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Abstract
The expressive power of the class Conj of conjunctive languages, i.e. languages generated by
the conjunctive grammars of Okhotin, is largely unknown, while its restriction LinConj to linear
conjunctive grammars equals the class of languages recognized by real-time one-dimensional one-way
cellular automata. We prove two weakened versions of the open question Conj ⊆? RealTime1CA,
where RealTime1CA is the class of languages recognized by real-time one-dimensional two-way cellular
automata:
1. it is true for unary languages;
2. Conj ⊆ RealTime2OCA, i.e. any conjunctive language is recognized by a real-time two-dimensional

one-way cellular automaton.
Interestingly, we express the rules of a conjunctive grammar in two Horn logics, which exactly
characterize the complexity classes RealTime1CA and RealTime2OCA.
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1 Introduction

For decades, logic has maintained close relationships with, on the one hand, computational
models [31] and computational complexity [3], in particular through descriptive complexity [7,
16, 21, 11, 14, 2], and on the other hand with formal language theory and grammars [8, 21].

Conjunctive grammars versus logic. Okhotin [26] wrote that “context-free grammars
may be thought of as a logic for inductive description of syntax in which the propositional
connectives available... are restricted to disjunction only”. Thus, twenty years ago, the same
author introduced conjunctive grammars [22] as an extension of context-free grammars by
adding an explicit conjunction operation within the grammar rules.
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8:2 Conjunctive Grammars, Cellular Automata and Logic

As shown by Okhotin [22], conjunctive grammars – and more generally, Boolean gram-
mars [24, 26] – inherit the parsing algorithms of the ordinary context-free grammars, without
increasing their computational complexity. However, the expressive power of these grammars
is largely unknown. The fact that the class Conj of languages generated by conjunctive gram-
mars has many closure properties – it is trivially closed under reverse, concatenation, Kleene
closure, disjunction and conjunction – suggests that this class has equivalent definitions in
computational complexity and/or logic.

Conjunctive grammars versus real-time cellular automata. Note that the LinConj subclass
of languages generated by linear conjunctive grammars was found to be equal to the Trellis
class of languages recognized by trellis automata [25], or equivalently, one-way real-time
cellular automata. Faced with this result, it is tempting to ask the following question: is
the larger class Conj equal to the class RealTime1CA of languages recognized by two-way
real-time cellular automata? Either answer to this question has strong consequences:

If Conj = RealTime1CA then each of the two classes will benefit from the closure properties
of the other class; in particular, RealTime1CA would be closed under reverse, which was
shown by [15] to imply RealTime1CA = LinearTime1CA, i.e. real-time is nothing but
linear time for cellular automata, a surprising positive answer to a longstanding open
question [6, 28, 30].
If Conj ̸= RealTime1CA then Conj ⊊ DSPACE(n) or RealTime1CA ⊊ DSPACE(n): any of
these strict inclusions would be a striking result.

Real-time is the minimal time of cellular automata (CA). Recall that RealTime1CA (resp.
Trellis) is the class of languages recognized in real-time by one-dimensional CA with two-way
(resp. one-way) communication and input word given in parallel. We know the strict inclusion
Trellis ⊊ RealTime1CA. The robustness of these classes is attested by their character-
ization by two sub-logics of ESO – the existential second-order logic, which characterizes
NP – with Horn formulas as their first-order parts1, and called respectively pred-ESO-HORN
and incl-ESO-HORN, see [12, 13]. For short, we write RealTime1CA = pred-ESO-HORN and
Trellis = incl-ESO-HORN.

Results of this paper. This paper focuses on the relationships between the class of con-
junctive languages and the real-time classes of cellular automata. Although we do not know
the answer to the question Conj =? RealTime1CA or even to the question of the inclusion
Conj ⊆? RealTime1CA, we prove two weakened versions of this inclusion:
1. Conj1 ⊆ RealTime1CA1: The inclusion holds when restricted to unary languages2.
2. Conj ⊆ RealTime2OCA: The inclusion holds for real-time of two-dimensional one-way

cellular automata (2-OCA). (We have RealTime1CA ⊆ RealTime2OCA.)
To grasp the scope of inclusion (1), it is important to note that unlike the subclass CFL1
of the unary languages of the class of context-free languages, which is reduced to regular
languages, CFL1 = Reg1, the class Conj1 was shown by Jez [17] to be much larger than Reg1.
Understanding its precise expressiveness seems as difficult a problem to us as for Conj.

Our inclusion (2) improves the inclusion CFL ⊆ RealTime2SOCA, where RealTime2SOCA
denotes the class of languages recognized by real-time sequential two-dimensional one-way
cellular automata, proved by Terrier [29], who uses a result by King [18] and improves
results by Kosaraju [20] and Chang et al. [4]. Terrier’s result derives transitively from (2):
CFL ⊆ Conj ⊆ RealTime2OCA ⊆ RealTime2SOCA.

1 The class ESO-HORN of languages defined by existential second-order formulas with Horn formulas as
their first-order parts is exactly PTIME, see [10, 11].

2 The subclass of the unary languages of a class of languages C is denoted C1.
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Inclusion (2) seems difficult to improve. Since any problem in RealTime1CA is decidable in
time O(n2) (by a RAM algorithm), the hypothetical inclusion Conj ⊆ RealTime1CA implies
that any conjunctive language is decidable in time O(n2): this would be a breakthrough!

Logic as a bridge from problems and grammars to real-time CAs. Logic has been the basis
of logic programming and database queries for decades, especially Horn logic through the
Prolog and Datalog programming languages [1, 19, 11]. Likewise, the above-mentioned logical
characterizations of real-time complexity classes of CAs, RealTime1CA = pred-ESO-HORN and
Trellis = incl-ESO-HORN, have been used to easily show that several problems belong to
the RealTime1CA or Trellis class by inductively expressing/programming the problems in
the corresponding Horn logic, see [12, 13].

In this paper, the same logic programming method is adopted. We prove inclusion
(1) Conj1 ⊆ RealTime1CA1 by expressing a unary language generated by a conjunctive
grammar in the pred-ESO-HORN logic. Inclusion (1) follows, by the equality pred-ESO-HORN =
RealTime1CA. Similarly, to prove inclusion (2) Conj ⊆ RealTime2OCA, we first design a
logic denoted incl-pred-ESO-HORN so that incl-pred-ESO-HORN = RealTime2OCA. Then, we
express any conjunctive language in this logic, proving that it belongs to RealTime2OCA, as
claimed. Thus, the heart of each proof consists in presenting a formula of a certain Horn
logic, which inductively expresses how a word is generated by a conjunctive grammar: the
Horn clauses of the formula naturally imitate the rules of the grammar.

Our proof method and the paper structure. After Section 2 gives some definitions,
Sections 3 and 4 present inclusions (1) and (2) and their proofs with a common plan:
Subsection 3.1 (resp. 4.1) expresses the inductive generating process of a conjunctive
grammar, assumed in binary (Chomsky) normal form in the logic pred-ESO-HORN (resp.
incl-pred-ESO-HORN). Subsection 3.2 (resp. 4.2) shows that any formula of this logic can
be normalized into a formula which mimics the computation of a two-dimensional (resp.
three-dimensional) grid-circuit called Grid (resp. Cube); Subsection 3.3 (resp. 4.3) trans-
lates the grid-circuit into a real-time one-dimensional CA (resp. two-dimensional OCA).
Note that we prove the equivalence of our logics with grid-circuits and CA real-time3:
pred-ESO-HORN = Grid = RealTime1CA and incl-pred-ESO-HORN = Cube = RealTime2OCA.
Section 5 deals briefly with the meaning of our results and open problems around a diagram
of the known relations between the Conj class and the CA complexity classes studied here,
for the general case and for the unary case.

2 Preliminaries

2.1 Conjunctive grammars and their binary normal form
Conjunctive grammars extend context-free grammars with a conjunction operation.

▶ Definition 1 (Conjunctive grammar, conjunctive language). [22, 23]
A conjunctive grammar is a tuple G = (Σ, N, P, S) where Σ is the finite set of terminal
symbols, N is the finite set of nonterminal symbols, S ∈ N is the initial symbol, and P is
the finite set of rules, each of the form A → α1&...&αm, for m ≥ 1 and αi ∈ (Σ ∪N)+.

3 We have chosen to give here a simplified proof of the logical characterization pred-ESO-HORN = Grid =
RealTime1CA already proved in [12] so that this paper is self-content, but above all because our proof of
the similar result incl-pred-ESO-HORN = Cube = RealTime2OCA is an extension of it.

AUTOMATA 2021
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The set of words L(A) ⊆ Σ+ generated by any A ∈ N is defined by induction: if the
rules for A are A → α1

1&...&α1
m1

| · · · | αk
1&...&αk

mk
, then L(A) :=

⋃k
i=1
⋂mi

j=1 L(αi
j). (As

usual, take the least solution of the language equations defining the sets L(A), for A ∈ N .)
The language generated by the grammar G is L(S). It is called a conjunctive language.

Okhotin [26] gave many examples of conjunctive languages which are not context-free.
Moreover, Jez [17] proved that there are such languages on unary alphabet, in particular,
the set {a4k | k ∈ N} is a conjunctive language which is not context-free (= not regular).

We will mainly use the binary normal form of conjunctive grammars, which extends
the Chomsky normal form of context-free grammars. Each conjunctive grammar can be
rewritten in an equivalent binary normal form [22, 26].

▶ Definition 2 (Binary normal form [22]). A conjunctive grammar G = (Σ, N, P, S) is in
binary normal form if each rule in P has one of the two following forms:

a long rule: A → B1C1&...&BmCm (m ≥ 1, Bi, Cj ∈ N);
a short rule: A → a (a ∈ Σ).

2.2 Elements of logic
The underlying structure we will adopt to encode an input word w = w1 . . . wn over its index
interval [1, n] = {1, . . . , n} uses the successor and predecessor functions and the monadic
predicates min and max as its only arithmetic functions/predicates:

▶ Definition 3 (structure encoding a word). Each nonempty word w = w1 . . . wn ∈ Σn on a
fixed finite alphabet Σ is represented by the first-order structure
⟨w⟩ := ([1, n]; (Qs)s∈Σ, min, max, suc, pred)
of domain [1, n], monadic predicates Qs, s ∈ Σ, min and max such that Qs(i) ⇐⇒ wi = s,
min(i) ⇐⇒ i = 1, and max(i) ⇐⇒ i = n, and unary functions suc and pred such that
suc(i) = i+ 1 for i < n and suc(n) = n, pred(i) = i− 1 for i > 1 and pred(1) = 1.
Let SΣ denote the signature {(Qs)s∈Σ, min, max, suc, pred} of the structure ⟨w⟩.

▶ Notation 1. Let x+ k and x− k abbreviate the terms suck(x) and predk(x), for a fixed
integer k ≥ 0. We will also use the intuitive abbreviations x = 1, x = n and x > k, for a fixed
integer k ≥ 1, in place of the formulas min(x), max(x) and ¬ min(x− (k − 1)), respectively.

2.3 Cellular automata and real-time
▶ Definition 4 (1-CA and 2-0CA). A d-dimensional cellular automaton (CA) is a triple
(S,N , f) where S is the finite set of states, N ⊂ Zd is the neighborhood, and f : S|N | → S is
the transition function. We are interested in the following two special cases:

1-CA: It is a one-dimensional two-way cellular automaton (S, {−1, 0, 1}, f), for which the
state ⟨c, t⟩ of any cell c at a time t > 1 is updated in this way:
⟨c, t⟩ = f(⟨c− 1, t− 1⟩, ⟨c, t− 1⟩, ⟨c+ 1, t− 1⟩).
2-OCA: It is a two-dimensional one-way cellular automaton (S, {(0, 0), (−1, 0), (0,−1)}, f)
for which the state ⟨c1, c2, t⟩ of any cell (c1, c2) at a time t > 1 is updated in this way:
⟨c1, c2, t⟩ = f(⟨c1, c2, t− 1⟩, ⟨c1 − 1, c2, t− 1⟩, ⟨c1, c2 − 1, t− 1⟩).

▶ Definition 5 (permanent and quiescent states). In a CA, a state ♯ is permanent if a cell
in state ♯ remains in this state forever. A state λ of a CA is quiescent if a cell in state λ
remains in this state as long as the states of its neighborhood cells are quiescent or permanent.
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▶ Definition 6 (CA as a word acceptor). A cellular automaton (S,N , f) with an input alphabet
Σ ⊂ S, a permanent state ♯, a quiescent state λ, and a set of accepting states Sacc ⊂ S
acts as a word acceptor if it operates on an input word w ∈ Σ+ in respecting the following
conditions (see Figure 1).
Input. For a 1-CA, the i-th symbol of the input w = w1 . . . wn is given to the cell i at the

initial time 1: ⟨i, 1⟩ = wi. All other cells are in the permanent state ♯. For a 2-OCA,
the i-th symbol of the input is given to the cell (i, 1) at time 1: ⟨i, 1, 1⟩ = wi. At time
1, the cells (c1, c2) ∈ [1, n] × [2, n] are in the quiescent state λ, all other cells are in the
permanent state ♯.

Output. One specific cell called the output cell gives the output, “accept” or “reject”, of the
computation. For a 1-CA, the output cell is the cell 1. For a 2-OCA, the output cell is
(n, n).

Acceptance. An input word is accepted by a 1-CA (resp. 2-CA) at time t if the output cell
enters an accepting state at time t.

w1 w2 w3 w4 w5

Output

1-CA

w1 w2 w3 w4 w5

Output

2-OCA

Figure 1 Input and output of a CA acting as a word acceptor.

▶ Definition 7 (RealTime1CA, RealTime2OCA). A word is accepted in real-time by a 1-CA
(resp. 2-OCA) if the word is accepted in minimal time for the output cell 1 (resp. (n, n)) to
receive each of its letters. A language is recognized in real-time by a CA if it is the set of
words that it accepts in real-time. The class RealTime1CA (resp. RealTime2OCA) is the class
of languages recognized in real-time by a 1-CA (resp. 2-OCA).

w1 w2 w3 w4 w5

RealTime1CA

t = n

t = 1

w1w2w3w4w5

t = 1

t = n

t = 2n − 1

RealTime2OCA

Figure 2 Space-time diagrams of RealTime1CA and RealTime2OCA.

3 Real-time recognition of a unary conjunctive language

In this section, we prove our first main result:

▶ Theorem 8. Conj1 ⊆ RealTime1CA1.

AUTOMATA 2021



8:6 Conjunctive Grammars, Cellular Automata and Logic

3.1 Expressing inductively a unary conjunctive language in logic
The generating process of a unary conjunctive language is naturally expressed in the logic
pred-ESO-HORN, an inductive Horn logic whose only function is the predecessor function.

▶ Definition 9 (pred-ESO-HORN). A formula of pred-ESO-HORN is a formula Φ :=
∃R∀x∀yψ(x, y) where R is a finite set of binary predicates and ψ is a conjunction of
Horn clauses, of signature SΣ ∪ R, and of one the three following forms:

an input clause: min(x) ∧ (¬) min(y) ∧Qs(y) → R(x, y) with s ∈ Σ and R ∈ R;
a computation clause: δ1 ∧ . . . ∧ δr → R(x, y) with R ∈ R and where each hypothesis
δh is an atom S(x, y) or a conjunction S(x− i, y − j) ∧ x > i ∧ y > j, with S ∈ R and
i, j ≥ 0 two integers such that i+ j > 0;
a contradiction clause: max(x) ∧ max(y) ∧R(x, y) → ⊥ with R ∈ R.

By abuse of notation, let us also call pred-ESO-HORN the class of languages defined by a
formula of pred-ESO-HORN.

▶ Notation 2. We will freely use equalities (resp. inequalities) x = i and y = j (resp. x > i,
y > j), for constants i, j, in our formulas since they can be easily defined in pred-ESO-HORN.
For example, the binary predicate Rx>2 of intuitive meaning Rx>2(x, y) ⇐⇒ x > 2 is
defined inductively by the following clauses where Rx=a(x, y) means x = a:

min(x) → Rx=1(x, y); x > 1 ∧Rx=1(x− 1, y) → Rx=2(x, y);
x > 1 ∧Rx=2(x− 1, y) → Rx>2(x, y); x > 1 ∧Rx>2(x− 1, y) → Rx>2(x, y).

Also, some other arithmetic predicates easily defined in pred-ESO-HORN will be used. For
example, y = 2x can be replaced by the atom Ry=2x(x, y), where Ry=2x is defined by the
following two clauses using the predicates Rx=1, Ry=2, Rx>1 and Ry>2:

x = 1 ∧ y = 2 → Ry=2x(x, y) ; x > 1 ∧ y > 2 ∧Ry=2x(x− 1, y − 2) → Ry=2x(x, y).

▶ Notation 3. More generally, let Rρ(x,y) denote a binary predicate whose meaning is
Rρ(x,y)(x, y) ⇐⇒ ρ(x, y), for a property or a formula ρ(x, y). We will also use a set of
binary arithmetic predicates denoted by Rarith, which consists of Rx=y, Ry=2x and Rρ(x,y),
for ρ(x, y) := x ≥

⌈
y
2
⌉
, and the predicates used to define them in pred-ESO-HORN.

Let us prove that for every unary conjunctive language, its complement can be defined in
pred-ESO-HORN1.

▶ Lemma 10. For each language L ⊆ a+, if L ∈ Conj1 then a+ \ L ∈ pred-ESO-HORN.

Proof. Let G = ({a}, N, P, S) be a conjunctive grammar in binary normal form which
generates L. For each A ∈ N and each unary word ay, we have, according to the length y,
the following equivalences which will be the basis of our induction:

if y = 1, then ay = a ∈ L(A) ⇐⇒ the short rule A → a belongs to P ;
if y > 1, then ay ∈ L(A) ⇐⇒ there is a long rule A → B1C1& . . .&BmCm in P such
that, for each i ∈ {1, . . . ,m}, there exists x ≥

⌈
y
2
⌉

such that either ax ∈ L(Bi) and
ay−x ∈ L(Ci), or ay−x ∈ L(Bi) and ax ∈ L(Ci).

We want to construct a first-order formula ∀x∀yψG(x, y) of signature SΣ ∪R, for Σ := {a}
and the set of binary predicates R := {MajA, MinA | A ∈ N} ∪ {SumBC | B,C ∈ N} ∪ Rarith

so that the formula ΦG := ∃R∀x∀yψG belongs to pred-ESO-HORN and defines the language
a+ \ L. The intuitive meanings of the predicates MajA, MinA and SumBC are as follows:

MajA(x, y) ⇐⇒
⌈

y
2
⌉

≤ x ≤ y and ax ∈ L(A);
MinA(x, y) ⇐⇒

⌈
y
2
⌉

≤ x < y and ay−x ∈ L(A) ;
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SumBC(x, y) ⇐⇒ there is some x′ with
⌈

y
2
⌉

≤ x′ ≤ x such that either ax′ ∈ L(B) and
ay−x′ ∈ L(C), or ay−x′ ∈ L(B) and ax′ ∈ L(C).

Note that for x = y, the above equivalence for MajA implies MajA(x, y) ⇐⇒ ay ∈ L(A).
Let us give and justify a list of Horn clauses whose conjunction ψ′

G defines the predicates
MajA, MinA and SumBC , using the arithmetic predicates of Rarith (see Notations 2 and 3),
namely Rx=y, Ry=2x and Rρ(x,y), for ρ(x, y) := x ≥

⌈
y
2
⌉
.

Short rules. Each rule A → a of P is expressed by the input clause:
min(x) ∧ min(y) ∧Qa(y) → MajA(x, y).

Induction on the length y. If we have for y > 1 the inequalities
⌈

y−1
2
⌉

≤ x ≤ y − 1 and
x ≥

⌈
y
2
⌉

then
⌈

y
2
⌉

≤ x ≤ y. This justifies the clause:
y > 1 ∧ MajA(x, y − 1) ∧ x ≥

⌈
y
2
⌉

→ MajA(x, y) for all A ∈ N .

For y > 1 and y = 2x, we have ax = ay−x and
⌈

y
2
⌉

≤ x < y. This justifies the clause:
y > 1 ∧ MajA(x, y − 1) ∧ y = 2x → MinA(x, y) for all A ∈ N .

If for x, y > 1 we have the inequalities
⌈

y−1
2
⌉

≤ x−1 < y−1, then
⌈

y
2
⌉

≤ x < y. Moreover,
a(y−1)−(x−1) = ay−x. This justifies the clause:

x > 1 ∧ y > 1 ∧ MinA(x− 1, y − 1) → MinA(x, y) for all A ∈ N .

Concatenation. For all B,C ∈ N , it is clear that the concatenation predicate SumBC is
defined inductively by the following three clauses:

initialization: MajB(x, y) ∧ MinC(x, y) → SumBC(x, y) ;
MinB(x, y) ∧ MajC(x, y) → SumBC(x, y);
induction: ¬min(x) ∧ SumBC(x− 1, y) → SumBC(x, y).

Long rules. Each rule A → B1C1& . . .&BmCm of P is expressed by the clause:
x = y ∧ SumB1C1(x, y) ∧ · · · ∧ SumBmCm(x, y) → MajA(x, y).

Thus, the formula ∀x∀yψ′
G where ψ′

G is the conjunction of the above clauses defines the
predicates MajA, MinA, and SumBC .

Definition of a+ \ L. We have the equivalence MajS(n, n) ⇐⇒ an ∈ L(S) ⇐⇒ an ∈ L.
Therefore, the following contradiction clause expresses an ̸∈ L:

γS := max(x) ∧ max(y) ∧ MajS(x, y) → ⊥.

Finally, observe that the formula ΦG := ∃R∀x∀yψG where ψG is γarith ∧ ψ′
G ∧ γS and

γarith is the conjunction of clauses that defines the arithmetic predicates of Rarith, belongs
to pred-ESO-HORN. Since we have ⟨an⟩ |= ΦG ⇐⇒ an ̸∈ L, as justified above, then the
language a+ \ L belongs to pred-ESO-HORN, as claimed. ◀

3.2 Equivalence of logic with grid-circuits
We introduce the grid-circuit as an intermediate object between our logic and the real-time
cellular automaton: see Figure 3.

▶ Definition 11. A grid-circuit is a tuple C := (Σ, (Inputn)n>0,Q,Qacc, g) where
Σ is the input alphabet and (Inputn)n>0 is the family of input functions Inputn :
Σn × [1, n]2 → Σ ∪ {$} such that, for w = w1 . . . wn ∈ Σn, Inputn(w, x, y) = wy if x = 1
and Inputn(w, x, y) = $ otherwise,
Q ∪ {♯} is the finite set of states and Qacc ⊆ Q is the subset of accepting states,
g : (Q ∪ {♯})2 × (Σ ∪ {$}) → Q is the transition function.

AUTOMATA 2021



8:8 Conjunctive Grammars, Cellular Automata and Logic

▶ Definition 12 (computation of a grid-circuit). The computation Cw of a grid-circuit
C := (Σ, (Inputn)n>0,Q,Qacc, g) on a w = w1 . . . wn ∈ Σn is a regular grid of (n+ 1)2 sites
(x, y) ∈ [0, n]2, each in a state ⟨x, y⟩ ∈ Q ∪ {♯} computed inductively:

each site in {0} × [0, n] or [0, n] × {0} is in the particular state ♯;
the state of each site (x, y) ∈ [1, n]2 is ⟨x, y⟩ = g(⟨x, y − 1⟩, ⟨x− 1, y⟩, Inputn(w, x, y)).
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w3

w4

w5

$

$

$

$

$
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$

$

$

$

$

$

$

$
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$
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n

Inputn(w)
[1, n] × [1, n]

♯♯

♯

♯

♯

♯

♯

♯

♯

♯

♯

♯0

n Output

x

y

States of Cw
[0, n] × [0, n]

Figure 3 The grid-circuit.

A word w = w1 . . . wn ∈ Σn is accepted by the grid-circuit C if the output state ⟨n, n⟩ of Cw

belongs to Qacc. The language recognized by C is the set of words it accepts. We denote by
Grid the class of languages recognized by a grid-circuit.

Actually, our predecessor Horn logic is equivalent to grid-circuits.

▶ Lemma 13 ([12]). pred-ESO-HORN = Grid.

Proof. In some sense, a grid-circuit is the “normalized form” of a formula of pred-ESO-HORN.
So, the inclusion Grid ⊆ pred-ESO-HORN is proved straightforwardly.

The first step of the proof of the converse inclusion pred-ESO-HORN ⊆ Grid is to show
that every formula Φ := ∃R∀x∀yψ(x, y) in pred-ESO-HORN is equivalent to a formula
Φ′ ∈ pred-ESO-HORN in which the only hypotheses of computation clauses are atoms S(x, y)
and conjunctions S(x− 1, y) ∧ x > 1 and S(x, y − 1) ∧ y > 1 .

Elimination of atoms R(x − i, y − j) for i + j > 1. The idea is to introduce new “shift”
predicates Rx−i′,y−j′ for fixed integers i′, j′ > 0 with the intuitive meaning:
Rx−i′,y−j′(x, y) ⇐⇒ R(x− i′, y − j′) ∧ x > i′ ∧ y > j′.
Let us explain the method by an example. Assume we have in ψ the Horn clause
(1) x > 3 ∧ y > 2 ∧ S(x− 3, y − 2) → T (x, y). This clause is replaced by the clause
(2) Sx−2,y−2(x− 1, y) ∧ x > 1 → T (x, y)
for which the predicates Sx−1, Sx−2, Sx−2,y−1 and Sx−2,y−2 are defined by the respect-
ive clauses: x > 1 ∧ S(x − 1, y) → Sx−1(x, y), x > 1 ∧ Sx−1(x − 1, y) → Sx−2(x, y),
y > 1 ∧ Sx−2(x, y − 1) → Sx−2,y−1(x, y), and y > 1 ∧ Sx−2,y−1(x, y − 1) → Sx−2,y−2(x, y),
which imply together the clause x > 2 ∧ y > 2 ∧ S(x− 2, y − 2) → Sx−2,y−2(x, y) and then
also x > 3 ∧ y > 2 ∧ S(x− 3, y − 2) → Sx−2,y−2(x− 1, y).

It is clear that the formula Φ := ∃R∀x∀yψ is equivalent to the formula Φ′ := ∃R′∀x∀yψ′

where R′ := R ∪ {Sx−1, Sx−2, Sx−2,y−1, Sx−2,y−2} and ψ′ is the conjunction ψreplace ∧ ψdef,
where ψreplace is the formula ψ in which clause (1) is replaced by clause (2), and ψdef is the
conjunction of the above clauses defining the new predicates of R′.

Thus, any formula Φ ∈ pred-ESO-HORN is equivalent to a formula Φ′ ∈ pred-ESO-HORN
whose computation clauses only contain hypotheses of the following three forms:
R(x− 1, y) ∧x > 1 ; R(x, y− 1) ∧ y > 1 ; R(x, y). The next step is to eliminate these R(x, y).
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Elimination of hypotheses R(x, y). (sketch of proof): The first idea is to group together
in each computation clause the hypothesis atoms of the form R(x, y) and the conclusion of
the clause. As a result, the formula can be rewritten in the form

Φ := ∃R∀x∀y

∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))


where the Ci’s are the input clauses and the contradiction clauses, and each computation
clause is written in the form αi(x, y) → θi(x, y), where αi(x, y) is a conjunction of formulas
of the only forms R(x− 1, y) ∧ x > 1, R(x, y − 1) ∧ y > 1, and θi(x, y) is a Horn clause in
which all atoms are of the form R(x, y).

The second idea is to “solve” the Horn clauses θi according to the input clauses and all
the possible conjunctions of hypotheses αi that may be true. Notice the two following facts:
the hypotheses of the input clauses are input literals and the conjuncts of the αi’s are of the
only forms R(x− 1, y) ∧x > 1, R(x, y− 1) ∧ y > 1. So, we can prove by induction on the sum
x+ y that the obtained formula Φ′ in which no atom R(x, y) appears as a clause hypothesis,
is equivalent to the above formula Φ. The complete proof is given in Appendix A.

Transformation of the formula into a grid-circuit. Let R = {R1, . . . , Rm} denote the
set of binary predicates of the formula. By a case separation of the clauses, it is easy to
transform the formula into an equivalent formula Φ := ∃R∀x∀yψ where ψ is a conjunction
of clauses of the following forms (a-e), in which s ∈ Σ, j ∈ [1,m], and A,B are (possibly
empty) subsets of [1,m]:
(a) x = 1 ∧ y = 1 ∧Qs(y) → Rj(x, y);
(b) x = 1 ∧ y > 1 ∧Qs(y) ∧

∧
i∈A Ri(x, y − 1) → Rj(x, y);

(c) x > 1 ∧ y = 1 ∧
∧

i∈A Ri(x− 1, y) → Rj(x, y);
(d) x > 1 ∧ y > 1 ∧

∧
i∈A Ri(x− 1, y) ∧

∧
i∈B Ri(x, y − 1) → Rj(x, y);

(e) x = n ∧ y = n ∧Rj(x, y) → ⊥.

Now, transform this formula into a grid-circuit C := (Σ, (Inputn)n>0,Q,Qacc, g). The
idea is that the state of a site (x, y) ∈ [1, n]2 is the set of predicates Ri such that Ri(x, y) is
true. Let Q be the power set of the set of R indices: Q := P([1,m]). There are four types of
transition (a-d) which mimic the clauses (a-d) above. These are, for s ∈ Σ and q, q′ ∈ Q:
(a) g(♯, ♯, s) = {j ∈ [1,m] | there is a clause (a) with Qs, and conclusion Rj(x, y)};
(b) g(q, ♯, s) = {j ∈ [1,m] | there is a clause (b) with Qs, and A ⊆ q, and conclusion

Rj(x, y)};
(c) g(♯, q, $) = {j ∈ [1,m] | there is a clause (c) with A ⊆ q, and conclusion Rj(x, y)};
(d) g(q, q′, $) = {j ∈ [1,m] | ∃ a clause (d) with A ⊆ q, B ⊆ q′, and conclusion Rj(x, y)}.

Of course, the set of accepting states of C is determined by the contradiction clauses (e):
Qacc := {q ∈ Q | q contains no j such that Rj occurs in a clause (e)}.

We can easily check the equivalence, for each w ∈ Σ+: ⟨w⟩ |= Φ ⇐⇒ C accepts w.
Therefore, the inclusion pred-ESO-HORN ⊆ Grid is proved. ◀

3.3 Grid-circuits are equivalent to real-time 1-CA
▶ Lemma 14. [12] Grid = RealTime1CA.

Proof. Figure 4 shows how Grid is simulated on RealTime1CA and Figure 5 shows how
RealTime1CA is simulated on Grid. The proof is detailed in Appendix B. ◀
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Figure 4 Simulation of Grid on RealTime1CA.
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Figure 5 Simulation of RealTime1CA on the grid-circuit.

Proof of Theorem 8. Lemmas 13 and 14 give us the following equalities of classes:
pred-ESO-HORN = Grid = RealTime1CA. These equalities trivially hold when restricted
to unary languages: pred-ESO-HORN1 = Grid1 = RealTime1CA1.

From the fact that the class RealTime1CA1 is closed under complement and from Lemma 10,
we deduce Conj1 ⊆ pred-ESO-HORN1 = Grid1 = RealTime1CA1. ◀

4 Real-time recognition of a conjunctive language: the general case

Recall the inclusions4 RealTime1CA ⊆ RealTime2OCA ⊆ RealTime2SOCA.

Our second main result strengthens the inclusion CFL ⊆ RealTime2SOCA of Terrier [29]:

▶ Theorem 15. Conj ⊆ RealTime2OCA.

4.1 Expressing a conjunctive language in logic: the general case
The generating process of a conjunctive language is naturally expressed in the Horn logic
incl-pred-ESO-HORN. This is a hybrid logic with three first-order variables x, y, z, whose
name means that it makes inductions on the variable interval [x, y], by inclusion, and on the
individual variable z, by predecessor.

▶ Definition 16 (incl-pred-ESO-HORN). A formula of incl-pred-ESO-HORN is a formula
Φ := ∃R∀x∀y∀zψ(x, y, z) where R is a finite set of ternary predicates, and ψ is a conjunction
of Horn clauses, of signature5 SΣ ∪ R ∪ {=,≤}, and of the three following forms:

an input clause: x = y ∧ min(z) ∧Qs(x) → R(x, y, z) with s ∈ Σ and R ∈ R;

4 Recall that RealTime2SOCA is the class of languages recognized by sequential two-dimensional one-way
cellular automata in real-time: this is the minimal time, 3n − 1, for the output cell (n, n) to receive the
n letters of the input word, communicated sequentially by the input cell (1, 1).

5 This definition must consider = and ≤ as primitive symbols.
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a computation clause: δ1 ∧ . . . ∧ δr → R(x, y, z) with R ∈ R and where each hypothesis
δh is an atom S(x, y, z) or a conjunction S(x + i, y − k, z − k) ∧ x + i ≤ y − j ∧ z > k

with S ∈ R and i, j, k ≥ 0 three integers such that i+ j + k > 0;
a contradiction clause: min(x) ∧ max(y) ∧ max(z) ∧R(x, y, z) → ⊥ with R ∈ R.

Let us also call incl-pred-ESO-HORN the class of languages defined by a formula of
incl-pred-ESO-HORN.

▶ Lemma 17. For each language L ⊆ Σ+, if L ∈ Conj, then Σ+ \L ∈ incl-pred-ESO-HORN .

Proof. The proof is a variation (an extension) of the proof of the same result, Lemma 10, in
the unary case. This is why we insist on the differences. Let G = (Σ, N, P, S) be a conjunctive
grammar in binary normal form which generates L and let w be a word w = w1 . . . wn ∈ Σ+.
For each A ∈ N and each factor wx,y := wx . . . wy, we have, according to the length y− x+ 1
of wx,y, the following equivalences which will be the basis of our induction:

if x = y, then wx,y ∈ L(A) ⇐⇒ the short rule A → wx belongs to P ;
if x < y, then wx,y ∈ L(A) ⇐⇒ there is a long rule A → B1C1& . . .&BmCm

in P such that, for each i ∈ {1, . . . ,m}, there exists z ≥ ⌈(y − x+ 1)/2⌉ such that
either wx,x+z−1 ∈ L(Bi) and wx+z,y ∈ L(Ci), or wx,y−z ∈ L(Bi) and wy−z+1,y ∈ L(Ci).

Thus, a double induction is performed, on the index interval [x, y] of a factor wx,y and
the maximal z among the lengths of the two sub-factors u, v of the m decompositions
wx,y = uv, u ∈ L(Bi), v ∈ L(Ci), for a long rule. This is naturally expressed in the logic
incl-pred-ESO-HORN.

We want to construct a first-order formula ∀x∀y∀zψG of signature SΣ ∪ R ∪ {=,≤},
for the set of ternary predicates R := {PrefMaj

A , PrefMin
A , SuffMaj

A , SuffMin
A | A ∈ N} ∪

{ConcatBC | B,C ∈ N} ∪ Rarith, so that the formula ΦG := ∃R∀x∀y∀zψG belongs to
incl-pred-ESO-HORN and defines the language Σ+ \ L. The intuitive meanings of the predic-
ates PrefMaj

A , PrefMin
A , SuffMaj

A , SuffMin
A and ConcatBC are as follows:

PrefMaj
A (x, y, z) ⇐⇒

⌈
y−x+1

2
⌉

≤ z ≤ y − x+ 1 and wx,x+z−1 ∈ L(A);
PrefMin

A (x, y, z) ⇐⇒
⌈

y−x+1
2
⌉

≤ z ≤ y − x and wx,y−z ∈ L(A);
SuffMaj

A (x, y, z) ⇐⇒
⌈

y−x+1
2
⌉

≤ z ≤ y − x+ 1 and wy−z+1,y ∈ L(A);
SuffMin

A (x, y, z) ⇐⇒
⌈

y−x+1
2
⌉

≤ z ≤ y − x and wx+z,y ∈ L(A);
ConcatBC(x, y, z) ⇐⇒ there is some z′ with

⌈
y−x+1

2
⌉

≤ z′ ≤ z such that
either wx,x+z′−1 ∈ L(B) and wx+z′,y ∈ L(C), or wx,y−z′ ∈ L(B) and wy−z′+1,y ∈ L(C).

Note that the above equivalences for PrefMaj
A and SuffMaj

A imply in the particular case
z = y − x+ 1 the equivalences PrefMaj

A (x, y, z) ⇐⇒ SuffMaj
A (x, y, z) ⇐⇒ wx,y ∈ L(A).

Let us give and justify a list of Horn clauses whose conjunction ψ′
G defines the predicates

PrefMaj
A , PrefMin

A , SuffMaj
A , SuffMin

A and ConcatBC , using the arithmetic predicates z = y−x+1,
y − x+ 1 = 2z, and z ≥

⌈
y−x+1

2
⌉

easily defined in incl-pred-ESO-HORN.

Short rules. Each rule A → s of P is expressed by the two clauses:
x = y ∧ z = 1 ∧Qs(x) → PrefMaj

A (x, y, z) ; x = y ∧ z = 1 ∧Qs(x) → SuffMaj
A (x, y, z).

Induction for prefixes. If we have for x < y the inequalities⌈
(y−1)−x+1

2

⌉
≤ z ≤ (y− 1) −x+ 1 and z ≥

⌈
y−x+1

2
⌉

then
⌈

y−x+1
2
⌉

≤ z ≤ y−x+ 1. This
justifies the clause:

x ≤ y − 1 ∧ PrefMaj
A (x, y − 1, z) ∧ z ≥

⌈
y−x+1

2
⌉

→ PrefMaj
A (x, y, z), for all A ∈ N .

For x < y and y − x + 1 = 2z, we have wx,x+z−1 = wx,y−z and
⌈

y−x+1
2
⌉

≤ z ≤ y − x.
This justifies the clause:

x ≤ y − 1 ∧ PrefMaj
A (x, y − 1, z) ∧ y − x+ 1 = 2z → PrefMin

A (x, y, z), for all A ∈ N .
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For x < y and z > 1 and
⌈

(y−1)−x+1
2

⌉
≤ z−1 ≤ (y−1)−x, we have

⌈
y−x+1

2
⌉

≤ z ≤ y−x.
This justifies the clause:

x ≤ y − 1 ∧ z > 1 ∧ PrefMin
A (x, y − 1, z − 1) → PrefMin

A (x, y, z), for all A ∈ N .

Induction for suffixes. As this induction is symmetric to the one for prefixes, we do not
justify the following list of induction clauses for the predicates SuffMaj

A and SuffMin
A , A ∈ N :

x+ 1 ≤ y ∧ SuffMaj
A (x+ 1, y, z) ∧ z ≥

⌈
y−x+1

2
⌉

→ SuffMaj
A (x, y, z);

x+ 1 ≤ y ∧ SuffMaj
A (x+ 1, y, z) ∧ y − x+ 1 = 2z → SuffMin

A (x, y, z);
x+ 1 ≤ y ∧ z > 1 ∧ SuffMin

A (x+ 1, y, z − 1) → SuffMin
A (x, y, z).

Concatenation. For all B,C ∈ N , it is clear that the concatenation predicate ConcatBC is
defined inductively by the following three clauses:

initialization: PrefMaj
B (x, y, z) ∧ SuffMin

C (x, y, z) → ConcatBC(x, y, z);
PrefMin

B (x, y, z) ∧ SuffMaj
C (x, y, z) → ConcatBC(x, y, z);

induction: z > 1 ∧ ConcatBC(x, y, z − 1) → ConcatBC(x, y, z).

Long rules. Each rule A → B1C1& . . .&BmCm of P is expressed by the two clauses:
z = y − x+ 1 ∧ ConcatB1C1(x, y, z) ∧ · · · ∧ ConcatBmCm

(x, y, z) → PrefMaj
A (x, y, z);

z = y − x+ 1 ∧ ConcatB1C1(x, y, z) ∧ · · · ∧ ConcatBmCm
(x, y, z) → SuffMaj

A (x, y, z).
Thus, the formula ∀x∀y∀zψ′

G where ψ′
G is the conjunction of the above clauses defines the

predicates PrefMaj
A , PrefMin

A , SuffMaj
A , SuffMin

A , and ConcatBC .

Definition of Σ+\L. We have the equivalence PrefMaj
S (1, n, n) ⇐⇒ w ∈ L(S) ⇐⇒ w ∈ L.

Therefore, the following contradiction clause expresses w ̸∈ L:
γS := min(x) ∧ max(y) ∧ max(z) ∧ PrefMaj

S (x, y, z) → ⊥.

Finally, observe that the formula ΦG := ∃R∀x∀y∀zψG where ψG is γarith ∧ ψ′
G ∧ γS

and γarith is the conjunction of clauses that define the arithmetic predicates, belongs to
incl-pred-ESO-HORN. Since we have ⟨w⟩ |= ΦG ⇐⇒ w ̸∈ L, as justified above, then the
language Σ+ \ L belongs to incl-pred-ESO-HORN, as claimed. ◀

4.2 Equivalence of logic with cube-circuits
We now introduce the cube-circuit, an extension of the grid-circuit to three dimensions. It
will make the link between our logic incl-pred-ESO-HORN and the class RealTime2OCA.

▶ Definition 18. A cube-circuit is a tuple C := (Σ, (Inputn)n>0,Q,Qacc, g) where
Σ is the input alphabet and (Inputn)n>0 is the family of input functions Inputn :
Σn × [1, n]3 → Σ ∪ {$} such that, for w = w1 . . . wn ∈ Σn, Inputn(w, x, y, z) = wx if
x = y and z = 1, and Inputn(w, x, y, z) = $ otherwise,
Q ∪ {♯} is the finite set of states and Qacc ⊆ Q is the subset of accepting states,
g : (Q ∪ {♯})3 × (Σ ∪ {$}) → Q is the transition function.

▶ Definition 19 (computation of a cube-circuit). The computation Cw of a cube-circuit
C := (Σ, (Inputn)n>0,Q,Qacc, g) on a word w = w1 . . . wn ∈ Σn is a grid of (n+ 1)3 sites
(x, y, z) ∈ [1, n+ 1] × [0, n]2, each in a state ⟨x, y, z⟩ ∈ Q ∪ {♯} computed inductively:

each site (x, y, z) such that x > y or z = 0 is in the state ♯;
the state of each site (x, y, z) ∈ [1, n]3 such that x ≤ y and z > 0 is
⟨x, y⟩ = g(⟨x+ 1, y, z⟩, ⟨x, y − 1, z⟩, ⟨x, y, z − 1⟩, Inputn(w, x, y, z)).
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A word w = w1 . . . wn ∈ Σn is accepted by the cube-circuit C if the output state ⟨1, n, n⟩
of Cw belongs to Qacc. The language recognized by C is the set of words it accepts. We
denote by Cube the class of languages recognized by a cube-circuit.

x

z y

w1
w2

w3
w4

w5

Figure 6 The cube-circuit.

Actually, the logic incl-pred-ESO-HORN is equivalent to cube-circuits.

▶ Lemma 20. incl-pred-ESO-HORN = Cube.

Proof. The proof is similar to that of pred-ESO-HORN = Grid (Lemma 13). The cube-
circuit can be seen as the “normalized form” of a formula of incl-pred-ESO-HORN, proving
the inclusion Cube ⊆ incl-pred-ESO-HORN. The proof of the inverse inclusion is divided
into the same three steps as for Lemma 13, which must be adapted to three variables:
1) elimination of atoms R(x+ i, y− j, z− k) for i+ j+ k > 1 (instead of elimination of atoms
R(x− i, y − j) for i+ j > 1); 2) elimination of hypotheses R(x, y, z) (instead of elimination
of hypotheses R(x, y)); 3) transformation of the resulting formula into a cube-circuit.

Steps 1 and 2 are adapted straightforwardly. Let us describe in detail step 3. Let
R = {R1, . . . , Rm} denote the set of ternary predicates of the formula resulting from step 2.
By a case separation of the clauses, it is easy to transform this formula into an equivalent
formula Φ := ∃R∀x∀y∀zψ where ψ is a conjunction of clauses of the following forms (a-e), in
which s ∈ Σ, j ∈ [1,m], and A,B,C are (possibly empty) subsets of [1,m]:
(a) x = y ∧ z = 1 ∧Qs(x) → Rj(x, y, z);
(b) x < y ∧ z = 1 ∧

∧
i∈A Ri(x+ 1, y, z) ∧

∧
i∈B Ri(x, y − 1, z) → Rj(x, y, z);

(c) x = y ∧ z > 1 ∧
∧

i∈A Ri(x, y, z − 1) → Rj(x, y, z);
(d) x < y∧z > 1∧

∧
i∈A Ri(x+1, y, z)∧

∧
i∈B Ri(x, y−1, z)∧

∧
i∈C Ri(x, y, z−1) → Rj(x, y, z);

(e) x = 1 ∧ y = n ∧ z = n ∧Rj(x, y, z) → ⊥.

Now, transform this formula into a cube-circuit C := (Σ, (Inputn)n>0,Q,Qacc, g). The
idea is still that the state of a site (x, y, z) ∈ [1, n]3 is the set of predicates Ri such that
Ri(x, y, z) is true, and Q is again the power set of the set of R indices: Q := P([1,m]).
There are four types of transition (a-d), which mimic the clauses (a-d) above. These are, for
s ∈ Σ and q, q′, q′′ ∈ Q:
(a) g(♯, ♯, ♯, s) = {j ∈ [1,m] | ∃ a clause (a) with Qs, and conclusion Rj(x, y, z)};
(b) g(q, q′, ♯, $) = {j ∈ [1,m] | ∃ a clause (b) with A ⊆ q, B ⊆ q′, and conclusion Rj(x, y, z)};
(c) g(♯, ♯, q, $) = {j ∈ [1,m] | ∃ a clause (c) with A ⊆ q, and conclusion Rj(x, y, z)};
(d) g(q, q′, q′′, $) = {j ∈ [1,m] | ∃ a clause (d) with A ⊆ q, B ⊆ q′, C ⊆ q′′, and conclusion

Rj(x, y, z)}.

Here again, the set of accepting states of C is determined by the contradiction clauses (e):
Qacc := {q ∈ Q | q contains no j such that Rj occurs in a clause (e)}.
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w
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(x, y, z)

(x = c1 + c2 − t, y = c1, z = c2)

Cube

w

Communication

7→

7→

(c1 = y, c2 = z, t = z + y − x)

(c1, c2, t)

RealTime2OCA

Figure 7 Bijection between the sites of Cw and the space-time sites of a 2-OCA on w.

We can easily check the equivalence, for each w ∈ Σ+: ⟨w⟩ |= Φ ⇐⇒ C accepts w.
Therefore, the inclusion incl-pred-ESO-HORN ⊆ Cube is proved. ◀

4.3 Cube-circuits are equivalent to real-time 2-OCA
One observes that by a one-to-one transformation, the computation Cw of a cube-circuit C on
a word w is nothing else than the space-time diagram of a real-time 2-OCA on the input w.
This yields:

▶ Lemma 21. Cube = RealTime2OCA.

Proof. The bijection between the sites (x, y, z) of the computation Cw of a cube-circuit C
on a word w and the sites (c1, c2, t) of the space-time diagram of a real-time 2-OCA on the
input w is depicted in Figure 7. We check that this bijection respects the communication
scheme and the input/output sites of both computation models as shown in Figure 7.
By this transformation, the transition function g of the cube-circuit, which is ⟨x, y, z⟩ =
g(⟨x+ 1, y, z⟩, ⟨x, y − 1, z⟩, ⟨x, y, z − 1⟩, Inputn(w, x, y, z)) becomes the transition function
f of the 2-OCA: ⟨c1, c2, t⟩ = f(⟨c1, c2, t− 1⟩, ⟨c1 − 1, c2, t− 1⟩, ⟨c1, c2 − 1, t− 1⟩), and vice
versa. ◀

Proof of Theorem 15. Lemmas 20 and 21 give us the following equalities of classes:
incl-pred-ESO-HORN = Cube = RealTime2OCA.

From the fact that the class RealTime2OCA is closed under complement and from
Lemma 17, we deduce Conj ⊆ incl-pred-ESO-HORN = Cube = RealTime2OCA. ◀

5 Conclusion

We have proved the inclusions Conj1 ⊆ RealTime1CA and Conj ⊆ RealTime2OCA by express-
ing in two logics (proved equivalent to RealTime1CA and RealTime2OCA, respectively) the
inductive process of a conjunctive grammar. These results contribute to a better knowledge
of relationships between automata, grammars and logic. We think that they bring us closer
to prove or disprove that Conj is a subclass of RealTime1CA.

Figure 8 recapitulates the known inclusions between the language classes that we have
considered here. For each of the ⊆ inclusions of this figure, whether it is strict or not is
an open question. Note that it was necessary to add an extra dimension to the space-time
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diagram to recognize any conjunctive language with a cellular automaton. Otherwise, any
context-free or conjunctive language would always be decided by a RAM in time O(n2),
which seems unlikely!

Besides, to grasp the expressive power, largely unknown, of the Conj (resp. Conj1)
class, it would be important to obtain exact characterizations of this class in logic and/or
computational complexity. This is a fascinating question for future research!

CFL1 = Trellis1 = LinConj1 = Reg1

Conj1

RealTime1CA1

DSPACE1(n)

⊊ [17]

⊆
⊆

Trellis = LinConjCFL

RealTime2OCA

Conj RealTime1CA

DSPACE(n)

⊊[22]

⊊[22] ⊊[5]

⊆ ⊆

⊆ [9]

̸=

[27]

Figure 8 Relations between language classes over a unary or general alphabet.
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A Complement of proof for Lemma 13

Elimination of hypotheses R(x, y). The first idea is to group together in each computation
clause the hypothesis atoms of the form R(x, y) and the conclusion of the clause. Accordingly,
the formula obtained Φ can be rewritten in the form

Φ := ∃R∀x∀y

∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))


where the Ci’s are the input clauses and the contradiction clause and each computation
clause is written in the form αi(x, y) → θi(x, y) where αi(x, y) is a conjunction of formulas
of the only forms R(x− 1, y) ∧ ¬min(x), R(x, y− 1) ∧ ¬min(y) (but not R(x, y)), and θi(x, y)
is a Horn clause whose all atoms are of the form R(x, y).
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We number R1, . . . , Rm the computation predicates of R. To each subset J ⊆ [1, k] of
the family of implications (αi(x, y) → θi(x, y))i∈[1,k] let us associate the set

KJ := {h ∈ [1,m] |
∧
i∈J

θi(x, y) → Rh(x, y) is a tautology}.

Note that the notion of tautology used in the definition of KJ is “propositional” because all
the atoms involved are of the form Ri(x, y), i.e., refer to the same pair of variables (x, y).
Also, note that the function J 7→ KJ is monotonic: for J ′ ⊆ J , we have KJ′ ⊆ KJ because∧

i∈J′ θi(x, y) → Rh(x, y) implies
∧

i∈J θi(x, y) → Rh(x, y).

Clearly, it is enough to prove the following claim:

▷ Claim 22. The formula Φ is equivalent to the following formula Φ′, whose clauses have no
hypothesis R(x, y).

Φ′ := ∃R∀x∀y

 ∧
i

Ci(x, y) ∧
∧

J⊆[1,k]

∧
h∈KJ

(∧
i∈J

αi(x, y) → Rh(x, y)
) 

Proof of the implication Φ ⇒ Φ′: It is enough to prove the implication ∧
i∈[1,k]

(αi(x, y) → θi(x, y))

 →

[∧
i∈J

αi(x, y) →
∧

h∈KJ

Rh(x, y)
]

for all set J ⊆ [1, k]. The implication to be proved can be equivalently written:∧
i∈J

αi(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))

 →
∧

h∈KJ

Rh(x, y).

The sub-formula between brackets above implies the conjunction
∧

i∈J θi(x, y). As the implic-
ation

∧
i∈J θi(x, y) →

∧
h∈KJ

Rh(x, y) is a tautology (by definition of KJ), the implication
to be proved is a tautology too.

The converse implication Φ′ ⇒ Φ is more difficult to prove. It uses a folklore property of
propositional Horn formulas easy to be proved:

▶ Lemma 23 (Horn property: folklore). Let F be a strict Horn formula of propositional
calculus, that is a conjunction of clauses of the form p1 ∧ . . . ∧ pk → p0 where k ≥ 0 and the
pi’s are propositional variables. Let F ′ be the conjunction of propositional variables q such
that the implication F → q is a tautology. F has the same minimal model 6 as F ′.

Proof of the implication Φ′ ⇒ Φ: Let ⟨w⟩ be a model of Φ′ and let (⟨w⟩,R) be the minimal
model of the Horn formula

φ′ := ∀x∀y

 ∧
i

Ci(x, y) ∧
∧

J⊆[1,k]

∧
h∈KJ

(∧
i∈J

αi(x, y) → Rh(x, y)
) .

6 For example, for F := p1 ∧p3 ∧ (p1 ∧p3 → p5)∧ (p1 ∧p2 → p4), we have F ′ := p1 ∧p3 ∧p5, which has the
same minimal model I as F ; this model is given by I(p1) = I(p3) = I(p5) = 1 and I(p2) = I(p4) = 0.
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It is enough to show that (⟨w⟩,R) also satisfies the formula

φ := ∀x∀y

 ∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))

 .
As each αi is a conjunction of formulas of the form R(x− 1, y) ∧ ¬min(x), or R(x, y − 1) ∧
¬min(y), we make an induction on the domain {(a, b) ∈ [1, n]2 | a + b ≤ t}, for t ∈ [1, 2n].
More precisely, we are going to prove, by recurrence on the integer t ∈ [1, 2n], that the
minimal model (⟨w⟩,R) of φ′ satisfies the “relativized” formula φt of the formula φ defined
by

φt := ∀x∀y

x+ y ≤ t →

 ∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))


As the hypothesis x+ y ≤ 2n holds for all x, y in the domain [1, n], φ2n is equivalent to φ on
the structure (⟨w⟩,R).

Basis case: For t = 1 the set {(a, b) ∈ [1, n]2 | a+ b ≤ t} is empty so that the “relativized”
formula φ1 is trivially true in the minimal model (⟨w⟩,R) of φ′.

Recurrence step: Suppose (⟨w⟩,R) |= φt−1, for an integer t ∈ [2, 2n]. It is enough to show
that, for each couple (a, b) ∈ [1, n]2 such that a+b = t, we have (⟨w⟩,R) |=

∧
i∈[1,k](αi(a, b) →

θi(a, b)). Let Ja,b be the set of indices i ∈ [1, k] such that the couple (a, b) satisfies αi:

Ja,b := {i ∈ [1, k] | (⟨w⟩,R) |= αi(a, b)}.

Recall that each αi(a, b) is a (possibly empty) conjunction of atoms R(a′, b′) with (a′, b′) =
(a− 1, b) or (a′, b′) = (a, b− 1), therefore such that a′ + b′ = t− 1. Let J ⊆ [1, k] be any set.
Let us examine the two possible cases:

1) J ⊆ Ja,b: then the conjunction
∧

i∈J αi(a, b) holds in (⟨w⟩,R); hence, in (⟨w⟩,R), the
conjunction

∧
h∈KJ

(
∧

i∈J αi(a, b) → Rh(a, b)) is equivalent to
∧

h∈KJ
Rh(a, b);

2) J \ Ja,b ≠ ∅: then the conjunction
∧

i∈J αi(a, b) is false in (⟨w⟩,R); hence, the
conjunction

∧
h∈KJ

(
∧

i∈J αi(a, b) → Rh(a, b)) holds in (⟨w⟩,R).

From (1) and (2), we deduce that in (⟨w⟩,R) the conjunction
∧

J⊆[1,k]
∧

h∈KJ
(
∧

i∈J αi(a, b) →
Rh(a, b)) is equivalent to the conjunction

∧
J⊆Ja,b

∧
h∈KJ

Rh(a, b), which can be simplified
as
∧

h∈KJa,b
Rh(a, b) because J ⊆ Ja,b implies KJ ⊆ KJa,b

. Consequently, for all h ∈ [1,m],
the minimal model (⟨w⟩,R) of the Horn formula φ′ satisfies the atom Rh(a, b) iff h belongs
to KJa,b

. By definition,

KJa,b
:= {h ∈ [1,m] |

∧
i∈Ja,b

θi(x, y) → Rh(x, y) is a tautology}

or, equivalently,

KJa,b
:= {h ∈ [1,m] |

∧
i∈Ja,b

θi(a, b) → Rh(a, b) is a tautology}.

As a consequence of Lemma 23, the two conjunctions∧
i∈Ja,b

θi(a, b) and
∧

h∈KJa,b

Rh(a, b)
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have the same minimal model, which is also the restriction of the minimal model (⟨w⟩,R) of
φ′ to the set of atoms Rh(a, b), for h ∈ [1,m]. Therefore, if i ∈ Ja,b, then (⟨w⟩,R) |= θi(a, b).
If i ∈ [1, k] \ Ja,b, then we have (⟨w⟩,R) |= ¬αi(a, b), by definition of Ja,b. Therefore, for
all i ∈ [1, k], we get (⟨w⟩,R) |= ¬αi(a, b) ∨ θi(a, b). In other words, for all (a, b) such that
a+ b = t, we have : (⟨w⟩,R) |=

∧
i∈[1,k](αi(a, b) → θi(a, b)) and then (⟨w⟩,R) |= φt.

This concludes the inductive proof that (⟨w⟩,R) |= φt, for all t ∈ [1, 2n], and then
⟨w⟩ |= Φ. This proves the converse implication Φ′ ⇒ Φ. Claim 22 is demonstrated. □

B Complement of proof for Lemma 14

Grid ⊆ RealTime1CA. To prove this inclusion, we show how to simulate the computation
of the grid-circuit on a real-time CA. The simulation is made by a geometric transformation
that embeds the grid-circuit in the space-time diagram of a real-time CA. This transformation
is divided into three steps:
1. a variable change: we apply to each site (x, y) ∈ [1, n]2 of the grid-circuit the variable

change (x, y) 7→ (c′ = y − x+ 1, t′ = x+ y − 1);
2. a folding: we fold the resulting diagram along the axis c′ = 1: each site (c′, t′) with c′ < 1

is send to its symmetric counterpart (−c′ + 1, t′);
3. a grouping: each site (c, t) = (⌈ c′

2 ⌉, ⌈ t′

2 ⌉) of the new diagram records the set of sites
{(c′ − 1, t′ − 1), (c′, t′), (c′ + 1, t′ − 1)} with c′ and t′ odd and greater than 1.

The resulting diagram is the expected space-time diagram of a real-time CA, proving the
inclusion.

RealTime1CA ⊆ Grid. To simulate a real-time CA A = (S, Saccept, {−1, 0, 1}, f) on the grid,
we first turn A into an equivalent CA A′ = (S, Saccept, {−2,−1, 0}, f). This transformation
can be seen as the variable change (c, t) 7→ (c+ t− 1, t). The diagram of A′ is then embedded
on the grid-circuit C′ by applying to its sites (c′, t′) the variable change (c′, t′) 7→ (t′, c′). The
local and uniform communication of the embedded diagram can easily be carried out by the
grid-circuit communication scheme.
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