
HAL Id: hal-03167529
https://hal.science/hal-03167529v1

Preprint submitted on 12 Mar 2021 (v1), last revised 9 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conjunctive grammars, cellular automata and logic
Théo Grente, Etienne Grandjean

To cite this version:
Théo Grente, Etienne Grandjean. Conjunctive grammars, cellular automata and logic. 2021. �hal-
03167529v1�

https://hal.science/hal-03167529v1
https://hal.archives-ouvertes.fr

Conjunctive grammars, cellular automata and1

logic2

Théo Grente �3

GREYC, Université de Caen Normandie, France4

Étienne Grandjean �5

GREYC, Université de Caen Normandie, France6

Abstract: The expressive power of the class Conj of conjunctive languages, i.e. languages7

generated by the conjunctive grammars of Okhotin, is largely unknown, while its restriction8

LinConj to linear conjunctive grammars equals the class of languages recognized by real-time9

one-way one-dimensional cellular automata. We prove two weakened versions of the open10

question Conj ⊆? RealTimeCA: 1) it is true for unary languages; 2) Conj ⊆ RealTime2OCA,11

i.e. any conjunctive language is recognized by a real-time one-way two-dimensional cellular12

automaton. Interestingly, we express the rules of a conjunctive grammar in two Horn logics,13

which exactly characterize the complexity classes RealTimeCA and RealTime2OCA.14

Keywords: Computational complexity, Real-time, One-way/two-way communication, Grid-15

circuit, Unary language, Descriptive complexity, Existential second-order logic, Horn formula.16

1 Introduction17

For decades, logic has maintained close relationships with, on the one hand, computational18

models [27] and computational complexity [3], in particular through descriptive complexity [6,19

14, 19, 9, 12, 2], and on the other hand with formal language theory and grammars [7, 19].20

Conjunctive grammars versus logic: Okhotin [23] wrote that “context-free grammars21

may be thought of as a logic for inductive description of syntax in which the propositional22

connectives available... are restricted to disjunction only”. Thus, twenty years ago, the same23

author introduced conjunctive grammars [20] as an extension of context-free grammars by24

adding an explicit conjunction operation within the grammar rules.25

As shown by Okhotin [20], conjunctive grammars – and more generally, Boolean gram-26

mars [21, 23] – inherit the parsing algorithms of the ordinary context-free grammars, without27

increasing their computational complexity. However, the expressive power of these grammars28

is largely unknown. The fact that the class Conj of languages generated by conjunctive gram-29

mars has many closure properties – it is trivially closed under reverse, concatenation, Kleene30

closure, disjunction and conjunction – suggests that this class has equivalent definitions in31

computational complexity and/or logic.32

Conjunctive grammars versus real-time cellular automata: Note that the LinConj33

subclass of languages generated by linear conjunctive grammars was found to be equal to34

the Trellis class of languages recognized by trellis automata [22], or equivalently, one-way35

real-time cellular automata. Faced with this result, it is tempting to ask the following36

question: is the larger class Conj equal to the class RealTimeCA of languages recognized by37

two-way real-time cellular automata? Either answer to this question has strong consequences:38

If Conj = RealTimeCA then each of the two classes will benefit from the closure properties39

of the other class; in particular, RealTimeCA would be closed under reverse, which40

was shown by [13] to imply RealTimeCA = LinearTimeCA, i.e. real-time is nothing but41

linear time for cellular automata, a surprising positive answer to a longstanding open42

question [5, 24, 26].43

If Conj ̸= RealTimeCA then Conj ⊊ DSPACE(n) or RealTimeCA ⊊ DSPACE(n): any of these44

strict inclusions would be a striking result.45

© T. Grente, E. Grandjean;
licensed under Creative Commons License CC-BY 4.0

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:theo.grente@unicaen.fr
mailto:etienne.grandjean@unicaen.fr
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

XX:2 Conjunctive grammars, cellular automata and logic

Real-time is the minimal time of cellular automata (CA). Recall that RealTimeCA (resp.46

Trellis) is the class of languages recognized in real-time by one-dimensional CA with two-way47

(resp. one-way) communication and input word given in parallel. We know the strict inclusion48

Trellis ⊊ RealTimeCA. The robustness of these classes is attested by their characteriz-49

ation by two sub-logics of ESO – the existential second-order logic, which characterizes50

NP – with Horn formulas as their first-order parts1, and called respectively pred-ESO-HORN51

and incl-ESO-HORN, see [10, 11]. For short, we write RealTimeCA = pred-ESO-HORN and52

Trellis = incl-ESO-HORN.53

Results of this paper: This paper focuses on the relationships between the class of54

conjunctive languages and the real-time classes of cellular automata. Although we do not55

know the answer to the question Conj =? RealTimeCA or even to the question of the inclusion56

Conj ⊆? RealTimeCA, we prove two weakened versions of this inclusion:57

1. Conj1 ⊆ RealTimeCA1: The inclusion holds when restricted to unary languages2.58

2. Conj ⊆ RealTime2OCA: The inclusion holds for real-time of two-dimensional one-way59

cellular automata (2-OCA). (We have RealTimeCA ⊆ RealTime2OCA.)60

To grasp the scope of inclusion (1), it is important to note that unlike the subclass CFL161

of the unary languages of the class of context-free languages, which is reduced to regular62

languages, CFL1 = Reg1, the class Conj1 was shown by Jez [15] to be much larger than Reg1.63

Understanding its precise expressiveness seems as difficult a problem to us as for Conj.64

Our inclusion (2) improves the inclusion CFL ⊆ RealTime2SOCA, where RealTime2SOCA65

denotes the class of languages recognized by real-time sequential two-dimensional one-way66

cellular automata, proved by Terrier [25], who uses a result by King [16] and improves67

results by Kosaraju [18] and Chang et al. [4]. Terrier’s result derives transitively from (2):68

CFL ⊆ Conj ⊆ RealTime2OCA ⊆ RealTime2SOCA.69

Logic as a bridge from problems and grammars to real-time CAs: Logic has been70

the basis of logic programming and database queries for decades, especially Horn logic through71

the Prolog and Datalog programming languages [1, 17, 9]. Likewise, the above-mentioned72

logical characterizations of real-time complexity classes of CAs, RealTimeCA = pred-ESO-HORN73

and Trellis = incl-ESO-HORN, have been used to easily show that several problems belong74

to the RealTimeCA or Trellis class by inductively expressing/programming the problems75

in the corresponding Horn logic, see [10, 11].76

In this paper, the same logic programming method is adopted. We prove inclusion (1),77

Conj1 ⊆ RealTimeCA1, by expressing a unary language generated by a conjunctive grammar in78

the pred-ESO-HORN logic. Inclusion (1) follows, by the equality pred-ESO-HORN = RealTimeCA.79

Similarly, to prove inclusion (2), Conj ⊆ RealTime2OCA, we first design a logic denoted80

incl-pred-ESO-HORN so that incl-pred-ESO-HORN = RealTime2OCA. Then, we express any81

conjunctive language in this logic, proving that it belongs to RealTime2OCA, as claimed.82

Thus, the heart of each proof consists in presenting a formula of a certain Horn logic,83

which inductively expresses how a word is generated by a conjunctive grammar: the Horn84

clauses of the formula naturally imitate the rules of the grammar.85

Our proof method and the paper structure: After Section 2 gives some definitions,86

Sections 3 and 4 present inclusions (1) and (2) and their proofs with a common plan:87

Subsection 3.1 (resp. 4.1) expresses the inductive generating process of a conjunctive88

grammar, assumed in binary (Chomsky) normal form in the logic pred-ESO-HORN (resp.89

1 The class ESO-HORN of languages defined by existential second-order formulas with Horn formulas as
their first-order parts is exactly PTIME, see [8].

2 The subclass of the unary languages of a class of languages C is denoted C1.

T. Grente, E. Grandjean XX:3

incl-pred-ESO-HORN). Subsection 3.2 (resp. 4.2) shows that any formula of this logic can90

be normalized into a formula which mimics the computation of a two-dimensional (resp.91

three-dimensional) grid-circuit called Grid (resp. Cube); Subsection 3.3 (resp. 4.3) trans-92

lates the grid-circuit into a real-time one-dimensional CA (resp. two-dimensional OCA).93

Note that we prove the equivalence of our logics with grid-circuits and CA real-time3:94

pred-ESO-HORN = Grid = RealTimeCA and incl-pred-ESO-HORN = Cube = RealTime2OCA.95

Section 5 gives a conclusion with a diagram of the known relations between the Conj class96

and the CA complexity classes studied here, for the general case and for the unary case.97

2 Preliminaries98

2.1 Conjunctive grammars and their binary normal form99

Conjunctive grammars extend context-free grammars with a conjunction operation.100

▶ Definition 1. A conjunctive grammar is a tuple G = (Σ, N, P, S) where Σ is the finite101

set of terminal symbols, N is the finite set of nonterminal symbols, S ∈ N is the initial102

symbol, and P is the finite set of rules, each of the form A → α1&...&αm, for m ≥ 1 and103

αi ∈ (Σ ∪N)+. The set of words, L(A), generated by any A ∈ N is defined by induction:104

if the rules for A are A → α1
1&...&α1

m1
| · · · | αk

1&...&αk
mk

, then L(A) :=
⋃k

i=1
⋂mi

j=1 L(αi
j).105

The language generated by the grammar G is L(S).106

We will mainly use the binary normal form of conjunctive grammars, which extends107

the Chomsky normal form of context-free grammars. Each conjunctive grammar can be108

rewritten in an equivalent binary normal form [20, 23].109

▶ Definition 2 (Binary normal form [20]). A conjunctive grammar G = (Σ, N, P, S) is in110

binary normal form if each rule in P has one of the two following forms:111

a long rule: A → B1C1&...&BmCm (m ≥ 1, Bi, Cj ∈ N);112

a short rule: A → a (a ∈ Σ).113

2.2 Elements of logic114

The underlying structure we will use to encode an input word w = w1 . . . wn on its index115

interval [1, n] = {1, . . . , n} uses the successor and predecessor functions and the monadic116

predicates min and max as its only arithmetic functions/predicates:117

▶ Definition 3 (structure encoding a word). Each nonempty word w = w1 . . . wn ∈ Σn on a118

fixed finite alphabet Σ is represented by the first-order structure119

⟨w⟩ := ([1, n]; (Qs)s∈Σ, min, max, suc, pred)120

of domain [1, n], monadic predicates Qs, s ∈ Σ, min and max such that Qs(i) ⇐⇒ wi = s,121

min(i) ⇐⇒ i = 1, and max(i) ⇐⇒ i = n, and unary functions suc and pred such that122

suc(i) = i+ 1 for i < n and suc(n) = n, pred(i) = i− 1 for i > 1 and pred(1) = 1.123

Let SΣ denote the signature {(Qs)s∈Σ, min, max, suc, pred} of the structure ⟨w⟩.124

▶ Notation 1. Let x+ k and x− k abbreviate the terms suck(x) and predk(x), for a fixed125

integer k ≥ 0. We will also use the intuitive abbreviations x = 1, x = n and x > k, for a fixed126

integer k ≥ 1, in place of the formulas min(x), max(x) and ¬ min(x− (k − 1)), respectively.127

3 We have chosen to give here a simplified proof of the logical characterization pred-ESO-HORN = Grid =
RealTimeCA already proved in [10] so that this paper is self-content, but above all because our proof of
the similar result incl-pred-ESO-HORN = Cube = RealTime2OCA is an extension of it.

XX:4 Conjunctive grammars, cellular automata and logic

2.3 Cellular automata and real-time128

▶ Definition 4 (1-CA and 2-0CA). A d-dimensional cellular automaton (CA) is a triple129

(S,N , f) where S is the finite set of states, N ⊂ Zd is the neighborhood, and f : S|N | → S is130

the transition function. We are interested in the following two special cases:131

1-CA: It is a one-dimensional two-way cellular automaton (S, {−1, 0, 1}, f), for which the132

state ⟨c, t⟩ of any cell c at a time t > 1 is updated in this way:133

⟨c, t⟩ = f(⟨c− 1, t− 1⟩, ⟨c, t− 1⟩, ⟨c+ 1, t− 1⟩).134

2-OCA: It is a two-dimensional one-way cellular automaton (S, {(0, 0), (−1, 0), (0,−1)}, f)135

for which the state ⟨c1, c2, t⟩ of any cell (c1, c2) at a time t > 1 is updated in this way:136

⟨c1, c2, t⟩ = f(⟨c1, c2, t− 1⟩, ⟨c1 − 1, c2, t− 1⟩, ⟨c1, c2 − 1, t− 1⟩).137

▶ Definition 5 (permanent and quiescent states). In a CA, a state ♯ is permanent if a cell138

in state ♯ remains in this state forever. A state λ of a CA is quiescent if a cell in state λ139

remains in this state as long as the states of its neighborhood cells are quiescent or permanent.140

▶ Definition 6 (CA as a word acceptor). A cellular automaton (S,N , f) with an input141

alphabet Σ ⊂ S, a permanent state ♯, a quiescent state λ, and a set of accepting states142

Sacc ⊂ S acts as a word acceptor if it operates on an input word w ∈ Σ+ in respecting the143

following conditions (see Figure 1).144

Input. For a 1-CA, the i-th symbol of the input w = w1 . . . wn is given to the cell i at the145

initial time 1: ⟨i, 1⟩ = wi. All other cells are in the permanent state ♯. For a 2-OCA, the146

i-th symbol of the input is given to the cell (i, 1) at time 1: ⟨i, 1, 1⟩ = wi. At time 1, the cells147

(c1, c2) ∈ [1, n]× [2, n] are in the quiescent state λ, all other cells are in the permanent state ♯.148

Output. One specific cell called output cell gives the output, “accept” or “reject”, of the149

computation. For a 1-CA, the output cell is the cell 1. For a 2-OCA, the output cell is (n, n).150

Acceptance. An input word is accepted by a 1-CA (resp. 2-CA) at time t if the output cell151

enters an accepting state at time t.152

w1 w2 w3 w4 w5

Output

1-CA

w1 w2 w3 w4 w5

Output

2-OCA

Figure 1 Input and output of a CA acting as a word acceptor

▶ Definition 7 (RealTimeCA, RealTime2OCA). A word is accepted in real-time by a 1-CA153

(resp. 2-OCA) if the word is accepted in minimal time for the output cell 1 (resp. (n, n)) to154

receive each of its letters. A language is recognized in real-time by a CA if it is the set of155

words that it accepts in real-time. The class RealTimeCA (resp. RealTime2OCA) is the class156

of languages recognized in real-time by a 1-CA (resp. 2-OCA).157

3 Real-time recognition of a unary conjunctive language158

In this section, we prove our first main result:159

▶ Theorem 8. Conj1 ⊆ RealTimeCA1.160

T. Grente, E. Grandjean XX:5

w1 w2 w3 w4 w5

RealTimeCA

t = n

t = 1

w1w2w3w4w5

t = 1

t = n

t = 2n − 1

RealTime2OCA

Figure 2 Space-time diagrams of RealTimeCA and RealTime2OCA

3.1 Expressing inductively a unary conjunctive language in logic161

The generating process of a unary conjunctive language is naturally expressed in the logic162

pred-ESO-HORN, an inductive Horn logic whose only function is the predecessor function.163

▶ Definition 9 (pred-ESO-HORN). A formula of pred-ESO-HORN is a formula Φ := ∃R∀x∀yψ(x, y)164

where R is a finite set of binary predicates and ψ is a conjunction of Horn clauses, of signature165

SΣ ∪ R, and of one the three following forms:166

an input clause: min(x) ∧ (¬) min(y) ∧Qs(y) → R(x, y) with s ∈ Σ and R ∈ R;167

a computation clause: δ1 ∧ . . .∧ δr → R(x, y) with R ∈ R and where each hypothesis δi is168

an atom S(x, y) or a conjunction S(x− a, y− b) ∧ x > a∧ y > b, with S ∈ R and a, b ≥ 0169

two integers such that a+ b > 0;170

a contradiction clause: max(x) ∧ max(y) ∧R(x, y) → ⊥ with R ∈ R.171

We denote by pred-ESO-HORN the class of languages defined by a formula of pred-ESO-HORN.172

▶ Remark 10. We will freely use equalities (resp. inequalities) x = a and y = b (resp. x > a,173

y > b), for constants a, b, in our formulas since they can be easily defined in pred-ESO-HORN.174

For example, the binary predicate Rx>2 of intuitive meaning Rx>2(x, y) ⇐⇒ x > 2 is175

defined inductively by the following clauses where Rx=a(x, y) means x = a:176

min(x) → Rx=1(x, y); x > 1 ∧Rx=1(x− 1, y) → Rx=2(x, y);177

x > 1 ∧Rx=2(x− 1, y) → Rx>2(x, y); x > 1 ∧Rx>2(x− 1, y) → Rx>2(x, y).178

Also, some other arithmetic predicates easily defined in pred-ESO-HORN will be used. For179

example, y = 2x can be replaced by the atom Ry=2x(x, y), where Ry=2x is defined by the180

following two clauses using the predicates Rx=1, Ry=2, Rx>1 and Ry>2:181

x = 1 ∧ y = 2 → Ry=2x(x, y) ; x > 1 ∧ y > 2 ∧Ry=2x(x− 1, y − 2) → Ry=2x(x, y).182

▶ Notation 2. More generally, let Rρ(x,y) denote a binary predicate whose meaning is183

Rρ(x,y)(x, y) ⇐⇒ ρ(x, y), for a property or a formula ρ(x, y). We will also use a set of184

binary arithmetic predicates denoted by Rarith, which consists of Rx=y, Ry=2x and Rρ(x,y),185

for ρ(x, y) := x ≥
⌈

y
2
⌉
, and the predicates used to define them in pred-ESO-HORN.186

Let us prove that for every unary conjunctive languages, their complements can be defined187

in pred-ESO-HORN1.188

▶ Lemma 11. For each language L ⊆ a+, if L ∈ Conj1 then a+ \ L ∈ pred-ESO-HORN.189

Proof. Let G = ({a}, N, P, S) be a conjunctive grammar in binary normal form which190

generates L. For each A ∈ N and each unary word ay, we have, according to the length y,191

the following equivalences which will be the basis of our induction:192

XX:6 Conjunctive grammars, cellular automata and logic

if y = 1, then ay ∈ L(A) ⇐⇒ the short rule A → a belongs to P ;193

if y > 1, then ay ∈ L(A) ⇐⇒ there is a long rule A → B1C1& . . .&BmCm194

in P such that, for each i ∈ {1, . . . ,m}, there exists x ≥
⌈

y
2
⌉

such that195

either ax ∈ L(Bi) and ay−x ∈ L(Ci), or ay−x ∈ L(Bi) and ax ∈ L(Ci).196

We want to construct a first-order formula ∀x∀yψG(x, y) of signature SΣ ∪R, for Σ := {a}197

and the set of binary predicates R := {MajA, MinA | A ∈ N} ∪ {SumBC | B,C ∈ N} ∪ Rarith198

so that the formula ΦG := ∃R∀x∀yψG belongs to pred-ESO-HORN and defines the language199

a+ \ L. The intuitive meanings of the predicates MajA, MinA and SumBC are as follows:200

MajA(x, y) ⇐⇒
⌈

y
2
⌉

≤ x ≤ y and ax ∈ L(A);201

MinA(x, y) ⇐⇒
⌈

y
2
⌉

≤ x < y and ay−x ∈ L(A) ;202

SumBC(x, y) ⇐⇒ there is some x′ with
⌈

y
2
⌉

≤ x′ ≤ x such that203

either ax′ ∈ L(B) and ay−x′ ∈ L(C), or ay−x′ ∈ L(B) and ax′ ∈ L(C).204

Note that for x = y, the above equivalence for MajA implies MajA(x, y) ⇐⇒ ay ∈ L(A).205

Let us give and justify a list of Horn clauses whose conjunction ψ′
G defines the predicates206

MajA, MinA and SumBC , using the arithmetic predicates of Rarith (see Notation 2 and207

Remark 10), namely Rx=y, Ry=2x and Rρ(x,y), for ρ(x, y) := x ≥
⌈

y
2
⌉
.208

Short rules. Each rule A → a of P is expressed by the input clause:209

min(x) ∧ min(y) ∧Qa(y) → MajA(x, y).210

Induction on the length y. If we have for y > 1 the inequalities
⌈

y−1
2
⌉

≤ x ≤ y − 1 and211

x ≥
⌈

y
2
⌉

then
⌈

y
2
⌉

≤ x ≤ y. This justifies the clause:212

y > 1 ∧ MajA(x, y − 1) ∧ x ≥
⌈

y
2
⌉

→ MajA(x, y) for all A ∈ N .213

For y > 1 and y = 2x, we have ax = ay−x and
⌈

y
2
⌉

≤ x < y. This justifies the clause:214

y > 1 ∧ MajA(x, y − 1) ∧ y = 2x → MinA(x, y) for all A ∈ N .215

If for x, y > 1 we have the inequalities
⌈

y−1
2
⌉

≤ x− 1 < y, then
⌈

y
2
⌉

≤ x < y. Moreover,216

a(y−1)−(x−1) = ay−x. This justifies the clause:217

x > 1 ∧ y > 1 ∧ MinA(x− 1, y − 1) → MinA(x, y) for all A ∈ N .218

Concatenation. For all B,C ∈ N , it is clear that the concatenation predicate SumBC is219

defined inductively by the following three clauses:220

initialization: MajB(x, y)∧MinC(x, y) → SumBC(x, y) ; MinB(x, y)∧MajC(x, y) → SumBC(x, y);221

induction: ¬min(x) ∧ SumBC(x− 1, y) → SumBC(x, y).222

Long rules. Each rule A → B1C1& . . .&BmCm of P is expressed by the clause:223

x = y ∧ SumB1C1(x, y) ∧ · · · ∧ SumBmCm(x, y) → MajA(x, y).224

Thus, the formula ∀x∀yψ′
G where ψ′

G is the conjunction of the above clauses defines the225

predicates MajA, MinA, and SumBC .226

Definition of a+ \ L. We have the equivalence MajS(n, n) ⇐⇒ an ∈ L(S) ⇐⇒ an ∈ L.227

Therefore, the following contradiction clause expresses an ̸∈ L:228

γS := max(x) ∧ max(y) ∧ MajS(x, y) → ⊥.229

Finally, observe that the formula ΦG := ∃R∀x∀yψG where ψG is γarith ∧ ψ′
G ∧ γS and230

γarith is the conjunction of clauses that defines the arithmetic predicates of Rarith, belongs231

to pred-ESO-HORN. Since we have ⟨an⟩ |= ΦG ⇐⇒ an ̸∈ L, as justified above, then the232

langage a+ \ L belongs to pred-ESO-HORN, as claimed. ◀233

T. Grente, E. Grandjean XX:7

3.2 Equivalence of logic with grid-circuits234

We introduce the grid-circuit as an intermediate object between our logic and the real-time235

cellular automaton: see Figure 3.236

▶ Definition 12. A grid-circuit is a tuple C := (Σ, (Inputn)n>0,Q,Qacc, g) where237

Σ is the input alphabet and (Inputn)n>0 is the family of input functions238

Inputn : Σn × [1, n]2 → Σ ∪ {$} such that, for w = w1 . . . wn ∈ Σn,239

Inputn(w, x, y) = wy if x = 1 and Inputn(w, x, y) = $ otherwise,240

Q ∪ {♯} is the finite set of states and Qacc ⊆ Q is the subset of accepting states,241

g : (Q ∪ {♯})2 × (Σ ∪ {$}) → Q is the transition function.242

▶ Definition 13 (computation of a grid-circuit). The computation Cw of a grid-circuit243

C := (Σ, (Inputn)n>0,Q,Qacc, g) on a w = w1 . . . wn ∈ Σn is a regular grid of (n+ 1)2 sites244

(x, y) ∈ [0, n]2, each in a state ⟨x, y⟩ ∈ Q ∪ {♯} computed inductively:245

each site in {0} × [0, n] or [0, n] × {0} is in the particular state ♯;246

the state of each site (x, y) ∈ [1, n]2 is ⟨x, y⟩ = g(⟨x, y − 1⟩, ⟨x− 1, y⟩, Inputn(w, x, y)).247

w1

w2

w3

w4

w5

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

$

1

n

Inputn(w)
[1, n] × [1, n]

♯♯

♯

♯

♯

♯

♯

♯

♯

♯

♯

♯0

n Output

x

y

States of Cw
[0, n] × [0, n]

Figure 3 The grid-circuit

A word w = w1 . . . wn ∈ Σn is accepted by the grid-circuit C if the output state ⟨n, n⟩ of Cw248

belongs to Qacc. The language recognized by C is the set of words it accepts. We denote by249

Grid the class of languages recognized by a grid-circuit.250

Actually, our predecessor Horn logic is equivalent to grid-circuits.251

▶ Lemma 14. [10] pred-ESO-HORN = Grid.252

Proof. In some sense, a grid-circuit is the “normalized form” of a formula of pred-ESO-HORN.253

So, the inclusion Grid ⊆ pred-ESO-HORN is proved in a straightforward way.254

The first step of the proof of the converse inclusion pred-ESO-HORN ⊆ Grid is to show255

that every formula Φ := ∃R∀x∀yψ(x, y) in pred-ESO-HORN is equivalent to a formula256

Φ′ ∈ pred-ESO-HORN in which the only hypotheses of computation clauses are atoms S(x, y)257

and conjunctions S(x− 1, y) ∧ x > 1 and S(x, y − 1) ∧ y > 1 .258

Elimination of atoms R(x− a, y − b) for a+ b > 1: The idea is to introduce new “shift”259

predicates Rx−a′,y−b′ for fixed integers a′, b′ > 0 with the intuitive meaning:260

Rx−a′,y−b′(x, y) ⇐⇒ R(x− a′, y − b′) ∧ x > a′ ∧ y > b′.261

Let us explain the method by an example. Assume we have in ψ the Horn clause262

(1) x > 3 ∧ y > 2 ∧ S(x− 3, y − 2) → T (x, y). This clause is replaced by the clause263

(2) Sx−2,y−2(x− 1, y) ∧ x > 1 → T (x, y)264

for which the predicates Sx−1, Sx−2, Sx−2,y−1 and Sx−2,y−2 are defined by the respect-265

ive clauses: x > 1 ∧ S(x − 1, y) → Sx−1(x, y), x > 1 ∧ Sx−1(x − 1, y) → Sx−2(x, y),266

y > 1 ∧ Sx−2(x, y − 1) → Sx−2,y−1(x, y), and y > 1 ∧ Sx−2,y−1(x, y − 1) → Sx−2,y−2(x, y),267

XX:8 Conjunctive grammars, cellular automata and logic

which imply together the clause x > 2 ∧ y > 2 ∧ S(x− 2, y − 2) → Sx−2,y−2(x, y) and then268

also x > 3 ∧ y > 2 ∧ S(x− 3, y − 2) → Sx−2,y−2(x− 1, y).269

It is clear that the formula Φ := ∃R∀x∀yψ is equivalent to the formula Φ′ := ∃R′∀x∀yψ′
270

where R′ := R ∪ {Sx−1, Sx−2, Sx−2,y−1, Sx−2,y−2} and ψ′ is the conjunction ψreplace ∧ ψdef,271

where ψreplace is the formula ψ in which clause (1) is replaced by clause (2), and ψdef is the272

conjunction of the above clauses defining the new predicates of R′.273

Thus, any formula Φ ∈ pred-ESO-HORN is equivalent to a formula Φ′ ∈ pred-ESO-HORN274

whose computation clauses only contain hypotheses of the following three forms:275

R(x− 1, y) ∧x > 1 ; R(x, y− 1) ∧ y > 1 ; R(x, y). The next step is to eliminate these R(x, y).276

Elimination of hypotheses R(x, y) (sketch of proof): The first idea is to group together
in each computation clause the hypothesis atoms of the form R(x, y) and the conclusion of
the clause. As a result, the formula can be rewritten in the form

Φ := ∃R∀x∀y

∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))


where the Ci’s are the input clauses and the contradiction clauses, and each computation277

clause is written in the form αi(x, y) → θi(x, y), where αi(x, y) is a conjunction of formulas278

of the only forms R(x− 1, y) ∧ x > 1, R(x, y − 1) ∧ y > 1, and θi(x, y) is a Horn clause in279

which all atoms are of the form R(x, y).280

The second idea is to “solve” the Horn clauses θi according to the input clauses and all281

the possible conjunctions of hypotheses αi that may be true. Notice the two following facts:282

the hypotheses of the input clauses are input literals and the conjuncts of the αi’s are of the283

only forms R(x− 1, y) ∧x > 1, R(x, y− 1) ∧ y > 1. So, we can prove by induction on the sum284

x+ y that the obtained formula Φ′ in which no atom R(x, y) appears as a clause hypothesis,285

is equivalent to the above formula Φ. The complete proof is given in Appendix A.286

Transformation of the formula into a grid-circuit: Let R = {R1, . . . , Rm} denote287

the set of binary predicates of the formula. By a separation into cases of input clauses288

and computation clauses, it is easy to transform the formula into an equivalent formula289

Φ := ∃R∀x∀yψ where ψ is a conjunction of clauses of the following forms (a-e), in which290

s ∈ Σ, j ∈ [1,m], and A,B are (possibly empty) subsets of [1,m]:291

(a) x = 1 ∧ y = 1 ∧Qs(y) → Rj(x, y);292

(b) x = 1 ∧ y > 1 ∧Qs(y) ∧
∧

i∈A Ri(x, y − 1) → Rj(x, y);293

(c) x > 1 ∧ y = 1 ∧
∧

i∈A Ri(x− 1, y) → Rj(x, y);294

(d) x > 1 ∧ y > 1 ∧
∧

i∈A Ri(x− 1, y) ∧
∧

i∈B Ri(x, y − 1) → Rj(x, y);295

(e) x = n ∧ y = n ∧Rj(x, y) → ⊥.296

Now, transform this formula into a grid-circuit C := (Σ, (Inputn)n>0,Q,Qacc, g). The297

idea is that the state of a site (x, y) ∈ [1, n]2 is the set of predicates Ri such that Ri(x, y) is298

true. Let Q be the power set of the set of R indices: Q := P([1,m]). There are four types of299

transition (a-d) which mimic the clauses (a-d) above. These are, for s ∈ Σ and q, q′ ∈ Q:300

(a) g(♯, ♯, s) = {j ∈ [1,m] | there is a clause (a) with Qs, and conclusion Rj(x, y)};301

(b) g(q, ♯, s) = {j ∈ [1,m] | there is a clause (b) with Qs, and A ⊆ q, and conclusion Rj(x, y)};302

(c) g(♯, q, $) = {j ∈ [1,m] | there is a clause (c) with A ⊆ q, and conclusion Rj(x, y)};303

(d) g(q, q′, $) = {j ∈ [1,m] | ∃ a clause (d) with A ⊆ q, B ⊆ q′, and conclusion Rj(x, y)}.304

Of course, the set of accepting states of C is determined by the contradiction clauses (e):305

Qacc := {q ∈ Q | q contains no j such that Rj occurs in a clause (e)}.306

We can easily check the equivalence, for each w ∈ Σ+: ⟨w⟩ |= Φ ⇐⇒ C accepts w.307

Therefore, the inclusion pred-ESO-HORN ⊆ Grid is proved. ◀308

T. Grente, E. Grandjean XX:9

3.3 Grid-circuits are equivalent to real-time 1-CA309

▶ Lemma 15. [10] Grid = RealTimeCA.310

Proof. Figure 4 shows how Grid is simulated on RealTimeCA and Figure 5 shows how311

RealTimeCA is simulated on Grid. The proof is detailed in Appendix B. ◀

w1

w2

w3

w4

w5

Variable
Change

w1 w2 w3 w4 w5

Folding

w1 w2 w3 w4 w5

w1 w2 w3 w4 w5

Grouping

Figure 4 Simulation of Grid on RealTimeCA

w1 w2 w3 w4 w5

A

w1 w2 w3 w4 w5

A′

w1

w2

w3

w4

w5

C′

Figure 5 Simulation of RealTimeCA on the grid-circuit
312

Proof of Theorem 8. Lemmas 14 and 15 give us the following equalities of classes:313

pred-ESO-HORN = Grid = RealTimeCA. These equalities trivially hold when restricted314

to unary languages: pred-ESO-HORN1 = Grid1 = RealTimeCA1.315

From the fact that the class RealTimeCA1 is closed under complement and from Lemma 11,316

we deduce Conj1 ⊆ pred-ESO-HORN1 = Grid1 = RealTimeCA1. ◀317

4 Real-time recognition of a conjunctive language: the general case318

Our second main result strengthens the inclusion CFL ⊆ RealTime2SOCA of Terrier4 [25]:319

▶ Theorem 16. Conj ⊆ RealTime2OCA.320

4.1 Expressing a conjunctive language in logic: the general case321

The generating process of a conjunctive language is naturally expressed in the Horn logic322

incl-pred-ESO-HORN. This is a hybrid logic with three first-order variables x, y, z, whose323

name means that it makes inductions on the variable interval [x, y], by inclusion, and on the324

individual variable z, by predecessor.325

4 Recall that RealTime2SOCA is the class of languages recognized by sequential one-way two-dimensional
cellular automata in real-time: this is the minimal time, 3n − 1, for the output cell (n, n) to receive the
n letters of the input word, communicated sequentially by the input cell (1, 1).

XX:10 Conjunctive grammars, cellular automata and logic

▶ Definition 17 (incl-pred-ESO-HORN). A formula of incl-pred-ESO-HORN is a formula326

Φ := ∃R∀x∀y∀zψ(x, y, z) where R is a finite set of ternary predicates, and ψ is a conjunction327

of Horn clauses, of signature SΣ ∪ R ∪ {=,≤}, and of the three following forms:328

an input clause: x = y ∧ min(z) ∧Qs(x) → R(x, y, z) with s ∈ Σ and R ∈ R;329

a computation clause: δ1 ∧ . . .∧ δr → R(x, y, z) with R ∈ R and where each hypothesis δi330

is an atom S(x, y, z) or a conjunction S(x+ a, y − b, z − c) ∧ x+ a ≤ y − b ∧ z > c with331

S ∈ R and a, b, c ≥ 0 three integers such that a+ b+ c > 0;332

a contradiction clause: min(x) ∧ max(y) ∧ max(z) ∧R(x, y, z) → ⊥ with R ∈ R.333

We denote by incl-pred-ESO-HORN the class of languages defined by a formula of incl-pred-ESO-HORN.334

▶ Lemma 18. For each language L ⊆ Σ+, if L ∈ Conj, then Σ+ \L ∈ incl-pred-ESO-HORN .335

Proof. The proof is a variation (an extension) of the proof of the same result, Lemma 11, in336

the unary case. This is why we insist on the differences. Let G = (Σ, N, P, S) be a conjunctive337

grammar in binary normal form which generates L and let w be a word w = w1 . . . wn ∈ Σ+.338

For each A ∈ N and each factor wx,y := wx . . . wy, we have, according to the length y− x+ 1339

of wx,y, the following equivalences which will be the basis of our induction:340

if x = y, then wx,y ∈ L(A) ⇐⇒ the short rule A → wx belongs to P ;341

if x < y, then wx,y ∈ L(A) ⇐⇒ there is a long rule A → B1C1& . . .&BmCm342

in P such that, for each i ∈ {1, . . . ,m}, there exists z ≥ ⌈(y − x+ 1)/2⌉ such that343

either wx,x+z−1 ∈ L(Bi) and wx+z,y ∈ L(Ci), or wx,y−z ∈ L(Bi) and wy−z+1,y ∈ L(Ci).344

Thus, a double induction is performed, on the index interval [x, y] of a factor wx,y and345

on the maximal z among the lengths of the two sub-factors u, v of the m decompositions346

wx,y = uv, u ∈ L(Bi), v ∈ L(Ci), for a long rule. This is naturally expressed in the logic347

incl-pred-ESO-HORN.348

We want to construct a first-order formula ∀x∀y∀zψG of signature SΣ ∪ R ∪ {=,≤},349

for the set of ternary predicates R := {PrefMaj
A , PrefMin

A , SuffMaj
A , SuffMin

A | A ∈ N} ∪350

{ConcatBC | B,C ∈ N} ∪ Rarith, so that the formula ΦG := ∃R∀x∀y∀zψG belongs to351

incl-pred-ESO-HORN and defines the language Σ+ \ L. The intuitive meanings of the predic-352

ates PrefMaj
A , PrefMin

A , SuffMaj
A , SuffMin

A and ConcatBC are as follows:353

PrefMaj
A (x, y, z) ⇐⇒

⌈
y−x+1

2
⌉

≤ z ≤ y − x+ 1 and wx,x+z−1 ∈ L(A);354

PrefMin
A (x, y, z) ⇐⇒

⌈
y−x+1

2
⌉

≤ z ≤ y − x and wx,y−z ∈ L(A);355

SuffMaj
A (x, y, z) ⇐⇒

⌈
y−x+1

2
⌉

≤ z ≤ y − x+ 1 and wy−z+1,y ∈ L(A);356

SuffMin
A (x, y, z) ⇐⇒

⌈
y−x+1

2
⌉

≤ z ≤ y − x and wx+z,y ∈ L(A);357

ConcatBC(x, y, z) ⇐⇒ there is some z′ with
⌈

y−x+1
2
⌉

≤ z′ ≤ z such that358

either wx,x+z′−1 ∈ L(B) and wx+z′,y ∈ L(C), or wx,y−z′ ∈ L(B) and wy−z′+1,y ∈ L(C).359

Note that the above equivalences for PrefMaj
A and SuffMaj

A imply in the particular case360

z = y − x+ 1 the equivalences PrefMaj
A (x, y, z) ⇐⇒ SuffMaj

A (x, y, z) ⇐⇒ wx,y ∈ L(A).361

Let us give and justify a list of Horn clauses whose conjunction ψ′
G defines the predicates362

PrefMaj
A , PrefMin

A , SuffMaj
A , SuffMin

A and ConcatBC , using the arithmetic predicates z = y−x+1,363

y − x+ 1 = 2z, and z ≥
⌈

y−x+1
2
⌉

easily defined in incl-pred-ESO-HORN.364

Short rules. Each rule A → s of P is expressed by the two clauses:365

x = y ∧ z = 1 ∧Qs(x) → PrefMaj
A (x, y, z) ; x = y ∧ z = 1 ∧Qs(x) → SuffMaj

A (x, y, z).366

Induction for prefixes. If we have for x < y the inequalities367 ⌈
(y−1)−x+1

2

⌉
≤ z ≤ (y− 1) −x+ 1 and z ≥

⌈
y−x+1

2
⌉

then
⌈

y−x+1
2
⌉

≤ z ≤ y−x+ 1. This368

justifies the clause:369

x ≤ y − 1 ∧ PrefMaj
A (x, y − 1, z) ∧ z ≥

⌈
y−x+1

2
⌉

→ PrefMaj
A (x, y, z), for all A ∈ N .370

T. Grente, E. Grandjean XX:11

For x < y and y − x + 1 = 2z, we have wx,x+z−1 = wx,y−z and
⌈

y−x+1
2
⌉

≤ z ≤ y − x.371

This justifies the clause:372

x ≤ y − 1 ∧ PrefMaj
A (x, y − 1, z) ∧ y − x+ 1 = 2z → PrefMin

A (x, y, z), for all A ∈ N .373

For x < y and z > 1 and
⌈

(y−1)−x+1
2

⌉
≤ z−1 ≤ (y−1)−x, we have

⌈
y−x+1

2
⌉

≤ z ≤ y−x.374

This justifies the clause:375

x ≤ y − 1 ∧ z > 1 ∧ PrefMin
A (x, y − 1, z − 1) → PrefMin

A (x, y, z), for all A ∈ N .376

Induction for suffixes. As this induction is symmetric to the one for prefixes, we do not377

justify the following list of induction clauses for the predicates SuffMaj
A and SuffMin

A , A ∈ N :378

x+ 1 ≤ y ∧ SuffMaj
A (x+ 1, y, z) ∧ z ≥

⌈
y−x+1

2
⌉

→ SuffMaj
A (x, y, z);379

x+ 1 ≤ y ∧ SuffMaj
A (x+ 1, y, z) ∧ y − x+ 1 = 2z → SuffMin

A (x, y, z);380

x+ 1 ≤ y ∧ z > 1 ∧ SuffMin
A (x+ 1, y, z − 1) → SuffMin

A (x, y, z).381

Concatenation. For all B,C ∈ N , it is clear that the concatenation predicate ConcatBC382

is defined inductively by the following three clauses:383

initialization: PrefMaj
B (x, y, z) ∧ SuffMin

C (x, y, z) → ConcatBC(x, y, z);384

PrefMin
B (x, y, z) ∧ SuffMaj

C (x, y, z) → ConcatBC(x, y, z);385

induction: z > 1 ∧ ConcatBC(x, y, z − 1) → ConcatBC(x, y, z).386

Long rules. Each rule A → B1C1& . . .&BmCm of P is expressed by the two clauses:387

z = y − x+ 1 ∧ ConcatB1C1(x, y, z) ∧ · · · ∧ ConcatBmCm
(x, y, z) → PrefMaj

A (x, y, z);388

z = y − x+ 1 ∧ ConcatB1C1(x, y, z) ∧ · · · ∧ ConcatBmCm
(x, y, z) → SuffMaj

A (x, y, z).389

Thus, the formula ∀x∀y∀zψ′
G where ψ′

G is the conjunction of the above clauses defines the390

predicates PrefMaj
A , PrefMin

A , SuffMaj
A , SuffMin

A , and ConcatBC .391

Definition of Σ+ \L. We have the equivalence PrefMaj
S (1, n, n) ⇐⇒ w ∈ L(S) ⇐⇒ w ∈ L.392

Therefore, the following contradiction clause expresses w ̸∈ L:393

γS := min(x) ∧ max(y) ∧ max(z) ∧ PrefMaj
S (x, y, z) → ⊥.394

Finally, observe that the formula ΦG := ∃R∀x∀y∀zψG where ψG is γarith ∧ ψ′
G ∧ γS395

and γarith is the conjunction of clauses that define the arithmetic predicates, belongs to396

incl-pred-ESO-HORN. Since we have ⟨w⟩ |= ΦG ⇐⇒ w ̸∈ L, as justified above, then the397

langage Σ+ \ L belongs to incl-pred-ESO-HORN, as claimed. ◀398

4.2 Equivalence of logic with cube-circuits399

We now introduce the cube-circuit, an extension of the grid-circuit to three dimensions. It400

will make the link between our logic incl-pred-ESO-HORN and the class RealTime2OCA.401

▶ Definition 19. A cube-circuit is a tuple C := (Σ, (Inputn)n>0,Q,Qacc, g) where402

Σ is the input alphabet and (Inputn)n>0 is the family of input functions403

Inputn : Σn × [1, n]3 → Σ ∪ {$} such that, for w = w1 . . . wn ∈ Σn,404

Inputn(w, x, y, z) = wy if x = y and z = 1, and Inputn(w, x, y, z) = $ otherwise,405

Q ∪ {♯} is the finite set of states and Qacc ⊆ Q is the subset of accepting states,406

g : (Q ∪ {♯})3 × (Σ ∪ {$}) → Q is the transition function.407

▶ Definition 20 (computation of a cube-circuit). The computation Cw of a cube-circuit408

C := (Σ, (Inputn)n>0,Q,Qacc, g) on a word w = w1 . . . wn ∈ Σn is a grid of (n+ 1)3 sites409

(x, y, z) ∈ [1, n+ 1] × [0, n]2, each in a state ⟨x, y, z⟩ ∈ Q ∪ {♯} computed inductively:410

each site (x, y, z) such that x > y or z = 0 is in the state ♯;411

XX:12 Conjunctive grammars, cellular automata and logic

the state of each site (x, y, z) ∈ [1, n]3 such that x ≤ y and z > 0 is412

⟨x, y⟩ = g(⟨x+ 1, y, z⟩, ⟨x, y − 1, z⟩, ⟨x, y, z − 1⟩, Inputn(w, x, y, z)).413

A word w = w1 . . . wn ∈ Σn is accepted by the cube-circuit C if the output state ⟨1, n, n⟩414

of Cw belongs to Qacc. The language recognized by C is the set of words it accepts. We415

denote by Cube the class of languages recognized by a cube-circuit.416

x

z y

w1
w2

w3
w4

w5

Figure 6 The cube-circuit

Actually, the logic incl-pred-ESO-HORN is equivalent to cube-circuits.417

▶ Lemma 21. incl-pred-ESO-HORN = Cube.418

Proof. The proof is similar to that of Lemma 14. The cube-circuit can be seen as the419

“normalized form” of a formula of incl-pred-ESO-HORN, proving the inclusion Cube ⊆420

incl-pred-ESO-HORN. The proof of inverse inclusion is divided into the same three steps421

as for Lemma 14, which are easily adaptable to three variables: elimination of atoms422

R(x+a, y− b, z− c) for a+ b+ c > 1, elimination of hypotheses R(x, y, z) and transformation423

of the resulting formula into a cube-circuit. ◀424

4.3 Cube-circuits are equivalent to real-time 2-OCA425

One observes that by a one-to-one transformation, the computation Cw of a cube-circuit C426

on a word w is nothing else than the space-time diagram of a real-time 2-OCA on the input w.427

This yields:428

▶ Lemma 22. Cube = RealTime2OCA.429

Proof. The bijection between the sites (x, y, z) of the computation Cw of a cube-circuit C430

on a word w and the sites (c1, c2, t) of the space-time diagram of a real-time 2-OCA on the431

input w is depicted in Figure 7. We check that this bijection respects the communication432

scheme and the input/output sites of both computation models as shown in Figure 7.433

By this transformation, the transition function g of the cube-circuit, which is ⟨x, y, z⟩ =434

g(⟨x+ 1, y, z⟩, ⟨x, y − 1, z⟩, ⟨x, y, z − 1⟩, Inputn(w, x, y, z)) becomes the transition function435

f of the 2-OCA: ⟨c1, c2, t⟩ = f(⟨c1, c2, t− 1⟩, ⟨c1 − 1, c2, t− 1⟩, ⟨c1, c2 − 1, t− 1⟩), and vice436

versa.437

◀438

Proof of Theorem 16. Lemmas 21 and 22 give us the following equalities of classes:439

incl-pred-ESO-HORN = Cube = RealTime2OCA.440

From the fact that the class RealTime2OCA is closed under complement and from441

Lemma 18, we deduce Conj ⊆ incl-pred-ESO-HORN = Cube = RealTime2OCA. ◀442

T. Grente, E. Grandjean XX:13

w

Communication

(x, y, z)

(x = c1 + c2 − t, y = c1, z = c2)

Cube

w

Communication

7→

7→

(c1 = y, c2 = z, t = z + y − x)

(c1, c2, t)

RealTime2OCA

Figure 7 Bijection between the sites of Cw and the space-time sites of a 2-OCA on w

5 Conclusion443

We have proved the inclusions Conj1 ⊆ RealTimeCA and Conj ⊆ RealTime2OCA by expressing444

in two logics (proved equivalent to RealTimeCA and RealTime2OCA, respectively) the inductive445

process of a conjunctive grammar. Figure 8 recapitulates the known inclusions between the446

language classes that we have considered here. To grasp the expressive power of the Conj447

(resp. Conj1) class, it would be important to obtain exact characterizations of this class in448

logic and/or computational complexity.449

CFL1 = Trellis1 = LinConj1 = Reg1

Conj1

RealTimeCA1

DSPACE1(n)

⊊
⊆

⊆

Trellis = LinConjCFL

RealTime2OCA

Conj RealTimeCA

DSPACE(n)

⊊⊊ ⊊
⊆ ⊆

⊆

̸=

Figure 8 Relations between language classes over a unary or general alphabet

Acknowledgments: This paper would not exist without the inspiration of Véronique Terrier.450

Her in-depth knowledge of cellular automata and their complexity classes, the references and451

advice she generously gave us, as well as her careful reading, were essential in designing and452

finalizing the results and the presentation of the paper. E.g., the class diagram of Figure 8 is453

due to her. This work has been partly supported by the PING/ACK project of the French454

National Agency for Research (ANR-18-CE40-0011).455

References456

1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,457

1995.458

2 Nicolas Bacquey, Etienne Grandjean, and Frédéric Olive. Definability by Horn Formulas and459

Linear Time on Cellular Automata. In ICALP 2017, volume 80, pages 99:1–99:14, 2017.460

3 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives461

in Mathematical Logic. Springer, 1997.462

XX:14 Conjunctive grammars, cellular automata and logic

4 Jik H. Chang, Oscar H. Ibarra, and Michael A. Palis. Efficient simulations of simple models of463

parallel computation by time-bounded atms and space-bounded tms. Theor. Comput. Sci.,464

68(1):19–36, 1989.465

5 Marianne Delorme and Jacques Mazoyer. Cellular Automata as Language Recognizers in466

Cellular Automata: a Parallel Model. Kluwer, 1999.467

6 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In468

Complexity of Computation, SIAM-AMS Proceedings, pages 43–73, 1974.469

7 Dora Giammarresi, Antonio Restivo, Sebastian Seibert, and Wolfgang Thomas. Monadic470

second-order logic over rectangular pictures and recognizability by tiling systems. Inf. Comput.,471

125(1):32–45, 1996.472

8 Erich Grädel. Capturing complexity classes by fragments of second-order logic. Theoretical473

Computer Science, 101(1):35–57, 1992.474

9 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.475

Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Springer,476

2007.477

10 Etienne Grandjean and Théo Grente. Descriptive complexity for minimal time of cellular478

automata. In LICS, 2019, pages 1–13, 2019.479

11 Etienne Grandjean, Théo Grente, and Véronique Terrier. Inductive definitions in logic versus480

programs of real-time cellular automata. hal.archives-ouvertes.fr/hal-02474520/ submitted to481

Theoretical Computer Science, 62 pages, February 2020.482

12 Etienne Grandjean and Frédéric Olive. A logical approach to locality in pictures languages.483

Journal of Computer and System Science, 82(6):959–1006, 2016.484

13 Oscar H. Ibarra and Tao Jiang. Relating the power of cellular arrays to their closure properties.485

Theor. Comput. Sci., 57:225–238, 1988.486

14 Neil Immerman. Descriptive complexity. Springer, 1999.487

15 Artur Jez. Conjunctive grammars generate non-regular unary languages. Int. J. Found.488

Comput. Sci., 19(3):597–615, 2008.489

16 K. N. King. Alternating multihead finite automata. Theor. Comput. Sci., 61:149–174, 1988.490

17 Hans Kleine Büning and Theodor Lettmann. Propositional logic - deduction and algorithms,491

volume 48 of Cambridge tracts in theoretical computer science. Cambridge University Press,492

1999.493

18 S. Rao Kosaraju. Speed of recognition of context-free languages by array automata. SIAM J.494

Comput., 4(3):331–340, 1975.495

19 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An496

EATCS Series. Springer, 2004.497

20 Alexander Okhotin. Conjunctive grammars. J. Autom. Lang. Comb., 6(4):519–535, 2001.498

21 Alexander Okhotin. Boolean grammars. Information and Computation, 194(1):19 – 48, 2004.499

22 Alexander Okhotin. On the equivalence of linear conjunctive grammars and trellis automata.500

Theoretical Informatics and Applications, 38(1):69–88, 2004.501

23 Alexander Okhotin. Conjunctive and boolean grammars: The true general case of the502

context-free grammars. Computer Science Review, 9:27–59, 2013.503

24 Véronique Terrier. Closure properties of cellular automata. Theor. Comput. Sci., 352(1-3):97–504

107, 2006.505

25 Véronique Terrier. Low complexity classes of multidimensional cellular automata. Theor.506

Comput. Sci., 369(1-3):142–156, 2006.507

26 Véronique Terrier. Language recognition by cellular automata. In Handbook of Natural508

Computing, pages 123–158. Springer, 2012.509

27 Hao Wang. Dominoes and the aea case of the decision problem. In Proceedings on the510

Symposium on the Mathematical Theory of Automata, April 1962, pages 23–55, 1963.511

T. Grente, E. Grandjean XX:15

Appendix A: Complement of proof for Lemma 14512

Elimination of hypotheses R(x, y): The first idea is to group together in each computation513

clause the hypothesis atoms of the form R(x, y) and the conclusion of the clause. Accordingly,514

the formula obtained Φ can be rewritten in the form515

Φ := ∃R∀x∀y

∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))

516

where the Ci’s are the input clauses and the contradiction clause and each computation517

clause is written in the form αi(x, y) → θi(x, y) where αi(x, y) is a conjunction of formulas518

of the only forms R(x− 1, y) ∧ ¬min(x), R(x, y− 1) ∧ ¬min(y) (but not R(x, y)), and θi(x, y)519

is a Horn clause whose all atoms are of the form R(x, y).520

We number R1, . . . , Rm the computation predicates of R. To each subset J ⊆ [1, k] of521

the family of implications (αi(x, y) → θi(x, y))i∈[1,k] let us associate the set522

KJ := {h ∈ [1,m] |
∧

i∈J θi(x, y) → Rh(x, y) is a tautology}.523

Note that the notion of tautology used in the definition of KJ is “propositional” because all524

the atoms involved are of the form Ri(x, y), i.e., refer to the same pair of variables (x, y).525

Also, note that the function J 7→ KJ is monotonic: for J ′ ⊆ J , we have KJ′ ⊆ KJ because526 ∧
i∈J′ θi(x, y) → Rh(x, y) implies

∧
i∈J θi(x, y) → Rh(x, y).527

Clearly, it is enough to prove the following claim:528

▷ Claim 23. The formula Φ is equivalent to the following formula Φ′, whose clauses have no529

hypothesis R(x, y).530

Φ′ := ∃R∀x∀y

 ∧
i

Ci(x, y) ∧
∧

J⊆[1,k]

∧
h∈KJ

(∧
i∈J

αi(x, y) → Rh(x, y)
) 531

Proof of the implication Φ ⇒ Φ′: It is enough to prove the implication532  ∧
i∈[1,k]

(αi(x, y) → θi(x, y))

 →

[∧
i∈J

αi(x, y) →
∧

h∈KJ

Rh(x, y)
]

533

for all set J ⊆ [1, k]. The implication to be proved can be equivalently written:534 ∧
i∈J

αi(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))

 →
∧

h∈KJ

Rh(x, y).535

The sub-formula between brackets above implies the conjunction
∧

i∈J θi(x, y). As the implic-536

ation
∧

i∈J θi(x, y) →
∧

h∈KJ
Rh(x, y) is a tautology (by definition of KJ), the implication537

to be proved is a tautology too.538

The converse implication Φ′ ⇒ Φ is more difficult to prove. It uses a folklore property of539

propositional Horn formulas easy to be proved:540

▶ Lemma 24 (Horn property: folklore). Let F be a strict Horn formula of propositional541

calculus, that is a conjunction of clauses of the form p1 ∧ . . . ∧ pk → p0 where k ≥ 0 and the542

XX:16 Conjunctive grammars, cellular automata and logic

pi’s are propositional variables. Let F ′ be the conjunction of propositional variables q such543

that the implication F → q is a tautology. F has the same minimal model 5 as F ′.544

Proof of the implication Φ′ ⇒ Φ: Let ⟨w⟩ be a model of Φ′ and let (⟨w⟩,R) be the minimal545

model of the Horn formula546

φ′ := ∀x∀y

 ∧
i

Ci(x, y) ∧
∧

J⊆[1,k]

∧
h∈KJ

(∧
i∈J

αi(x, y) → Rh(x, y)
) .547

It is enough to show that (⟨w⟩,R) also satisfies the formula548

φ := ∀x∀y

 ∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))

 .549

As each αi is a conjunction of formulas of the form R(x − 1, y) ∧ ¬min(x), or550

R(x, y − 1) ∧ ¬min(y), we make an induction on the domain {(a, b) ∈ [1, n]2 | a+ b ≤ t}, for551

t ∈ [1, 2n]. More precisely, we are going to prove, by recurrence on the integer t ∈ [1, 2n],552

that the minimal model (⟨w⟩,R) of φ′ satisfies the “relativized” formula φt of the formula φ553

defined by554

φt := ∀x∀y

x+ y ≤ t →

 ∧
i

Ci(x, y) ∧
∧

i∈[1,k]

(αi(x, y) → θi(x, y))

555

As the hypothesis x+ y ≤ 2n holds for all x, y in the domain [1, n], φ2n is equivalent to φ on556

the structure (⟨w⟩,R).557

Basis case: For t = 1 the set {(a, b) ∈ [1, n]2 | a+ b ≤ t} is empty so that the “relativized”558

formula φ1 is trivially true in the minimal model (⟨w⟩,R) of φ′.559

Recurrence step: Suppose (⟨w⟩,R) |= φt−1, for an integer t ∈ [2, 2n]. It is enough to show560

that, for each couple (a, b) ∈ [1, n]2 such that a+b = t, we have (⟨w⟩,R) |=
∧

i∈[1,k](αi(a, b) →561

θi(a, b)). Let Ja,b be the set of indices i ∈ [1, k] such that the couple (a, b) satisfies αi:562

Ja,b := {i ∈ [1, k] | (⟨w⟩,R) |= αi(a, b)}.563

Recall that each αi(a, b) is a (possibly empty) conjunction of atoms R(a′, b′) with (a′, b′) =564

(a− 1, b) or (a′, b′) = (a, b− 1), therefore such that a′ + b′ = t− 1. Let J ⊆ [1, k] be any set.565

Let us examine the two possible cases:566

1) J ⊆ Ja,b: then the conjunction
∧

i∈J αi(a, b) holds in (⟨w⟩,R); hence, in (⟨w⟩,R), the567

conjunction
∧

h∈KJ
(
∧

i∈J αi(a, b) → Rh(a, b)) is equivalent to
∧

h∈KJ
Rh(a, b);568

2) J \ Ja,b ̸= ∅: then the conjunction
∧

i∈J αi(a, b) is false in (⟨w⟩,R); hence, the569

conjunction
∧

h∈KJ
(
∧

i∈J αi(a, b) → Rh(a, b)) holds in (⟨w⟩,R).570

From (1) and (2), we deduce that in (⟨w⟩,R) the conjunction
∧

J⊆[1,k]
∧

h∈KJ
(
∧

i∈J αi(a, b) →571

Rh(a, b)) is equivalent to the conjunction
∧

J⊆Ja,b

∧
h∈KJ

Rh(a, b), which can be simplified572

as
∧

h∈KJa,b
Rh(a, b) because J ⊆ Ja,b implies KJ ⊆ KJa,b

. Consequently, for all h ∈ [1,m],573

the minimal model (⟨w⟩,R) of the Horn formula φ′ satisfies the atom Rh(a, b) iff h belongs574

to KJa,b
. By definition,575

5 For example, for F := p1 ∧p3 ∧ (p1 ∧p3 → p5)∧ (p1 ∧p2 → p4), we have F ′ := p1 ∧p3 ∧p5, which has the
same minimal model I as F ; this model is given by I(p1) = I(p3) = I(p5) = 1 and I(p2) = I(p4) = 0.

T. Grente, E. Grandjean XX:17

KJa,b
:= {h ∈ [1,m] |

∧
i∈Ja,b

θi(x, y) → Rh(x, y) is a tautology}576

or, equivalently,577

KJa,b
:= {h ∈ [1,m] |

∧
i∈Ja,b

θi(a, b) → Rh(a, b) is a tautology}.578

As a consequence of Lemma 24, the two conjunctions579 ∧
i∈Ja,b

θi(a, b) and
∧

h∈KJa,b
Rh(a, b)580

have the same minimal model, which is also the restriction of the minimal model (⟨w⟩,R) of581

φ′ to the set of atoms Rh(a, b), for h ∈ [1,m]. Therefore, if i ∈ Ja,b, then (⟨w⟩,R) |= θi(a, b).582

If i ∈ [1, k] \ Ja,b, then we have (⟨w⟩,R) |= ¬αi(a, b), by definition of Ja,b. Therefore, for583

all i ∈ [1, k], we get (⟨w⟩,R) |= ¬αi(a, b) ∨ θi(a, b). In other words, for all (a, b) such that584

a+ b = t, we have : (⟨w⟩,R) |=
∧

i∈[1,k](αi(a, b) → θi(a, b)) and then (⟨w⟩,R) |= φt.585

This concludes the inductive proof that (⟨w⟩,R) |= φt, for all t ∈ [1, 2n], and then586

⟨w⟩ |= Φ. This proves the converse implication Φ′ ⇒ Φ. Claim 23 is demonstrated. □587

Appendix B: Complement of proof for Lemma 15588

Grid ⊆ RealTimeCA. To prove this inclusion, we show how to simulate the computation of589

the grid-circuit on a real-time CA. The simulation is made by a geometric transformation that590

embeds the grid-circuit in the space-time diagram of a real-time CA. This transformation is591

divided into three steps:592

1. a variable change: we apply to each site (x, y) ∈ [1, n]2 of the grid-circuit the variable593

change (x, y) 7→ (c′ = y − x+ 1, t′ = x+ y − 1);594

2. a folding: we fold the resulting diagram along the axis c′ = 1: each site (c′, t′) with c′ < 1595

is send to its symmetric counterpart (−c′ + 1, t′);596

3. a grouping: each site (c, t) = (⌈ c′

2 ⌉, ⌈ t′

2 ⌉) of the new diagram records the set of sites597

{(c′ − 1, t′ − 1), (c′, t′), (c′ + 1, t′ − 1)} with c′ and t′ odd and greater than 1.598

The resulting diagram is the expected space-time diagram of a real-time CA, proving the599

inclusion.600

RealTimeCA ⊆ Grid. To simulate a real-time CA A = (S, Saccept, {−1, 0, 1}, f) on the grid,601

we first turn A into an equivalent CA A′ = (S, Saccept, {−2,−1, 0}, f). This transformation602

can be seen as the variable change (c, t) 7→ (c+ t− 1, t). The diagram of A′ is then embedded603

on the grid-circuit C ′ by applying to its sites (c′, t′) the variable change (c′, t′) 7→ (t′, c′). The604

local and uniform communication of the embedded diagram can easily be carried out by the605

grid-circuit communication scheme.606

	1 Introduction
	2 Preliminaries
	2.1 Conjunctive grammars and their binary normal form
	2.2 Elements of logic
	2.3 Cellular automata and real-time

	3 Real-time recognition of a unary conjunctive language
	3.1 Expressing inductively a unary conjunctive language in logic
	3.2 Equivalence of logic with grid-circuits
	3.3 Grid-circuits are equivalent to real-time 1-CA

	4 Real-time recognition of a conjunctive language: the general case
	4.1 Expressing a conjunctive language in logic: the general case
	4.2 Equivalence of logic with cube-circuits
	4.3 Cube-circuits are equivalent to real-time 2-OCA

	5 Conclusion

