regarding
to the age suggests the existence of a window period of time (between 3-8
months for [3] and between 6-8 months for [18]) in which the infant has levels
of maternal antibody concentration (IgG) that are not able to neutralize the
virus, but are capable of enhancing DENV infection [7,24,26].

The kinetics of both antibody and dengue virus during natural infections
has been studied in the recent literature [8,9]. In these two papers, ordinary
differential systems model the dynamics of interaction among susceptible tar-
get cells, infected target cells, free virus and antibody levels. The models were
fitted to temporal series of virus RNA titer and antibody (IgG and IgM) titers
of primary and secondary DENV infections in adults. The authors concluded



Maternal passive immunity and dengue hemorrhagic fever in infants 3

that models in which antibody acts either on the virus or on the infected cells
can explain the dynamics of viral clearance. They also showed that the varia-
tion in model parameters between primary and secondary cases is consistent
with the theory of ADE. Besides humoral immune response, other approaches
considered the contribution of cellular immune response and cytokines on virus
dynamics, exploring the thresholds for the existence and stability of the differ-
ent model’s equilibriums [1]. Although this study addresses only the primary
infection, it was able to show that T-cell mediated cytokines play also an im-
portant role in virus clearance. Starting with a target cell limited model and
adding complexity such as innate, cellular and humoral immune response (by
a re-parametrization of the parameter that measures viral infectivity), [25] dis-
cussed the contribution of infected and T-cells to disease severity, highlighting
the importance of within-host dynamics early in the infection to predict the
disease severity. In [5], analytical thresholds for the basic reproductive num-
ber of virions and an ADE weakening factor were established. The authors
discussed the probability of ADE occurrence in several scenarios with focus
on the disease dynamics, not on its equilibrium values, stressing the impor-
tance of the size of the initial inoculation of the virus. They conclude that
the ADE phenomenon is a trade-off between the strength of proliferation of
memory cells and apoptosis of infected macrophages.

The main difficulty associated with the development of mathematical mod-
els to study the immunology of dengue’s infection is the fact that the available
data are obtained during the period of viremia, so the initial dynamic of the
infection disease is lost. In addition, the occurrence of ADE in adults is asso-
ciate with the preexistence of memory cells from a primary infection and its
interaction with the secondary response triggered by the secondary heterolo-
gous infection [16]. For children, a bimodal distribution with regarding to age
at presentation of DHF is observed. The first peak occurs at 6-8 months, and
is mostly observed during primary infections; the second one occurs in infants
at > 3 years old and is related to secondary infections [18]. Data from [21]
show that the increased risk of DHF in infants from dengue-immune mothers
correlates positively with the decline in maternal antibodies received at birth.
The hypothesis is that maternal dengue antibodies play a dual role by first
protecting, and later increasing the risk of development of DHF in infants. An
interesting observation is that the critical time for the occurrence of DHF is
almost 2 months after the estimated time in which maternal antibodies de-
grade below a protective level (see also [6,19]). With this in mind, we propose
a mathematical model to assess the role of maternal dengue-specific antibod-
ies in the development of DHF in infants. As far as we know, this is the first
mathematical model with this objective.

In particular, the model presented in our work is able to capture all the fea-
tures described previously, proposing an explanation for the biological mech-
anisms behind the ADE phenomena in infants, based on the initial concen-
tration of maternal antibodies received by the infant at born, the strength of
the competition between virus neutralization and infection enhancement pro-
moted by antibodies, the fitness of the virus, and the mounting of an effective
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immunological response that depend on the infant’s age. The proposed ordi-
nary differential system models interactions among susceptible and infected
target cells, virus, and antibodies through bilinear and trilinear terms. An en-
hancement and neutralization functions are introduced, both inspired by ex-
periments in vitro [10,13]. The reproductive number of the virus was obtained
and a sensitivity analysis showed that the mortality rate of the susceptible tar-
get cells is the most important parameter that determine the model dynamics
driven the disease to an extinction or an endemic state. Besides, the model
can be reparametrized to four parameters, where three of them determine the
set up time at which DHF occurs. Surprising, the DHF characterizes a huge
change on the behavior of the system and appears as a sharp increase on the
number of infected cells, and virus population.

2 The Model

A compartmental model is developed to investigate the occurrence of DHF
in infants (< 1 year old), born from dengue-immune mothers, during their
first dengue infection. Based on observed epidemiological and laboratory data
[10,13,21], and on the knowledge of immunological aspects of the disease,
the model considers the interaction among maternal dengue antibodies B,
susceptible baby target cells (such as monocytes and macrophages) X, infected
baby cells by dengue virus Y and free dengue virus V . We assume that these
variables are measured as concentration - number of molecules per unit of
volume.

The maternal dengue antibodies are acquired passively by the babies from
dengue-immune mothers during pregnancy [7,20,24]. The population of ma-
ternal antibodies decays exponentially in the absence of dengue virus (V = 0)
at rate α and is consumed in the presence of the DENV at rate ν per virion.
The susceptible target cells are produced at a constant rate A in the bone
marrow, get invaded by the dengue virus at a rate E(B), and get infected
at rate cE(B) per virion, where B is the maternal antibody concentration in
the baby. The natural mortality rate µ1 keeps the susceptible population of
cells at homeostasis. The population of infected cells decay with rate µ2 ≥ µ1

(natural mortality plus additional mortality due to the infection). Free virus
is produced by infected cells at rate k, has a constant natural mortality rate
δ, and is consumed by the antibodies at rate γ per antibody. The virus can
infect the susceptible target cells even in the absence of antibodies (B = 0).
We denote by E0 the rate of invasion of the susceptible target cells by the free
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virus. The resulting nonlinear ordinary differential system is given by

dB

dt
= −αB − νBV,

dX

dt
= A− µ1X − cE(B)V X,

dY

dt
= cE(B)V X − µ2Y,

dV

dt
= kY − (γB + E0)V − δV,

(1)

where E(B) has the following (biologically suggested) expression

E(B) = (γB + E0)e−βγB .

The model can be reparametrized, given that C = γB. Therefore

dC

dt
= −αC − νCV,

dX

dt
= A− µ1X − cE(C)V X,

dY

dt
= cE(C)V X − µ2Y,

dV

dt
= kY − (C + E0)V − δV,

(2)

with, by using the same notation for the parametrized function E,

E(C) = (C + E0)e−βC .

The neutralization rate is defined as

N(C) = C + E0 − E(C) = (C + E0)(1− e−βC).

The explanation of these expressions is as follows. The term C+E0 corresponds
to the rate at which the virus is no longer free. A part, E(C), corresponds to
the rate of invasion of susceptible target cells by the virus and the other part,
N(C), to the rate of neutralization of the virus by the antibodies. N(0) = 0
means that the virus cannot be neutralized without the presence of antibodies.
However, as we said before, the susceptible target cells can be invaded by the
virus even in the absence of antibodies (E(0) = E0 > 0). The maximum and
the inflection points of the function E(C) are obtained at

C1 =
1− βE0

β
> 0 and C2 = C1 +

1

β
=

2− βE0

β
,

by

max
C≥0

E(C) = E(C1) =
1

β
e−(1−βE0) and E(C2) =

2

β
e−(2−βE0).
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The existence of C1 > 0 is guaranteed be the assumption βE0 < 1. The
function N(C) is an increasing function, has an inflection at the same point
C2 as for the function E(C) and it satisfies

N(C2) =
2

β
(1− e−(2−βE0)) and lim

C→+∞

N(C)

C + E0
= 1.

Furthermore, the intersection point between the functions E(C) and N(C) is
given by

C3 =
ln(2)

β
and E(C3) = N(C3) =

1

2β
(ln(2) + βE0).

It is easy to see that the intersection between the curves E(C) and N(C)
happens before the common inflection (C3 < C2). However,

C1 < C3 if and only if 1− ln(2) < βE0 < 1.

C1

C3

C2

E
(C

)

C

C3

C2

N
(C

)

C

Fig. 1 The shape of the functions E(C) and N(C), respectively, the rate of invasion of
the susceptible target cells by the virus and the rate of neutralization of the virus by the
antibodies. The amount of C increases from left to right, and E and N grows from bottom
to top. C1, C2 and C3 are, respectively, the value of C at which E is maximum, the inflexion
point of the curves, and the point at which the intersection between E and N occurs.

Fig. 1 shows the behavior of the functions E(C) and N(C) and Table 1 sum-
marizes the model’s parameters, their units and their range values. The shape
of E(C) was chosen to reproduce the ADE phenomena [10].
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Table 1 Summary of model parameters, their description and range of values [9,6,25,15,12,
21]. The parameters highlighted by ∗ were obtained by fitting several mathematical models
to patient data [25].

Param. Description Range of values

α−1 antibody half-life 21− 81 days

A rate of production of
susceptible target cells 4.0 ×103–17.5×106 cells ml−1 days−1

µ−1
1 susceptible target cells half-life 1− 30 days

µ−1
2 infected target cells half-life 1− 30 days

k rate of production of viral
particle per infected cell 104 − 107 RNA copies cell−1 days−1

δ−1 viral particle half-live 2.5− 17.2 hours

B0 anti-DENV IgG 30− 8200 molecules ml−1 (PRNT50)

ν virus-bound antibodies
rate of decreasing of antibodies 10−8 RNA copies−1 ml days−1 ∗

c fraction of susceptible cells
converted to infected cells (1.51–2.04)×10−10 RNA copies−1 ml ∗

γ fraction of virus-bound antibodies 0.5 ml molecules−1days−1 (assumed)

β 0.09 days (assumed)
E0 rate of invasion of the susceptible

cells by the free virus 0.05 days−1 (assumed)

3 Model analysis

We concentrate on the solutions of the first order differential system (2) with
initial conditions given by

C(0) = γB0, X(0) = X0, Y (0) = Y0 and V (0) = V0. (3)

The local existence and uniqueness of the solutions are guaranteed by the
regularity of the nonlinear function used in the second hand side of the system
(2).

3.1 Positivity and boundedness

The next result states and proves positivity and boundedness of the solutions
of the system (2).

Proposition 1 The solutions of the system (2) associated with nonnegative
initial conditions (3) are nonnegative and bounded on the interval [0,+∞)
(The result also means that we have the existence and uniqueness on the in-
terval [0,+∞)).



8 Mostafa Adimy et al.

Proof We first show that the solution of (2) are nonnegative on its interval of
existence. By integration of the equation of C(t) we obtain

C(t) = γB0e
−αt−ν

∫ t
0
V (s)ds.

As γB0 ≥ 0, then C(t) is nonnegative. For the nonnegativity of the solution
X(t), we assume by contradiction that there exists T > 0 such that X(T ) =
0 and X(t) > 0 for t < T . Then, we obtain X ′(T ) = A > 0. This is a
contradiction. Then, X(t) is nonnegative. To prove the nonnegativity of the
couple (Y, V ), we use the fact that (Y, V ) satisfies a non-autonomous linear
ordinary differential system. We assume by contradiction that there exists
T > 0 such that X(T ) = 0 or V (T ) = 0 and X(t) > 0, V (t) > 0 for t < T . If
Y (T ) = V (T ) = 0, then Y (t) = V (t) = 0 for all t. If Y (T ) = 0 and V (T ) > 0,
then Y ′(T ) > 0. If V (T ) = 0 and Y (T ) > 0, then V ′(T ) > 0. In all cases, we
have a contradiction. Then, (Y, V ) is nonnegative.

Let’s prove now that the solution is bounded on its interval of existence. It
is clear that for all t ≥ 0, 0 ≤ C(t) ≤ γB0. Which means that C(t) is bounded.
Furthermore, by adding the equations of X and Y , we get

d

dt
(X + Y ) ≤ A− µ(X + Y ) with µ = min{µ1, µ2} > 0.

Then,

0 ≤ X(t) + Y (t) ≤ max

{
X0 + Y0,

A

µ

}
.

Consequently, X(t) and Y (t) are bounded. The last equation of (2) and the
nonnegativity of C(t) implies that

V ′(t) ≤ kY (t)− (E0 + δ)V (t) ≤ k sup
t≥0

(Y (s))− (E0 + δ)V (t).

Then,

0 ≤ V (t) ≤ max

{
V0,

k sups≥0(Y (s))

E0 + δ

}
.

We proved that the solutions are bounded on their interval of existence. This
implies that they are defined on the interval [0,+∞) and from the results
established above, we can see that they are bounded on [0,+∞).

3.2 Existence of the steady states of the system

Let (C∗, X∗, Y ∗, V ∗) be a steady state of the system (2). After solving the
associated algebraic system, we obtain two steady states

P0 =

(
0,
A

µ1
, 0, 0

)
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that always exists and it is called the disease-free steady state, and

P1 =

(
0,
µ2(E0 + δ)

kcE0
, Y ∗,

k

E0 + δ
Y ∗
)
,

with

Y ∗ =
A

µ2
− µ1(E0 + δ)

kcE0
,

that exits if and only if

c > c0 :=
µ1µ2 (E0 + δ)

kAE0
.

P1 is called the endemic steady state and it corresponds to the persistence of
the infection.

3.3 Local and global asymptotic stability of the disease-free steady state

As for infectious disease epidemiology, we use the basic reproduction number
R0 as a threshold value to determine whether or not the disease dies out. The
Next Generation Matrix method, [11,28], is the natural basis for the definition
and calculation of R0. The system (2) has two infected states Y and V and
two uninfected states, C and X. The component C has only 0 as steady state.
Then, at the disease-free steady state Y = V = 0, we have necessarily C = 0
and X = A/µ1. The linearization of the transmission of the disease (infection
subsystem) around the disease-free steady state gives the following systemY ′ = −µ2Y + cE0

A

µ1
V,

V ′ = kY − (E0 + δ)V.

(4)

It describes the production of new infected individuals with a rate cE0
A

µ1
and changes in the states of the infected individuals, including the death.
We introduce the matrix K corresponding to transmissions and the matrix T
corresponding to transitions as follows

K =

 0
cAE0

µ1

0 0

 and T =

(
−µ2 k

0 −(E0 + δ)

)
.

The dominant eigenvalue of the matrix −KT−1 gives the basic reproduction
number

R0 := ρ(−KT−1) =
A

µ1
× cE0

µ2
× k

E0 + δ
.

Observe that in the expression of R0, the term A/µ1 is the average number of
susceptible target cells, cE0/µ2 is the fraction of these susceptible cells that
get infected, and k/(E0 + δ) is the average number of free virus produced by
an infected cell. Therefore, when R0 > 1 the infection is able to persist. Hence,
we have the following result.
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Theorem 1 The disease-free steady state P0 is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1.

We observe that

R0 < 1 if and only if c < c0 :=
µ1µ2 (E0 + δ)

kAE0
.

In fact, under the condition R0 < 1 the disease-free steady state is globally
asymptotically stable. Let’s assume that µ1 = µ2 = µ.

Theorem 2 If c < c0, that is if R0 < 1, the disease-free steady state P0 is
globally asymptotically stable.

Proof We first prove the existence of a global attractor for all the solutions.
Observe that

d

dt
(X + Y ) = A− µ(X + Y ).

Then,

lim
t→+∞

(X + Y )(t) =
A

µ
.

Furthermore, we have

dC

dt
= −αC − νCV ≤ −αC.

This means that limt→∞ C(t) = 0. By continuity, limt→∞E(C(t)) = E0. Let
ε > 0 small enough. There exists Tε > 0 such that for all t ≥ Tε, we have
0 ≤ C(t) < C1 and 0 < E(C(t)) < E0 + ε. As the function E is increasing
on the interval [0, C1), then 0 ≤ C(t) < E−1(E0 + ε). Together these results
imply that for all t ≥ Tε the solutions lie in the set

Ωε =

{
(C,X, Y, V ) ∈ R4

+ : 0 ≤ C < E−1(E0 + ε) and 0 ≤ X + Y <
A

µ
+ ε

}
.

By the latter result, for any choose of the initial conditions on the set Ωε, the
solutions remain in Ωε and satisfy the system

dC

dt
≤ −αC,

d

dt
(X + Y ) = A− µ(X + Y ),

dY

dt
≤ −µ2Y + c (E0 + ε)

(
A

µ1
+ ε

)
V,

dV

dt
≤ kY − (δ + E0)V.
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The couple (Y, V ) can be compared to the solutions (y, v) of the linear system
dy

dt
= −µy + c (E0 + ε)

(
A

µ
+ ε

)
v,

dv

dt
= ky − (δ + E0)v,

(5)

since 0 ≤ Y (t) ≤ y(t) and 0 ≤ V (t) ≤ v(t).
The characteristic equation of the system (5) is

λ2 + (µ+ E0 + δ)λ+ µ(E0 + δ) + kc(E0 + ε)

(
A

µ
+ ε

)
= 0.

Thanks to Routh-Hurwitz stability criterion, the system (5) is asymptotically
stable if and only if

µ(E0 + δ) + kc(E0 + ε)

(
A

µ
+ ε

)
> 0.

This inequality is equivalent to

Rε :=

kc(E0 + ε)

(
A

µ
+ ε

)
µ(E0 + δ)

< 1.

Since R0 < 1 and ε > 0 can be arbitrary chosen, there exists ε > 0 such that
Rε < 1. As the set Ωε is globally attractive, we conclude that the disease-free
steady state is globally asymptotically stable.

3.4 Local asymptotic stability of the endemic steady state

The linearization of the system (2) around the endemic steady state

P1 =

(
0,
µ2(E0 + δ)

kcE0
, Y ∗,

k

E0 + δ
Y ∗
)
,

with

Y ∗ =
A

µ2
− µ1(E0 + δ)

kcE0
,

is given by the system

db

dt
= −(α+ νV ∗)b,

dx

dt
= −cE′(0)V ∗X∗b− (µ1 + cE0V

∗)x− cE0X
∗v,

dy

dt
= cE′(0)V ∗X∗b+ cE0V

∗x− µ2y + cE0X
∗v,

dv

dt
= −V ∗b+ ky − (E0 + δ)v.



12 Mostafa Adimy et al.

The characteristic equation is given by

(λ− λ0)
(
λ3 + a2λ

2 + a1λ+ a0
)

= 0,

with 
λ0 = −α− νV ∗ < 0,

a0 = µ1µ2(E0 + δ)(R0 − 1),

a1 > 0, a2 > 0 and a1a2 − a0 > 0.

We conclude, using the Routh-Hurwitz criterion, that P1 is locally asymptot-
ically stable if and only if a0 > 0 that is if and only if R0 > 1.

4 Numerical results

Fig. 2 shows the temporal evolution of the antibodies population, C(t) =
γB(t), susceptible and infected target cells, X(t) and Y (t), respectively, and
free dengue virus, V (t). System (2) was solved using a Runge-Kutta 4th order
method. We chose the parameter set as α = 0.0198, µ1 = µ2 = 0.1429, δ =
0.22, E0 = 0.05 which are in days−1, A = 106 cells ml−1 days−1, k = 104 (RNA
copies) cell−1 days−1, c = 10−10 ml (RNA copies)−1, γ = 0.5 ml molecules
−1 days−1, β = 0.09 days, ν = 10−8 ml (RNA copies)−1 days−1. The initial
conditions were for C(0) = 2000 molecules ml−1 days−1, X(0) = A/µ1 cells
ml−1, Y (0) = 0 cells ml−1, V (0) = 100 RNA copies cell−1. We considered
t = 0 as the time at which the baby was born, and that C(0) is the amount of
maternal antibodies received at birth. The arrows in Fig. 2(a) and Fig. 2(b)
indicate the exact time when the mother antibodies fails to control the dengue
virus and the DHF can occurs. The dashed line in Fig. 2(c) represents the assay
limit of detection of virus population measured in serial plasma samples from
patients [27]. In vitro experiments, virus titer depends on the concentration
and type of antibody, incubation time, temperature, and inoculation size (for
this, the limit of detection is below the one highlighted in Fig. 2(c) [14]).

Four parameters determine the dynamics of the ordinary differential system
given by (2), R0, β, ν and C(0) (observe that C(0) = γB0 gives the initial
amount of mother antibodies, and R0 is a combination of other parameters).
Fig. 3 shows the influence of each one of the four parameters on the difference
defined by ∆t = tDHF − t1:10, where t1:10 is the time at which the mother
antibodies fails to control the virus and tDHF is the time at which DHF
occurs. Both are highlighted at Fig. 2 and they comprise the time during
the evolution of the population, t1:10 for antibodies and tDHF for infected
cells, at which an abrupt change of the population dynamics is observed. For
the antibodies population, it corresponds to the threshold limit for detection,
B < 10 molecules ml−1, and for the infected cells it is defined numerically as
the time at which the maximum of the derivative of this curve is observed (the
inflection point of the Y curve). Observe that tDHF can be seen (Fig. 2(d))
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Fig. 2 Temporal evolution of the populations of (a) antibodies, (b) susceptible and infected
target cells, and (c) virus. In (d) temporal evolution of the functions t 7→ E(C(t)) and
t 7→ N(C(t)), where C 7→ E(C) and C 7→ N(C) are given by the two curves in Fig. 1. The
parameters are α = 0.0198, µ1 = µ2 = 0.1429, δ = 0.22, E0 = 0.05 all in days−1, A = 106

cells ml−1 days−1, k = 104 (RNA copies) cell−1 days−1, c = 10−10 ml (RNA copies)−1,
γ = 0.5 ml molecules −1 days−1, β = 0.09 days, ν = 10−8 ml (RNA copies)−1 days−1.
The model was rescaled by x = X/A and y = Y/A. The initial conditions are C(0) = 2000
molecules ml−1, X(0) = A/µ1 cells ml−1, Y (0) = 0 cells ml−1, V (0) = 100 RNA copies
cell−1. The arrows in (a) and (b) indicate the exact time when the mother antibodies fails
to control the dengue virus and the DHF can occurs. The dashed line in (c) represents the
assay limit of detection of virus population measured in serial plasma samples from patients.

as the time in which the phenomenon of Antibody-Dependent Enhancement
is set up. The main parameter set used in the simulation was α = 0.0198,
µ1 = µ2 = 0.1429, δ = 0.22, E0 = 0.05 which are in days−1, A = 106 cells
ml−1 days−1, k = 104 (RNA copies) cell−1 days−1, c = 3.2× 10−11 ml (RNA
copies)−1, γ = 0.5 ml molecules −1 days−1, β = 0.09 days, ν = 10−8 ml (RNA
copies)−1 days−1. The initial conditions were for C(0) = 2500 molecules ml−1

days−1, X(0) = A/µ1 cells ml−1, Y (0) = 0 cells ml−1, V (0) = 100 RNA
copies cell−1. The variation of R0 was done throw changes on the parameter
c from 2 × 10−11 to 4.8 × 10−11 (Fig. 3(a)). The parameter β varies from
0.01 to 0.2 (Fig 3(b)), the parameter C from 15 to 4100 (Fig 3(c)), and the
parameter ν varies from 9 × 10−10 to 1 × 10−8 (Fig 3(d)). As R0 increases
the difference ∆t decreases. The increasing of the other parameters promotes
the decreasing of ∆t. The dashed line in each panel indicates the observed 2
months of difference between the occurence of hemorrhagic fever and the limit
of the protective level of mother antibodies.
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Fig. 3 ∆t = tDHF − t1:10 versus model parameters. The main parameter set is α = 0.0198,
µ1 = µ2 = 0.1429, δ = 0.22, E0 = 0.05 which are in days−1, A = 106 cells ml−1 days−1,
k = 104 (RNA copies) cell−1 days−1, c = 3.2 × 10−11 ml (RNA copies)−1, γ = 0.5 ml
molecules −1 days−1, β = 0.09 days, ν = 10−8 ml (RNA copies)−1 days−1. The initial
conditions were for C(0) = 2500 molecules ml−1 days−1, X(0) = A/µ1 cells ml−1, Y (0) = 0
cells ml−1, V (0) = 100 RNA copies cell−1.

Fig. 4 shows the relation between C(0) = γB0 and tDHF and the histogram
of the number of occurrence of DHF cases by tDHF . The first one shows a
fast initial increased until a saturation behavior starts to be observed. The
histogram was construct using the observed tDHF obtained at Fig. 4(a). The
largest number of DHF occurs at 8-10 months. This depends strongly on the
parameter set used in the simulations. For the parameter set chose, R0 =
36.3. The initial condition for B0 was varied from 30 to 8200 molecules ml−1.
Changes on the shape of the enhancement and neutralization function (by
varying the parameters β and γ) increase or decrease the age at which the
peak of DHF cases is seen without changing the R0 of the virus, which means
that the steady state of the system is the same, but the transient dynamics is
different. Overall, the decrease on β and γ promotes the decrease of the age
at which the peak of DHF occurs, while the increase of R0 has an opposite
effect over it.
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Fig. 4 C(0) = γB0 versus tDHF and histogram of the number of DHF occurrence by the
time at which DHF occurs, tDHF . The parameters are α = 0.0198, µ1 = µ2 = 0.1429,
δ = 0.22, E0 = 0.05 all in days−1, A = 106 cells ml−1 days−1, k = 104 (RNA copies) cell−1

days−1, c = 4 × 10−10 ml (RNA copies)−1, γ = 0.5 ml molecules −1 days−1, β = 0.09
days, ν = 10−8 ml (RNA copies)−1 days−1. The initial conditions for C(0) varies from 15
to 4100 molecules ml−1. The others are fixed as X(0) = A/µ1 cells ml−1, Y (0) = 0 cells
ml−1, V (0) = 100 RNA copies cell−1.

Fig. 5 show the Partial Rank Correlation Coefficient (PRCC) obtained for
the sensitivity analysis using ∆t and R0 as the output. The input parameters
were chosen from an uniform distribution using the Latin Hypercube Sampling
(LHS); the ranges of the parameters were taken from Fig. 3 for panel (a) and
from Table 1 for panel (b). In Fig. 5(a), we can see that the increase of R0

promotes the decrease of ∆t, while the increase of β, C(0) and ν promotes
the decrease of ∆t. The order (decreasing order) of importance related to the
contribution of each parameter to ∆t is C(0), β, R0 and ν. In Fig. 5(b), the
increase of A, c, k, E0 promotes the increase of R0, while the increase of
δ, µ1 and µ2 promotes the decrease of R0. The order (decreasing order) of
importance related to the contribution of each parameter to R0 is {µ1, µ2}
(equal contribution, given that µ1 = µ2 in the simulations), {A,c,k} (equal
contribution) and δ.
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Fig. 5 Sensitivity analysis using ∆t (in (a)) and R0 (in (b)) as the output. The input
parameters were chosen from an uniform distribution using the Latin Hypercube Sampling.
The ranges of the parameters were taken from Fig. 3 for panel (a) and from Table 1 for
panel (b).

5 Discussion

The introduction and the co-circulation of several dengue virus in many coun-
tries had caused the increase on the number of hospitalizations and severe
dengue cases among infants, children and adults. The occurrence of DHF on
primary infections on infants and on secondary infections in children and adults
is associated with the enhancement of the infection promoted by the presence
of dengue antibody from a previous infection or acquired passive from dengue-
immune mothers. This feature turns the development of vaccines for dengue
immunization a challenge.

The absence of an experimental model, and the difficult of obtained data of
virus and immune system dynamics since the beginning of the infection makes
the advance of the acknowledging of the mechanisms of virus invasion, replica-
tion and control by the immunological system longstanding. The complexity
of the study of virus-immune system interactions in adults can be overcome
by addressing the problem in infants, where the role of antibodies in DENV-
induced disease can be separated from the others components of the immune
response.

Neonates have an immature immune system that fails to generate a strongly
response against infections. Their immune protection is booster by maternal
antibodies transferred before birth transplacentally from mother to the off-
spring. This antibodies decay naturally during child develops, followed by the
maturation of their immune system. The kinetics of maternal antibody decline
is correlated to the amount of maternal antibody present in the neonate after
birth, in such a way that higher antibody titers persists for a longer time,
being 6-12 months the mean time.

Neutralization of the virus by antibodies involves a stoichiometry that ex-
ceeds a threshold and is governed by antibody affinity and epitope accessibility.
Paradoxically enhance virus replication is mediated by antibody-dependent en-
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hancement, where subneutralizing antibody titers leads to a booster on virus
uptake and replication in target cells.

Following the biological hypothesis described above, we proposed an ODE
model that mimics the occurrence of DHF in infants triggered, basically, by
three model’s parameters R0, C(0) = γB0 and β (Fig. 3). The first one mea-
sure virus fitness, the second one the protection promotes by mother’s antibod-
ies, and the third one the shape of neutralization and enhancement functions.
R0 is a threshold for disease persistence, if R0 < 1 the asymptotic stability
of disease-free equilibrium given by the dynamical model is disease extinc-
tion, and if R0 > 1 we have an unique endemic equilibrium where the disease
persists. Moreover, the survive of the target cells is the most important pa-
rameter that impacts positively R0, in a way that increasing survive of target
cells promotes the increase of R0. Competition between neutralization and
enhancement is provided by the consumption of antibodies given by virus and
antibodies concentration (Fig. 2). These two functions are shaped by γ, β and
E0 values which were setted up to reproduce the data of dengue hemorrhagic
in babies given at Fig. 4. Antibodies concentration arrives at titer 1:10 (t1:10)
before DHF is settled up (tDHF ). The difference ∆t = tDHF −t1:10 depends on
the three main parameters described before, in such away that increase on R0

promotes the decrease of ∆t, and the increase on the others two parameters
promotes the increase of ∆t. Therefore, for a predefined, knowing and fixed
enhancement and neutralization function, the delay on the DHF is related to
the amount of antibodies received by the infant and virus kinetics (Fig. 5).
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