
HAL Id: hal-03167528
https://hal.science/hal-03167528

Preprint submitted on 12 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Order Absorbing Boundary Condition, Domain
Decomposition Method and Stratified Dispersive Wave

Model
M. Jacques, Olivier Wilk

To cite this version:
M. Jacques, Olivier Wilk. High-Order Absorbing Boundary Condition, Domain Decomposition
Method and Stratified Dispersive Wave Model. 2021. �hal-03167528�

https://hal.science/hal-03167528
https://hal.archives-ouvertes.fr


High-Order Absorbing Boundary Condition, Domain
Decomposition Method and Stratified Dispersive Wave

Model

M. Jacques1, O. Wilk1

Department of Mathematics
Modélisation Mathématique et Numérique
Conservatoire National des Arts et Métiers
292, rue Saint Martin, Paris, 75003, France

Abstract

The high-order Absorbing Boundary Condition proposed by Hagstrom and War-
burton was applied to various models as the wave equation, dispersive, convected
with stratified materials. We apply it here to a Stratified Dispersive Wave Model
not just to limit the real unbounded domain but to use a non-overlapping do-
main decomposition method with the classical Schwarz Waveform Relaxation
method using the Absorbing Boundary Condition taken as an approximation
of the Transparent Operator for the interface condition. We must add terms
to enrich the equations associated to the Absorbing Boundary Condition and
compute them with a cumulative process. Numerical examples are used to show
the performance of this Domain Decomposition Method.

Keywords: Absorbing Boundary Conditions, Domain Decomposition Method,
Transparent Operator, Stratified Dispersive Wave Model.

1. Introduction

In the context of problems based on the wave equation, the Absorbing
Boundary Conditions (ABC) of Engquist and Majda [1] applied on the bound-
aries of truncated domain simulate the presence of the infinite complementary
domain. There must be approached in the case of domains in two or three di-
mensions. Applied to one of the boundaries of the computational domain, this
allows to the waves approaching the boundary to go out properly of the simula-
tion domain. The order of approximation of the ABC and the incidence angle of
the waves arriving on these boundaries play on the quality output of these waves.
Higdon ([3], [4]) proposed an approximate ABC to treat wave output with differ-10

ent incidence angles. Collino [5], Grote and Keller [7], Hagstrom and Hariharan
[8], Guddati and Tassoulas [9], Givoli and Neta [10] and Hagstrom and Warbur-
ton [11], by the use of auxiliary variables, proposed a way to write the boundary
condition using only order one numerical derivatives. The Hagstrom and War-
burton’s ABC corresponds to a double form of the Higdon Boundary Condition.
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It allows a better numerical stability for longer periods of simulation than Givoli
and Neta’s ABC. We choose here to use the Hagstrom and Warburton’s ABC
(HW-ABC). Other methods, for example such as the Perfectly Matched Layer
(PML) method devised by Bérenger [6], can be use. Givoli proposed a review
of others non-reflecting boundary conditions [12].20

This boundary condition has been successfully applied to different models
of waves, the wave equation, the dispersive wave equation, convected and for
layered media or for continuous wave speed variation ([13], [14]).

We apply it to a Stratified Dispersive Wave Model (section 2). A constraint
due to the coupling is required ([13]).

The model’s computation has a significant cost when the simulations are per-
formed with a full size domain. So these can be reduced by parallel computing,30

Domain Decomposition Methods (Schur [17], Multigrid [18], FETI [20] methods,
...). In our case, we note that the ABC is useful to determine the boundary-
interface condition to connect the different subdomains with the Schwarz Wave-
form Relaxation (SWR) "Domain Decomposition" Method ([15], [19], [21], [22]).
The works of Gander, Halpern ([23], [25]) and Nataf [24] emphasize very clearly
the advantage of using the transparent operator to build an optimal interface
condition. This transparent operator is the exact ABC. Here we choose to ap-
proach this operator by the HW-ABC (section 3). The convergence rate is done
in the section 4.

40

We illustrate these works with numerical applications in the last section of
this article.

2. The Absorbing Boundary Condition of Hagstrom and Warburton
applied to a Stratified Dispersive Wave Model

We present here the problem-model and the ABC of Hagstrom and Warbur-
ton applied to a stratified material.

The Dispersive Wave Model in the domain Ω (c, α ∈ lR, t ∈ [0, T ], figure 1):
(∂2
t − c2∆ + α2)u = 0 in Ω,

∂νu = 0 on Γt ∪ Γb,
with ABC on Γl ∪ Γr,
and initial conditions,

(1)

uses Absorbing Boundary Conditions on the left boundary Γl and the right
boundary Γr (for our example), the boundaries of a truncated domain, to sim-
ulate the presence of the infinite complementary domain. These can be defined
using the transport equation reported here at the boundary of the outer normal
ν of the domain Ω [1]:

(∂t + c∂ν)u = 0 on Γl ∪ Γr. (2)

To one-dimensional non-dispersive wave model, the equation (2) is the exact
condition. With two or three space dimensions or with a dispersive model, it is
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Figure 1: The domain and the boundaries.

an approximation, usually the first order approximation. We must use an other
(better) condition. Different non-reflecting boundary conditions exist. The
Higdon condition ([3], [4]), Collino condition [5], Grote and Keller condition [7],
Hagstrom and Hariharan condition [8], Guddati and Tassoulas condition [9],
Givoli and Neta condition [10], Hagstrom and Warburton condition [11] and
also the Perfectly Matched Layer (PML) method devised by Bérenger [6] can
be used to better results. Here, we apply the High-Order Absorbing Boundary
Condition of Hagstrom and Warburton (HW-ABC) (with the new auxiliary
variables φi(i = 1, n+ 1)):

on Γl ∪ Γr :
(a0∂t + c∂ν)u = a0∂tφ1,
(ai∂t + c∂ν)φi = (ai∂t − c∂ν)φi+1, ∀i = 1, n,
φn+1 = 0.

(3)

Each auxiliary variable φi solves, by the linearity of the operators, the same
model as u. Fortunately, it is possible to reduce the size of each auxiliary
problem [14]. The boundary condition corresponds to a "2n + 1" order of the
boundary condition of Higdon, ie:

(a0∂t + c∂ν)

n∏
i=1

(ai∂t + c∂ν)2u = 0 on Γl ∪ Γr. (4)

As shown in [13], this condition can be used on a Stratified Dispersive Wave
Model (figure 2):{

(∂2
t − c21∆ + α2

1)u1 = 0 in Ω1, ∂ν1u = 0 on Γt,
(∂2
t − c22∆ + α2

2)u2 = 0 in Ω2, ∂ν2u = 0 on Γb,
(5)

with a compatibility constraint for the "ai" coefficients at the interface between
the two domains. This can be written:

c1
a1,i

=
c2
a2,i

,∀i = 0, n, (6)

with a1,i and a2,i the coefficients associated respectively to the domain with the
c1 coefficient and the domain with the c2 coefficient for the ABC conditions on
the boundaries Γlj and Γrj (j = 1, 2). So with these constraints, the boundary50

conditions are continuous at the intersection between the boundaries Γlj or Γrj
and the interface Γ12 between the two different materials.
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Figure 2: The domains and the boundaries for the stratified problem.

So in each domain, the problem can be written with the reduced φi problems
(with φ0 = u = uj , ai = aj,i for the j domain (j = 1, 2)):

(a0∂t + c∂ν)u = a0∂tφ
1 on Γlj ∪ Γrj ,

∀i = 1, n on Γlj ∪ Γrj :
li,i−1 ∂2

t φ
i−1 + li,i ∂2

t φ
i + li,i+1 ∂2

t φ
i+1

−c2(mi,i−1 ∂2
yφ

i−1 + mi,i ∂2
yφ

i + mi,i+1 ∂2
yφ

i+1 ) = 0
+α2(mi,i−1 φi−1 + mi,i φi + mi,i+1 φi+1 ) = 0,

(7)

with the zero initial conditions, the compatibility conditions (6) and:

i = 1 :
l1,0 = 2a1(1− a2

0), m1,0 = 2a1,
l1,1 = a0(1 + 2a0a1 + a2

1), m1,1 = a0,
l1,2 = a0(1− a2

1), m1,2 = a0,
i > 1 :
li,i−1 = ai(1− a2

i−1), mi,i−1 = ai,
li,i = ai(1 + a2

i−1) + ai−1(1 + a2
i ), mi,i = ai−1 + ai,

li,i+1 = ai−1(1− a2
i ), mi,i+1 = ai−1.

(8)

3. The Absorbing Boundary Condition of Hagstrom and Warburton
applied to a DDM Stratified Dispersive Wave Model

We present the elements allowing us to perform a domain decomposition
method using the HW-ABC. We start with the Classical Schwarz Waveform
Relaxation ([15]) assisted by an interface condition. We choose to use the trans-
parent operator approximated here by the HW-ABC at the boundary-interface
between subdomains.60

3.1. Schwarz Waveform Relaxation and the interface boundary condition
We present the parallel version ([16]) of the Schwarz Waveform Relaxation

algorithm (SWR) with overlapping subdomains on the wave equation (with
�cu = ∂tu

2 − c2∆u), using the Dirichlet interface condition and the error vari-
ables "upi − up−1

i " (i = 1, 2) that we note abusively thereafter upi (figure 3):
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Initialization: u0
1 = u10, u

0
2 = u20,

Current Step:
�cu

p
1 = 0 in Ω1 × [0, T ], �cu

p
2 = 0 in Ω2 × [0, T ],

up1 = 0 on ∂Ω ∩ Ω1, up2 = 0 on ∂Ω ∩ Ω2,

up1 = up−1
2 on Γ1, up2 = up−1

1 on Γ2,
up1|t=0 = 0 in Ω1, up2|t=0 = 0 in Ω2,
u̇p1|t=0 = 0 in Ω1, u̇p2|t=0 = 0 in Ω2.

(9)

Figure 3: A domain decomposition associated with the problem (9).

Noting δ the overlap distance domain (between Γ1 and Γ2), p the number of
iterations, the convergence of such process checks [25]:

p >
T c

δ
. (10)

This convergence can be improved by changing the interface condition. We
write it in a generic way:

Biu
p
i = Biu

p−1
j on Γi, i = 1, 2. (11)

We may note here that all the second members, apart from the interface con-
ditions, are equal to zero. Thus, it would be interesting to have an operator
Bi, i = 1, 2 as (for up−1

i non-zero, i = 1, 2):{
B1u

p−1
2 6= 0

B2u
p−1
1 6= 0

⇒
{
B1u

p
2 = 0

B2u
p
1 = 0

, (12)

so we will get upi equal to zero (i = 1, 2). Gander, Halpern and Nataf [24] proved
that such operator exists in particular when there is non overlapping domains.
We consider here the "Dirichlet to Neumann" operator (ν1 the outward normal
on Γ1 a part of the boundary of the domain Ω1):

DtN1(v) : v on Γ1 7→
∂u

∂ν1
on Γ1, (13)

associated with the problem:
�cu1 = 0 in Ω1 × [0, T ],
u1 = 0 on ∂Ω ∩ Ω1,
u1 = v on Γ1,
u1|t=0 = 0 , u̇1|t=0 = 0 in Ω1.

(14)

With Γ2 equal to Γ1 (non overlapping), we can write (flow conservation, u1 = v
on Γ1 and ν2 the outward normal on Γ2 of Ω2):

∂u1

∂ν2
= −∂u1

∂ν1
= −DtN1(v) = −DtN1(u1). (15)
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So we get the operator B2 such that if u1 satisfies (14) and this for all v:

B2(u1) =
∂u1

∂ν2
+DtN1(u1) = 0 on Γ2. (16)

We proceed in the same way to get B1. Both called transparent operators
are used to verify (12). They allow to converge the Schwarz algorithm (9) only
with two iterations [24]. This is known as optimal convergence.

This type of operator is the exact ABC [24]. But it is too expensive to use
it. We prefer a less expensive approximation. That is why we want to use a
interface condition built using the HW-ABC to process here.

3.2. The interface condition with the Hagstrom and Warburton absorbing bound-
ary condition70

The interface condition using the HW-ABC can be implemented easily using
the previous formalism, choosingB1 in the proposed form (4). Thus the interface
condition (11) becomes (for i = 1): n∏

j=1

(aj∂t + c∂ν)2

 (a0∂t+c∂ν)up1 =

 n∏
j=1

(aj∂t + c∂ν)2

 (a0∂t+c∂ν)up−1
2 , (17)

or:  n∏
j=1

(aj∂t + c∂ν)2

 (a0∂t + c∂ν)(up1 − u
p−1
2 ) = 0 on Γ1. (18)

With the auxiliary variable form of HW-ABC, we can write (UTi = (ui =
φi,0;φi,1; ...;φi,n), i = 1, 2):

BiUpi = 0⇔


on Γi :

(a0∂t + c∂νi)u
p
i = a0∂tφ

p
i,1,

∀k = 1, n :
(ak∂t + c∂νi)φ

p
i,k = (ak∂t − c∂νi)φ

p
i,k+1,

φpi,n+1 = 0.

(19)

So on each DDM interface, we want to use the interface condition:

BiUpi = BiUp−1
j , i, j = 1, 2 and i 6= j. (20)

The first equation of the previous condition is applied with this form. But for the
others equations, we prefer to use the classical practical form of the HW-ABC.
So we keep the first equation:

(a0∂t + c∂νi)(u
p
i − u

p−1
j )− a0∂t(φ

p
i,1 − φ

p−1
j,1 ) = 0 on Γi. (21)

For the others with the classical calculation (on Γi):

[ak−1(ak∂t + c∂νi)Bi,k + 2ak(ak−1∂t − c∂νi)Bi,k−1](Upi − U
p−1
j ) = 0, (22)
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the difference (Upi − U
p−1
j ) verifies (∀k = 1, n):[

lk,k−1∂
2
t +mk,k−1(α2 − c2∂2

y)
]
(φpi,k−1 − φ

p−1
j,k−1)

+
[
lk,k ∂2

t +mk,k (α2 − c2∂2
y)
]
(φpi,k − φp−1

j,k )

+
[
lk,k+1∂

2
t +mk,k+1(α2 − c2∂2

y)
]
(φpi,k+1 − φ

p−1
j,k+1) = 0

⇔ Ci(Upi − U
p−1
j ) = 0 on Γi.

(23)

Of course, the Ci operators are equal (with the same coefficient families li,j and
mi,j in the two subdomains):

C1 = C2. (24)

As we begin the SWR iterative process with the HW-ABC equal to zero:

CiU0
i = 0 on Γi,∀i = 1, 2. (25)

So, we keep that at each iteration:

CiUpi = 0 on Γi,∀i = 1, 2 and ∀p ∈ lN. (26)

This allows to write a useful form for numerical simulation with the new
variables λp−1

1 and λp−1
2 :


on Γ1 :

(a0∂t + c∂ν1)up1 = a0∂tφ
p
1,1 + λp−1

1 ,
(aj∂t + c∂ν1)φp1,j = (aj∂t − c∂ν1)φp1,j+1,∀j = 1, n,

φp1,n+1 = 0,
on Γ2 :

(a0∂t + c∂ν2)up2 = a0∂tφ
p
2,1 + λp−1

2 ,
(aj∂t + c∂ν2)φp2,j = (aj∂t − c∂ν2)φp2,j+1,∀j = 1, n,

φp1,n+1 = 0,

with{
λp−1

1 = (a0∂t + c∂ν1)up−1
2 − a0∂tφ

p−1
2,1 ,

λp−1
2 = (a0∂t + c∂ν2)up−1

1 − a0∂tφ
p−1
1,1 .

(27)

So we write: {
λp1 = −(a0∂t + c∂ν2)up2 + 2a0∂tu

p
2 − a0∂tφ

p−1
2,1 ,

λp2 = −(a0∂t + c∂ν1)up1 + 2a0∂tu
p
1 − a0∂tφ

p−1
1,1 ,

(28)

and with (27), we get the specific cumulative process to build the λ variables:
λp1 = −λp−1

2 + 2a0∂t(u
p
2 − φ

p
2,1),

λp2 = −λp−1
1 + 2a0∂t(u

p
1 − φ

p
1,1),

with λ0
i = 0,∀i = 1, 2.

(29)

For our DDM problem, the HW-ABC is enhanced by the λ variables (λp−1
1

and λp−1
2 ) computed with the classical state solution and just the first auxiliary
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variable of the neighbouring subdomain without overlapping.

Remark: The HW-ABC can be written to work with evanescent waves [13].
This can be done with other m new auxiliary variables useful to write the new
part of the boundary condition with m new parameters σk:

(σk + ∂ν)φn+k = (σk − ∂ν)φn+k+1,∀k = 1,m, and φn+m+1 = 0. (30)

So the last auxiliary variable φn+1 (associated to the propagating waves) is no
longer set to zero.
With a similar way, the last equations can be transformed to get reduced prob-
lems just on the boundary and each operator are always equal in the two subdo-
mains. So we keep the previous result with the inclusion of evanescent modes.
We can get more precisions in [13].80

4. Convergence rate

We compute the convergence rate of the following HW-ABC DDM error
problem (error variables vpl = upl − u,∀l = 1, 2, δ measure of overlapping dis-
tance):

(∂2
t − c2(∂2

x + ∂2
y) + α2)vp1 = 0 for x < δ, �1v

p
1 = �1v

p−1
2 on x = δ,

(∂2
t − c2(∂2

x + ∂2
y) + α2)vp2 = 0 for x > 0, �2v

p
2 = �2v

p−1
1 on x = 0,

with �l =

 n∏
j=1

(aj∂t + c∂νl)
2

 (a0∂t + c∂νl),∀l = 1, 2.

(31)

With a Fourier transform in y and t:

v̂(x, k, ω) =
1

2π

∫
R2

v(x, y, t) e−i(ω t+k y) dy dt, (32)

applied to the previous DDM problem, we obtain:

(−c2∂2
x + c2 k2 + α2 − ω2)vp1 = 0 for x < δ, �̂1v

p
1 = �̂1v

p−1
2 on x = δ,

(−c2∂2
x + c2 k2 + α2 − ω2)vp2 = 0 for x > 0, �̂2v

p
2 = �̂2v

p−1
1 on x = 0,

with �̂l =

 n∏
j=1

(i aj ω + c∂νl)
2

 (i a0 ω + c∂νl),∀l = 1, 2.

(33)
With the Sommerfeld condition, the left and right solutions are:

v̂p1 = Ap1 e
ξ(x−δ), v̂p2 = Ap2 e

−ξx,

with ξ =



√
k2 +

α2

c2
− ω2

c2
if k2 +

α2

c2
≥ ω2

c2
(evanescent waves),

i

√
ω2

c2
− k2 − α2

c2
if k2 +

α2

c2
<
ω2

c2
(propagative waves).

(34)
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The constants Ap1 and Ap2 can be determined with the Fourier transform of the
HW-ABC interface condition and the previous values Ap−1

1 and Ap−1
2 . So the

convergence rate τ is given by:

τ =

∣∣∣∣∣ Ap1Ap−2
1

∣∣∣∣∣
1
2

=

∣∣∣∣∣ Ap2Ap−2
2

∣∣∣∣∣
1
2

=
(i a0 ω − cξ)

∏n
j=1(i aj ω − cξ)2

(i a0 ω + cξ)
∏n
j=1(i aj ω + cξ)2

e−ξδ. (35)

The figure 4 shows some examples for a stratified case of the first monomial of

Figure 4: First monomial (36) of τ (35) with different values of a0 for a stratified case: for
the first line, c is equal to one in the domain and 0.3 for the second line, the left part is for a
none dispersive case and the right for a dispersive case. The coefficients a1 (for the domain
with c equal to one), and a2 (for c equal to 0.3) verify the compatibility equation (6). The
last line shows cuts of the monomial associated to the dotted lines of the two top graph-lines.

τ (35) with different values of a0 with the propagatives mode:

τ0(ω, k) =
(i a0 ω − cξ)
(i a0 ω + cξ)

. (36)

The stratified case example corresponds to a top domain with c equal to one
and a bottom domain with c equal to 0.3. We use the compatibility equation (6)
to compute the coefficient a0 for the top and the bottom domains. To get the
numerical values of τ , we combine (multiply) different monomials as the first
monomial of the figure 4. The result is shown in the figure 5.

As illustrated by the figures 4 and 5, the convergence rate is always less
than one when the solution is composed by the propagative waves. If the wave
number k is greater than the limit between propagative and evanescent waves,90

the evanescent waves part gives a convergence rate equal to one. But it is not

9



Figure 5: Examples of the convergence rate τ associated to the figure 4 for different sets of
the coefficients ai.

a practical problem when the principal problem is composed by the propaga-
tive waves, the evanescent waves are sufficiently small. An overlapping is not
required, as we will see with the numerical applications (next section). We can
note that if we want to use an overlapping, it is a more expensive choice. For
this case, we must compute the first auxiliary variable φ1 in the domain, not
just in the boundary.

Remark: If the ABC-boundary is near a source or a boundary, the evanes-
cent waves may be more significant. In theses cases, we can complete the ABC
condition with a part designed to evanescent waves. So theoretically, we can
avoid to use an overlapping for the SWR problem. To absorb the evanescent
waves on the boundary Γ, we can employ m new auxiliary variables φ as follow-
ing [13]: 

on Γ :
(a0∂t + c∂ν)u = a0∂tφ1,
(ak∂t + c∂ν)φk = (ak∂t − c∂ν)φk+1,∀k = 1, n,
(σk + ∂ν)φn+k = (σk − ∂ν)φn+k+1,∀k = 1,m,
φn+m+1 = 0,

(37)

The kth monomial associated to the evanescent-ABC of the convergence rate of
the SWR problem is:

(σk − ξ)
(σk + ξ)

. (38)

So with σk equal (or sufficiently near) to ξ, we can get the convergence less than
one without overlapping.100

5. Numerical applications

For the numerical applications, we work with a bidimensional domain. The
reference domain (figure 6) is [−lx, lx] × [−0.3, 0] (with different values for the
length lx). For the space discretization of the domain, we use the Finite Element
(FE) formulation with an uniform mesh with square elements. We use the
standard spatial Galerkin FE discretization with the polynomial functions of
Lagrange of order two.
For the time discretization, we choose the implicit version of the Newmark
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Figure 6: The computational domain for a stratified case c− ≤ c+.

scheme (γ = 0.5, β = 0.25) to choose different time steps designed for fast and
slow domains. We use two different time steps, a small time step δt equal to√

2/2 of the minimum size h of the space element divided by c+ the maximum
of c (always equal to one for our applications) and a big time step equal to the
small time step divided by c− the minimum of c (less than one for the stratified
cases).
For the initial condition, we use a gaussian function with the initial velocity
equal to zero:

u0(x, y) = e−
(x−x0)2

2σ2 , with σ2 = 10−3, x0 = −0.15. (39)

This signal is composed of different x space frequencies as shown in figure 7. For
the stratified cases with this initial condition, an important part of the solution
is composed of propagative waves with different incidence angles near the ABC
boundaries for positive times. The initial plane waves have been transformed.
And at the interface between the two different materials, we have local solutions
[27].

Figure 7: The initial condition e−
x2

2σ2 (left, x0 = 0) with the associated frequencies (right).

We compute the solution u in the domain [−lx, 0] × [−0.3, 0] for the ABC
tests and in the two subdomains [−lx, 0] × [−0.3, 0] (the left subdomain) and
[0, lx] × [−0.3, 0] (the right subdomain) for the SWR tests. In the reference
domain [−lx, lx]× [−0.3, 0], we get the reference solution uref . We can compare
the solutions with the L2 difference at each time t in the domain Ωu (usually
[−lx0, 0]× [−0.3, 0] for the ABC tests and [−lx0, 0]× [−0.3, 0]∪ [0, lx0]× [−0.3, 0]
for the DDM tests (lx0 = 0.6 < lx)) or on a boundary or on the interface between
two materials: √

1
mes(Ωu)

∫
Ωu
|u− uref |2

max(|u0|)
with max(|u0|) = 1. (40)

We use two small time steps δt near to 0.007, 0.0035 s respectively for the space
steps h equal to 0.01, 0.005m with different values of c− equal to 1, 0.3, 0.1m.s−1

110
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HW-ABC c+ c− α2 T lx δt h

1 1 100 0.5 s lx0 small h & h/2

1 0.3 100 3× 0.5 s 3× lx0 small h & h/2

HW-SWR c+ c− α2 T lx δt h

1 0.3 0 & 100 3× 0.5 s 3× lx0 small & big h & h/2

1 0.1 0 & 100 10× 0.5 s 10× lx0 small & big h & h/2

Table 1: The different used configurations to test only the HW-ABC (HW-ABC, section 5.1)
and the SWR process using the HW-ABC (HW-SWR, section 5.2).

order top domain c+ bottom domain c−
1 1 c−+

2 1, c+− c−+, 1

4 1, 1, c+−, c+− c−+, c−+, 1, 1

8 1, 1, 1, 1, c+−, c+−, c+−, c+− c−+, c−+, c−+, c−+, 1, 1, 1, 1

16 1, 1, 1, 1, 1, 1, 1, 1, c+−, ... ...

32 ... ...

Table 2: HW-ABC coefficients for the top and the bottom domains for different orders using
the compatibility condition (6). For the orders 16 and 32, we use the same way to determine
the coefficients (with c+− = c+/c−, c−+ = c−/c+).

(c+ = 1) and α2 equal to 0 or 100 s−2. We summarize the different configura-
tions chosen in this document with the table 1.

We use the HW-ABC coefficients of the table 2.

5.1. Single domain, dispersive and stratified material
We show in this section different cases (figure 8) not to reconfirm the inter-

est of the HW-ABC but to test our software with the HW-ABC: a case with
a single domain with a dispersive material (the first value of the legend gives
the HW-ABC order for the propagative condition) and a case with a dispersive
stratified domain with the HW-ABC with and without the evanescent condition120

(the second value of the legend gives the order of the evanescent condition). In
the top domain, c+ is always equal to one. In the bottom domain, c− can be
equal to one or 0.3. The dispersive coefficient α2 is always equal to 100. The
simulation time T and the domain are larger according to the value of the in-
verse of c− (first part of table 1). We use the orders 1, 2, 4, 8 and 16 with
the HW-ABC coefficients given in the table 2 computed with the compatibility
condition (6).

Remark: It is possible to inverse the ordering of the HW-ABC coefficients
(for example for the order 4 {c+−, c+−, 1, 1} for the top domain and {1, 1,130

c−+, c−+} for the bottom domain with: c+− = c+/c−, c−+ = c−/c+). So
we get similar results. The intermediate orders are a little different keeping the
same ranking but the last order is equivalent. We can add than these small
differences disappear in the DDM computations.
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Figure 8: Single domain - dispersive (α2 = 100) and stratified material: L2 differences (40)
with the space step equal to 0.005. The abscissa is the time (s). The first graph line is
done with {c+ = c− = 1, T = 0.5, lx = lx0 = 0.6}, the second graph line is done with
{c+ = 1, c− = 0.3, T = 3×0.5s, lx = 3× lx0} and the last graph line is done with the previous
values but with the HW-ABC using the evanescent condition (with σ = 100) (table 2 for the
used HW-ABC coefficients).

In these cases, we compute the L2 differences (40) for the top (with c+)
and bottom (with c−) left domains (x ≤ 0). We get classical results. Only the
case with the evanescent condition is different, we don’t use here a high-order
scheme as in [13]. The high orders of the HW-ABC are useful to get small errors
between the solution u and the reference solution. We can note better results140

with the evanescent condition for the intermediate orders, not for the bigger
orders. But it is different for the SWR simulations (see next section).

The σ coefficient (associated to the evanescent condition) has been chosen
with the DDM process using the numerical simulations associated to the figure 9.
We compute the L2 differences for different σ values for different SWR iterations
for different HW-ABC orders with the evanescent condition (the first value of
the legend gives the propagative order and the second the evanescent order). For
the first iteration and the second iteration, the effect of the evanescent condition
remains small but it appears. It is more interesting for the last iterations (4 and150

8). We choose to use the σ coefficient equal to 100 to get a compromise between
the first (not yet the DDM process, just a more classical simulation with the
HW-ABC) and the last SWR iterations.
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Figure 9: L2 differences (40) on the interface between the two subdomains of the DDM process
with the space step h = 0.01 for the case {c+ = 1, c− = 0.3, T = 3 × 0.5s, lx = 3 × lx0} for
different values (10n, n = 0..6) of the σ coefficient used in the evanescent condition for different
SWR iterations (left to right : first (just the error of the left subdomain, classical use of the
HW-ABC), 2, 4 and 8) and for different HW-ABC orders.

5.2. Two domains (DDM), dispersive (or not) and stratified materials
In this section, we show results of our domain decomposition applications.

We start with some visualizations of a small part of the solutions to give a
better understanding of our applications (next subsection). In the following
subsections, we show the L2 errors of our applications with and without time
average. In the last subsection, we finish by a special bigger case.

5.2.1. Visualizations of solutions160

In the figure 10, we illustrate the domain decomposition solutions at the
eighth iteration of the SWR process with the none dispersive stratified case
{c+ = 1 for the top domain, c− = 0.3 for the bottom domain}. Each graph
line is for one time (t ' 0.5, 0.75, 1 s). The solution at t equal to 1.5 second
is shown in the middle line of the figure 11. The two first left graphs show a
zoom of the amplitude SWR solution with filled iso-contours and the amplitude
reference solution with dashed iso-contours, the first left graph with a colormap
useful for the first moments of the simulation and the second left graph with a
colormap more useful for the last moments. The right graph shows a zoom of
the amplitude of the difference between the reference solution and the domain170

decomposition solution with a specific logarithmic scale colormap. The compu-
tation has been done with the more precise discretization in space and in time
(h = 0.005 and δt = 0.0035) and with the order 32 for the HW-ABC without the
evanescent condition. It is difficult to see the differences between the reference
solution and the domain decomposition solution. Only in the right graph, we
can see the small differences essentially on and near the interface between the
two subdomains.

The figure 11 (composed in the same way as the previous figure) shows a
comparison of the domain decomposition solutions computed with different HW-180

ABC orders 4 and 32 without the evanescent condition and a HW-ABC with
evanescent condition for the order 16 (and also for the propagative condition).
As we see, the best solution is gotten for the case with the evanescent condition.
We can see a difference in the middle graphs (with the reference solution for
the top middle graph at (x, y) = (0,−0.1)) and of course with the right graphs
giving the amplitude of the difference between the domain decomposition solu-
tion and the reference solution. For the order 4 without evanescent condition,
the maximum value of the error amplitude is around 10−3. For the order 32
without evanescent condition, this value is around 10−5. For the best case with
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Figure 10: Illustrations of a domain decomposition none dispersive and stratified test for
{c+ = 1, c− = 0.3} at the eighth iteration of the SWR process - Left and middle graphs: Zooms
on amplitudes of the domain decomposition solution (filled iso-contours) and the reference
solution (dashed iso-contours) for different times and two different colormaps - Right graphs:
Associated zooms to show differences between the amplitudes of the domain decomposition
solution and the reference solution with a specific log scale colormap.

the HW-ABC with evanescent condition, this value is around 10−7. So with our190

log scale colormap and in the best case, the differences disappear.

5.2.2. L2 errors with time average
The figure 12 shows the L2 errors (40) with time average following the SWR

iterations for two none dispersive and stratified cases with c+ equal to one and
c− equal to 0.3 and 0.1 for HW-ABC with and without the evanescent condi-
tion. We use two space steps (h = 0.01 and h/2 given in the legends) with the
associated small time steps.
We get significant improvements between the first iteration and the last itera-
tion. The ratio of the improvements is around 106 for the best cases. As we see,200

the most important errors remain localized on the domain decomposition inter-
face (x = 0). The other errors computed on the interface between materials and
the domains are better. We must point out that the L2 errors use also values
of the right subdomain (with the values of the left subdomain). For the first
iteration, we have a null solution for all the time in the right subdomain, the
initial condition is fully positioned in the left subdomain. For the first iteration,
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Figure 11: Comparison for one time (t ' 1.5 s) of two domain decomposition none dispersive
and stratified tests for {c+ = 1, c− = 0.3} for the HW-ABC orders 4 (top line) and 32 (middle
line) without evanescent condition and for the HW-ABC order 16 for the propagative and
evanescent condition (bottom line) - The composition of the left, middle and right graphs is
similar to the figure 10.

the L2 errors are aggravated by the null solution in the right subdomain.
With five or six iterations, we get interesting results. Also we can note that
a better space step is useful especially for the biggest orders 16 or 32. The
solution in the bottom domain (the slow domain) must be computed with more210

space precision (as we can see in the figure 10, the shapes of the solution are
more complex than for the top domain) but also in the top domain for the local
solutions near the interface between bi-materials [27].
The HW-SWR simulations with only the propagative condition gives interest-
ing results. The contribution of the evanescent condition allows to get a more
significant quality with a better cumulative order (propagative order (8) with
evanescent order (8)) than the best results with just the propagative condition
(order 32).

The figure 13 shows the similar results with the largest time steps, with220

and without the dispersive property (α2 = 100). The organization of the figure
is similar to that the figure 12. We give only the results with the best space
step as we see in the legends (h/2 with h = 0.01). For the dispersive case, the
contribution of the evanescent condition is even more significant.
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Figure 12: Small δt, non dispersive - L2 average errors with mean in time / SWR iteration -
Two top graph lines {c+ = 1, c− = 0.3, T = 3 × 0.5, lx = 3 × lx0} - Two bottom graph lines
{c+ = 1, c− = 0.1, T = 10×0.5, lx = 10×lx0}, from left to right for the domain decomposition
interface x = 0, the interface between the two different materials y = −0.125, the half left and
half right top domain and the same for the bottom domain (legends - first number: HW-ABC
order without evanescent condition - second number: order for the evanescent condition -
third "the label h or h/2": used space step, for all the graph line).
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Figure 13: Big δt, non dispersive (first two graphs lines) and dispersive α2 = 100 (last two
graphs lines) - L2 time average errors / SWR iteration - Similar to the figure 12 just for the
best space step.

5.2.3. L2 errors without time average
The figure 14 allows to illustrate the behaviour of the L2 errors (40) with

the time for the cases {c+ = 1, c− = 0.3, T = 3 × 0.5, lx = 3 × lx0} and
{c+ = 1, c− = 0.1, T = 10 × 0.5, lx = 10 × lx0} just for the HW-ABC with
evanescent condition. We show the L2 errors over time for the interfaces (left
and right) between the two subdomains, for the bi-materials interfaces and the230

top and bottom domains for each subdomains (left and right). The two top
graph lines are associated to the eighth SWR iteration for the case "c− = 0.3".
The results can be 10 times better with a more flat behaviour between the low
order (order 2 for the propagative and evanescent conditions) and the hight or-
der (order 16 for the propagative and evanescent conditions) of the HW-ABC
with propagative and evanescent conditions. The other two graph lines give the
same results for the eighth (middle) and sixteenth (bottom) iterations for the
case "c− = 0.1" for the orders 8 and 16. This case seems a little unstable for
the order 16 but the sixteenth iteration gives a better result to the same order.
But if we change the value of the coefficient σ (with σ = 1000), we get more240

stable results (figure 15). As we see in the figure 9, this value gives a better re-
sult for the biggest iteration and the biggest orders. We get similar results with
the largest time steps (shown in the figure 16) and also with the dispersive cases.
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Figure 14: Small δt, non dispersive - L2 average errors / time for the eighth SWR iterations
associated to the first case (c− = 0.3) of the figure 12 (two top graph lines) and for the eighth
(two middle graph lines) and sixteenth (two bottom graph lines) SWR iterations associated
to the second case (c− = 0.1) of the figure 12.

The first simulations of the DDM problems (with the initial coefficients λpi
equal to zero (27) (29)) give results with low precision also with the evanescent
condition. For the left subdomain, these simulations are equivalent to the HW-
ABC stratified (with layers) computations as in [13], but we don’t use the same
scheme. The authors of [13] use a high-order finite difference scheme (8th order)
with a specific stabilization near the boundaries. With this method, the authors250

get best results. We use a classical implicit scheme possibly with big time steps.
Our results are improved with the following iterations of the DDM process with
the correction values of the coefficients λpi . The following iterations of the DDM
process allow to get better results with the evanescent condition as we see in
the figure 11.
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Figure 15: Small δt, non dispersive - L2 average errors / time for the eighth (two middle
graph lines) and sixteenth (two bottom graph lines) SWR iterations associated to the second
case (c− = 0.1) of the figure 12 with σ = 1000.

Figure 16: Big δt, non dispersive - L2 average errors / time for the tenth SWR iteration
associated to the second case (c− = 0.1) of the figure 13.

5.2.4. Special bigger case
To illustrate the possibilities of the HW-SWR process with the classical

implicit scheme, we add here a new case with a larger gap between low and fast
materials. We set always c+ equal to one for the fastest material. But we use
c− equal to 0.01 for the slowest material. The ratio c+/c− is equal to 100. So260

with this important difference, we can get also an interesting result with a long
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time simulation (fifty seconds are useful for the initial waves to go out properly
at the interface condition in the slow layer) as we see in the figure 17. We use
a specific time step equal to the previous big time step divided by ten to get a
compromise between the two different materials. The best result has been done
with the order 32 for the propagative and evanescent condition (with the used
coefficient σ equal to 1000). In this best case, the error remains small less than
10−7, more flat-equivalent for more long time at the eighth SWR iteration.

Figure 17: Big δt divided by ten, non dispersive - L2 average errors / time for the eighth SWR
iteration associated to the case (c− = 0.01 m.s−1) with the space step h equal to 0.01 m and
the time step δt equal to 0.07 s (with T = 50 s) for three different HW-ABC orders (see the
legend of the left-top graph).

6. Conclusion

In this paper, we have shown how to apply the high-order Absorbing Bound-270

ary Condition proposed by Hagstrom and Warburton to a stratified and disper-
sive wave equation solved with the Schwarz Waveform Relaxation algorithm to
get DDM time-space solutions without overlapping with the classical implicit
Newmark scheme. For that, we have few add-ons on each HW-ABC used as
interface condition on the shared boundary of the two subdomains. We can use
a cumulative process to get solutions.

With the implicit scheme, we have computed numerical simulations using
a small time step designed to the fast material and a big time step designed
to the slow material. We get similar numerical results between these two time280

steps. Classically to get computations with the Hagstrom–Warburton Absorb-
ing Boundary Condition, the authors prefer use small time steps. We apply it
here also with a larger time step for DDM processes.

A sufficient space discretization remains nevertheless useful. For example
with the stratified cases, we must use a sufficiently small space discretization
to get interesting precisions, in particular to get similar precisions between fast
and slow domains.

Our last test, with a larger gap between low and fast materials, allows to290

imagine that this method can be applied to a wider range of problems.
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