## Conjunctive grammars, cellular automata and logic

Théo Grente, Etienne Grandjean

## To cite this version:

Théo Grente, Etienne Grandjean. Conjunctive grammars, cellular automata and logic. 2021. hal03167529 v 1

## HAL Id: hal-03167529 <br> https://hal.science/hal-03167529v1

Preprint submitted on 12 Mar 2021 (v1), last revised 9 Nov 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Conjunctive grammars, cellular automata and logic 

Théo Grente $\square$

GREYC, Université de Caen Normandie, France

Étienne Grandjean $\square$<br>GREYC, Université de Caen Normandie, France


#### Abstract

The expressive power of the class Conj of conjunctive languages, i.e. languages generated by the conjunctive grammars of Okhotin, is largely unknown, while its restriction LinConj to linear conjunctive grammars equals the class of languages recognized by real-time one-way one-dimensional cellular automata. We prove two weakened versions of the open question Conj $\subseteq$ ? RealTimeCA: 1) it is true for unary languages; 2) Conj $\subseteq$ RealTime20CA, i.e. any conjunctive language is recognized by a real-time one-way two-dimensional cellular automaton. Interestingly, we express the rules of a conjunctive grammar in two Horn logics, which exactly characterize the complexity classes RealTimeCA and RealTime20CA.


Keywords: Computational complexity, Real-time, One-way/two-way communication, Gridcircuit, Unary language, Descriptive complexity, Existential second-order logic, Horn formula.

## 1 Introduction

For decades, logic has maintained close relationships with, on the one hand, computational models [27] and computational complexity [3], in particular through descriptive complexity [6, $14,19,9,12,2]$, and on the other hand with formal language theory and grammars $[7,19]$.
Conjunctive grammars versus logic: Okhotin [23] wrote that "context-free grammars may be thought of as a logic for inductive description of syntax in which the propositional connectives available... are restricted to disjunction only". Thus, twenty years ago, the same author introduced conjunctive grammars [20] as an extension of context-free grammars by adding an explicit conjunction operation within the grammar rules.

As shown by Okhotin [20], conjunctive grammars - and more generally, Boolean grammars $[21,23]$ - inherit the parsing algorithms of the ordinary context-free grammars, without increasing their computational complexity. However, the expressive power of these grammars is largely unknown. The fact that the class Conj of languages generated by conjunctive grammars has many closure properties - it is trivially closed under reverse, concatenation, Kleene closure, disjunction and conjunction - suggests that this class has equivalent definitions in computational complexity and/or logic.
Conjunctive grammars versus real-time cellular automata: Note that the LinConj subclass of languages generated by linear conjunctive grammars was found to be equal to the Trellis class of languages recognized by trellis automata [22], or equivalently, one-way real-time cellular automata. Faced with this result, it is tempting to ask the following question: is the larger class Conj equal to the class RealTimeCA of languages recognized by two-way real-time cellular automata? Either answer to this question has strong consequences:

- If Conj = RealTimeCA then each of the two classes will benefit from the closure properties of the other class; in particular, RealTimeCA would be closed under reverse, which was shown by [13] to imply RealTimeCA $=$ LinearTime $_{\text {CA }}$, i.e. real-time is nothing but linear time for cellular automata, a surprising positive answer to a longstanding open question [5, 24, 26].
- If Conj $\neq \operatorname{RealTimeCA}$ then $\operatorname{Conj} \subsetneq \operatorname{DSPACE}(n)$ or RealTimeCA $\subsetneq \operatorname{DSPACE}(n):$ any of these strict inclusions would be a striking result.

© T. Grente, E. Grandjean;
licensed under Creative Commons License CC-BY 4.0
licensed under Creative Commons License
OpenAccess Series in Informatics
OASICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Real-time is the minimal time of cellular automata (CA). Recall that RealTimeCA (resp. Trellis) is the class of languages recognized in real-time by one-dimensional CA with two-way (resp. one-way) communication and input word given in parallel. We know the strict inclusion Trellis $\subsetneq$ RealTimeCA. The robustness of these classes is attested by their characterization by two sub-logics of ESO - the existential second-order logic, which characterizes NP - with Horn formulas as their first-order parts ${ }^{1}$, and called respectively pred-ESO-HORN and incl-ESO-HORN, see [10, 11]. For short, we write RealTimeCA $=$ pred-ESO-HORN and Trellis = incl-ESO-HORN.
Results of this paper: This paper focuses on the relationships between the class of conjunctive languages and the real-time classes of cellular automata. Although we do not know the answer to the question Conj $=$ ? RealTimeCA or even to the question of the inclusion Conj $\subseteq$ ? RealTimeCA, we prove two weakened versions of this inclusion:

1. Conj $_{1} \subseteq$ RealTimeCA $A_{1}$ : The inclusion holds when restricted to unary languages ${ }^{2}$.
2. Conj $\subseteq$ RealTime20CA: The inclusion holds for real-time of two-dimensional one-way cellular automata (2-OCA). (We have RealTimeCA $\subseteq$ RealTime20CA.)
To grasp the scope of inclusion (1), it is important to note that unlike the subclass $\mathrm{CFL}_{1}$ of the unary languages of the class of context-free languages, which is reduced to regular languages, $\mathrm{CFL}_{1}=\operatorname{Reg}_{1}$, the class $\mathrm{Conj}_{1}$ was shown by Jez [15] to be much larger than $\mathrm{Reg}_{1}$. Understanding its precise expressiveness seems as difficult a problem to us as for Conj.

Our inclusion (2) improves the inclusion CFL $\subseteq$ RealTime2SOCA, where RealTime2SOCA denotes the class of languages recognized by real-time sequential two-dimensional one-way cellular automata, proved by Terrier [25], who uses a result by King [16] and improves results by Kosaraju [18] and Chang et al. [4]. Terrier's result derives transitively from (2): CFL $\subseteq$ Conj $\subseteq$ RealTime20CA $\subseteq$ RealTime2SOCA.
Logic as a bridge from problems and grammars to real-time CAs: Logic has been the basis of logic programming and database queries for decades, especially Horn logic through the Prolog and Datalog programming languages $[1,17,9]$. Likewise, the above-mentioned logical characterizations of real-time complexity classes of CAs, RealTimeCA $=$ pred-ESO-HORN and Trellis = incl-ESO-HORN, have been used to easily show that several problems belong to the RealTimeCA or Trellis class by inductively expressing/programming the problems in the corresponding Horn logic, see [10, 11].

In this paper, the same logic programming method is adopted. We prove inclusion (1), $\operatorname{Conj}_{1} \subseteq$ RealTimeCA $A_{1}$, by expressing a unary language generated by a conjunctive grammar in the pred-ESO-HORN logic. Inclusion (1) follows, by the equality pred-ESO-HORN $=$ RealTimeCA. Similarly, to prove inclusion (2), Conj $\subseteq$ RealTime20CA, we first design a logic denoted incl-pred-ESO-HORN so that incl-pred-ESO-HORN = RealTime2OCA. Then, we express any conjunctive language in this logic, proving that it belongs to RealTime20CA, as claimed.

Thus, the heart of each proof consists in presenting a formula of a certain Horn logic, which inductively expresses how a word is generated by a conjunctive grammar: the Horn clauses of the formula naturally imitate the rules of the grammar.
Our proof method and the paper structure: After Section 2 gives some definitions, Sections 3 and 4 present inclusions (1) and (2) and their proofs with a common plan: Subsection 3.1 (resp. 4.1) expresses the inductive generating process of a conjunctive grammar, assumed in binary (Chomsky) normal form in the logic pred-ESO-HORN (resp.

[^0]incl-pred-ESO-HORN). Subsection 3.2 (resp. 4.2) shows that any formula of this logic can be normalized into a formula which mimics the computation of a two-dimensional (resp. three-dimensional) grid-circuit called Grid (resp. Cube); Subsection 3.3 (resp. 4.3) translates the grid-circuit into a real-time one-dimensional CA (resp. two-dimensional OCA). Note that we prove the equivalence of our logics with grid-circuits and CA real-time ${ }^{3}$ : pred-ESO-HORN $=$ Grid $=$ RealTimeCA and incl-pred-ESO-HORN $=$ Cube $=$ RealTime20CA. Section 5 gives a conclusion with a diagram of the known relations between the Conj class and the CA complexity classes studied here, for the general case and for the unary case.

## 2 Preliminaries

### 2.1 Conjunctive grammars and their binary normal form

Conjunctive grammars extend context-free grammars with a conjunction operation.

- Definition 1. A conjunctive grammar is a tuple $G=(\Sigma, N, P, S)$ where $\Sigma$ is the finite set of terminal symbols, $N$ is the finite set of nonterminal symbols, $S \in N$ is the initial symbol, and $P$ is the finite set of rules, each of the form $A \rightarrow \alpha_{1} \& \ldots \& \alpha_{m}$, for $m \geq 1$ and $\alpha_{i} \in(\Sigma \cup N)^{+}$. The set of words, $L(A)$, generated by any $A \in N$ is defined by induction: if the rules for $A$ are $A \rightarrow \alpha_{1}^{1} \& \ldots \& \alpha_{m_{1}}^{1}|\cdots| \alpha_{1}^{k} \& \ldots \& \alpha_{m_{k}}^{k}$, then $L(A):=\bigcup_{i=1}^{k} \bigcap_{j=1}^{m_{i}} L\left(\alpha_{j}^{i}\right)$. The language generated by the grammar $G$ is $L(S)$.

We will mainly use the binary normal form of conjunctive grammars, which extends the Chomsky normal form of context-free grammars. Each conjunctive grammar can be rewritten in an equivalent binary normal form [20, 23].

- Definition 2 (Binary normal form [20]). A conjunctive grammar $G=(\Sigma, N, P, S)$ is in binary normal form if each rule in $P$ has one of the two following forms:
- a long rule: $A \rightarrow B_{1} C_{1} \& \ldots \& B_{m} C_{m}\left(m \geq 1, B_{i}, C_{j} \in N\right)$;
- a short rule: $A \rightarrow a(a \in \Sigma)$.


### 2.2 Elements of logic

The underlying structure we will use to encode an input word $w=w_{1} \ldots w_{n}$ on its index interval $[1, n]=\{1, \ldots, n\}$ uses the successor and predecessor functions and the monadic predicates min and max as its only arithmetic functions/predicates:

- Definition 3 (structure encoding a word). Each nonempty word $w=w_{1} \ldots w_{n} \in \Sigma^{n}$ on a fixed finite alphabet $\Sigma$ is represented by the first-order structure $\langle w\rangle:=\left([1, n] ;\left(Q_{s}\right)_{s \in \Sigma}\right.$, min, max, suc, pred $)$
of domain $[1, n]$, monadic predicates $Q_{s}, s \in \Sigma$, min and max such that $Q_{s}(i) \Longleftrightarrow w_{i}=s$, $\min (i) \Longleftrightarrow i=1$, and $\max (i) \Longleftrightarrow i=n$, and unary functions suc and pred such that $\operatorname{suc}(i)=i+1$ for $i<n$ and $\operatorname{suc}(n)=n, \operatorname{pred}(i)=i-1$ for $i>1$ and $\operatorname{pred}(1)=1$. Let $\mathcal{S}_{\Sigma}$ denote the signature $\left\{\left(Q_{s}\right)_{s \in \Sigma}, \min , \max\right.$, suc, pred $\}$ of the structure $\langle w\rangle$.
- Notation 1. Let $x+k$ and $x-k$ abbreviate the terms $\operatorname{suc}^{k}(x)$ and $\operatorname{pred}^{k}(x)$, for a fixed integer $k \geq 0$. We will also use the intuitive abbreviations $x=1, x=n$ and $x>k$, for a fixed integer $k \geq 1$, in place of the formulas $\min (x), \max (x)$ and $\neg \min (x-(k-1))$, respectively.

[^1]
### 2.3 Cellular automata and real-time

- Definition 4 (1-CA and 2-0CA). A d-dimensional cellular automaton (CA) is a triple $(\mathrm{S}, \mathcal{N}, \mathrm{f})$ where S is the finite set of states, $\mathcal{N} \subset \mathbb{Z}^{d}$ is the neighborhood, and $\mathrm{f}: \mathrm{S}^{|\mathcal{N}|} \rightarrow \mathrm{S}$ is the transition function. We are interested in the following two special cases:
- 1-CA: It is a one-dimensional two-way cellular automaton ( $\mathrm{S},\{-1,0,1\}, \mathrm{f}$ ), for which the state $\langle c, t\rangle$ of any cell $c$ at a time $t>1$ is updated in this way: $\langle c, t\rangle=\mathrm{f}(\langle c-1, t-1\rangle,\langle c, t-1\rangle,\langle c+1, t-1\rangle)$.
- 2-OCA: It is a two-dimensional one-way cellular automaton (S, $\{(0,0),(-1,0),(0,-1)\}, \mathbf{f})$ for which the state $\left\langle c_{1}, c_{2}, t\right\rangle$ of any cell $\left(c_{1}, c_{2}\right)$ at a time $t>1$ is updated in this way: $\left\langle c_{1}, c_{2}, t\right\rangle=\mathrm{f}\left(\left\langle c_{1}, c_{2}, t-1\right\rangle,\left\langle c_{1}-1, c_{2}, t-1\right\rangle,\left\langle c_{1}, c_{2}-1, t-1\right\rangle\right)$.
- Definition 5 (permanent and quiescent states). In a CA, a state $\sharp$ is permanent if a cell in state $\sharp$ remains in this state forever. A state $\lambda$ of a $C A$ is quiescent if a cell in state $\lambda$ remains in this state as long as the states of its neighborhood cells are quiescent or permanent.
- Definition 6 (CA as a word acceptor). A cellular automaton ( $\mathrm{S}, \mathcal{N}, \mathrm{f}$ ) with an input alphabet $\Sigma \subset \mathrm{S}, a$ permanent state $\sharp$, a quiescent state $\lambda$, and a set of accepting states $\mathrm{S}_{\mathrm{acc}} \subset \mathrm{S}$ acts as a word acceptor if it operates on an input word $w \in \Sigma^{+}$in respecting the following conditions (see Figure 1).
Input. For a 1-CA, the $i$-th symbol of the input $w=w_{1} \ldots w_{n}$ is given to the cell $i$ at the initial time 1: $\langle i, 1\rangle=w_{i}$. All other cells are in the permanent state $\sharp$. For a $2-O C A$, the $i$-th symbol of the input is given to the cell $(i, 1)$ at time $1:\langle i, 1,1\rangle=w_{i}$. At time 1 , the cells $\left(c_{1}, c_{2}\right) \in[1, n] \times[2, n]$ are in the quiescent state $\lambda$, all other cells are in the permanent state $\sharp$. Output. One specific cell called output cell gives the output, "accept" or "reject", of the computation. For a 1-CA, the output cell is the cell 1. For a 2-OCA, the output cell is $(n, n)$. Acceptance. An input word is accepted by a 1-CA (resp. 2-CA) at time $t$ if the output cell enters an accepting state at time $t$.


1-CA


2-OCA

Figure 1 Input and output of a CA acting as a word acceptor

- Definition 7 (RealTimeCA, RealTime20CA). A word is accepted in real-time by a 1-CA (resp. 2-OCA) if the word is accepted in minimal time for the output cell 1 (resp. $(n, n)$ ) to receive each of its letters. A language is recognized in real-time by a $C A$ if it is the set of words that it accepts in real-time. The class RealTimeCA (resp. RealTime20CA) is the class of languages recognized in real-time by a 1-CA (resp. 2-OCA).


## 3 Real-time recognition of a unary conjunctive language

In this section, we prove our first main result:

- Theorem 8. Conj $_{1} \subseteq$ RealTimeCA ${ }_{1}$.


Figure 2 Space-time diagrams of RealTimeCA and RealTime20CA

### 3.1 Expressing inductively a unary conjunctive language in logic

The generating process of a unary conjunctive language is naturally expressed in the logic pred-ESO-HORN, an inductive Horn logic whose only function is the predecessor function.

- Definition 9 (pred-ESO-HORN). A formula of pred-ESO-HORN is a formula $\Phi:=\exists \mathbf{R} \forall x \forall y \psi(x, y)$ where $\mathbf{R}$ is a finite set of binary predicates and $\psi$ is a conjunction of Horn clauses, of signature $\mathcal{S}_{\Sigma} \cup \mathbf{R}$, and of one the three following forms:
- an input clause: $\min (x) \wedge(\neg) \min (y) \wedge Q_{s}(y) \rightarrow R(x, y)$ with $s \in \Sigma$ and $R \in \mathbf{R}$;
- a computation clause: $\delta_{1} \wedge \ldots \wedge \delta_{r} \rightarrow R(x, y)$ with $R \in \mathbf{R}$ and where each hypothesis $\delta_{i}$ is an atom $S(x, y)$ or a conjunction $S(x-a, y-b) \wedge x>a \wedge y>b$, with $S \in \mathbf{R}$ and $a, b \geq 0$ two integers such that $a+b>0$;
- a contradiction clause: $\max (x) \wedge \max (y) \wedge R(x, y) \rightarrow \perp$ with $R \in \mathbf{R}$.

We denote by pred-ESO-HORN the class of languages defined by a formula of pred-ESO-HORN.

- Remark 10. We will freely use equalities (resp. inequalities) $x=a$ and $y=b$ (resp. $x>a$, $y>b$ ), for constants $a, b$, in our formulas since they can be easily defined in pred-ESO-HORN. For example, the binary predicate $R^{x>2}$ of intuitive meaning $R^{x>2}(x, y) \Longleftrightarrow x>2$ is defined inductively by the following clauses where $R^{x=a}(x, y)$ means $x=a$ :
- $\min (x) \rightarrow R^{x=1}(x, y) ; x>1 \wedge R^{x=1}(x-1, y) \rightarrow R^{x=2}(x, y) ;$ - $x>1 \wedge R^{x=2}(x-1, y) \rightarrow R^{x>2}(x, y) ; x>1 \wedge R^{x>2}(x-1, y) \rightarrow R^{x>2}(x, y)$. Also, some other arithmetic predicates easily defined in pred-ESO-HORN will be used. For example, $y=2 x$ can be replaced by the atom $R^{y=2 x}(x, y)$, where $R^{y=2 x}$ is defined by the following two clauses using the predicates $R^{x=1}, R^{y=2}, R^{x>1}$ and $R^{y>2}$ : - $x=1 \wedge y=2 \rightarrow R^{y=2 x}(x, y) ; x>1 \wedge y>2 \wedge R^{y=2 x}(x-1, y-2) \rightarrow R^{y=2 x}(x, y)$.
- Notation 2. More generally, let $R^{\rho(x, y)}$ denote a binary predicate whose meaning is $R^{\rho(x, y)}(x, y) \Longleftrightarrow \rho(x, y)$, for a property or a formula $\rho(x, y)$. We will also use a set of binary arithmetic predicates denoted by $\mathbf{R}_{\text {arith }}$, which consists of $R^{x=y}, R^{y=2 x}$ and $R^{\rho(x, y)}$, for $\rho(x, y):=x \geq\left\lceil\frac{y}{2}\right\rceil$, and the predicates used to define them in pred-ESO-HORN.

Let us prove that for every unary conjunctive languages, their complements can be defined in pred-ESO-HORN ${ }_{1}$.

Lemma 11. For each language $L \subseteq a^{+}$, if $L \in \operatorname{Conj}_{1}$ then $a^{+} \backslash L \in \operatorname{pred}-E S O-H O R N$.
Proof. Let $G=(\{a\}, N, P, S)$ be a conjunctive grammar in binary normal form which generates $L$. For each $A \in N$ and each unary word $a^{y}$, we have, according to the length $y$, the following equivalences which will be the basis of our induction:

- if $y=1$, then $a^{y} \in L(A) \Longleftrightarrow$ the short rule $A \rightarrow a$ belongs to $P$;
- if $y>1$, then $a^{y} \in L(A) \Longleftrightarrow$ there is a long rule $A \rightarrow B_{1} C_{1} \& \ldots \& B_{m} C_{m}$ in $P$ such that, for each $i \in\{1, \ldots, m\}$, there exists $x \geq\left\lceil\frac{y}{2}\right\rceil$ such that either $a^{x} \in L\left(B_{i}\right)$ and $a^{y-x} \in L\left(C_{i}\right)$, or $a^{y-x} \in L\left(B_{i}\right)$ and $a^{x} \in L\left(C_{i}\right)$.

We want to construct a first-order formula $\forall x \forall y \psi_{G}(x, y)$ of signature $\mathcal{S}_{\Sigma} \cup \mathbf{R}$, for $\Sigma:=\{a\}$ and the set of binary predicates $\mathbf{R}:=\left\{\operatorname{Maj}_{A}, \operatorname{Min}_{A} \mid A \in N\right\} \cup\left\{\operatorname{Sum}_{B C} \mid B, C \in N\right\} \cup \mathbf{R}_{\text {arith }}$ so that the formula $\Phi_{G}:=\exists \mathbf{R} \forall x \forall y \psi_{G}$ belongs to pred-ESO-HORN and defines the language $a^{+} \backslash L$. The intuitive meanings of the predicates $\operatorname{Maj}_{A}, \operatorname{Min}_{A}$ and $\operatorname{Sum}_{B C}$ are as follows:

- $\operatorname{Maj}_{A}(x, y) \Longleftrightarrow\left\lceil\frac{y}{2}\right\rceil \leq x \leq y$ and $a^{x} \in L(A)$;
- $\operatorname{Min}_{A}(x, y) \Longleftrightarrow\left\lceil\frac{y}{2}\right\rceil \leq x<y$ and $a^{y-x} \in L(A)$;
- $\operatorname{Sum}_{\mathrm{BC}}(x, y) \Longleftrightarrow$ there is some $x^{\prime}$ with $\left\lceil\frac{y}{2}\right\rceil \leq x^{\prime} \leq x$ such that either $a^{x^{\prime}} \in L(B)$ and $a^{y-x^{\prime}} \in L(C)$, or $a^{y-x^{\prime}} \in L(B)$ and $a^{x^{\prime}} \in L(C)$.
Note that for $x=y$, the above equivalence for Maj ${ }_{A} \operatorname{implies}^{\operatorname{Maj}}{ }_{A}(x, y) \Longleftrightarrow a^{y} \in L(A)$.
Let us give and justify a list of Horn clauses whose conjunction $\psi_{G}^{\prime}$ defines the predicates $\operatorname{Maj}_{A}, \operatorname{Min}_{A}$ and $\operatorname{Sum}_{B C}$, using the arithmetic predicates of $\mathbf{R}_{\text {arith }}$ (see Notation 2 and Remark 10), namely $R^{x=y}, R^{y=2 x}$ and $R^{\rho(x, y)}$, for $\rho(x, y):=x \geq\left\lceil\frac{y}{2}\right\rceil$.

Short rules. Each rule $A \rightarrow a$ of $P$ is expressed by the input clause:

- $\min (x) \wedge \min (y) \wedge Q_{a}(y) \rightarrow \operatorname{Maj}_{A}(x, y)$.

Induction on the length $y$. If we have for $y>1$ the inequalities $\left\lceil\frac{y-1}{2}\right\rceil \leq x \leq y-1$ and $x \geq\left\lceil\frac{y}{2}\right\rceil$ then $\left\lceil\frac{y}{2}\right\rceil \leq x \leq y$. This justifies the clause:

- $y>1 \wedge \operatorname{Maj}_{A}(x, y-1) \wedge x \geq\left\lceil\frac{y}{2}\right\rceil \rightarrow \operatorname{Maj}_{A}(x, y)$ for all $A \in N$.

For $y>1$ and $y=2 x$, we have $a^{x}=a^{y-x}$ and $\left\lceil\frac{y}{2}\right\rceil \leq x<y$. This justifies the clause:

- $y>1 \wedge \operatorname{Maj}_{A}(x, y-1) \wedge y=2 x \rightarrow \operatorname{Min}_{A}(x, y)$ for all $A \in N$.

If for $x, y>1$ we have the inequalities $\left\lceil\frac{y-1}{2}\right\rceil \leq x-1<y$, then $\left\lceil\frac{y}{2}\right\rceil \leq x<y$. Moreover, $a^{(y-1)-(x-1)}=a^{y-x}$. This justifies the clause:

- $x>1 \wedge y>1 \wedge \operatorname{Min}_{A}(x-1, y-1) \rightarrow \operatorname{Min}_{A}(x, y)$ for all $A \in N$.

Concatenation. For all $B, C \in N$, it is clear that the concatenation predicate Sum $_{B C}$ is defined inductively by the following three clauses:

- initialization: $\operatorname{Maj}_{B}(x, y) \wedge \operatorname{Min}_{C}(x, y) \rightarrow \operatorname{Sum}_{B C}(x, y) ; \operatorname{Min}_{B}(x, y) \wedge \operatorname{Maj}_{C}(x, y) \rightarrow \operatorname{Sum}_{B C}(x, y) ;$
- induction: $\neg \min (x) \wedge \operatorname{Sum}_{\mathrm{BC}}(x-1, y) \rightarrow \operatorname{Sum}_{\mathrm{BC}}(x, y)$.

Long rules. Each rule $A \rightarrow B_{1} C_{1} \& \ldots \& B_{m} C_{m}$ of $P$ is expressed by the clause:

- $x=y \wedge \operatorname{Sum}_{B_{1} \mathrm{C}_{1}}(x, y) \wedge \cdots \wedge \operatorname{Sum}_{\mathrm{B}_{\mathrm{m}} \mathrm{c}_{\mathrm{m}}}(x, y) \rightarrow \operatorname{Maj}_{A}(x, y)$.

Thus, the formula $\forall x \forall y \psi_{G}^{\prime}$ where $\psi_{G}^{\prime}$ is the conjunction of the above clauses defines the predicates $\operatorname{Maj}_{A}, \operatorname{Min}_{A}$, and $\operatorname{Sum}_{B C}$.

Definition of $a^{+} \backslash L$. We have the equivalence $\operatorname{Maj}_{S}(n, n) \Longleftrightarrow a^{n} \in L(S) \Longleftrightarrow a^{n} \in L$.
Therefore, the following contradiction clause expresses $a^{n} \notin L$ :

- $\gamma_{S}:=\max (x) \wedge \max (y) \wedge \operatorname{Maj}_{S}(x, y) \rightarrow \perp$.

Finally, observe that the formula $\Phi_{G}:=\exists \mathbf{R} \forall x \forall y \psi_{G}$ where $\psi_{G}$ is $\gamma_{\text {arith }} \wedge \psi_{G}^{\prime} \wedge \gamma_{S}$ and $\gamma_{\text {arith }}$ is the conjunction of clauses that defines the arithmetic predicates of $\mathbf{R}_{\text {arith }}$, belongs to pred-ESO-HORN. Since we have $\left\langle a^{n}\right\rangle \models \Phi_{G} \Longleftrightarrow a^{n} \notin L$, as justified above, then the langage $a^{+} \backslash L$ belongs to pred-ESO-HORN, as claimed.

### 3.2 Equivalence of logic with grid-circuits

We introduce the grid-circuit as an intermediate object between our logic and the real-time cellular automaton: see Figure 3.

- Definition 12. A grid-circuit is a tuple $C:=\left(\Sigma,\left(\text { Input }_{n}\right)_{n>0}, \mathbf{Q}, \mathbf{Q}_{\mathrm{acc}}, \mathrm{g}\right)$ where
- $\Sigma$ is the input alphabet and $\left(\text { Input }_{n}\right)_{n>0}$ is the family of input functions Input $_{n}: \Sigma^{n} \times[1, n]^{2} \rightarrow \Sigma \cup\{\$\}$ such that, for $w=w_{1} \ldots w_{n} \in \Sigma^{n}$, $\operatorname{Input}_{n}(w, x, y)=w_{y}$ if $x=1$ and $\operatorname{Input}_{n}(w, x, y)=\$$ otherwise,
- $\mathbf{Q} \cup\{\sharp\}$ is the finite set of states and $\mathbf{Q}_{\mathrm{acc}} \subseteq \mathbf{Q}$ is the subset of accepting states,
- $\mathrm{g}:(\mathbf{Q} \cup\{\sharp\})^{2} \times(\Sigma \cup\{\$\}) \rightarrow \mathbf{Q}$ is the transition function.
- Definition 13 (computation of a grid-circuit). The computation $C_{w}$ of a grid-circuit $C:=\left(\Sigma,\left(\text { Input }_{n}\right)_{n>0}, \mathbf{Q}, \mathbf{Q}_{\mathrm{acc}}, \mathrm{g}\right)$ on a $w=w_{1} \ldots w_{n} \in \Sigma^{n}$ is a regular grid of $(n+1)^{2}$ sites $(x, y) \in[0, n]^{2}$, each in a state $\langle x, y\rangle \in \mathbf{Q} \cup\{\sharp\}$ computed inductively:
- each site in $\{0\} \times[0, n]$ or $[0, n] \times\{0\}$ is in the particular state $\sharp$;
- the state of each site $(x, y) \in[1, n]^{2}$ is $\langle x, y\rangle=\mathrm{g}\left(\langle x, y-1\rangle,\langle x-1, y\rangle, \operatorname{Input}_{n}(w, x, y)\right)$.


Figure 3 The grid-circuit

A word $w=w_{1} \ldots w_{n} \in \Sigma^{n}$ is accepted by the grid-circuit $C$ if the output state $\langle n, n\rangle$ of $C_{w}$ belongs to $\mathbf{Q}_{\mathrm{acc}}$. The language recognized by $C$ is the set of words it accepts. We denote by Grid the class of languages recognized by a grid-circuit.

Actually, our predecessor Horn logic is equivalent to grid-circuits.

- Lemma 14. [10] pred-ESO-HORN = Grid.

Proof. In some sense, a grid-circuit is the "normalized form" of a formula of pred-ESO-HORN. So, the inclusion Grid $\subseteq$ pred-ESO-HORN is proved in a straightforward way.

The first step of the proof of the converse inclusion pred-ESO-HORN $\subseteq$ Grid is to show that every formula $\Phi:=\exists \mathbf{R} \forall x \forall y \psi(x, y)$ in pred-ESO-HORN is equivalent to a formula $\Phi^{\prime} \in$ pred-ESO-HORN in which the only hypotheses of computation clauses are atoms $S(x, y)$ and conjunctions $S(x-1, y) \wedge x>1$ and $S(x, y-1) \wedge y>1$.
Elimination of atoms $R(x-a, y-b)$ for $a+b>1$ : The idea is to introduce new "shift" predicates $R^{x-a^{\prime}, y-b^{\prime}}$ for fixed integers $a^{\prime}, b^{\prime}>0$ with the intuitive meaning:
$R^{x-a^{\prime}, y-b^{\prime}}(x, y) \Longleftrightarrow R\left(x-a^{\prime}, y-b^{\prime}\right) \wedge x>a^{\prime} \wedge y>b^{\prime}$.
Let us explain the method by an example. Assume we have in $\psi$ the Horn clause
(1) $x>3 \wedge y>2 \wedge S(x-3, y-2) \rightarrow T(x, y)$. This clause is replaced by the clause
(2) $S^{x-2, y-2}(x-1, y) \wedge x>1 \rightarrow T(x, y)$
for which the predicates $S^{x-1}, S^{x-2}, S^{x-2, y-1}$ and $S^{x-2, y-2}$ are defined by the respective clauses: $x>1 \wedge S(x-1, y) \rightarrow S^{x-1}(x, y), x>1 \wedge S^{x-1}(x-1, y) \rightarrow S^{x-2}(x, y)$, $y>1 \wedge S^{x-2}(x, y-1) \rightarrow S^{x-2, y-1}(x, y)$, and $y>1 \wedge S^{x-2, y-1}(x, y-1) \rightarrow S^{x-2, y-2}(x, y)$,
which imply together the clause $x>2 \wedge y>2 \wedge S(x-2, y-2) \rightarrow S^{x-2, y-2}(x, y)$ and then also $x>3 \wedge y>2 \wedge S(x-3, y-2) \rightarrow S^{x-2, y-2}(x-1, y)$.

It is clear that the formula $\Phi:=\exists \mathbf{R} \forall x \forall y \psi$ is equivalent to the formula $\Phi^{\prime}:=\exists \mathbf{R}^{\prime} \forall x \forall y \psi^{\prime}$ where $\mathbf{R}^{\prime}:=\mathbf{R} \cup\left\{S^{x-1}, S^{x-2}, S^{x-2, y-1}, S^{x-2, y-2}\right\}$ and $\psi^{\prime}$ is the conjunction $\psi_{\text {replace }} \wedge \psi_{\text {def }}$, where $\psi_{\text {replace }}$ is the formula $\psi$ in which clause (1) is replaced by clause (2), and $\psi_{\text {def }}$ is the conjunction of the above clauses defining the new predicates of $\mathbf{R}^{\prime}$.

Thus, any formula $\Phi \in$ pred-ESO-HORN is equivalent to a formula $\Phi^{\prime} \in$ pred-ESO-HORN whose computation clauses only contain hypotheses of the following three forms: $R(x-1, y) \wedge x>1 ; R(x, y-1) \wedge y>1 ; R(x, y)$. The next step is to eliminate these $R(x, y)$.

Elimination of hypotheses $R(x, y)$ (sketch of proof): The first idea is to group together in each computation clause the hypothesis atoms of the form $R(x, y)$ and the conclusion of the clause. As a result, the formula can be rewritten in the form

$$
\Phi:=\exists \mathbf{R} \forall x \forall y\left[\bigwedge_{i} C_{i}(x, y) \wedge \bigwedge_{i \in[1, k]}\left(\alpha_{i}(x, y) \rightarrow \theta_{i}(x, y)\right)\right]
$$

where the $C_{i}$ 's are the input clauses and the contradiction clauses, and each computation clause is written in the form $\alpha_{i}(x, y) \rightarrow \theta_{i}(x, y)$, where $\alpha_{i}(x, y)$ is a conjunction of formulas of the only forms $R(x-1, y) \wedge x>1, R(x, y-1) \wedge y>1$, and $\theta_{i}(x, y)$ is a Horn clause in which all atoms are of the form $R(x, y)$.

The second idea is to "solve" the Horn clauses $\theta_{i}$ according to the input clauses and all the possible conjunctions of hypotheses $\alpha_{i}$ that may be true. Notice the two following facts: the hypotheses of the input clauses are input literals and the conjuncts of the $\alpha_{i}$ 's are of the only forms $R(x-1, y) \wedge x>1, R(x, y-1) \wedge y>1$. So, we can prove by induction on the sum $x+y$ that the obtained formula $\Phi^{\prime}$ in which no atom $R(x, y)$ appears as a clause hypothesis, is equivalent to the above formula $\Phi$. The complete proof is given in Appendix A.

Transformation of the formula into a grid-circuit: Let $\mathbf{R}=\left\{R_{1}, \ldots, R_{m}\right\}$ denote the set of binary predicates of the formula. By a separation into cases of input clauses and computation clauses, it is easy to transform the formula into an equivalent formula $\Phi:=\exists \mathbf{R} \forall x \forall y \psi$ where $\psi$ is a conjunction of clauses of the following forms (a-e), in which $s \in \Sigma, j \in[1, m]$, and $A, B$ are (possibly empty) subsets of [1, m]:
(a) $x=1 \wedge y=1 \wedge Q_{s}(y) \rightarrow R_{j}(x, y) ;$
(b) $x=1 \wedge y>1 \wedge Q_{s}(y) \wedge \bigwedge_{i \in A} R_{i}(x, y-1) \rightarrow R_{j}(x, y)$;
(c) $x>1 \wedge y=1 \wedge \bigwedge_{i \in A} R_{i}(x-1, y) \rightarrow R_{j}(x, y)$;
(d) $x>1 \wedge y>1 \wedge \bigwedge_{i \in A} R_{i}(x-1, y) \wedge \bigwedge_{i \in B} R_{i}(x, y-1) \rightarrow R_{j}(x, y)$;
(e) $x=n \wedge y=n \wedge R_{j}(x, y) \rightarrow \perp$.

Now, transform this formula into a grid-circuit $C:=\left(\Sigma,\left(\text { Input }_{n}\right)_{n>0}, \mathbf{Q}, \mathbf{Q}_{\mathrm{acc}}, \mathrm{g}\right)$. The idea is that the state of a site $(x, y) \in[1, n]^{2}$ is the set of predicates $R_{i}$ such that $R_{i}(x, y)$ is true. Let $\mathbf{Q}$ be the power set of the set of $\mathbf{R}$ indices: $\mathbf{Q}:=\mathcal{P}([1, m])$. There are four types of transition (a-d) which mimic the clauses (a-d) above. These are, for $s \in \Sigma$ and $q, q^{\prime} \in \mathbf{Q}$ :
(a) $\mathrm{g}(\sharp, \sharp, s)=\left\{j \in[1, m] \mid\right.$ there is a clause (a) with $Q_{s}$, and conclusion $\left.R_{j}(x, y)\right\}$;
(b) $\mathrm{g}(q, \sharp, s)=\left\{j \in[1, m] \mid\right.$ there is a clause (b) with $Q_{s}$, and $A \subseteq q$, and conclusion $\left.R_{j}(x, y)\right\}$;
(c) $\mathrm{g}(\sharp, q, \$)=\left\{j \in[1, m] \mid\right.$ there is a clause (c) with $A \subseteq q$, and conclusion $\left.R_{j}(x, y)\right\}$;
(d) $\mathrm{g}\left(q, q^{\prime}, \$\right)=\left\{j \in[1, m] \mid \exists\right.$ a clause (d) with $A \subseteq q, B \subseteq q^{\prime}$, and conclusion $\left.R_{j}(x, y)\right\}$.

Of course, the set of accepting states of $C$ is determined by the contradiction clauses (e): $\mathbf{Q}_{\mathrm{acc}}:=\left\{q \in \mathbf{Q} \mid q\right.$ contains no $j$ such that $R_{j}$ occurs in a clause (e) $\}$.

We can easily check the equivalence, for each $w \in \Sigma^{+}:\langle w\rangle \models \Phi \Longleftrightarrow C$ accepts $w$. Therefore, the inclusion pred-ESO-HORN $\subseteq$ Grid is proved.

Proof. Figure 4 shows how Grid is simulated on RealTimeCA and Figure 5 shows how RealTimeCA is simulated on Grid. The proof is detailed in Appendix B.


Figure 4 Simulation of Grid on RealTimeCA


Figure 5 Simulation of RealTimeCA on the grid-circuit

Proof of Theorem 8. Lemmas 14 and 15 give us the following equalities of classes: pred-ESO-HORN $=$ Grid $=$ RealTimeCA. These equalities trivially hold when restricted to unary languages: pred-ESO-HORN ${ }_{1}=$ Grid $_{1}=$ RealTimeCA ${ }_{1}$.

From the fact that the class RealTimeCA $A_{1}$ is closed under complement and from Lemma 11, we deduce Conj ${ }_{1} \subseteq$ pred-ESO-HORN ${ }_{1}=$ Grid $_{1}=$ RealTimeCA ${ }_{1}$.

## 4 Real-time recognition of a conjunctive language: the general case

Our second main result strengthens the inclusion CFL $\subseteq$ RealTime2SOCA of Terrier ${ }^{4}$ [25]:

- Theorem 16. Conj $\subseteq$ RealTime20CA.


### 4.1 Expressing a conjunctive language in logic: the general case

The generating process of a conjunctive language is naturally expressed in the Horn logic incl-pred-ESO-HORN. This is a hybrid logic with three first-order variables $x, y, z$, whose name means that it makes inductions on the variable interval $[x, y]$, by inclusion, and on the individual variable $z$, by predecessor.

[^2]- Definition 17 (incl-pred-ESO-HORN). A formula of incl-pred-ESO-HORN is a formula $\Phi:=\exists \mathbf{R} \forall x \forall y \forall z \psi(x, y, z)$ where $\mathbf{R}$ is a finite set of ternary predicates, and $\psi$ is a conjunction of Horn clauses, of signature $\mathcal{S}_{\Sigma} \cup \mathbf{R} \cup\{=, \leq\}$, and of the three following forms:
- an input clause: $x=y \wedge \min (z) \wedge Q_{s}(x) \rightarrow R(x, y, z)$ with $s \in \Sigma$ and $R \in \mathbf{R}$;
- a computation clause: $\delta_{1} \wedge \ldots \wedge \delta_{r} \rightarrow R(x, y, z)$ with $R \in \mathbf{R}$ and where each hypothesis $\delta_{i}$ is an atom $S(x, y, z)$ or a conjunction $S(x+a, y-b, z-c) \wedge x+a \leq y-b \wedge z>c$ with $S \in \mathbf{R}$ and $a, b, c \geq 0$ three integers such that $a+b+c>0$;
- $a$ contradiction clause: $\min (x) \wedge \max (y) \wedge \max (z) \wedge R(x, y, z) \rightarrow \perp$ with $R \in \mathbf{R}$.

We denote by incl-pred-ESO-HORN the class of languages defined by a formula of incl-pred-ESO-HORN.

- Lemma 18. For each language $L \subseteq \Sigma^{+}$, if $L \in$ Conj, then $\Sigma^{+} \backslash L \in$ incl-pred-ESO-HORN .

Proof. The proof is a variation (an extension) of the proof of the same result, Lemma 11, in the unary case. This is why we insist on the differences. Let $G=(\Sigma, N, P, S)$ be a conjunctive grammar in binary normal form which generates $L$ and let $w$ be a word $w=w_{1} \ldots w_{n} \in \Sigma^{+}$. For each $A \in N$ and each factor $w_{x, y}:=w_{x} \ldots w_{y}$, we have, according to the length $y-x+1$ of $w_{x, y}$, the following equivalences which will be the basis of our induction:

- if $x=y$, then $w_{x, y} \in L(A) \Longleftrightarrow$ the short rule $A \rightarrow w_{x}$ belongs to $P$;
- if $x<y$, then $w_{x, y} \in L(A) \Longleftrightarrow$ there is a long rule $A \rightarrow B_{1} C_{1} \& \ldots \& B_{m} C_{m}$ in $P$ such that, for each $i \in\{1, \ldots, m\}$, there exists $z \geq\lceil(y-x+1) / 2\rceil$ such that either $w_{x, x+z-1} \in L\left(B_{i}\right)$ and $w_{x+z, y} \in L\left(C_{i}\right)$, or $w_{x, y-z} \in L\left(B_{i}\right)$ and $w_{y-z+1, y} \in L\left(C_{i}\right)$. Thus, a double induction is performed, on the index interval $[x, y]$ of a factor $w_{x, y}$ and on the maximal $z$ among the lengths of the two sub-factors $u, v$ of the $m$ decompositions $w_{x, y}=u v, u \in L\left(B_{i}\right), v \in L\left(C_{i}\right)$, for a long rule. This is naturally expressed in the logic incl-pred-ESO-HORN.

We want to construct a first-order formula $\forall x \forall y \forall z \psi_{G}$ of signature $\mathcal{S}_{\Sigma} \cup \mathbf{R} \cup\{=, \leq\}$, for the set of ternary predicates $\mathbf{R}:=\left\{\operatorname{Pref}_{A}^{\mathrm{Maj}}, \operatorname{Pref}_{A}^{\mathrm{Min}}, \operatorname{Suff}_{A}^{\mathrm{Maj}}, \operatorname{Suff}_{A}^{\mathrm{Min}} \mid A \in N\right\} \cup$ $\left\{\right.$ Concat $\left._{B C} \mid B, C \in N\right\} \cup \mathbf{R}_{\text {arith }}$, so that the formula $\Phi_{G}:=\exists \mathbf{R} \forall x \forall y \forall z \psi_{G}$ belongs to incl-pred-ESO-HORN and defines the language $\Sigma^{+} \backslash L$. The intuitive meanings of the predicates $\operatorname{Pref}_{A}^{\text {Maj }}, \operatorname{Pref}_{A}^{\text {Min }}, \operatorname{Suff}_{A}^{\text {Maj }}, \operatorname{Suff}_{A}^{\text {Min }}$ and Concat ${ }_{B C}$ are as follows:

- $\operatorname{Pref}_{A}^{\mathrm{Maj}}(x, y, z) \Longleftrightarrow\left\lceil\frac{y-x+1}{2}\right\rceil \leq z \leq y-x+1$ and $w_{x, x+z-1} \in L(A)$;
- $\operatorname{Pref}_{A}^{\text {Min }}(x, y, z) \Longleftrightarrow\left\lceil\frac{y-x+1}{2}\right\rceil \leq z \leq y-x$ and $w_{x, y-z} \in L(A)$;
- $\operatorname{Suff}_{A}^{\text {Maj }}(x, y, z) \Longleftrightarrow\left\lceil\frac{y-x+1}{2}\right\rceil \leq z \leq y-x+1$ and $w_{y-z+1, y} \in L(A)$;
- $\operatorname{Suff}_{A}^{\text {Min }}(x, y, z) \Longleftrightarrow\left\lceil\frac{y-x+1}{2}\right\rceil \leq z \leq y-x$ and $w_{x+z, y} \in L(A)$;
- $\operatorname{Concat}_{B C}(x, y, z) \Longleftrightarrow$ there is some $z^{\prime}$ with $\left\lceil\frac{y-x+1}{2}\right\rceil \leq z^{\prime} \leq z$ such that either $w_{x, x+z^{\prime}-1} \in L(B)$ and $w_{x+z^{\prime}, y} \in L(C)$, or $w_{x, y-z^{\prime}} \in L(B)$ and $w_{y-z^{\prime}+1, y} \in L(C)$.
Note that the above equivalences for $\operatorname{Pref}_{A}^{\mathrm{Maj}}$ and $\operatorname{Suff}_{A}^{\mathrm{Maj}}$ imply in the particular case $z=y-x+1$ the equivalences $\operatorname{Pref}_{A}^{\mathrm{Maj}}(x, y, z) \Longleftrightarrow \operatorname{Suff}_{A}^{\mathrm{Maj}}(x, y, z) \Longleftrightarrow w_{x, y} \in L(A)$.

Let us give and justify a list of Horn clauses whose conjunction $\psi_{G}^{\prime}$ defines the predicates $\operatorname{Pref}_{A}^{\text {Maj }}, \operatorname{Pref}_{A}^{\text {Min }}, \operatorname{Suff}_{A}^{\text {Maj }}, \operatorname{Suff}_{A}^{\text {Min }}$ and Concat ${ }_{B C}$, using the arithmetic predicates $z=y-x+1$, $y-x+1=2 z$, and $z \geq\left\lceil\frac{y-x+1}{2}\right\rceil$ easily defined in incl-pred-ESO-HORN.

Short rules. Each rule $A \rightarrow s$ of $P$ is expressed by the two clauses:

- $x=y \wedge z=1 \wedge Q_{s}(x) \rightarrow \operatorname{Pref}_{A}^{\text {Maj }}(x, y, z) ; x=y \wedge z=1 \wedge Q_{s}(x) \rightarrow \operatorname{Suff}_{A}^{\mathrm{Maj}}(x, y, z)$.

Induction for prefixes. If we have for $x<y$ the inequalities
$\left\lceil\frac{(y-1)-x+1}{2}\right\rceil \leq z \leq(y-1)-x+1$ and $z \geq\left\lceil\frac{y-x+1}{2}\right\rceil$ then $\left\lceil\frac{y-x+1}{2}\right\rceil \leq z \leq y-x+1$. This justifies the clause:

- $x \leq y-1 \wedge \operatorname{Pref}_{A}^{\mathrm{Maj}}(x, y-1, z) \wedge z \geq\left\lceil\frac{y-x+1}{2}\right\rceil \rightarrow \operatorname{Pref}_{A}^{\mathrm{Maj}}(x, y, z)$, for all $A \in N$.

For $x<y$ and $y-x+1=2 z$, we have $w_{x, x+z-1}=w_{x, y-z}$ and $\left\lceil\frac{y-x+1}{2}\right\rceil \leq z \leq y-x$. This justifies the clause:

- $x \leq y-1 \wedge \operatorname{Pref}_{A}^{\mathrm{Maj}}(x, y-1, z) \wedge y-x+1=2 z \rightarrow \operatorname{Pref}_{A}^{\mathrm{Min}}(x, y, z)$, for all $A \in N$.

For $x<y$ and $z>1$ and $\left\lceil\frac{(y-1)-x+1}{2}\right\rceil \leq z-1 \leq(y-1)-x$, we have $\left\lceil\frac{y-x+1}{2}\right\rceil \leq z \leq y-x$. This justifies the clause:

- $x \leq y-1 \wedge z>1 \wedge \operatorname{Pref}_{A}^{\operatorname{Min}}(x, y-1, z-1) \rightarrow \operatorname{Pref}_{A}^{\text {Min }}(x, y, z)$, for all $A \in N$.

Induction for suffixes. As this induction is symmetric to the one for prefixes, we do not justify the following list of induction clauses for the predicates $\operatorname{Suff}_{A}^{\mathrm{Maj}}$ and $\operatorname{Suff}_{A}^{\mathrm{Min}}, A \in N$ :
$-x+1 \leq y \wedge \operatorname{Suff}_{A}^{\mathrm{Maj}}(x+1, y, z) \wedge z \geq\left\lceil\frac{y-x+1}{2}\right\rceil \rightarrow \operatorname{Suff}_{A}^{\mathrm{Maj}}(x, y, z) ;$

- $x+1 \leq y \wedge \operatorname{Suff}_{A}^{\text {Maj }}(x+1, y, z) \wedge y-x+1=2 z \rightarrow \operatorname{Suff}_{A}^{\text {Min }}(x, y, z) ;$
- $x+1 \leq y \wedge z>1 \wedge \operatorname{Suff}_{A}^{\text {Min }}(x+1, y, z-1) \rightarrow \operatorname{Suff}_{A}^{\text {Min }}(x, y, z)$.

Concatenation. For all $B, C \in N$, it is clear that the concatenation predicate Concat ${ }_{B C}$ is defined inductively by the following three clauses:

- initialization: $\operatorname{Pref}_{B}^{\mathrm{Maj}}(x, y, z) \wedge \operatorname{Suff}_{C}^{\mathrm{Min}}(x, y, z) \rightarrow \operatorname{Concat}_{B C}(x, y, z)$;
$\operatorname{Pref}_{B}^{\text {Min }}(x, y, z) \wedge \operatorname{Suff}_{C}^{\text {Maj }}(x, y, z) \rightarrow \operatorname{Concat}_{B C}(x, y, z) ;$
- induction: $z>1 \wedge \operatorname{Concat}_{B C}(x, y, z-1) \rightarrow \operatorname{Concat}_{B C}(x, y, z)$.

Long rules. Each rule $A \rightarrow B_{1} C_{1} \& \ldots \& B_{m} C_{m}$ of $P$ is expressed by the two clauses:

- $z=y-x+1 \wedge \operatorname{Concat}_{B_{1} C_{1}}(x, y, z) \wedge \cdots \wedge \operatorname{Concat}_{B_{m} C_{m}}(x, y, z) \rightarrow \operatorname{Pref}_{A}^{\mathrm{Maj}}(x, y, z) ;$
- $z=y-x+1 \wedge \operatorname{Concat}_{B_{1} C_{1}}(x, y, z) \wedge \cdots \wedge \operatorname{Concat}_{B_{m} C_{m}}(x, y, z) \rightarrow \operatorname{Suff}_{A}^{\text {Maj }}(x, y, z)$.

Thus, the formula $\forall x \forall y \forall z \psi_{G}^{\prime}$ where $\psi_{G}^{\prime}$ is the conjunction of the above clauses defines the predicates $\operatorname{Pref}_{A}^{\mathrm{Maj}}, \operatorname{Pref}_{A}^{\mathrm{Min}}, \operatorname{Suff}_{A}^{\mathrm{Maj}}, \operatorname{Suff}_{A}^{\text {Min }}$, and Concat ${ }_{B C}$.

Definition of $\Sigma^{+} \backslash L$. We have the equivalence $\operatorname{Pref}_{S}^{\mathrm{Maj}}(1, n, n) \Longleftrightarrow w \in L(S) \Longleftrightarrow w \in L$. Therefore, the following contradiction clause expresses $w \notin L$ :

- $\gamma_{S}:=\min (x) \wedge \max (y) \wedge \max (z) \wedge \operatorname{Pref}_{S}^{\mathrm{Maj}}(x, y, z) \rightarrow \perp$.

Finally, observe that the formula $\Phi_{G}:=\exists \mathbf{R} \forall x \forall y \forall z \psi_{G}$ where $\psi_{G}$ is $\gamma_{\text {arith }} \wedge \psi_{G}^{\prime} \wedge \gamma_{S}$ and $\gamma_{\text {arith }}$ is the conjunction of clauses that define the arithmetic predicates, belongs to incl-pred-ESO-HORN. Since we have $\langle w\rangle \models \Phi_{G} \Longleftrightarrow w \notin L$, as justified above, then the langage $\Sigma^{+} \backslash L$ belongs to incl-pred-ESO-HORN, as claimed.

### 4.2 Equivalence of logic with cube-circuits

We now introduce the cube-circuit, an extension of the grid-circuit to three dimensions. It will make the link between our logic incl-pred-ESO-HORN and the class RealTime20CA.

- Definition 19. $A$ cube-circuit is a tuple $C:=\left(\Sigma,\left(\text { Input }_{n}\right)_{n>0}, \mathbf{Q}, \mathbf{Q}_{\mathrm{acc}}, \mathrm{g}\right)$ where
- $\Sigma$ is the input alphabet and $\left(\text { Input }_{n}\right)_{n>0}$ is the family of input functions Input $_{n}: \Sigma^{n} \times[1, n]^{3} \rightarrow \Sigma \cup\{\$\}$ such that, for $w=w_{1} \ldots w_{n} \in \Sigma^{n}$, $\operatorname{Input}_{n}(w, x, y, z)=w_{y}$ if $x=y$ and $z=1$, and $\operatorname{Input}_{n}(w, x, y, z)=\$$ otherwise,
- $\mathbf{Q} \cup\{\sharp\}$ is the finite set of states and $\mathbf{Q}_{\mathrm{acc}} \subseteq \mathbf{Q}$ is the subset of accepting states,
- $\mathrm{g}:(\mathbf{Q} \cup\{\sharp\})^{3} \times(\Sigma \cup\{\$\}) \rightarrow \mathbf{Q}$ is the transition function.
- Definition 20 (computation of a cube-circuit). The computation $C_{w}$ of a cube-circuit $C:=\left(\Sigma,\left(\text { Input }_{n}\right)_{n>0}, \mathbf{Q}, \mathbf{Q}_{\mathrm{acc}}, \mathrm{g}\right)$ on a word $w=w_{1} \ldots w_{n} \in \Sigma^{n}$ is a grid of $(n+1)^{3}$ sites $(x, y, z) \in[1, n+1] \times[0, n]^{2}$, each in a state $\langle x, y, z\rangle \in \mathbf{Q} \cup\{\sharp\}$ computed inductively: - each site $(x, y, z)$ such that $x>y$ or $z=0$ is in the state $\sharp$;
- the state of each site $(x, y, z) \in[1, n]^{3}$ such that $x \leq y$ and $z>0$ is
$\langle x, y\rangle=\mathrm{g}\left(\langle x+1, y, z\rangle,\langle x, y-1, z\rangle,\langle x, y, z-1\rangle, \operatorname{Input}_{n}(w, x, y, z)\right)$.
A word $w=w_{1} \ldots w_{n} \in \Sigma^{n}$ is accepted by the cube-circuit $C$ if the output state $\langle 1, n, n\rangle$ of $C_{w}$ belongs to $\mathbf{Q}_{\mathrm{acc}}$. The language recognized by $C$ is the set of words it accepts. We denote by Cube the class of languages recognized by a cube-circuit.


Figure 6 The cube-circuit

Actually, the logic incl-pred-ESO-HORN is equivalent to cube-circuits.

- Lemma 21. incl-pred-ESO-HORN $=$ Cube.

Proof. The proof is similar to that of Lemma 14. The cube-circuit can be seen as the "normalized form" of a formula of incl-pred-ESO-HORN, proving the inclusion Cube $\subseteq$ incl-pred-ESO-HORN. The proof of inverse inclusion is divided into the same three steps as for Lemma 14, which are easily adaptable to three variables: elimination of atoms $R(x+a, y-b, z-c)$ for $a+b+c>1$, elimination of hypotheses $R(x, y, z)$ and transformation of the resulting formula into a cube-circuit.

### 4.3 Cube-circuits are equivalent to real-time 2-OCA

One observes that by a one-to-one transformation, the computation $C_{w}$ of a cube-circuit $C$ on a word $w$ is nothing else than the space-time diagram of a real-time 2-OCA on the input $w$. This yields:

- Lemma 22. Cube $=$ RealTime20CA.

Proof. The bijection between the sites $(x, y, z)$ of the computation $C_{w}$ of a cube-circuit $C$ on a word $w$ and the sites $\left(c_{1}, c_{2}, t\right)$ of the space-time diagram of a real-time 2-OCA on the input $w$ is depicted in Figure 7. We check that this bijection respects the communication scheme and the input/output sites of both computation models as shown in Figure 7. By this transformation, the transition function g of the cube-circuit, which is $\langle x, y, z\rangle=$ $\mathrm{g}\left(\langle x+1, y, z\rangle,\langle x, y-1, z\rangle,\langle x, y, z-1\rangle, \operatorname{Input}_{n}(w, x, y, z)\right)$ becomes the transition function f of the 2-OCA: $\left\langle c_{1}, c_{2}, t\right\rangle=\mathrm{f}\left(\left\langle c_{1}, c_{2}, t-1\right\rangle,\left\langle c_{1}-1, c_{2}, t-1\right\rangle,\left\langle c_{1}, c_{2}-1, t-1\right\rangle\right)$, and vice versa.

Proof of Theorem 16. Lemmas 21 and 22 give us the following equalities of classes: incl-pred-ESO-HORN $=$ Cube $=$ RealTime20CA.

From the fact that the class RealTime20CA is closed under complement and from Lemma 18, we deduce Conj $\subseteq$ incl-pred-ESO-HORN $=$ Cube $=$ RealTime20CA.


Figure 7 Bijection between the sites of $C_{w}$ and the space-time sites of a 2-OCA on $w$

## 5 Conclusion

We have proved the inclusions Conj ${ }_{1} \subseteq$ RealTimeCA and Conj $\subseteq$ RealTime 20 CA by expressing in two logics (proved equivalent to RealTimeCA and RealTime20CA, respectively) the inductive process of a conjunctive grammar. Figure 8 recapitulates the known inclusions between the language classes that we have considered here. To grasp the expressive power of the Conj (resp. Conj ${ }_{1}$ ) class, it would be important to obtain exact characterizations of this class in logic and/or computational complexity.


Figure 8 Relations between language classes over a unary or general alphabet

Acknowledgments: This paper would not exist without the inspiration of Véronique Terrier. Her in-depth knowledge of cellular automata and their complexity classes, the references and advice she generously gave us, as well as her careful reading, were essential in designing and finalizing the results and the presentation of the paper. E.g., the class diagram of Figure 8 is due to her. This work has been partly supported by the PING/ACK project of the French National Agency for Research (ANR-18-CE40-0011).

## ___ References

1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.

2 Nicolas Bacquey, Etienne Grandjean, and Frédéric Olive. Definability by Horn Formulas and Linear Time on Cellular Automata. In ICALP 2017, volume 80, pages 99:1-99:14, 2017.
3 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives in Mathematical Logic. Springer, 1997.

4 Jik H. Chang, Oscar H. Ibarra, and Michael A. Palis. Efficient simulations of simple models of parallel computation by time-bounded atms and space-bounded tms. Theor. Comput. Sci., 68(1):19-36, 1989.
5 Marianne Delorme and Jacques Mazoyer. Cellular Automata as Language Recognizers in Cellular Automata: a Parallel Model. Kluwer, 1999.
6 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In Complexity of Computation, SIAM-AMS Proceedings, pages 43-73, 1974.
7 Dora Giammarresi, Antonio Restivo, Sebastian Seibert, and Wolfgang Thomas. Monadic second-order logic over rectangular pictures and recognizability by tiling systems. Inf. Comput., 125(1):32-45, 1996.
8 Erich Grädel. Capturing complexity classes by fragments of second-order logic. Theoretical Computer Science, 101(1):35-57, 1992.
9 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y. Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Springer, 2007.

10 Etienne Grandjean and Théo Grente. Descriptive complexity for minimal time of cellular automata. In LICS, 2019, pages 1-13, 2019.
11 Etienne Grandjean, Théo Grente, and Véronique Terrier. Inductive definitions in logic versus programs of real-time cellular automata. hal.archives-ouvertes.fr/hal-02474520/ submitted to Theoretical Computer Science, 62 pages, February 2020.
12 Etienne Grandjean and Frédéric Olive. A logical approach to locality in pictures languages. Journal of Computer and System Science, 82(6):959-1006, 2016.
13 Oscar H. Ibarra and Tao Jiang. Relating the power of cellular arrays to their closure properties. Theor. Comput. Sci., 57:225-238, 1988.
14 Neil Immerman. Descriptive complexity. Springer, 1999.
15 Artur Jez. Conjunctive grammars generate non-regular unary languages. Int. J. Found. Comput. Sci., 19(3):597-615, 2008.
16 K. N. King. Alternating multihead finite automata. Theor. Comput. Sci., 61:149-174, 1988.
17 Hans Kleine Büning and Theodor Lettmann. Propositional logic - deduction and algorithms, volume 48 of Cambridge tracts in theoretical computer science. Cambridge University Press, 1999.

18 S. Rao Kosaraju. Speed of recognition of context-free languages by array automata. SIAM J. Comput., 4(3):331-340, 1975.

19 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.
20 Alexander Okhotin. Conjunctive grammars. J. Autom. Lang. Comb., 6(4):519-535, 2001.
21 Alexander Okhotin. Boolean grammars. Information and Computation, 194(1):19-48, 2004.
22 Alexander Okhotin. On the equivalence of linear conjunctive grammars and trellis automata. Theoretical Informatics and Applications, 38(1):69-88, 2004.
23 Alexander Okhotin. Conjunctive and boolean grammars: The true general case of the context-free grammars. Computer Science Review, 9:27-59, 2013.
24 Véronique Terrier. Closure properties of cellular automata. Theor. Comput. Sci., 352(1-3):97107, 2006.

25 Véronique Terrier. Low complexity classes of multidimensional cellular automata. Theor. Comput. Sci., 369(1-3):142-156, 2006.

26 Véronique Terrier. Language recognition by cellular automata. In Handbook of Natural Computing, pages 123-158. Springer, 2012.
27 Hao Wang. Dominoes and the aea case of the decision problem. In Proceedings on the Symposium on the Mathematical Theory of Automata, April 1962, pages 23-55, 1963.

## Appendix A: Complement of proof for Lemma 14

Elimination of hypotheses $R(x, y)$ : The first idea is to group together in each computation clause the hypothesis atoms of the form $R(x, y)$ and the conclusion of the clause. Accordingly, the formula obtained $\Phi$ can be rewritten in the form

$$
\Phi:=\exists \mathbf{R} \forall x \forall y\left[\bigwedge_{i} C_{i}(x, y) \wedge \bigwedge_{i \in[1, k]}\left(\alpha_{i}(x, y) \rightarrow \theta_{i}(x, y)\right)\right]
$$

where the $C_{i}$ 's are the input clauses and the contradiction clause and each computation clause is written in the form $\alpha_{i}(x, y) \rightarrow \theta_{i}(x, y)$ where $\alpha_{i}(x, y)$ is a conjunction of formulas of the only forms $R(x-1, y) \wedge \neg \min (x), R(x, y-1) \wedge \neg \min (y)$ (but not $R(x, y))$, and $\theta_{i}(x, y)$ is a Horn clause whose all atoms are of the form $R(x, y)$.

We number $R_{1}, \ldots, R_{m}$ the computation predicates of $\mathbf{R}$. To each subset $J \subseteq[1, k]$ of the family of implications $\left(\alpha_{i}(x, y) \rightarrow \theta_{i}(x, y)\right)_{i \in[1, k]}$ let us associate the set

$$
K_{J}:=\left\{h \in[1, m] \mid \bigwedge_{i \in J} \theta_{i}(x, y) \rightarrow R_{h}(x, y) \text { is a tautology }\right\}
$$

Note that the notion of tautology used in the definition of $K_{J}$ is "propositional" because all the atoms involved are of the form $R_{i}(x, y)$, i.e., refer to the same pair of variables $(x, y)$. Also, note that the function $J \mapsto K_{J}$ is monotonic: for $J^{\prime} \subseteq J$, we have $K_{J^{\prime}} \subseteq K_{J}$ because $\bigwedge_{i \in J^{\prime}} \theta_{i}(x, y) \rightarrow R_{h}(x, y)$ implies $\bigwedge_{i \in J} \theta_{i}(x, y) \rightarrow R_{h}(x, y)$.

Clearly, it is enough to prove the following claim:
$\triangleright$ Claim 23. The formula $\Phi$ is equivalent to the following formula $\Phi^{\prime}$, whose clauses have no hypothesis $R(x, y)$.

$$
\Phi^{\prime}:=\exists \mathbf{R} \forall x \forall y\left[\bigwedge_{i} C_{i}(x, y) \wedge \bigwedge_{J \subseteq[1, k]} \bigwedge_{h \in K_{J}}\left(\bigwedge_{i \in J} \alpha_{i}(x, y) \rightarrow R_{h}(x, y)\right)\right]
$$

Proof of the implication $\Phi \Rightarrow \Phi^{\prime}$ : It is enough to prove the implication

$$
\left[\bigwedge_{i \in[1, k]}\left(\alpha_{i}(x, y) \rightarrow \theta_{i}(x, y)\right)\right] \rightarrow\left[\bigwedge_{i \in J} \alpha_{i}(x, y) \rightarrow \bigwedge_{h \in K_{J}} R_{h}(x, y)\right]
$$

for all set $J \subseteq[1, k]$. The implication to be proved can be equivalently written:

$$
\left[\bigwedge_{i \in J} \alpha_{i}(x, y) \wedge \bigwedge_{i \in[1, k]}\left(\alpha_{i}(x, y) \rightarrow \theta_{i}(x, y)\right)\right] \rightarrow \bigwedge_{h \in K_{J}} R_{h}(x, y)
$$

The sub-formula between brackets above implies the conjunction $\bigwedge_{i \in J} \theta_{i}(x, y)$. As the implication $\bigwedge_{i \in J} \theta_{i}(x, y) \rightarrow \bigwedge_{h \in K_{J}} R_{h}(x, y)$ is a tautology (by definition of $K_{J}$ ), the implication to be proved is a tautology too.

The converse implication $\Phi^{\prime} \Rightarrow \Phi$ is more difficult to prove. It uses a folklore property of propositional Horn formulas easy to be proved:

Lemma 24 (Horn property: folklore). Let $F$ be a strict Horn formula of propositional calculus, that is a conjunction of clauses of the form $p_{1} \wedge \ldots \wedge p_{k} \rightarrow p_{0}$ where $k \geq 0$ and the
$p_{i}$ 's are propositional variables. Let $F^{\prime}$ be the conjunction of propositional variables $q$ such that the implication $F \rightarrow q$ is a tautology. $F$ has the same minimal model ${ }^{5}$ as $F^{\prime}$.

Proof of the implication $\Phi^{\prime} \Rightarrow \Phi$ : Let $\langle w\rangle$ be a model of $\Phi^{\prime}$ and let $(\langle w\rangle, \mathbf{R})$ be the minimal model of the Horn formula

$$
\varphi^{\prime}:=\forall x \forall y\left[\bigwedge_{i} C_{i}(x, y) \wedge \bigwedge_{J \subseteq[1, k]} \bigwedge_{h \in K_{J}}\left(\bigwedge_{i \in J} \alpha_{i}(x, y) \rightarrow R_{h}(x, y)\right)\right]
$$

It is enough to show that $(\langle w\rangle, \mathbf{R})$ also satisfies the formula

$$
\varphi:=\forall x \forall y\left[\bigwedge_{i} C_{i}(x, y) \wedge \bigwedge_{i \in[1, k]}\left(\alpha_{i}(x, y) \rightarrow \theta_{i}(x, y)\right)\right] .
$$

As each $\alpha_{i}$ is a conjunction of formulas of the form $R(x-1, y) \wedge \neg \min (x)$, or $R(x, y-1) \wedge \neg \min (y)$, we make an induction on the domain $\left\{(a, b) \in[1, n]^{2} \mid a+b \leq t\right\}$, for $t \in[1,2 n]$. More precisely, we are going to prove, by recurrence on the integer $t \in[1,2 n]$, that the minimal model $(\langle w\rangle, \mathbf{R})$ of $\varphi^{\prime}$ satisfies the "relativized" formula $\varphi_{t}$ of the formula $\varphi$ defined by

$$
\varphi_{t}:=\forall x \forall y\left[x+y \leq t \rightarrow\left[\bigwedge_{i} C_{i}(x, y) \wedge \bigwedge_{i \in[1, k]}\left(\alpha_{i}(x, y) \rightarrow \theta_{i}(x, y)\right)\right]\right]
$$

As the hypothesis $x+y \leq 2 n$ holds for all $x, y$ in the domain $[1, n], \varphi_{2 n}$ is equivalent to $\varphi$ on the structure $(\langle w\rangle, \mathbf{R})$.

Basis case: For $t=1$ the set $\left\{(a, b) \in[1, n]^{2} \mid a+b \leq t\right\}$ is empty so that the "relativized" formula $\varphi_{1}$ is trivially true in the minimal model $(\langle w\rangle, \mathbf{R})$ of $\varphi^{\prime}$.

Recurrence step: Suppose $(\langle w\rangle, \mathbf{R}) \models \varphi_{t-1}$, for an integer $t \in[2,2 n]$. It is enough to show that, for each couple $(a, b) \in[1, n]^{2}$ such that $a+b=t$, we have $(\langle w\rangle, \mathbf{R}) \models \bigwedge_{i \in[1, k]}\left(\alpha_{i}(a, b) \rightarrow\right.$ $\left.\theta_{i}(a, b)\right)$. Let $J_{a, b}$ be the set of indices $i \in[1, k]$ such that the couple $(a, b)$ satisfies $\alpha_{i}$ :
$J_{a, b}:=\left\{i \in[1, k] \mid(\langle w\rangle, \mathbf{R}) \models \alpha_{i}(a, b)\right\}$.
Recall that each $\alpha_{i}(a, b)$ is a (possibly empty) conjunction of atoms $R\left(a^{\prime}, b^{\prime}\right)$ with $\left(a^{\prime}, b^{\prime}\right)=$ $(a-1, b)$ or $\left(a^{\prime}, b^{\prime}\right)=(a, b-1)$, therefore such that $a^{\prime}+b^{\prime}=t-1$. Let $J \subseteq[1, k]$ be any set. Let us examine the two possible cases:

1) $J \subseteq J_{a, b}$ : then the conjunction $\bigwedge_{i \in J} \alpha_{i}(a, b)$ holds in $(\langle w\rangle, \mathbf{R})$; hence, in $(\langle w\rangle, \mathbf{R})$, the conjunction $\bigwedge_{h \in K_{J}}\left(\bigwedge_{i \in J} \alpha_{i}(a, b) \rightarrow R_{h}(a, b)\right)$ is equivalent to $\bigwedge_{h \in K_{J}} R_{h}(a, b)$;
2) $J \backslash J_{a, b} \neq \emptyset$ : then the conjunction $\bigwedge_{i \in J} \alpha_{i}(a, b)$ is false in $(\langle w\rangle, \mathbf{R})$; hence, the conjunction $\bigwedge_{h \in K_{J}}\left(\bigwedge_{i \in J} \alpha_{i}(a, b) \rightarrow R_{h}(a, b)\right)$ holds in $(\langle w\rangle, \mathbf{R})$.
From (1) and (2), we deduce that in $(\langle w\rangle, \mathbf{R})$ the conjunction $\bigwedge_{J \subseteq[1, k]} \bigwedge_{h \in K_{J}}\left(\bigwedge_{i \in J} \alpha_{i}(a, b) \rightarrow\right.$ $\left.R_{h}(a, b)\right)$ is equivalent to the conjunction $\bigwedge_{J \subseteq J_{a, b}} \bigwedge_{h \in K_{J}} R_{h}(a, b)$, which can be simplified as $\bigwedge_{h \in K_{J_{a, b}}} R_{h}(a, b)$ because $J \subseteq J_{a, b}$ implies $K_{J} \subseteq K_{J_{a, b}}$. Consequently, for all $h \in[1, m]$, the minimal model $(\langle w\rangle, \mathbf{R})$ of the Horn formula $\varphi^{\prime}$ satisfies the atom $R_{h}(a, b)$ iff $h$ belongs to $K_{J_{a, b}}$. By definition,

[^3]$$
K_{J_{a, b}}:=\left\{h \in[1, m] \mid \bigwedge_{i \in J_{a, b}} \theta_{i}(x, y) \rightarrow R_{h}(x, y) \text { is a tautology }\right\}
$$
or, equivalently,
$$
K_{J_{a, b}}:=\left\{h \in[1, m] \mid \bigwedge_{i \in J_{a, b}} \theta_{i}(a, b) \rightarrow R_{h}(a, b) \text { is a tautology }\right\} .
$$

As a consequence of Lemma 24, the two conjunctions

$$
\bigwedge_{i \in J_{a, b}} \theta_{i}(a, b) \text { and } \bigwedge_{h \in K_{J_{a, b}}} R_{h}(a, b)
$$

have the same minimal model, which is also the restriction of the minimal model $(\langle w\rangle, \mathbf{R})$ of $\varphi^{\prime}$ to the set of atoms $R_{h}(a, b)$, for $h \in[1, m]$. Therefore, if $i \in J_{a, b}$, then $(\langle w\rangle, \mathbf{R}) \models \theta_{i}(a, b)$. If $i \in[1, k] \backslash J_{a, b}$, then we have $(\langle w\rangle, \mathbf{R}) \models \neg \alpha_{i}(a, b)$, by definition of $J_{a, b}$. Therefore, for all $i \in[1, k]$, we get $(\langle w\rangle, \mathbf{R}) \models \neg \alpha_{i}(a, b) \vee \theta_{i}(a, b)$. In other words, for all $(a, b)$ such that $a+b=t$, we have $:(\langle w\rangle, \mathbf{R}) \models \bigwedge_{i \in[1, k]}\left(\alpha_{i}(a, b) \rightarrow \theta_{i}(a, b)\right)$ and then $(\langle w\rangle, \mathbf{R}) \models \varphi_{t}$.

This concludes the inductive proof that $(\langle w\rangle, \mathbf{R}) \models \varphi_{t}$, for all $t \in[1,2 n]$, and then $\langle w\rangle \models \Phi$. This proves the converse implication $\Phi^{\prime} \Rightarrow \Phi$. Claim 23 is demonstrated.

## Appendix B: Complement of proof for Lemma 15

Grid $\subseteq$ RealTimeCA. To prove this inclusion, we show how to simulate the computation of the grid-circuit on a real-time CA. The simulation is made by a geometric transformation that embeds the grid-circuit in the space-time diagram of a real-time CA. This transformation is divided into three steps:

1. a variable change: we apply to each site $(x, y) \in[1, n]^{2}$ of the grid-circuit the variable change $(x, y) \mapsto\left(c^{\prime}=y-x+1, t^{\prime}=x+y-1\right)$;
2. a folding: we fold the resulting diagram along the axis $c^{\prime}=1$ : each site $\left(c^{\prime}, t^{\prime}\right)$ with $c^{\prime}<1$ is send to its symmetric counterpart $\left(-c^{\prime}+1, t^{\prime}\right)$;
3. a grouping: each site $(c, t)=\left(\left\lceil\frac{c^{\prime}}{2}\right\rceil,\left\lceil\frac{t^{\prime}}{2}\right\rceil\right)$ of the new diagram records the set of sites $\left\{\left(c^{\prime}-1, t^{\prime}-1\right),\left(c^{\prime}, t^{\prime}\right),\left(c^{\prime}+1, t^{\prime}-1\right)\right\}$ with $c^{\prime}$ and $t^{\prime}$ odd and greater than 1.
The resulting diagram is the expected space-time diagram of a real-time CA, proving the inclusion.
RealTimeCA $\subseteq$ Grid. To simulate a real-time CA $\mathcal{A}=\left(\mathrm{S}, \mathrm{S}_{\text {accept }},\{-1,0,1\}, \mathrm{f}\right)$ on the grid, we first turn $\mathcal{A}$ into an equivalent $\mathrm{CA} \mathcal{A}^{\prime}=\left(\mathrm{S}, \mathrm{S}_{\text {accept }},\{-2,-1,0\}, \mathrm{f}\right)$. This transformation can be seen as the variable change $(c, t) \mapsto(c+t-1, t)$. The diagram of $\mathcal{A}^{\prime}$ is then embedded on the grid-circuit $C^{\prime}$ by applying to its sites $\left(c^{\prime}, t^{\prime}\right)$ the variable change $\left(c^{\prime}, t^{\prime}\right) \mapsto\left(t^{\prime}, c^{\prime}\right)$. The local and uniform communication of the embedded diagram can easily be carried out by the grid-circuit communication scheme.

[^0]:    ${ }^{1}$ The class ESO-HORN of languages defined by existential second-order formulas with Horn formulas as their first-order parts is exactly PTIME, see [8].
    ${ }^{2}$ The subclass of the unary languages of a class of languages $\mathcal{C}$ is denoted $\mathcal{C}_{1}$.

[^1]:    ${ }^{3}$ We have chosen to give here a simplified proof of the logical characterization pred-ESO-HORN $=$ Grid $=$ RealTimeCA already proved in [10] so that this paper is self-content, but above all because our proof of the similar result incl-pred-ESO-HORN $=$ Cube $=$ RealTime20CA is an extension of it.

[^2]:    ${ }^{4}$ Recall that RealTime2SOCA is the class of languages recognized by sequential one-way two-dimensional cellular automata in real-time: this is the minimal time, $3 n-1$, for the output cell $(n, n)$ to receive the $n$ letters of the input word, communicated sequentially by the input cell $(1,1)$.

[^3]:    ${ }^{5}$ For example, for $F:=p_{1} \wedge p_{3} \wedge\left(p_{1} \wedge p_{3} \rightarrow p_{5}\right) \wedge\left(p_{1} \wedge p_{2} \rightarrow p_{4}\right)$, we have $F^{\prime}:=p_{1} \wedge p_{3} \wedge p_{5}$, which has the same minimal model $I$ as $F$; this model is given by $I\left(p_{1}\right)=I\left(p_{3}\right)=I\left(p_{5}\right)=1$ and $I\left(p_{2}\right)=I\left(p_{4}\right)=0$.

