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Abstract 

Demand response programmes reduce peak-load consumption and could increase off-
peak demand as a load-shifting effect often exists. In this research we use a three-stage game 
to assess the effectiveness of dynamic pricing regarding load-shifting and its economic 
consequences. We consider a retailer’s strategic supplies on forward or real time markets, 
when demand is uncertain and with consumer disutility incurred from load-shedding or 
load-shifting. Our main results show that a retailer could internalize part of demand 
uncertainty by using both markets. A retailer raises the quantities committed to the forward 
market if energy prices or balancing costs are high. If the consumer suffers disutility, then 
the retailer contracts larger volumes on the forward market for peak periods and less off 
peak, due to a lower load-shifting effect and lower off-peak energy prices. 
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I. INTRODUCTION 

In the transition towards a low carbon economy, deploying renewable energies (RE) and 
improving energy efficiency (EE) take on huge significance. By 2060, in the 2°C scenario of the 
International Energy Agency, RE and EE are expected, respectively, to account for 35% and 
40% of reductions in greenhouse gas emissions (IEA, 2017). Investing in smart grids (Gwerder 
et al., 2019) is one way to make it easier to achieve these efficiency and environmental goals 
(Clastres, 2011; Bergaentzle et al., 2014). Moreover, retailers will be able to offer dynamic 
pricing to consumers, with retail prices reflecting market constraints (Chao, 2010). In this new 
context demand responds to prices when a dynamic tariff is introduced (Faruqui et al., 2010a; 
Faruqui et al., 2010b; Faruqui and wood, 2008; Faruqui and Sergici, 2010). Moreover, 
implementing DR can yield significant economic and environmental gains (Borenstein, 2002; 
Borenstein et al., 2002; Borenstein, 2005; Chao, 2010; Faruqui et al., 2007; Haney et al., 2009; 
Hogan, 2009). These gains are linked to the decrease in peak-load prices and peak generation, 
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and to reshaping of the demand curve to better integrate intermittent energy sources (Strbac 
et al., 2006; Hesser and Succar, 2011). Additional benefits could be derived from energy 
savings and lower bills for consumers (Dahlke and Prorok, 2019; Haney et al., 2009), or from 
reduced transmission and distribution investments (Strbac, 2008). However excessive load-
shifting increases energy bills in off-peak periods (Rious et al., 2012) or creates additional peak 
periods, simply displacing the critical period (Torriti, 2012; Allcott, 2011; Spees and Lave, 
2007). So, such gains may be modulated by rebound and load-shifting effects2, thus increasing 
consumer disutility due to higher prices and efforts to save energy (Clastres and Khalfallah, 
2015; Horowitz and Lave, 2014). 

We use a Stackelberg-based model or bi-level programming problem (Zugno et al., 2013) to 
study the impact of dynamic pricing and load-shifting on a retailer’s electricity supply to 
consumer markets. The retailer is a lead player, anticipating consumer response to the retail 
market. The retailer faces demand uncertainty in the day-ahead market, due to uncertain 
weather conditions and unpredictable consumer response to dynamic pricing. First level 
decisions by the retailer concern energy bought on the day-ahead market and the volume of 
balancing energy purchased on the real-time market. The second-level decisions relate to 
consumer response to dynamic pricing on the retail market. So the model can be formulated 
as a mathematical program with equilibrium constraints (MPEC)3, in which the retailer buys 
energy on the day-ahead market subject to real-time market equilibrium, once weather 
conditions are known, and to retail market equilibrium when real consumer demand is 
observed. Solutions of the overall game are found by backward induction. The mixed 
complementarity problem (MCP) technique is used to solve the game’s sub-problems, 
calculating equilibrium at each stage (Gabriel and Smeers 2005). Our game can be formulated 
as an MCP problem since all the decision variables are non-negative, which entails 
complementarity between decision variables and their respective first-order conditions. Also, 
all the constraints of our mathematical program take the form of inequalities, which define the 
lower or upper bounds on decision variables. The equations associated with the non-negative 
variables, decision variables and dual variables of inequality constraints are called 
complementarity conditions. A complementarity relationship between the model’s constraints 
and their respective dual variables can then be obtained. With this approach the equilibria at 
each stage are defined as a set of prices and quantities which simultaneously satisfies the first 
order optimality conditions and complementarity conditions of the program4.  

We show, through five propositions, that load-shifting and delaying of shifted 
consumption depend on the value consumers assign to their peak and off-peak consumption. 
In a context of high forward-prices retailers adapt their procurement strategies by contracting 
on the day-ahead market for off-peak hours. They anticipate substantial load-shifting and the 
likelihood of high balancing costs too. In so doing they minimize procurement costs and 
reduce retail prices for consumers. 

The paper is organized as follows. Section 2 contains a review of the literature and we 
position our research in this context. In Section 3 we present the stochastic model and the 
equilibrium we obtain on the forward, real-time and retail markets. Section 4 analyses our 
results in terms of prices, uncertainty and consumers disutility. Section 5 concludes with the 
main recommendations of our study. 

 
2 Overall demand could be lower, constant or higher, mainly due to rebound or load-shifting effects 

(Greening et al., 2000; Muratori et al., 2014). 
3 For a formal definition of MPEC problems, see Alder et al. 2004. 
4 More details on this technique are provided in Appendix 1. 
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II. LITERATURE REVIEW 

The literature on DR has mainly focused on assessing how consumers respond to dynamic 
pricing. It relies largely on laboratory experiments, data analysis and econometric models 
(Faruqui et al. 2014), estimating short and long-term demand elasticity (Cuddington and 
Dagher 2015, Burke and Abayasekara 2018)), and the impact on consumer welfare of 
alternative electricity pricing (Fouquet 2018). Their conclusions converge on several results: 
introducing dynamic pricing reduces peak demand and shifts consumption to off-peak hours; 
demand becomes more elastic. On the other hand research differs with regard to the consumer 
sectors and countries on which it focuses, the methodology used to make estimates, or indeed 
whether or not consumer receive incentives for accepting load-shifting or to compensate for 
disutility incurred through load-shedding. Matsukawa et al. (2000) study the introduction of 
a time-of-use (TOU) rate in Japan, drawing on consumption data from 1996. In particular their 
results show how consumers fitted with flexible appliances opt to receive an incentive and 
reduce peak consumption. Di Cosmo et al. (2014) also analyse the impact of TOU pricing on 
consumers by introducing various other stimuli (in-home display [IHD], monthly and bi-
monthly billing). Their results show that variation in consumption does not mirror exactly 
variation in price, a finding that highlights the need to carry on providing frequent information 
to perpetuate behaviour that reduces demand. Eryilmaz et al. (2017) analyse the demand-
response strategies of industrial consumers on the MISO market. They note that retail 
industrial consumers could participate in more DR services by optimizing the use of their 
flexible capacity. Frondel and Kussel (2019) use an econometric model similar to the one 
developed by Eryilmaz et al. (2017) to study the demand elasticity of consumers receiving 
information on the characteristics of retail prices. They observe that demand responds to 
marginal prices and recommend that operators sell supply contracts based exclusively on the 
price per kWh. Fenrick et al. (2014) study the experimental introduction of TOU, critical peak 
pricing (CPP) and IHDs in Minesota and South Dakota, USA. They demonstrate that there is 
significant elasticity of substitution and consequently shifting for all (urban and rural) 
consumer categories.  

Some of these articles address the issues of disutility and loss of welfare associated with DR 
and the associated services or dynamic pricing schemes. Rodrigues and Linares (2015) show 
that overall demand falls – in other words loads shed at peak hours are only partly shifted to 
off-peak hours. The slight increase in off-peak prices has only a marginal effect on consumer 
surplus. On the other hand, the impact on collective welfare is negative following a reduction 
in upstream profits.  Alberini et al. (2019) study demand elasticity in Ukraine, in a context of 
continuously high prices. Consumers must cope with inclining block rates. The authors show 
that consumers are aware of the pricing structure, but reduction in demand is rare and 
depends on the level of household equipment. Price rises have a negative impact on household 
surplus due to their low level of response. Woo et al. (2017) add to DR literature by using 
generalized Leontief (GL) demand analysis, while assuming low elasticity of substitution. 
They show that demand changes depending on the ratio between peak and off-peak prices, 
off-peak consumption displaying substantial growth with this ratio. The authors also assert 
that savings made thanks to DR improve welfare and compensate for the disutility incurred 
by consumers due to the cost of introducing DR. Simshauser and Downer (2016) study 
efficiency gains and inter-and intra-segment wealth transfers arising from existing flat-rate or 
dynamic (TOU and CPP) tariffs. They show that consumers only slightly reduce overall 
consumption but alter its structure by shifting usage from peak to off-peak hours. This effect 
is even more noticeable when network tariffs increase, which reduces the surplus enjoyed by 
some consumers due to a drop in cross-subsidies. Nakada et al. (2016) analyse incentives for 
households to invest in distributed solar-power infrastructure in Japan in order to maintain a 
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constant level of utility with TOU pricing. To participate in DR services consumers must 
change their lifestyle, for otherwise their bills increase and their welfare suffers. The authors 
conclude that consumers who are subject to TOU and are well informed are the most likely to 
purchase solar power technology. In which case they participate in a DR service, reducing 
peak consumption without any loss of comfort, curtailed energy being supplied instead by the 
photovoltaic system and self-consumed. Richter and Pollitt (2018) analyse the form of 
contracts including smart services that consumers are prepared to pay for. The authors show 
positive willingness to pay (WTP) for energy-saving services (technical support, IHD, personal 
feedback), but negative WTP (willingness to accept - WTA) for services related to the use of 
consumption data and control of electricity usage. Broberg and Persson (2016) report a choice 
experiment estimating how willing consumers are to pay for demand-side management 
services. Their results show that consumers attach great importance to their comfort and to the 
disutility incurred from direct-load control. Furthermore, consumers are less flexible in their 
(peak) evening usage and load-shifting entails a cost that must be compensated. Feuerriegel et 
al. (2016) show that retailers offering DR services achieve positive net present value through 
load-shifting. However, an increase in the frequency of data-polling – and consequently in 
infrastructure and information technology costs – impacts profits. De Castro and Dutra (2013) 
focus on investment in smart grids to secure the reliability of the electricity system and set up 
DR. They note that investments are sub-optimal because consumers’ willingness to pay for 
reliability does not match its true cost. The regulator must internalize the risk taken by utilities 
in order to restore optimal conditions for investment.  

A third batch of literature studies demand response by modelling several electricity 
markets and the impact of transfers between agents, in particular with the introduction of 
dynamic pricing. Zugno et al. (2013) analyse the procurement strategy of a retailer drawing on 
two markets, the day-ahead market (DAM) and the real-time market (RTM), both subject to 
price uncertainty. The authors conclude that the retailer prefers to adopt a long position when 
negotiating purchases on the DAM. Demand response enables it to reduce the cost of 
purchases, by postponing part of peak consumption, but also to minimize imbalance costs. 
Welfare increases because the retailer’s costs drop, with dynamic pricing, in particular real-
time pricing (RTP), because it results in more DR and load management. Consumer comfort 
intervals are comparable. Damien et al. (2019) set out to estimate how consumers respond to 
DAM and RTM price signals, using ERCOT data. Their findings show that consumers are more 
sensitive to DAM than to RTM prices. Consumers with prior knowledge of DAM prices have 
more scope for adjustment. The authors also note that few consumers have an incentive to 
adjust their usage in real time, unless such adjustment is automated. Chao (2011) analyses the 
conditions of DR efficiency. The author notes that the customer baseline must be covered by a 
contract, between retailer and consumer, in order to make it efficient, thus overcoming any 
gaming incentive and double payment undermining performance. Crampes and Leautier 
(2015) also conclude that the optimal solution is to compensate retailers for load-management; 
otherwise consumers must make a contractual commitment to baseline consumption. Chen 
and Kleit (2016) study the importance of calculating a customer’s baseline (CBL) using data 
from the PJM market. They show that learning effects prompt consumers to manipulate their 
CBL in order to participate in more DR services, in particular through strategic use of air-
conditioning. Chao (2010) notes that the introduction of real-time pricing is efficient in that it 
reduces cross-subsidies between peak and off-peak consumers, thus restoring efficiency in 
terms of the energy consumed at different times and for different price signals. Holland and 
Mansur (2006) report that such pricing must apply to a critical mass of consumers for it to 
reduce peak load but with substantial load-shifting to off-peak periods. On the other hand, 
many empirical experiments on RTP highlight the difficulty achieving a sufficient number of 
participants to really improve system efficiency (Barbose et al., 2005; Navigant Consulting Inc., 
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2011). Furthermore, Leautier (2014) uses an analytical approach to show that the impacts on 
welfare of RTP, through deployment of smart meters, is not economically efficient for all 
consumers. Over a critical number of users, installing smart meters for all consumers reduces 
welfare, marginal gains being lower that the marginal cost of installing smart meters. 

The literature modelling short or long-term electricity market interaction also focuses on 
the optimal strategies for generator with regard to investment, power generation and pricing 
behaviour (Hobbs et al. 2000, Gabriel and Smeers, 2005 and Ritz and Teirila, 2019). The 
strategies of retailers and consumers are generally overlooked, on the assumption that they 
are either passive, or are too inflexible to influence market outcome. Some research, that has 
considered the strategy of retailers, has examined the extent to which their interaction on 
forward and real-time electricity markets would affect their business. It has been 
demonstrated, using analytical and computational models, that retailers have an incentive to 
contract more energy on forward markets to secure uncertain demand (Kamat and Oren 2004). 
This incentive increases when energy imbalances in real-time markets give rise to penalties 
(Khalfallah and Rious 2013). However, in a context of dynamic pricing, responsive final 
consumers could alter such forecasts. Their strategies may distort outcomes and overall 
equilibria in forward, real-time and retail markets. In a context of this sort the analytical model 
developed here proposes, to our knowledge, an original methodology for assessing the 
economic impact of dynamic pricing by modelling the short-term strategies of retailers and 
consumers.  

Our paper adds to the literature on modelling three-stage stochastic games which focuses 
on optimal strategies for consumers and retailers in the foreseeable context of dynamic pricing. 
We model the following three market stages: day-ahead; real-time; and retail market. Day-
ahead market decisions are made with an uncertain expectation of future demand, so we 
assume a closed-loop information structure to simulate interaction between players’ decisions. 
A second originality of this work is that it uses an analytical approach to solve the game, hence 
a more robust, widely applicable solution to assist decisions by policy-makers. This contrasts 
with the literature in which only numerical applications are used to find solutions based on 
parameter specifications (Saguan and Meeus, 2014). To capture consumer disutility, our paper 
also assumes a coefficient. So, our research could contribute to understanding consumer 
behaviour, by focusing on their consumption profile. A strong disutility parameter could 
indicate great interest in peak consumption, due to a lack of flexibility or a preference for peak-
load energy usages.  

 
 

III. THE MODEL 

We introduce a three-period stochastic model to study how dynamic pricing affects retail 
decisions by consumers and short-term outcomes on electricity markets as a whole. The basic 
idea behind this model is that when moving from a regulated to a dynamic pricing scheme, 
end consumers should be encouraged to adopt more energy-efficient patterns of consumption, 
either by reducing overall usage or at least delaying it. However, the economic impact of such 
energy efficiency in terms of social welfare has rarely been explored. Consumers choose 
between costly energy and the disutility of reducing consumption, or load-shifting. On the 
other hand, the retailer must cope with real-time demand that is not only uncertain but also 
uncontrollable, consumers now being responsive. So, the retailer must change their strategy 
on short-term markets. 
 
 



 7 

3.1 Main assumptions 

The model considers the decisions taken by energy retailers5 in day-ahead and real-time 
markets, and decisions by consumers at two typical times of the day: off-peak and peak hours6. 
We consider uncertainty affecting future demand when the retailer decides to purchase energy 
on the forward market. Such uncertainty is represented by a finite set of scenarios. 

The model consists of three periods (see Figure 1). We assume that, at each period, the 
players observe all the actions of previous periods. They base current decisions on that 
information and on their “correct” rational expectation of the behaviour of all the other players 
in the current period and on the outcomes of subsequent periods. 

We shall now explain the model backward. The third and last period (the retail market) 
represents the consumption period7. The period is divided into two sub-periods, off-peak and 
peak. To analyse how consumers, respond to dynamic pricing, we assume a benchmark case 
in which power is supplied at a regulated, flat price. We then analyse how consumers adapt 
their choice under dynamic pricing. In the benchmark case consumer demand, when known, 
is inelastic for the two sub-periods. Under dynamic pricing an electricity price function is 
offered to consumers. They decide on the volume required to meet their real needs, but they 
can now reduce or shift consumption from the peak to the off-peak period to avoid paying 
excessive prices. With the roll-out of smart technologies retailers can offer consumers a 
contract based on dynamic pricing (such as CPP or RTP). In this way retailers charge 
consumers, a price that reflects both the degree of competition on the retail market and 
equilibria on wholesale energy markets. Consumers must adapt their demand to suit these 
new pricing schemes, to avoid higher energy bills and some disutility entailed by dynamic 
pricing. However, we assume that reducing or shifting peak consumption would certainly 
create disutility8. Consumers must spend time, frequently monitoring signals from the retailer, 
smart appliances and other sources of information to adjust their usage in line with market 
conditions (Nakada et al., 2016). These changes take time and consequently incur disutility. To 
maximize utility consumers, determine how much they consume at the retailer’s price and for 
each sub-period. They then decide whether to shift or shed loads. The volumes in play will 
depend on wholesale prices and retailer costs.  

In the second period, (the real-time market), effective consumer demand is known, which 
could be normal or extreme with regard to prior expectations on the day-ahead market. For 

 
5 Only one retailer is modelled in this study. The possibility that consumers switch to a different 

retailer is not considered. This assumption can be justified in three ways. Firstly, the process of 
switching retailer is rather slow compared to the optimization horizon considered here. It is true that 
competition between retailers should have an impact on the dynamic-pricing outcome and on retail 
prices in general, but this impact should be low. It is widely argued that the final electricity price mainly 
reflects player interaction in upstream markets, so the outcomes of day-ahead and real-time markets are 
sufficient to signal the electricity price paid by end-consumers. Finally, the paper analyses the welfare 
efficiency of dynamic pricing by focusing on interaction between the retailer and flexible consumers in 
their respective markets. Competition between retailers can be disregarded without trivializing the 
scope of the study. 

6 As in Zugno et al. (2013) we make no allowance for network-access tariffs. Positing a risk-neutral 
system operator, as in Simshauser and Downer (2016), leads to higher transmission tariffs under DR. 
This increase may be captured by the resale factor γ which increases sale prices in the retail market. 

7 We assume one representative consumer and that consumers are homogeneous, with the same 
demand (Leautier, 2014) and disutility functions. 

8 For detailed consideration of the causes of disutility following the introduction of DR or dynamic 
pricing, see Nakada et al. (2016). 
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simplicity’s sake we assume that at this stage the retailer is a passive player9. It has an 
obligation to balance its demand in line with the consumption it really serves. On the other 
hand, the retailer faces two possible market situations. Either it has bought more energy from 
the day-ahead market than justified by the demand it actually serves, or it has bought less. The 
real-time clearing price is then defined by considering that retailers can be penalized beyond 
the marginal price of electricity in real-time if an imbalance is observed10. The argument 
underpinning this design is that the retailer has less incentive to rely on real-time market to 
supply the load demanded by its end consumers. The penalty is generally calculated as a 
function of the type of retailer imbalance (positive, due to surplus forward volume in relation 
to load; or negative, volume shortfall in relation to load). To simplify our model, the penalty, 
applied to marginal price, is computed as follows: the negative (or positive) imbalances prices 
are computed explicitly by multiplying (or dividing) the marginal price of electricity in the 
real-time market by a constant11.  

Lastly, in the first period (the day-ahead market), we formulate a stochastic problem in 
order to optimize the retailer’s day-ahead commitments12. The formulation is a MPEC in which 
equilibrium constraints are the consumer’s best reply on volume in the subsequent retail 
market, the retailer’s real-time balancing volume, the real-time price paid by the retailer, and 
the retail price paid by the consumer. The retailer buys a day-ahead volume knowing how the 
consumers will optimally respond in the subsequent real-time stage, for each realization of 
expected real-time market demand. At this stage, the retailer faces uncertainty as to the level 
of demand it must serve in the subsequent real-time step.  

 

 

 

 

 
 
 

Figure 1. Timing of events 
 

3.2 Variables and notations 

Index: 
𝑖 = 𝑙, ℎ                         consumption period index: l if off-peak and h if peak 

𝑤 = 𝑁, 𝑢𝑝                   demand uncertainty index: N if normal and up if extreme   

𝐷𝐴                      day-ahead market index (first period) 

𝑅𝑇                                real-time market index (second period) 

𝑅                        retail market index (third period) 

 
9 This assumption is realistic since in real-time markets, with or without balancing schemes, the 

retailers are under a greater obligation to balance their specific demand rather than to act strategically 
and try to manipulate prices. Such behavior is more likely in forward markets.  

10 France and Belgium, for instance, impose imbalance penalties. 
11 Since there is only one retailer in our model, its imbalance corresponds to the system imbalance.  
12 We consider the day-ahead market as the common forward market where market players take 

decisions subject to uncertain demand. However, the study could be extended to include more forward 
markets. 

Period 1                              Period 2                               Period 3 

 

 Retailer commitment 

on the day-ahead market 

while real demand is 

uncertain 

Demand is known: 

the retailer balances 

specific demand drawing 

on the real-time market 

Consumers respond 

to dynamic pricing in the 

retail market 
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Decision variables: 

𝑄𝑖
𝐷𝐴                              retailer’s commitment on the day-ahead market for real-time period i 

𝑄𝑖,𝑤
𝑅𝑇                           retailer’s balancing volume on the real-time market, period i and state w 

𝑄𝑖,𝑤
𝑅                           volume consumed in period i and state w 

𝑄𝑟𝑒𝑝,𝑤
𝑅𝑇                       volume of load shifted from peak to off-peak period in state w 

 
Parameters 

𝑃𝑖
𝐷𝐴(. )                     day-ahead electricity price for consumption period i 

𝑃𝑖,𝑤
𝑅𝑇(. )                      real-time electricity price function, in period i and state w 

𝑃𝑖,𝑤
𝑅 (. )                      retail dynamic price function, in period i and state w 

𝑀𝐶𝑖
𝐷𝐴(. )                marginal cost function of the marginal producer on the day-ahead market 

and for    period i 

𝑔𝑖,𝑤
𝑅𝑇(. )                      retailer’s profit in real time, period i and state w 

𝐸𝑤(. )                       expected optimal profit function of retailer in real time 

 ∆𝑆𝑖,𝑤                        variation in consumer utility function with dynamic pricing, in period i 
and state w    

𝑄̅𝑖
𝑅𝑇                          maximal electricity demand, expected in next period i  

𝑄̅𝑅𝑇                          maximal total expected electricity demand  

𝛾                               resale factor13 

𝑐                               retailers’ delivery cost 

𝛼                               penalty factor in real-time 

𝑚, 𝑛                          intercept and slope of marginal cost function of marginal unit on the 

day-ahead market 𝑄𝑖
𝐷𝐴 ↦ 𝑀𝐶𝑖

𝐷𝐴 = 𝑚+ 𝑛 ∗ 𝑄𝑖
𝐷𝐴  

βi                              (dis)utility factor, given the decision to delay consumption in period i 

μi                              binary parameter of load-shifting equal to 1 in peak period (disutility) 
and -1 in off-peak (utility). 

Pi
R

                             regulated retail price before dynamic pricing, in period i 

 

3.3 Formulations of the three stages game 

Third period (retail market stage) 

We start by formulating the third-period problem. To analyse consumer response to 
dynamic pricing, we assume a benchmark case in which power is supplied at a regulated, flat 

rate Pi
R

. Nature determines the state of the world. For a given state w, consumer demand, when 

 
13 The resale factor γ may integrate the various costs related to supply and competitive mark-up 

(retail margin).  
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known, is inelastic and can be expressed by Q̅l
RTand Q̅h

RTrespectively for off-peak and peak 
periods. With dynamic pricing, an electricity price function is offered to consumers. They 

decide on volume (Qi,w
R ) depending on their real needs, but they can now reduce or shift 

consumption to avoid paying possibly excessive prices (Pi,w
R ). However, reducing or shifting 

consumption at peak hours certainty entails disutility. Consumers maximize their total utility 
to determine which volumes they consume at the retailer’s price. Volumes will depend on 
wholesale prices and the retailer’s costs. We define the consumer utility function in a period i 
as: 

max
Qi,w
R
∆Si,w = (Pi

R
-Pi,w
R ) . Qi,w

R -μiβi. (Q̅i
RT-Qi,w

R )
2
                      (1) 

Subject to, 

∑ Qi,w
R

i ≤ Q̅RT        (λ1)                     

      (2) 

𝑄ℎ,𝑤
𝑅 ≤ 𝑄̅ℎ

𝑅𝑇         (𝜆2)                     

      (3) 

𝑄𝑙,𝑤
𝑅 ≥ 𝑄̅𝑙

𝑅𝑇         (𝜆3)                     

      (4) 

𝑄𝑖,𝑤
𝑅 ≥ 0                             (5) 

Where, 

𝜆𝑖 ≥ 0   Dual variables of the constraints 

𝑃𝑖,𝑤
𝑅 = 𝛾. 𝑃𝑖

𝐷𝐴 and 𝛾 > 1                                                                           (6) 

The consumer utility function (1) is defined as the variation in consumer surplus when 
moving from regulated to dynamic pricing. The first term captures the price effect of dynamic 

pricing as consumers now pay the real-time price (Pi,w
R ). The second term shows the volume 

effect of dynamic pricing. It assumes that consumers incur an opportunity cost from reducing 

or shifting peak consumption (Q̅h
RT > Qh,w

R ). βh is the disutility factor at peak hours, whereas 

off-peak consumption cannot be lower than the consumption benchmark (Ql,w
R ≥ Q̅l

RT), so 

shifting the load to off-peak hours, would generate an opportunity gain for consumers (βl) 

without fully compensating the disutility of load-shifting (βl < βh)14. Stated differently, 
reducing energy usage or load-shifting is only possible at peak hours. During off-peak hours, 
consumers are not really affected by dynamic pricing, prices are obviously attractive, and they 
may even increase their consumption to compensate for reduced peak demand. We assume a 
non-linear increasing function for the opportunity cost or gain of load-shifting, 

 (βi. (Q̅i
RT-Qi,w

R )
2
), to allow for the increasing marginal impact of load-shifting on consumer 

welfare, regardless of their consumption profile.  

Dynamic pricing schemes are designed to reduce overall consumption. So, we assume a set 
of constraints (2-5) expressing the fact that additional peak consumption can only decrease, 
whereas off-peak will increase because of possible load-shifting.  

The assumptions for the previously specified model ensure that (1-6) is a convex 
programming problem, which implies that first order conditions are sufficient for optimality 

 
14 Off-course, the decrease in consumers’ welfare because of load-shedding in peak period could not 

be totally compensated by the load-shifting to off-peak period.  
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(Gabriel and Smeers 2005). So, to solve the period-3 problem, we can just formulate an MCP 
program that can be solved as discussed in Appendix 1. 

 
Second period (real-time market stage) 

In real time effective consumer demand is known. The retailer faces two market situations: 
either it has bought more energy on the day-ahead market than the demand it has really 
served; or it has bought less.  

The real-time clearing price can thus be defined as: 

𝑃𝑖,𝑤
𝑅𝑇 = {

𝛼. 𝑃𝑖
𝐷𝐴 𝑖𝑓 𝑄𝑖

𝐷𝐴 < 𝑄𝑖,𝑤
∗𝑅

1

𝛼
. 𝑃𝑖
𝐷𝐴 𝑖𝑓 𝑄𝑖

𝐷𝐴 > 𝑄𝑖,𝑤
∗𝑅                                               

      (7) 

The retailer is penalized by paying more than the market price in the event of negative 

system imbalance (Qi
DA < Qh,w

*R ) and otherwise by receiving a lower price. It has an obligation 

to balance its demand with regard to the real consumption response function, as determined 
in the previous program. The retailer’s profit can thus be determined as follows: 

𝑔𝑖,𝑤
𝑅𝑇 = ∑ (𝑃𝑖,𝑤

𝑅 − 𝑐)𝑖 𝑄𝑖,𝑤
∗𝑅 − ∑ 𝑃𝑖,𝑤

𝑅𝑇
𝑖 . 𝑄𝑖,𝑤

∗𝑅𝑇               

      (8) 

where, 

𝑄𝑖,𝑤
∗𝑅𝑇 = 𝑄𝑖,𝑤

∗𝑅 − 𝑄𝑖
𝐷𝐴                                                          (9)  

is the real-time quantity bought or sold by the retailer to balance the demand it serves? 

 
First period (day-ahead market stage) 

In the day-ahead market, the retailer schedules its load before the operating day. It faces 
uncertainty as to the level of demand it will serve in the subsequent real-time step. Considering 

these uncertainties, the retailer chooses the quantities Qi
DA it needs to buy for each 

consumption sub-period i by maximizing its expected profit with regard to its purchase 
strategies. To do so, we formulate a stochastic problem in order to determine the optimal day-
ahead contracts for the retailer. This formulation takes the form of a MPEC problem in which 
the equilibrium constraints are integrated in the model below: real consumer demand in 

period i and demand state w, Qi,w
*R , the retailer’s real-time balancing volume, period i and 

demand state w, Qi,w
*RTand the respective real-time price and consumer retail price, 𝑃𝑖,𝑤

𝑅𝑇 and 𝑃𝑖,𝑤
𝑅  

. In other words, in this stage, the retailer buys the volume Qi
DA knowing how the consumers 

will optimally respond in the subsequent real-time stage, for each realization of the expected 
real-time market demand. 

Basically, maximizing MPEC problems are constrained by a non-concave region, so it is 
difficult to simply write down the necessary first-order conditions and aggregate them into a 
large problem to be solved directly. Non-concavity would generally lead to multiple local 
optima or the absence of equilibrium (Sauma and Oren 2006). In our case the first period’s 
MPEC maximization problem is re-arranged and defined as a concave maximization function. 
The retailer, which leads our bi-level programming problem, maximizes a concave expected 
profit, integrating the optimality conditions for the second and third periods. The optimization 
problem thus becomes analytically tractable (Hobbs et al. 2000). Appendix 2 provides details 
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of our methodology to explain and justify the resolution of the model below and asserts its 
tractability.  

The overall retailer optimization problem is described as follows: 

max
𝑄𝑖
𝐷𝐴
[𝐸𝑤(𝑃𝑟𝑜𝑓𝑖𝑡) = −∑ 𝑃𝑖

𝐷𝐴 ∗ 𝑄𝑖
𝐷𝐴

𝑖 + 𝐸𝑤(∑ 𝑔𝑖,𝑤
𝑅𝑇

𝑤,𝑖 )]                            (10) 

Subject to, 

𝑄𝑖
𝐷𝐴 ≤ 𝑄̅𝑖

𝑅𝑇                                                                                                  (11) 

𝑄𝑖
𝐷𝐴 ≥ 0                             (12) 

and all optimally conditions of period 2 and 3 problems. 

Where, 

Pi
DA = MCi

DA day-ahead electricity price which corresponds to the marginal cost function of 
the marginal producer. 

The first term in (10) shows the cost of the energy bought by the retailer in the day-ahead 
market. The day-ahead price is assumed to correspond to the marginal cost of generators. The 
strategic behaviour of generators is ignored here, and a competitive price is assumed15. The 
second term shows the expected outcome for the retailer from buying or selling energy in the 
subsequent real-time steps and selling energy to consumers in the retail market. The retailer 
faces uncertain real-time demand. So, it must buy energy on the forward market subject to 
uncertain demand, only ultimately observed in real-time. We introduce a random variable w 
that indicates possible demand realization in real-time and corresponds to a finite set of 
scenarios.  

As demonstrated in Appendix 2, optimizing the mathematical program (1-12), in which 
optimal best-reply function in real-time and retail markets are integrated, yields the following 
results: 

{
𝑄ℎ
∗𝐷𝐴 =

𝑉.𝑇+2.𝑈.𝐿

𝑉2−4.𝑈2
                                                                                                                                                   (13)                         

𝑄𝑙
∗𝐷𝐴 =

𝑉.𝐿+2.𝑈.𝑇

𝑉2−4.𝑈2
                                                                                                                                                   (14)                         

  

Where U,V,T and L are expressions that depend on demand uncertainty and parameters of 
price and demand functions (Appendix 2). On the basis of this equilibrium, we may now 
compute consumer demand on the retail market, the volumes committed to the real-time 
market and load-shifting. 

 
 
IV. MAIN RESULTS: FIVE PROPOSITIONS 

To analyse decisions taken by retailers on the day-ahead market and then overall game 
decisions, the complex solutions shown in Appendix 2 are rearranged to yield more tractable 
and subtle results. Analysis of sensitivity to the model’s main market parameters is 
undertaken, by modifying some of the main parameters, but leaving all the others unchanged. 
Firstly, we consider the parameters β , which must strongly impact consumer choices, and 
hence retailer strategies, once dynamic pricing is applied. Then we analyse the parameter  γ , 

 
15 Dynamic pricing should modify patterns of consumption and energy trades in the retail market. 

The model here looks mainly at interaction between consumers and load-serving bodies rather than 
generator strategies in upstream markets. 
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which captures the degree of competition faced by consumers in the retail market and the 
extent to which consumer strategies in this market could be altered by the simultaneous 
application of dynamic pricing and balancing mechanisms. We next consider the parameter α, 
which indicates how sensitive the efficiency of real-time pricing could be to the intensity of the 
balancing mechanism, if α > 1.  We conclude by analysing the results regarding the parameter 
n which expresses a price signal from the market merit order and consequently the specific 
technology mix of a given system. Sensitivity analysis is illustrated by the figures below, which 
reflect the analytical results discussed in Appendix 2.  

Our parameters are intuitively correlated with one another. The penalty for correcting 
imbalances “𝛼” is positively correlated with the slope of the marginal cost of the last unit 
traded on the day-ahead market “n”. When the day-ahead market is under tension it will cost 
more to balance supply and demand than under less tense conditions, given the energy 
available on the balancing market. There is also a positive correlation between disutility “Δβ” 
and parameter “γ”, allowing for the dynamic pricing it entails and competitive mark-up. 
Consumers are increasingly likely to trim usage when the retail price is high, with a positive 
impact on their disutility. The same reasoning applies to explain the intuitively positive 
correlation between “n” and “∆𝛽”. Making allowance for these intuitive correlations amplifies 
our results, which remain valid. 

 
4.1 Demand Response, dynamic pricing and consumption efficiency 

Proposition 1: Dynamic pricing encourages load-shifting to off-peak periods. Load-shifting 
decreases with consumer disutility. 

Optimizing the problem facing the consumer, as demonstrated in Appendix 1, yields the 
following results: 

𝑄ℎ,𝑤
∗𝑅 = 𝑄̅ℎ

𝑅𝑇 −
∆𝑝𝑤

𝑅

2.∆𝛽     (15)       and    𝑄𝑙,𝑤
∗𝑅 = 𝑄̅𝑙

𝑅𝑇 +
∆𝑃𝑤

𝑅

2.∆𝛽
  (16). 

The solutions in (15) and (16) show that consumers would shift their consumption from 

peak to off-peak hours16, regardless of climatic conditions, w. The volume shifted, 
∆Pw

R

2.∆β
, depends 

on peak and off-peak retail price, load-shifting disutility and corresponding compensation, 
and the difference between the two. The greater the price differential, the more attractive it is 
for consumers to shelve peak consumption and shift it off peak. However, this effect is greatly 

diminished by the intensity of load-shifting disutility, 
1

∆β
. For instance, if consumers are less 

sensitive to environmental concerns, or places a high value on comfort to satisfy their energy 
needs, they will attach more value to the impact of shedding energy on their consumption 
habits and incur greater disutility from load-shifting, i.e. βh >>> βl. Conversely load-shifting 
is more likely to occur when consumers incur a lower opportunity cost from load-shifting or 
register a significant opportunity gain from off-peak usage, i.e. βh~βl. 

Turning now to the retail price, Pi,w
R . it is defined as a function of the day-ahead price and 

depends on QF,i. If we replace the retail price in the solutions to Proposition 1, we obtain the 

following optimal load-shifting (Qrep,w
* ), as a function of the retailer’s day-ahead commitment: 

𝑄𝑟𝑒𝑝,𝑤
∗𝑅𝑇 =

𝛾.𝑛

2.∆𝛽
. (𝑄ℎ

𝐷𝐴 − 𝑄𝑙
𝐷𝐴) (17). 

 
16 As demonstrated in Appendix 1, other equilibrium configurations, such as only reducing energy 

consumption at peak hours or reducing energy consumption more or less than load-shifting, are not 
possible. The optimization problem, being linear, only provides solutions at boundary points. 
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This last result is a reminder of how much load-shifting increases when the compensation 
gain from load-shifting is significant and ∆β  is low, but it also highlights the impact of the 
resale factor γ and energy supply elasticity n . These two parameters can be interpreted as the 
market’s price signals to consumers: high levels warn consumers that energy is costly, 
encouraging them to shift their load. Lastly, as we assume a linear increase in the energy price 
function, we observe that, as the forward-volume differential rises, the higher peak prices 
climb the greater the incentive is for consumers to shed demand.   

 
4.2 Retailers’supply choices on forward and real-time markets 

Proposition 2: If the consumer has a lower preference for peak consumption, then the retailer can 
internalize the load-shifting effect, contracting more off-peak volume on the forward market.  

Figure 2 below illustrates Proposition 2 that agrees with the results of Zugno et al. (2013). 
Consumers incur an opportunity cost βh when obliged to reduce peak usage. Their preference 
for off-peak usage βl could be equal to or less than βh. So, if consumers have no preference 
regarding the consumption period, i,e lim

βl→βh
∆β = 0, the retailer will anticipate that consumers 

will shift part of their peak demand to an off-peak period, which offers lower prices. The 
retailer will consequently contract greater volumes on the forward market to serve off-peak 
hours and lower volumes for peak periods. However, with off-peak demand off-peak prices 
increase too. Consumers have an incentive to shift demand as long as the difference between 
peak and off-peak prices compensates for the disutility of reducing peak consumption. 
Moreover, as the literature has shown (Faruqui et al., 2010a; Faruqui and Wood, 2008), 
consumers only shift part of their peak demand, it not being possible to run some electrical 
appliances at other times. When lim

βl→βh
∆β is positive, consumers face greater disutility (surplus 

gains in off-peak hours do not compensate for surplus losses in peak hours). So, the incentive 
to shift use diminishes. With consumers cutting back load-shifting, the retailer would contract 
much larger volumes for peak rather off-peak hours. Load-shifting can create a second form 
of uncertainty for the retailer. Its response might be to adjust forward contracts to allow for 
consumer behaviour and typology. 

Parameters βi could also represent consumer sensitivity to environmental factors. If βl is 
close to βh, consumers attach importance to off-peak consumption, reducing the 
environmental impact of peak generation (Dahlke and Prorok, 2019; Bergaentzle et al., 2014). 
In this way consumers will shift as much demand as possible from peak to off-peak hours, in 
turn affecting the retailer’s forward-market procurement strategy. On the other hand if 
consumers attach little value to the environment (higher values of βh), they will not shift a 
large share of usage because peak-hour consumption creates greater utility than load-shifting. 

Figure 2 shows that Qh
*DA could converge towards Ql

*DA for low values of ∆β . This case 
illustrates the equality of peak and off-peak supplies committed on the forward market. On 
the left side of the graph, load-shifting is significant;  ∆β  driven by parameters n and  γ . On 
the right side of the graph, as  ∆β  increases, the retailer begins to contract greater volumes for 
peak hours, in anticipation of a lower load-shifting effect. This analysis also shows the 
importance of studying consumer behaviour and typology to understand their preferences 
and foreseeable load-profile.  

The uncertainty of demand is due to load-shifting strategies but also to its own 
characteristics (in our two demand scenarios, it could be normal or extreme). Thus, 
probabilities w also affect the volumes committed to the forward market in a very intuitive 
way. If the likelihood of facing extreme demand increases, the volume committed on the 
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forward market will also increase. As we shall see below, this effect is heightened by the level 
of penalties on the real-time market. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 

Figure 2. Impact of consumer disutility ∆β on forward commitments 
 

Proposition 3: Dynamic but high pricing stills encourage load-shedding whereas any imbalance 
costs in real-time is easily transferred to consumers.  

Figure 3 below shows a linear increase in volumes bought by the retailer on the day-ahead 
market if γ increases. If the retail price increases in relation to wholesale market prices, due to 
lack of competition or retail market power, the retailer will choose to buy more energy than 
usual on the forward market. The retailer makes a trade-off between day-ahead market 
purchases, which influence the day-ahead price and hence the retail price, and real-time 
market purchases, on which it is only subject to imbalance costs. Any risk of facing penalties 
in the case of positive imbalances is passed on to consumers, thanks to additional retail-market 
revenues, through higher γ .  

It also shows that the expectation of consumer load-shifting from peak to off-peak hours 
would increase with  γ , which is a predictable result given that consumers will face higher 
tariffs, further confirming the merits of load-shifting. Moreover, the shaded area in Figure 3 

shows that, whereas load-shifting potential is constant (Qh
*DA-Ql

*DA is constant), insignificant 
load-shifting is expected when γ is low, reaching a high point with extreme values of γ . This 
means that the expected response of consumers only slightly impacts the retailer’s optimal 
trade-off between the day-ahead and real-time markets. Higher retail tariffs would be 
sufficient for the retailer to cover any price volatility in real-time. 
 

 

 

 

 

𝑄𝑙
∗𝐷𝐴 = 𝑄ℎ

∗𝐷𝐴 
 

𝑄𝑖
∗𝐷𝐴, 𝑄𝑟𝑒𝑝

∗𝑅𝑇  

 

∆𝛽 
 

𝑄𝑙
∗𝐷𝐴 
 

𝑄ℎ
∗𝐷𝐴 
 

𝑄𝑟𝑒𝑝
∗𝑅𝑇 =

𝛾. 𝑛

2. ∆𝛽
. (𝑄ℎ

∗𝐷𝐴 − 𝑄𝑙
∗𝐷𝐴) 
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Figure 3. Impact of 𝛾  on decisions by the retailer and by consumers 
 

4.3 Impact of real-time penalties on retailers’supplies 

Proposition 4: Real-time penalties encourage the retailer to secure demand on the day-ahead 
market but have no impact on the efficiency of dynamic pricing.  

Penalizing real-time imbalances should encourage market players to contract sufficient 
energy on forward markets. The strategy of market players responding to the severity of real-
time imbalance penalties could change with the switch to dynamic pricing. With increasingly 
price-sensitive consumer demand, retailers may, for instance, face more uncertain real 
demand and a higher likelihood of real-time imbalances. Figure 4 below plots the optimal day-
ahead volumes of retailers as the penalty factor  α  increases. Two main findings are apparent. 
Firstly, when switching from no penalties, when 𝛼 =1, to a penalty scheme,  α > 1, the retailer 
has an incentive to make a higher energy commitment on the day-ahead market.  

When comparing this result with the previous one we conclude that the increase in forward 
volume, as  α  rises, is less proportional to an increase in  γ . Whereas the increase in  γ impacts 
the retail price positively – yielding higher real-time profits for the retailer and scope for 
covering any penalty incurred by a positive imbalance in real-time– an increase in  α  is not 
passed onto retail price. The retailer will respond moderately to the expectation of higher 
imbalance prices than previously. However, this explains why consumer decisions on load-
shifting are not affected by the level of  α . Our model assumes that retail prices only depend 
on day-ahead prices and are consequently not affected by the level of penalties, at least in the 
short run. This assumption is realistic. A competitive retail price should in theory reflect two 
components: the energy-supply cost, in other words the merit-order function, and short-term 
demand elasticity, in order to allow for consumer preferences and weather conditions. The 
linear relationship between day-ahead and retail prices reflects these constraints. However, 
real-time imbalance prices are the sole responsibility of retailers and/or generators and they 
should shoulder their full cost.    
 

𝛾 

𝑄ℎ
∗𝐷𝐴 
 
 
  
𝑄𝑙
∗𝐷𝐴 
 

𝑄𝑟𝑒𝑝
∗𝑅𝑇 

 

𝑄𝑖
∗𝐷𝐴, 𝑄𝑟𝑒𝑝
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Figure 4. Impact of 𝛼 on decisions by the retailer and by consumers 

 
4.4 Impacts of market size and merit order mix on retailers’supplies 

Proposition 5: With costly energy mix or low market competitiveness, the retailer significantly 
increases its forward volumes and transfers the cost of short-term price distortion to end 
consumers. 

This proposition is based on analysis of the sensitivity of equilibria to parameter n in the 
marginal cost function. This parameter stands for the level of energy prices in each market and 

supply-function elasticity on forward markets.  Qh
*DA and Ql

*DA are increasing functions of n. 
An increase in n entails higher energy prices on all the markets under study and with a high 
level of supply elasticity. This relationship prompts several intuitions. Firstly, when energy is 
cheap (low values of n) the retailer will only buy small volumes on the forward market, in line 
with uncertain real-time demand and load-shifting effect it expects. The retailer internalizes 
part of the demand uncertainty, in order to balance its position on the real-time market. Such 
strategies are possible because of low energy prices and remain valid for a wide range of 
penalties on the real-time market, on condition that marginal revenue from sales compensates 
for higher penalties. But when the energy price rises (the gradient of the supply function n is 
higher), it becomes more expensive to reduce the ex-ante value of demand uncertainty. So, the 
retailer would rather increase the volume committed on the forward market. Secondly, high 
energy prices increase the incentive for consumers to shift a larger share of demand, parameter 

n impacting positively on energy load-shedding. Thirdly, the difference between Qh
*DA and 

Ql
*DA increases with n (Figure 5). As energy prices are higher at peak rather than off-peak hours, 

the retailer has an incentive to book a large share of its supplies at peak hours, because of the 
additional balancing costs. So, the retailer could internalize some of the demand uncertainty 
at off-peak hours, when energy prices are lower, and so it could face the imbalance costs in 
real-time without a huge increase in supply costs.  

 

𝛼 

𝑄ℎ
∗𝐷𝐴 
 
 
  
𝑄𝑙
∗𝐷𝐴 
 

𝑄𝑟𝑒𝑝
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Figure 5. Impact of generating costs n on forward commitments and load-shifting 
 
 

V. CONCLUSION 

Deployment of dynamic pricing offers consumers the opportunity to respond to market 
conditions. They may thus adapt consumption in line with market and retail prices. They can 
shift part of their peak demand to cheaper off-peak periods. This behaviour, linked to the 
introduction of dynamic pricing, increases uncertainty for the retailer as to market demand. 
Indeed, it must cope with two kinds of uncertainty: the forecast level of demand may be 
normal or extreme; and consumers may shed part of their load. 

Using a dynamic stochastic model, we show that the supply strategies a retailer adopts on 
the forward market affect final demand through load-shifting, in so far as such strategies 
change the market price. The retailer may contract larger volumes on the forward market if 
generating costs or penalties on the real-time market are high enough. Its prime objective in 
such cases is to reduce supply costs in order to avoid bigger shifts in retail demand. Moreover, 
as balancing costs are not passed on to consumers, the retailer must reduce them in the event 
of high energy prices (on the forward and retail markets, which induce lower peak demand) 
or higher penalties. The load-shifting effect also depends on the disutility consumers incur 
from shifting consumption from peak to off-peak hours. If they assess consumption during the 
two periods perfectly, or if, for instance, they are environmentally aware, consumers will shift 
as much demand as possible. To allow for the load-shifting effect, the retailer must therefore 
contract higher off-peak volumes on the forward market and less peak energy. Lastly, the 
severity of penalties has no impact on load-shedding, balancing costs being borne by the 
retailer. 

The retailer, facing uncertainty as to demand, protects itself on the forward market to 
minimize the impact of load-management and shifting on costs. This conclusion contributes 
to the debate on contractualizing baseline consumption so that consumers or demand-
response providers shoulder part of the risk that load management poses for balancing. 
Knowledge of consumer preferences regarding electricity usage is a key factor in achieving an 
optimal balance between supply and demand in the face of flexible consumption. On the one 

𝑄ℎ
∗𝐷𝐴 
 

𝑄𝑙
∗𝐷𝐴 
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𝑄𝑟𝑒𝑝
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𝑄𝑖
∗𝐷𝐴, 𝑄𝑟𝑒𝑝

∗𝑅𝑇  
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hand such knowledge makes it possible to target consumers with a high DR potential, on the 
other it minimizes the impact on their utility of changes in their behaviour. Experiments and 
pilot schemes designed to study the impact of dynamic pricing and DR schemes are needed to 
optimize the positive outcomes of such policies. Network operators will undoubtedly play an 
increasing part in these new, flexible-demand configurations. Ultimately, they will be able to 
issue dynamic price signals based on network constraints. This possibility will give rise to 
further research on the relation between network operators, retailers and consumers, or 
demand-response providers in order to share out the risks of balancing.    
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APPENDICES 
 

A. USE OF THE MCP METHOD TO FIND THE EQUILIBRIUM AT THE CONSUMER 
STAGE 

At each period I and demand state w, the consumer maximizes its utility (4) subject to 

constraints (5-9). The decision variable is the volume consumed QI,w
R . To state the model as a 

MCP problem we need to reformulate the consumer optimization problem as follows: 

To calculate the optimality conditions of each program, we first define the Lagrangian 
function of the corresponding optimization problem LI,w: 

 

𝐿𝑖,𝑤 = −(𝑃𝑖
𝑅
− 𝑃𝑖,𝑤

𝑅 ) . 𝑄𝑖,𝑤
𝑅 + 𝛽𝑖. (𝑄̅𝑖

𝑅𝑇 − 𝑄𝑖,𝑤
𝑅 )

2
− 1. (𝑄̅

𝑅𝑇 − ∑ 𝑄𝑖,𝑤
𝑅

𝑖 ) − 2. (𝑄̅ℎ
𝑅𝑇 −𝑄ℎ,𝑤

𝑅 ) −

3. (𝑄𝑙,𝑤
𝑅 − 𝑄̅𝑙

𝑅𝑇)              (18) 

Then, we calculate the gradient of the Lagrangian function with respect to the two decision 

variables  QI,w
R : 

𝑑𝐿𝑖,𝑤

𝑑𝑄ℎ,𝑤
𝑅 = −(𝑃ℎ

𝑅
− 𝑃ℎ,𝑤

𝑅 ) − 2. 𝛽ℎ. 𝑄̅ℎ
𝑅𝑇 + 2. 𝛽ℎ. 𝑄ℎ,𝑤

𝑅 + 1 + 2     

    (19) 

𝑑𝐿𝑖,𝑤

𝑑𝑄𝑙,𝑤
𝑅 = −(𝑃𝑙

𝑅
− 𝑃𝑙,𝑤

𝑅 ) + 2. 𝛽𝑏 . 𝑄̅𝑙
𝑅𝑇 − 2. 𝛽𝑏 . 𝑄𝑙,𝑤

𝑅 + 1 − 3         (20) 

Optimality conditions of the consumer are: 

(

 
 
 
 
 
 
 
 
 
 
 

𝑑𝐿𝑖,𝑤

𝑑𝑄ℎ,𝑤
𝑅 ≥ 0 ; 𝑄ℎ,𝑤

𝑅 ≥ 0 𝑎𝑛𝑑 
𝑑𝐿𝑖,𝑤

𝑑𝑄ℎ,𝑤
𝑅 . 𝑄ℎ,𝑤

𝑅 = 0

𝑑𝐿𝑖,𝑤

𝑑𝑄𝑙,𝑤
𝑅 ≥ 0 ; 𝑄𝑙,𝑤

𝑅 ≥ 0 𝑎𝑛𝑑 
𝑑𝐿𝑖,𝑤

𝑑𝑄𝑙,𝑤
𝑅 . 𝑄𝑙,𝑤

𝑅 = 0
 

(𝑄̅𝑅𝑇 − ∑ 𝑄𝑖,𝑤
𝑅

𝑖 ).1 = 0

(𝑄̅ℎ
𝑅𝑇 − 𝑄ℎ,𝑤

𝑅 ).2 = 0

(𝑄𝑙,𝑤
𝑅 − 𝑄̅𝑙

𝑅𝑇).3 = 0

𝑄𝑙,𝑤
𝑅 ≥ 𝑄̅𝑙

𝑅𝑇

𝑄ℎ,𝑤
𝑅 ≤ 𝑄̅ℎ

𝑅𝑇

∑ 𝑄𝑖,𝑤
𝑅

𝑖 ≤ 𝑄̅𝑅𝑇

𝑗 ≥ 0
 )

 
 
 
 
 
 
 
 
 
 
 

        

This set of equations consists of the first-order conditions multiplied by their corresponding 
decision variables and the inequality constraints multiplied by their corresponding dual 
variables, all equal to zero; next the inequality constraints themselves; and finally, the explicit 
statement of the dual variables. 

Grouping all these conditions together leads to an MCP problem. Equations (15-16) are 
therefore the solutions to this MCP problem.  

Existence and uniqueness of the solution: Given that the maximization objective function is 
concave and continuously differentiable, the KKT conditions presented above are necessary 
and sufficient for optimality since the feasible region is polyhedral (Bazara et al., 1993). 
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B. A MATHEMATICAL PROGRAM WITH EQUILIBRIUM CONSTRAINTS TO FIND 

THE SOLUTIONS TO THE OVERALL GAME    

The retailer decides its day-ahead volumes by maximizing its expected profits in the three 
market stages, where consumer best-reply functions are integrated. The stochastic MPEC 
model in Section 3.3 is detailed as following: 

max
𝑄𝑖
𝐷𝐴
𝐸𝑤(𝑃𝑟𝑜𝑓𝑖𝑡) = 𝐸𝑤 (∑ ((𝑃𝑖,𝑤

𝑅 − 𝑐). 𝑄𝑖,𝑤
∗𝑅 − 𝑃𝑖,𝑤

𝑅𝑇 . 𝑄𝑖,𝑤
∗𝑅𝑇)𝑖,𝑤 ) − ∑ 𝑃𝑖

𝐷𝐴 ∗ 𝑄𝑖
𝐷𝐴

𝑖                      (21)                         

Subject to, 

𝑄𝑖
𝐷𝐴 ≤ 𝑄̅𝑖

𝑅𝑇   (4)              (22)  

𝑄𝑖
𝐷𝐴 ≥ 0                             (23) 

And equilibrium constraints are (Third stage MCP program):    
       

𝑄ℎ,𝑤
∗𝑅 = 𝑄̅ℎ

𝑅𝑇   −
∆𝑃𝑤

𝑅

2.∆𝛽                                                    

(24) 

𝑄𝑙,𝑤
∗𝑅 = 𝑄̅𝑙

𝑅𝑇   +
∆𝑃𝑤

𝑅

2.∆𝛽
                                                       (25) 

𝑄𝑟𝑒𝑝,𝑤
∗𝑅𝑇 =

𝛾.𝑛

2.∆𝛽
. (𝑄ℎ

𝐷𝐴 − 𝑄𝑙
𝐷𝐴)                      

    (26) 

𝑄𝑖,𝑤
∗𝑅𝑇 = 𝑄𝑖,𝑤

∗𝑅 − 𝑄𝑖
𝐷𝐴                                      (27) 

As for optimizing the consumer sub-problem, we calculate the gradient of the Lagrangian 

function with respect to two decision variables, Qi
DA. Optimality conditions of the retailer are: 

(

 
 
 
 
 

dLi

dQi
DA ≥ 0 ; Qi

DA ≥ 0 and 
dLi

dQi
DA . Qi

DA = 0
 

(Q̅i
R-Qi

DA).4 = 0

Q̅i
R ≥ Qi

DA

4 ≥ 0
equations (24-27)

 )

 
 
 
 
 

  

To resolve this non-linear MCP model, we now develop and rearrange the objective 
function (21) by integrating best-reply quantities for the second and third periods given by 
equilibrium constraints (24-27), we obtain the following new objective function: 

 

𝐸𝑤(𝑃𝑟𝑜𝑓𝑖𝑡) = 𝐺 + 𝐿. 𝑄ℎ
𝐷𝐴 + 𝑇.𝑄𝑙

𝐷𝐴 + 𝑈. ((𝑄ℎ
𝐷𝐴)2 + (𝑄𝑙

𝐷𝐴)2) − 𝑉. (𝑄ℎ
𝐷𝐴. 𝑄𝑙

𝐷𝐴)                       (28)    

Where G, V,U,L and T are aggregated parameters and described as follow: 

𝐺 = 𝐸𝑤((𝛾. (𝑚 − 𝑃𝑒𝑛𝑤) − 𝑐). 𝑄̅
𝑅𝑇) + 𝐸𝑤 (−𝑛. 𝑃𝑒𝑛𝑤 . 𝑄̅

𝑅𝑇2)                                 (29) 

𝑉 = −𝑛 (
𝛾.𝑛

∆𝛽
)
2
. (𝐸𝑤(𝑃𝑒𝑛𝑤))         

    (30) 

𝑈 =
1

2
(
𝛾.𝑛

∆𝛽
)
2
− 𝑛                            (31) 



 22 

𝐿 = 𝑚(𝐸𝑤(𝑃𝑒𝑛𝑤) − 1) + 𝑛. 𝛾. 𝑄̅ℎ
𝑅𝑇 + 𝑛. 𝛾. (𝐸𝑤(𝑃𝑒𝑛𝑤. 𝑄̅ℎ

𝑅𝑇) −
𝛾.𝑛

∆𝛽
.𝑄̅𝑖

𝑅𝑇                               (32) 

𝑇 = 𝑚(𝐸𝑤(𝑃𝑒𝑛𝑤) − 1) + 𝑛. 𝛾. 𝑄̅ℎ
𝑅𝑇 + 𝑛. 𝛾. (𝐸𝑤(𝑃𝑒𝑛𝑤. 𝑄̅ℎ

𝑅𝑇) +
𝛾.𝑛

∆𝛽
.𝑄̅𝑖

𝑅𝑇                                       (33) 

𝑃𝑒𝑛𝑤 : Penalty factor, 𝛼 if real-time negative imbalance and 
1

𝛼
 if positive imbalance. 

The new objective function is quadratic, twice differentiable and concave since we can 
verify that the parameter U < 0. Indeed, the slope of the marginal cost function is usually very 
shallow, close to zero and certainly very low compared to ∆β  which signals the energy 
consumers’ value differential between peak and off-peak hours. So, the first term in U is lower 
than n. 

Grouping the objective function (28) and constraints (22-23) leads to an MCP problem with 
a concave objective function and linear constraints. Its optimal solutions are then obtained: 

{
𝑄ℎ
𝐷𝐴∗ =

𝑉.𝑇+2.𝑈.𝐿

𝑉2−4.𝑈2
                                                                                                                                         (34)                                                                        

𝑄𝑙
𝐷𝐴∗ =

𝑉.𝐿+2.𝑈.𝑇

𝑉2−4.𝑈2
                                                                                                                                         (35)                                                                         

  

This equilibrium holds because the non-negativities of the optima are verified since 

 L-V. (
V.L+2.U.T

V2-4.U2
) ≥ 0 and  T-V. (

V.T+2.U.L

V2-4.U2
) ≥ 0. The second terms of the last conditions are positive 

since V is negative, whereas L and T are positive. However, if Qi
DA* > Q̅i

RT, the optimal solution 

will be Qi
DA* = Q̅i

RT. So, there are interior solutions (34-35) while Qi
DA* = Q̅i

RT in a specific 
parameter’s configuration. The sensitivity analysis done in Section 4 give a more practical 
understanding of the two equilibria offering an overall view of retailer strategy. 

We can now find the solutions to the sub-problems of the game. Optimal retailer’s balancing 
volumes in real-time and real consumer demand served to the retail market are then: 

𝑄ℎ,𝑤
∗𝑅 = Q̅h

RT −
𝛾.𝑛

2.∆𝛽
(
𝑇−𝐿

𝑉+2𝑈
)                                       (36) 

𝑄𝑙,𝑤
∗𝑅 = Q̅l

RT +
𝛾.𝑛

2.∆𝛽
(
𝑇−𝐿

𝑉+2𝑈
)                                       (37) 

Real-time decisions are given by: 

𝑄𝑟𝑒𝑝,𝑤
∗𝑅𝑇 =

𝑇−𝐿

𝑉+2𝑈
                                                   (38) 

𝑄ℎ,𝑤
𝑅𝑇 = Q̅i

RT −
𝛾.𝑛

2.∆𝛽
(
𝑇−𝐿

𝑉+2𝑈
) −

𝑉.𝑇+2.𝑈.𝐿

𝑉2−4.𝑈2
                                       (39)  

𝑄𝑙,𝑤
𝑅𝑇 = Q̅l

RT +
𝛾.𝑛

2.∆𝛽
(
𝑇−𝐿

𝑉+2𝑈
) −

𝑉.𝐿+2.𝑈.𝑇

𝑉2−4.𝑈2
                                       (40)
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