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Abstract

This work concerns the uncertainties arising from the derivation of global chemistry models and their impact
on the predictions using modern combustion simulations. We perform the inference of the parameters of
a two-step reaction mechanism for CH4, using synthetic observations of one-dimensional laminar flames
generated using detailed mechanism simulations. Introduction of Principal Component Analysis (PCA) and
the Polynomial Chaos (PC) expansion, to approximate the global model predictions, enables a full assessment
of the inferred global model’s posterior. In particular, we employ the Bayesian posteriors’ extensive sampling
to estimate mean, Maximum a Posteriori, and confidence intervals of the inferred global model’s predictions.
We contrast the posterior distributions of global quantities of the flame, namely the laminar flame speed,
the thermal flame thickness, and the reaction zone thickness, depending on the inference’s observations.
Finally, we propagate the global chemistry model’s posterior distribution through two-dimensional direct
numerical simulations (DNS) of a flame-vortex interaction problem. This study highlights the importance
of quantifying posterior uncertainties to fully appreciate the impact of using a global model in real-world
reactive simulations.

Keywords: Uncertainty quantification, Bayesian inference, Chemistry modeling, Laminar

Premixed Flame, Flame-vortex interaction

1. Introduction

Simulation of combustion processes is a complicated and computationally expensive task due to the
phenomenon’s high dimensionality. A primary concern is to model the chemical kinetics involved in these
processes accurately. The accuracy is crucial to predict pollutant formation, flame stabilization, and ignition
processes correctly. The most accurate approach to describe the chemical kinetics consists of so-called
detailed mechanisms involving many species and elementary reactions. However, numerical simulations
of realistic configurations using such mechanisms are, in general, out of reach because of the associated
prohibitive CPU costs. The large numbers of intermediate species and reactions, and the small time-
steps required to compute intermediate fast reactions accurately, are the principal limitations of detailed
mechanisms. Hence, the use of these mechanisms is often limited to 2D simulations of laminar flames [1].

Many efforts are dealing with extending the chemical complexity in 3D computations of turbulent flames
by considering either reduced and yet still large mechanisms [2, 3] or recently analytically reduced chem-
istry [4]. Most flame computations, however, retain much more affordable approaches to include chemical
information. Two main strategies are the tabulated chemistry from flamelet archetypes [5] and the global
chemistry models [6–9]. The present work focuses on the latter type of models.

Global chemistry models use simplified mechanisms with only a few notable species that interact through
a reduced number of global reactions. The global chemistry models are calibrated to match the flame’s main
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physical features (adiabatic temperature, laminar premixed flame speed, or auto-ignition delay time) in
canonical configurations. The early work of Westbrook and Dryer [10] describes a global two-step mechanism
for hydrocarbon, reproducing the basic chemical structure, i.e., fast oxidation of the fuel followed by a gradual
consumption of the intermediate species. Several works have proposed to improve global mechanisms by
adjusting the model parameters of the Arrhenius equations to match laminar burning velocities [11–13].
The adjustment with the equivalence ratio of the pre-exponential constants have been considered more
recently [14–16] to improve predictions of the laminar flame speed in the lean and rich regimes simultaneously.
Instead of heuristic methods, genetic optimization has been used in several works [17, 18] to systematically
set the chemical rate parameters. However, the optimization problem’s dimensionality, involving as much as
ten model parameters in the Arrhenius equations for a simple two-step scheme, yields a significant amount of
uncertainty in the calibration process and the rate parameters. Objective and fair methodologies for assessing
global chemistry models uncertainty are then of high interest, and the present work aims to propose such a
methodology.

Several works have considered uncertainty quantification (UQ) in reactive flows, mainly for the prop-
agation of Arrhenius parameters uncertainty in detailed chemistry mechanisms, with the objective of its
reduction [19–25]. These efforts are crucial to estimate and improve predictions accuracy in these strongly
non-linear systems. In this sense, the work of Ji et al. [26] characterizes the effects of chemical uncertain-
ties on the lift-off height in a jet flame, through the forward propagation of 21 uncertain rate constants
of a detailed mechanism for hydrogen combustion [27]. Other forward propagation studies focus on the
uncertainties in the flow, such as in the work of Khalil et al. [28], which analyzes the impact of uncertain
Smagorinsky coefficient and turbulent Prandtl and Schmidt numbers on the combustion of a methane and
hydrogen mixture using a tabulated chemistry model. The authors of [29] and [30] have investigated the
effects of uncertain subfilter mixture fraction dissipation rate and chemical kinetic rates, respectively, for
the Sandia D Flame partially premixed and using the GRI-Mech 3.0 mechanism [31]. Other references
on forward uncertainty propagation are Avdonin et al. [32], for the thermoacoustic stability in methane
combustion using the two-step reaction mechanism 2S-CM2 [13], and Zhang et al. [33], for fuel variability
(i.e., uncertain species concentration) effects on the pollutant formation of syngas combustion. Recently,
Enderle et al. [34] investigated the uncertainties arising from spray boundary conditions specifications in an
ethanol flame using detailed chemistry. For a comprehensive review of UQ in combustion systems, we refer
to [35, 36]. To our knowledge, uncertainties arising from the derivation of global chemistry models and their
impact on the predictions using modern combustion simulations remain to investigate.

The present study thus focuses on the characterization of the calibration uncertainties on the chemical
rate parameters of a global chemistry mechanism. To keep the problem tractable, we restrict ourselves to a
simple two-step combustion mechanism for methane with constant model parameters. Since these models
are only suitable for lean mixtures [16, 37], the present study is limited to the mechanism of lean premixed
combustion, i.e., comprising equivalence ratios between 0.6 and 1. With this restriction, the global model
has ten uncertain parameters calibrated by a Bayesian inference procedure involving state-of-the-art UQ
numerical tools. Specifically, the derivation of the probabilistic global chemistry mechanism and the joint
probability density functions of its parameters involve Principal Component Analysis (PCA), Polynomial
Chaos (PC) expansion, and the Markov Chain Monte Carlo (MCMC) methods. The uncertain global model
is subsequently used to simulate a flame-vortex interaction to assess, in a practical application, the prediction
variability and compare it with a detailed mechanism simulation.

The organization of the paper is as follows. The § 2 presents the uncertain prior global model and
the one-dimensional laminar premixed flames simulations used for the inference of its parameters. We
discuss the construction of the global feature surrogates in § 2.2 and proceed with a brief global sensitivity
analysis of the a priori model in § 2.3. The Bayesian inference and the MCMC sampling of the global
model posterior are introduced in § 3 and applied on three different cases: (i) calibration based on the flame
speed, (ii) calibration based on the flame thermal thickness, (iii) and calibration based on these two global
flame quantities simultaneously. Then, § 4 presents the propagation in the flame-vortex simulation of the
uncertain global models and, in the light of the results, discusses the adequate methodology to derive global
chemistry models. Finally, § 5 summarizes the main results of the work and draws several recommendations
for future researches.

2



2. A priori global model and surrogate

As discussed in the introduction, the Bayesian construction of a probabilistic global model consists of the
inference of its parameters to match some characteristic quantities obtained in a reference simulation. The
reference considered here consists of laminar flame speed computations using the chemical mechanism GRI
3.0 [31]. The calibration procedure described in § 3 involves the Bayesian update of the prior model param-
eters distribution, followed by the sampling to the resulting posterior distribution (remaining uncertainty
after calibration). In this section, we derive the prior global model, which we subsequently approximate us-
ing a Polynomial Chaos (PC) surrogate to alleviate most of the computational burden during the calibration
phase. We also use the prior model to perform a global sensitivity analysis of the global model parameters.

2.1. Global model

The global model considers premixed flames as sketched in Fig. 1. The flame front separates the fresh
gases, at a low temperature of T1, from the burnt ones, at a high temperature T2. The front flame,
characterized by a high heat release rate, freely propagates towards the fresh gases at a constant speed SL
(laminar flame speed) with respect to the fresh gases velocity. Throughout the paper, we set the fresh gases’
temperature and pressure to 300 K and 1 atm.

Fresh gases Burnt gases

Temperature

T2

T1

Heat release

HRmax

HRmax/2

x [mm] 𝛿𝐻𝑅

SL [m/s]

Figure 1: One-dimensional premixed flame scheme. The abscissa corresponds to the propagation axis of the flame. The blue
vertical axis (left) corresponds to the heat release rate, while the red vertical axis (right) corresponds to the temperature.

The calibration will concern two types of physical features. The first one is the mentioned flame speed
SL; the second one is the flame thickness, which can have different definitions. The first retained definition
uses the reaction zone thickness (δHR) defined as the distance between the two points in which the heat
release equals one half of the maximum heat release value [38], see Fig. 1. Alternatively, the thermal flame
thickness δT definition combines the temperature difference and maximum gradient through the flame [39]

δT =
T2 − T1

max(
∣∣∂T
∂x

∣∣) . (1)

The global physical quantities have a large dependency on the equivalence ratio φ of the mixture, φ =(
YF
YO

)
/
(
YF
YO

)
st

, where YF and YO are the fuel and oxidizer mass fraction, respectively, and
(
YF
YO

)
st

is the

stoichiometric proportion between fuel and oxidizer. In this work, we restrict ourselves to the range of
equivalent ratios φ ∈ [0.6, 1). As further discussed in § 3, the inference of the global model parameters will
consider the reference features simulated by the detailed kinetic mechanism GRI 3.0 [31].

The two-step global chemistry model considered for calibration consists of six different species (CH4,
O2, CO, H2O, CO2 and N2) and two reactions. The first is an irreversible reaction,

CH4 +
3

2
O2 → CO + 2H2O, (2)
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and the second is a reversible reaction that leads to an equilibrium between CO and CO2 in the burnt gases:

CO +
1

2
O2 ⇔ CO2. (3)

The reaction rates of the two reactions are modelled by a modified Arrhenius law as

k1 = A1T
β1 [CH4]nCH4 [O2]nO2,1e−Ea,1/RT , (4)

and
k2 = A2T

β2 [CO]nCO [O2]nO2,2e−Ea,2/RT , (5)

with [X] the molar concentration corresponding to the species X. Other physical coefficients of the flame
problem include the heat diffusion coefficient, which is set assuming a constant Prandtl number Pr = 0.7, and

a power law model for the molecular viscosity following the expression µ = µ0

(
T
Tn

)n
where µ0 = 1.807×10−5

Pa·s, Tn = 300 K and n = 0.682. The mixture viscosity also determines the species diffusion coefficient
through the Schmidt number of each species reported in Table 1.

Table 1: Schmidt numbers of the considered species.

CH4 CO2 CO O2 H2O N2

0.677 0.945 0.750 0.739 0.544 0.726

The uncertain parameters of the global model are then the 10 coefficients A1, A2, β1, β2, nCH4 , nO2,1,
nCO, nO2,2, Ea,1 and Ea,2 of the reaction rates in Eqs. 4 and 5. Regarding the prior distributions of these
parameters, we assume that they are independent, a priori, and follow log-normal distributions, except
for β1 and β2, which are equipped with uniform distributions. For a generic random rate parameter θi
with log-normal distribution, we denote θi its nominal value and UFi ≥ 1 its uncertainty factor. The log-
normal distribution of θi is imposed by introducing a canonical random variable ξi with standard Gaussian
distribution, ξi ∼ N (0, 1), and setting

θi = θi exp

(
ξi
3

ln(UFi)

)
. (6)

As a result of the canonical representation in (6), θi has a median value θi and ≈ 99.9% probability to be in
the interval [θi/UFi, θi UFi]. In the case of θi having a uniform distribution (β1 and β2) with range [a, b],
we consider a uniform canonical random variable ξi ∼ U(0, 1) and set

θi = a+ (b− a)ξi. (7)

The nominal values of the log-normal parameter are taken from the 2-step scheme 2sCM2 [13] and
slightly modified to account for non-zero βi parameters. We select the uncertainty factors to ensure a wide
range of flame speeds and thicknesses while remaining within the convergence (stability) domain of the
one-dimensional premixed flame simulations. Table 2 summarizes the prior distributions of the global model
parameter. The resulting variability of flame speed and thicknesses in the global 2-step mechanisms can be
appreciated from Figure 2. The curves correspond to a sample set of Ns = 10, 000 realizations of the global
model generated by a Quasi-Monte Carlo (QMC) method based on a low-discrepancy Sobol sequence [40].
For each realization, the one-dimensional laminar premixed flames are computed for several equivalence
ratios in the range [0.6, 1) with mesh adaptation using the EM2C in-house solver Agath. The figure also
reports the laminar flame speeds and thicknesses predicted with the detailed chemistry model, which are
within the a priori uncertainty range.

4



Table 2: Prior distributions of the global model parameters. Parameters in the first row are in SI except for the activation
energies (Ea,i) in cal/mol. Pre-exponential factors (Ai) are in cgs units in the second row.

A1 β1 nCH4
nO2,1 Ea,1 A2 β2 nO2,2 nCO Ea,2

θi 2× 109 ∼ U(0, 1/2) 0.9 1.1 4.1727× 104 2× 106 ∼ U(0, 1) 0.5 1.0 1.2916× 104

(cgs) 2× 1015 2× 109

UFi 1.5 - 1.5 1.5 1.5 1.5 - 1.5 1.5 1.5

(a) (b) (c)

Figure 2: A priori QMC samples of the a priori global model as functions of the equivalent ratio φ: (a) laminar flame speed,
(b) laminar flame thermal thickness, and (c) laminar flame thickness based on heat release rate. In thick solid black line: the
laminar flame speed and thicknesses for the detailed chemistry model discussed in § 3.

2.2. Surrogate model

A surrogate model for 2-step mechanisms is constructed to accelerate the Bayesian inference; to this end,
Ns samples of the a priori model are generated by randomly varying the model parameters. Denoting by v
any of the global features (SL, δT and δHR), we construct a surrogate model for v(φ, ξ) where ξ is the set
of canonical random variables previously introduced.

We start by introducting a grid of Nφ = 51 equivalent ratio values to discretize the dependence of the
feature v(φ, ξ) on equivalent ration φ, and we denote v(ξ) the random feature vector at the discrete φ values:

v(ξ) =
(
v(φ1, ξ) · · · v(φNφ , ξ)

)>
.

Further, let us denote vi
.
= v(ξi) the vector of feature associated to the i-th realization of the canonical

random variables.
In the first stage, a Principal Component Analysis (PCA), also called Proper Orthogonal Decomposition

(POD), is applied independently on the global features SL, δT , and δHR. The objective is to reduce Nφ
to a lower value, Nred, by exploiting the smoothness of each realization. It is worth mentioning that the
PCA is applied to preconditioned data, using a logarithmic transformation designed to enforce almost sure
positivity for the reduced model. The Appendix Appendix A details the preconditioned PCA method. The
number of reduced modes needed to represent the dependencies on φ depends on the desired accuracy and
the behaviour of the global physical feature on which the dimensionality reduction is applied. In the present
case, Nred = 4 for the flame speed and Nred = 3 for flame thickness based on both temperature and heat
release were enough to achieve a relative error of less than 0.1%. With this reduction, the random feature
vector is approximated by

v(ξ) ≈ exp

[
r=Nred∑
r=1

lrar(ξ)

]
, (8)

where Nred � Nφ and the exponential applies component-wise to vectors.
In the second stage, the dependences on the canonical random variables ξ of the vector of reduced
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coordinates a(ξ)
.
= (a1(ξ) · · · aNred(ξ))

>
is sought as a PC expansion [41, 42],

a(ξ) ≈
α=Npol∑
α=1

aαΨα(ξ), (9)

where the vectors aα are the PC coefficients of the reduced coordinates and the Ψα form an orthonormal
family of multi-variate polynomials in the random canonical variables. The PC expansion is truncated at
a prescribed polynomial degree selected to control the truncation error. For the practical determination of
the PC coefficients, we proceed with an ordinary least squares method using the Ns samples available; see
Appendix Appendix B for more details.

Inserting the PC expansion of the reduced coordinates, we obtain the final form of the surrogate of the
random feature vector:

v(ξ) ≈ exp

α=Npol∑
α=1

[L]aαΨα(ξ)

 .
= vPC(ξ), (10)

where [L]
.
= [l1 · · · lNred ] is the matrix of PCA modes.

In the present work, the PC expansion uses a total degree truncation of order 4. As the global model
employs a total of Ndim = 10 canonical random variable ξ, the PC basis has Npol = 1001 polynomials Ψα.
We rely on the sample set of Ns = 104 realizations vi for the construction. Therefore we have roughly ten
times more realizations than PC coefficients to compute, and we found it unnecessary to use an adaptive
PC expansion strategy.

The accuracy of the surrogate models of the features have been carefully assessed by relying on an
auxiliary validation set of 2 × 103 realizations. The details of the validation are not shown here and we
simply report the estimated normalized mean squared error,

ε2rel =
E
[
‖v(ξ)− vPC(ξ)‖2

]
E [‖v(ξ)‖2]

. (11)

For the fourth-order PC expansion, we obtained εrel = 1.44% for the thermal flame thickness, 1.94% for
the reaction zone thickness and 1.97% for the flame speed. The accuracy of the approximation is easier to
appreciate in Fig. 3 which compares some global model features with their surrogate approximations for
several parameter values not included in the training set. We observe a generally excellent agreement, which
tends to degrade for the most extreme realizations.

(a) (b) (c)

Figure 3: Comparison of the model features (dashes line) and their surrogate approximation (continuous line): Flame velocity
(a), thermal flame thickness (b), and reaction zone thickness (c).

2.3. A priori sensitivity analysis

The surrogate models of the global features of the random model provide a fast, accurate, and inexpensive
way to predict the flame velocity and thicknesses for any value of the canonical random variables in their
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a priori range and any equivalent ratio value φ ∈ [0.6, 1) (through interpolation over the components of
vPC(ξ)). The surrogates are exploited in the calibration stage to sample the posterior distribution during
the Bayesian inference process.

Before engaging in the calibration, we propose to complete this section on the prior model by performing a
brief global sensitivity analysis to assess the relative influence of each model parameter on the flame features
(SL, δT and δHR). To this end, we take advantage of the PC surrogate to compute the Sobol indexes [43]
corresponding to the decomposition of the variance of vPC(ξ). Precisely, for each discretized value φi of
the equivalent ratio, we compute the first and total order sensitivity indices of vi(ξ). The first-order indices
correspond to the fraction of variance induced by the considered parameter and this parameter only, while
the total order indices account for the fraction of variance attributed to the parameter and its interactions
with others. We only report below the case of the flame speed SL, the other global features (thicknesses)
presenting similar sensitivities. Figures 4a and 4b show the first-order indexes for the parameters of the
first and second reactions, respectively. We see that the dominant individual effects on the flame speed are
due to parameters Ea,1 and β1 of the first reaction, whose cumulated single effects tops to close to 80% of
the variance, when the single effects of the second reaction sum-up to less than 2% of the variance. The
total sensitivity indices, shown in Figs. 4c and 4d, confirm the dominance of Ea,1 and β1 on the flame speed
variability, although β2 is seen to play a significant role through its interactions. The effects of the second
reaction parameters appear to be limited to interactions with the first reaction parameters. Also, the sum of
the total indices significantly exceeds 1, underlying high interactions between parameters and non-additive
effects. This analysis is instructive because we can anticipate that parameters having low to negligible effects
on the global features will be harder to calibrate from these quantities. In contrast, parameters strongly
affecting the features should be well-informed by the calibration data.

(a) (b) (c) (d)

Figure 4: Sobol indices of first (a,b) and total (c,d) orders for the laminar flame speed, associated to the first (a,c) and second
(b,d) chemical reaction parameters.

3. Global scheme calibration results using Bayesian inference

This section concerns the calibration of the two-step mechanism for CH4. The calibration takes advantage
of the surrogate models to approximate the flame speeds and thicknesses over the range of equivalent ratios
and prior range of the global mechanism’s parameters. To illustrate the Bayesian calibration methodology,
its capabilities, and limitations, we perform three inference exercises. The first inference uses flame speed
observations only; the second inference considers thermal thickness observations; finally, the third inference
problem included flame speed and thermal thickness observations. The three inferences lead to three reduced
models differing by the posterior distribution of their parameters. We also contrast the results obtained for
two values of the observation noise in the last inference.

In the Bayesian inference framework, the model parameters are regarded as random variables rather than
fixed quantities. Then, the main objective is to obtain posterior distributions for the model parameters and
derive relevant information, such as the most likely values (Maximum A Posteriori, MAP), their variability
(variance), possible correlations, estimated density, . . . Besides the distribution of the parameters, one is
usually interested in the characterization of the model’s predictive posterior. This predictive posterior can
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be assessed by sampling the parameters’ posterior and solve the forward propagation problem to measure
the resulting uncertainty in various quantities of interest, e.g., in situations differing from the calibration
setup. This latter point is the focus of the next section.

The parameters’ posterior is not obtained as a closed-form expression, and its sampling requires ap-
propriate methods. We rely on a Markov Chain Monte Carlo (MCMC) method to generate samples from
the posterior probability distribution function in this work. The MCMC algorithm randomly generates a
sequence of samples (states), where the next state of the chain is conditioned on the current state, creating
a so-called Markov chain. With a suitable probabilistic transition rule from a state to the next, the random
chain converges to the target distribution as the number of steps increases. Different MCMC algorithms are
available. In this study, we use the Metropolis-Hasting algorithm [44] to draw samples from the posterior.
We outline this algorithm in Appendix Appendix C. For convenience, the posterior is expressed in terms of
the random vector of canonical variables ξ, as p(ξ

∣∣vobs ) with vobs the vector of observations used for the
calibration. Using the Bayes Theorem, the posterior is proportional to the product of the prior distributions
πξ(ξ) with the likelihood of the observations,

p
(
ξ
∣∣vobs ) ∝ L (vobs |ξ )πξ (ξ) . (12)

Details on the posterior distribution derivation and the sampling procedure can be found in Appendix Ap-
pendix C.

The vector of observations is derived from simulations based on the detailed kinetic mechanisms GRI
3.0 [31], which involves 53 species and 325 reactions. Figure 5 shows the flame speed (SL) and the thermal
flame thickness (δT ) simulated with the detailed kinetic mechanisms, together with experimental values of
Akram et al. [45], Liu and Kim [46] and Lafay et al. [47], and numerical results of Mazas et al. [48].

(a) (b)

Figure 5: One-dimensional premixed flame results using GRI 3.0 [31] detailed chemistry. (a) Comparison of the computed
flame speed with experimental results (Akram et al. [45], Liu and Kim [46]) and numerical (Mazas et al. [48]) studies. (b)
Computed thermal flame thickness compared with experimental data of Lafay et al. [47].

3.1. Calibration based on flame speed observations

We first perform the Bayesian inference of the model parameters using flame speed observations only. To
this end, we need to define the likelihood function that prescribes the discrepancy between the observations
and the reduced model predictions. In our situation, the discrepancy results primarily from the reduction
error, which is dependent on φ, and, possibly, some numerical error in the model’s evaluation. The latter
error is negligible. To avoid proposing and identifying a perhaps complex statistical model for the reduction
error, we instead corrupt the detailed model predictions with a centered Gaussian noise. The noise variance
σ2
ε,SL

> 0 is selected to dominate the reduction error. In these conditions, a classical independent Gaussian
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discrepancy model is suitable, leading to the following likelihood

LSL
(
SL

obs
∣∣ξ, σ2

ε,SL

)
=

1√
(2πσ2

ε,SL
)Nφ

exp

−
∥∥∥YSL (ξ)− SL

obs
∥∥∥2

2σ2
ε,SL

 , (13)

where YSL (ξ) is the PC expansion approximation of the vector of predicted flame speeds, function of ξ;
and SL is the vector of observed flame speeds whose components are independently corrupted by adding a
random perturbation drawn from the normal distribution N(0, σ2

ε,SL
). Larger values of σ2

ε,SL
allows for larger

discrepancies and produces a flatter posterior, as deviations from SL are less penalized. In contrast, a low
value of σ2

ε,SL
leads to a tight posterior around the parameters maximizing the likelihood and prior product.

In the latter case, the inference can produce unsatisfying models, corresponding to extreme parameter values
ensuring the ”best fit,” lacking robustness, and overly confident (low variability) posterior predictions not
reflecting the inferred model’s actual predictive capability. After several tests, we selected a value of σε,SL
equal to 10 % of SL at φ = 0.8. This value is consistent with the amount of noise in the experimental data
reported in Fig. 5 and provides robust inference results. The consequences of using smaller values of σε,SL
are addressed in the last part of § 3.3.

To characterize the posterior distribution of the model parameters, defined by Eqs. (12) and (13), we
run a MCMC chain with 107 steps thanks to the low evaluation cost achieved by the PC approximation. A
burn-in period of 106 steps is first performed to converge to the stationary distribution before recording the
samples. The resulting sample set is eventually post-treated to estimate the posterior statistics, such as the
parameters’ marginal distribution.

Figure 6 compares the prior and posterior marginal distributions of the reduced model parameters. The
plots show that the posterior marginals of A1, A2, nO2,2, nCO and Ea,2 remain close to their respective priors,
implying that the observations do not inform these parameters of the flame speed. These low progress were
anticipated in § 2.3, in which we have shown that these parameters have not a significant impact on the
flame speed. Consistently, we observe more significant differences in the prior and marginal of the two
most sensitive parameters, namely Ea,1 and β1, indicating an information gain after inference and a better
knowledge a posteriori of these parameters.

Figure 6: Prior and posterior marginals of the model parameters for the thermal flame speed calibration.

Table 3 reports the maximum a posteriori (MAP) values of the parameters, maximizing the posterior
distribution. Besides this ”best-fit” value, it is important to stress that the calibration not only identifies
the MAP values but also provides a complete probabilistic description of the parameters’ joint-posterior.
Among other statistics, this detailed information enables the estimation of the posterior parameters variance,
correlations or credibility intervals.

Table 3: MAP values of the model parameters for the flame speed calibration. The values in the second row are in SI units,
except for the activation energies (Ea,i) in cal/mol. Pre-exponential factors (Ai) in the third row are in cgs units.

A1 β1 nCH4
nO2,1 Ea,1 A2 β2 nO2,2 nCO Ea,2

2.0822× 109 0.2068 0.8858 1.1492 3.9934× 104 1.8928× 106 0.0694 0.4977 1.0157 1.3329× 104

3.3769× 1015 in cgs 2.2777× 109 in cgs
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Perhaps more important than the complete knowledge of the parameters’ posterior distribution is the
possibility to assess the predictive capabilities of the model with its posterior uncertainty. As an illustration,
we report in Fig. 7 the posterior predictions of the reduced model for the laminar flame speed (Fig. 7a), flame
thermal thickness (Fig. 7b), and reaction zone thickness (Fig. 7c). Specifically, we report the posterior means
with ±3 standard deviation range (shaded areas) to assess the posterior uncertainty level and the reference
solution based on the detailed mechanism. The flame speed plot also shows the observations used in the
inference. The mean and standard deviation estimates use a large sample set of parameters drawn from the
posterior distribution with the Markov Chain and the PC approximation constructed in § 2.2 of the flame’s
speed and thicknesses. For verification, we also provide the reduced model solutions for the MAP value of
the parameters (black lines) reported in table 3. Focusing first on the flame speed in Fig. 7a, we observe a
dramatic reduction of the spread of the predicted flame speed compared to the a priori situation shown in
Fig. 2. The posterior mean and MAP predictions of the flame speed are also in excellent agreement with
the reference solution, which falls well within the uncertainty range. A critical reduction of the prediction
variance for the flame thickness is also visible in Fig. 7b, with limited ±3σ areas. However, the reference
solution is not within the posterior uncertainty range. Analysis of the reaction zone thickness results, in
Fig. 7c, yields similar conclusions. However, the predictions agree better with the reference, mainly because
of the generally more extensive posterior uncertainty range than for the flame thickness. From this inference
experiment, one can conclude that the model’s calibration on flame speed observations provides a reduced
model somewhat effective at predicting this quantity (and with low posterior uncertainty), but having the
limited capability for the other features.

(a) (b) (c)

Figure 7: A posteriori predictions of (a) flame speed, (b) thermal flame thickness and (c) reaction zone thickness compared
with the detailed kinetic mechanism (Reference). Case of the flame speed calibration.

3.2. Calibration based on the thermal flame thickness

Following the calibration on flame speed observations, we now consider the calibration from flame thick-
ness noisy observations. The noise level σε,δT used to corrupt the detailed model computations is again set
to 10% of δT at φ = 0.8, and the likelihood function becomes

LδT
(
δT

obs
∣∣ξ, σ2

ε,δT

)
=

1√
(2πσ2

ε,δT
)Nφ

exp

−
∥∥∥YδT (ξ)− δT

obs
∥∥∥2

2σ2
ε,δT

 . (14)

Following the same MCMC sampling procedure used for the flame thickness calibration, Fig. 8 compares
the prior and posterior marginals of the model parameters. Again, the parameters β1 and Ea,1 are the two
parameters the most informed by the observations. Overall, the posterior marginals look very close to their
counterparts in Fig. 6.

Table 4 list the MAP parameters for the flame thickness calibration. Comparing these values with the
MAP of the flame speed calibration in Table 3 large differences emerge for the coefficients β1 and β2, and
smaller ones for the nCH4

, nO2,1 and nCO, while differences in the remaining MAP parameters are less than
1%.
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Figure 8: Prior and posterior marginals of the model parameters for the thermal flame thickness calibration.

Table 4: MAP values of the model parameters for the flame thickness calibration. The values in the second row are in SI units,
except for the activation energies (Ea,i) in cal/mol. Pre-exponential factors (Ai) in the third row are in cgs units.

A1 β1 nCH4
nO2,1 Ea,1 A2 β2 nO2,2 nCO Ea,2

2.0104× 109 0.0896 0.7761 1.2112 3.9193× 104 2.0230× 106 0.1735 0.5059 0.9341 1.3022× 104

1.6869× 1015 in cgs 8.8307× 108 in cgs

To appreciate the effect of calibrating the model on flame thickness observations, Fig. 9 presents the
posterior prediction of the flame global features SL, δT and δHR. The generation of the plots follows
the same methodology as previously. As for the calibration on flame speed observations, the predictions’
uncertainty reduces a lot from the a priori. However, in contrast with the results shown in Fig. 7, the
prediction of the flame thickness is now in excellent agreement with the reference, while the flame speed
prediction significantly deteriorates, systematically underestimating SL by a margin large compared to the
±3 standard deviation range. Finally, the prediction of the reaction zone thickness is further off compared
to the prediction based on the flame speed calibration. To summarize these calibration results, using flame
thickness observations provides a reduced model that can efficiently predict this flame’s feature at the
expanse of other features non considered in the procedure.

(a) (b) (c)

Figure 9: A posteriori predictions of (a) flame speed, (b) thermal flame thickness and (c) reaction zone thickness compared
with the detailed kinetic mechanism (Reference). Case of the flame thickness calibration.

3.3. Calibration based on both flame speed and thermal flame thickness

The third calibration intends to predict correctly SL and δT simultaneously. To this end, the likelihood
function is the product of Eqs. 13 and 14 as follows

L
(
SL

obs, δT
obs
∣∣ξ, σ2

ε,SL , σ
2
ε,δT

)
= LSL

(
SL

obs
∣∣ξ, σ2

ε,SL

)
LδT

(
δT

obs
∣∣ξ, σ2

ε,δT

)
(15)

Figure 10 depicts the posteriors marginals of the global model parameters estimated by MCMC sampling.
From the plots in the diagonal part of the figure, one can appreciate significant changes between the prior and
the posterior marginal distributions of the parameters compared to the previous experiments. This evolution
reflects the impact of incorporating more information (observations) in the calibration, which results in
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better definitions of the plausible parameter’s value and tighter posterior. However, while some parameters’
posterior variability reduces drastically, other parameters remain quite uncertain after calibration. As
expected, all the essential parameters identified in the a priori sensitivity analysis undergo a noticeable
variance reduction through the calibration. More surprisingly, other parameters with a priori unimportant
effects on the flame speed and thickness, such as nCH4

, experience a considerable change between their
marginal posterior and prior. This behavior illustrates that parameters with relatively weak influence on
individual flame features can still be learned when the calibration combines various features.

The plots below the diagonal of Fig. 10 show the joint posterior marginals of all pairs of model parameters.
A strong positive correlation between Ea,1 and β1 stands out among all other correlations. However, other
more subtle positively correlated parameters such as nO2,1−β1, nO2,1−nCH4

, Ea,1−nO2,1, and the negatively
correlated Ea,1 − nCH4

pair are also identified. Such detailed information on the joint-PDF of parameters
is essential to hereinafter propagate the posterior uncertainties of the global chemical mechanism.

Table 5 reports the MAP value of the parameters estimated from the Markov Chain. These values
differ significantly from the nominal values presented in Table 2 and are also different from the MAP values
obtained when calibrating the model using either flame thickness or flame speed.

Table 5: MAP values of the model parameters calibrated using both SL and δT observations. Parameters in the first row are
in SI units except for the activation energies (Ea,i) in cal/mol. Pre-exponential factors (Ai) are reported in cgs units in the
second row.

A1 β1 nCH4
nO2,1 Ea,1 A2 β2 nO2,2 nCO Ea,2

1.9730× 109 0.1085 1.4892 1.1849 3.4357× 104 1.9809× 106 0.0090 0.5427 0.9198 1.1406× 104

2.1864× 1015 in cgs 1.1799× 109 in cgs

As for the previous calibration experiment, we present in Fig. 11 the mean values and ±3σ confidence
intervals of the flame speed, thermal flame thickness, and reaction zone thickness. We recall that these quan-
tities are based on MCMC samples of the model parameters posterior and the surrogate models constructed
in § 2.2. The plots also show the flame characteristics computed with the reference model (detailed chem-
istry) and the noisy observations used for the calibration. Again, we consider in this experiment a centered
Gaussian noise with standard deviation σε set to 10% of the reference flame feature value at φ = 0.8.

We see that using flame’s speed and thickness observations results in predictions of SL and δT with
low posterior variance and a satisfactory agreement with their reference counterparts. However, a closer
comparison reveals that the ±3σ confidence intervals of the predictions do not consistently contain the
reference values of all φ. Instead, the calibration produces a trade-off between the two types of predictions.
This behavior underlines the limitation of using constant parameters in the two-step global model, even for
one-dimensional premixed flames in lean conditions. We also remark that the surrogates are not responsible
for the absence of a complete agreement with the references since the surrogates’ means of SL and δT agree
well with the evaluations of the global model using the inferred MAP values (Best Model Check). In contrast
with the predictions of the flame’s speed and thickness, the model vastly overestimates the reaction zone
thickness δHR with higher discrepancies than the previous calibrations experiments. We again explain the
deterioration of these predictions by the global model’s limitation, which is not rich enough to predict all
the laminar flame dynamics’ complexity. Considering more information in the calibration may improve the
predictions of the observed quantities. Still, it can be detrimental to the robustness of the model and,
in particular, its ability to adequately predict other features of interest. Yet, this limitation of the global
model is not necessarily critical unless one is specifically interested in predicting quantities not involved in
the calibration. On the contrary, for aerothermal simulations, the flame’s dynamics are mainly governed
by the flame speed and thickness. A limited global model, predicting these features correctly, can produce
meaningful predictions at a low computational cost.

To complete the discussion on the calibration, we repeat the previous exercise but for observations of the
flame’s SL and δT corrupted with a lower noise level σε. We set a σε corresponding to 5% of the respective
flame’s features at φ = 0.8, instead of the 10% used previously. Decreasing the noise in the observations
makes more significant the contribution of the reduced model error: as σε goes to zero, the discrepancy with
the observations reduces to the error incurring to the reduction of the detailed model. In such a situation,
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Figure 10: One-dimensional and two-dimensional posterior marginals of the model parameters for the calibration based on
both the flame speed and the thermal flame thickness. In the 1-D marginal distributions reported in the diagonal, the gray
lines correspond to parameters’ prior.

the calibration must account for the model error when learning the parameters [49, 50].
However, the approach does not include a treatment of model error. Because the reduced model is

not able to produce predictions with arbitrary low discrepancy level, consistent with the observation noise,
the posterior of the parameters concentrates around the maximum of the likelihood as σε decreases. This
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(a) (b) (c)

Figure 11: A posteriori results of (a) flame speed, (b) thermal flame thickness and (c) reaction zone thickness compared with
the detailed kinetic mechanism (Reference) when calibration is based on both the flame speed and the thermal flame thickness.

concentration has two unfortunate consequences that we want to illustrate here. First, the tight posterior
can lead to false certainty regarding the parameters’ value and over confidence in the subsequent model
predictions, especially for quantities not involved in the calibration procedure. Second, it is frequent that
the ”best” agreement between the reduced model and the observations corresponds to extreme parameter
values, because lowering σε amounts to decrease the prior’s contribution to the posterior. In our method,
which relies on a surrogate model to predict the features, this effect is extremely detrimental.

Figure 12, to be compared with Fig. 11, illustrates the concentration of the posterior for the surrogate’s
flame speed and thickness: the two features present a lower variability with a better agreement between the
mean predictions and the reference solution (detailed model). Yet, the prediction of δHR is degrading for
all the considered φ range. Further, the Figure reports the evaluations of the reduced model at the MAP of
the posterior (best model check). In contrast of the previous examples (with a σε of 10%), the best model
check is found far off the surrogate posterior mean and even not inside the posterior uncertainty range. This
illustrates that the calibration yields extreme parameters values for which the feature surrogates are not
accurate enough. The analysis of the normal canonical variables of the MAP reveals that 3 out of 8 are found
outside their initial 99.97% initial individual confidence interval, and 6 outside their prior 99.5% confidence
interval. The most extreme canonical variable is found at 3.9 standard deviations from its nominal value.
For comparison, in the case of the MAP with 10% σε, only 1 canonical variable is outside its 3 standard
deviation prior confidence interval; the second largest is at 1.43 standard deviation from its nominal value
and all the others in less than 1 standard deviation. In terms of densities, the ratio of the prior for the two
MAP points is ∼ exp(51) (about 1022). Concretely, building accurate surrogates over such low probability
region of the prior would be too demanding without relying on an adaptive method (see for instance [51]).
Trying to improve the surrogates accuracy is not pursued here because, fundamentally, the calibration with
low observation noise would demand an appropriate treatment of the model error. Instead, we proceed with
the exploitation of the reduced model calibrated with the 10% observation noise, for which the model error
does not compromise the inference.
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(a) (b) (c)

Figure 12: A posteriori results of (a) flame speed, (b) thermal flame thickness and (c) reaction zone thickness compared with
the detailed kinetic mechanism (Reference) when the calibration is based on both the speed and the thickness of the flame, but
considering a low value of σε.

4. Application to flame-vortex simulation

We now assess the predictive capabilities of the inferred reduced model when applied on a situation
differing significantly from the conditions considered for its calibration. Specifically, we consider a two-
dimensional flame-vortex interaction in unsteady laminar regime, corresponding to a configuration widely
studied numerically [52–54] and experimentally [55–57]. Because this configuration includes the phenomenol-
ogy of stretched flames, it has been used to validate numerical methods and models in reactive flows [58, 59].
A detailed review on flame-vortex interactions can be found in [60].

4.1. Numerical test case description

The problem, sketched in Fig. 13, consists of an initially planar flame front interacting with a convected
pair of counter-rotating vortices.
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Figure 13: Schematic of the initial configuration for the two-dimensional flame-vortex interaction. The vortices are colored by
velocity magnitude.
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The initial condition is a stationary one-dimensional flame profile superposed with a pair of counter-
rotating vortices; the velocity field is given by

u1(x, y) = (y − y0) (κr(x, y) + κl(x, y)) , (16)

and

u2(x, y) = u2,0 − (x− x0 −
d

2
)κr(x, y)− (x− x0 +

d

2
)κl(x, y), (17)

where u1 and u2 are the horizontal and vertical velocity components; u2,0 is the velocity of the stationary
one-dimensional flame; (x0, y0) is the center of the vortex pair (see Fig. 13); d is the distance between the
vortex centers; κl(x, y) and κr(x, y) are the vortex intensity fields associated to the left and right vortices,
respectively. In the following, we consider a symmetric configuration with d = 6.25× 10−3 m and

κr,l(x, y) = ± τ

r2
exp

(
−

(x− x0 ∓ d
2 )2 + (y − y0)2

2r2

)
, (18)

where the vortices core size is set to r = 10−3 m and the vortex intensity to τ = 6.5 × 10−3m2s−1. These
values, similar to the case in [54], lead to a combustion regime with thickened wrinkled flames and formation
of gas pockets [52].

As indicated in Fig. 13, the top boundary of the domain is an outlet, while the bottom is the inlet where
we apply the solution of the one-dimensional flame with a constant speed (u2 = SL = 0.2877 m/s), equivalent
ratio φ = 0.83, temperature (300 K) and pressure (1 atm). Finally, the periodic conditions apply to the left
and right boundaries. The domain size is set to Lx = 2×10−2 m and Ly = 3×10−2 m in order to minimize
the impact of computational boundaries on the interaction. The low Mach-number Navier-Stokes equations
and the species transport equations are solved using the YALES2 solver [61] on a uniform Cartesian mesh
of 600 × 900 nodes and a constant grid spacing 4x = 4y = 3.33 × 10−5 m. The YALES2 solver is an
optimized parallel finite volume method code. We used the low-storage Runge-Kutta scheme with four steps
to integrate the governing equations in time and a central 4th-order scheme for spatial discretization. For
stability, we set the maximal Courant-Friedrichs-Lewy (CFL) number to CFL=0.3, and the Fourier number
(Fo) to Fo=0.1.

4.2. Reference solution of flame-vortex interactions

A reference simulation of the flame-vortex computation is first computed using the detailed mecha-
nism GRI 3.0 [31]. Figure 14 shows the time evolution of the integrated heat release rate (IHR) over the
computational domain,

IHR(t) =

∫
Ω

HR(t)dΩ, (19)

scaled by its initial value IHR(0). Here, we normalize the time using the reference flame speed SL =
0.2877 m/s and thickness δT = 5.1046 × 10−4 m. The evolution presents different periods characteristic of
the flame-vortex interaction dynamics. After an initial phase where IHR remains nearly constant (t∗ . 4.5),
the flame gradually stretches as the vortex pair approaches and distort the flame front, creating wrinkles.
The elongation of the flame front improves the mass burning rate inducing a continuous increase of IHR. The
first row of Fig. 15 depicts the flow structure at t∗1 = 6.54 when IHR is increasing; in this phase, the flame
is attached to the vortex and rolls up. Eventually, IHR peaks at t∗ ≈ 7.6 before initiating a fast decaying
phase. The peak of IHR coincides with the closing of a neck of fresh gases connecting the vortex region
with the primary flame front; see the second row of Fig. 15 corresponding to t∗2 = 7.67. The closing of the
neck forms pockets of fresh gases that burn rapidly, causing a sharp decrease of IHR, as illustrated in the
third row of Fig. 15 for t∗3 = 8.45. These different stages of the vortex-flame interaction are consistent with
previous studies [52, 54, 58].
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t1*

t2*

t3*

Figure 14: Time evolutions of IHR normalized by its initial value for the reference solution using the detailed chemical scheme
GRI 3.0 [31].

t∗1

t∗2

t∗3

Figure 15: Reference temperature, heat release rate (HR), and velocity magnitude fields of the 2D flame-vortex DNS using
GRI 3.0 [31] detailed chemistry. The fields are shown at normalized times t∗ corresponding to the different phases of the
flame-vortex interaction and indicated in Fig. 14.
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4.3. Flame-vortex prediction for the calibrated two-step global model

Samples of the reduced two-step mechanism, drawn from the posterior distribution corresponding to the
calibration on SL and δT data, are used to simulate the flame-vortex problem. A total of 60 independent
samples are drawn from the model’s posterior distribution using the Markov chain. These model samples
are exploited to assess the effects of calibration uncertainty in a much more complex configuration than the
calibration experiment (one-dimensional laminar flame).

We start by presenting in Fig. 16 the spread of the predictions for the 60 models reporting the isoline
c = 0.5 of the progress variable based on temperature. The isolines are shown at the three times t∗1, t∗2 and
t∗3, previously discussed. Note that in all cases, the normalization of the times uses the reference flame speed
and thickness (SL = 0.2877 m/s and δT = 5.1046×10−4 m). The figure also reports the isolines c = 0.5 of the
best candidate model (MAP) and the reference solution (detailed chemistry). It is observed that the spread
of the isolines c = 0.5 is increasing between t∗1 and t∗2. The posterior uncertainty is particularly large in
intense roll-up areas during the first phase (see t∗1) and at the boundary of the entrapped fresh-gases pockets
at peak time (see t∗2). The highest variability in these areas is not surprising as rolling-up and entrapment
processes involve curvature effects that were not present in the one-dimensional flame experiment considered
for the calibration. However, the prediction uncertainty reduces as the decaying phase advances (see t∗3). In
particular, the location of the isolines of c = 0.5 from the inlet’s fresh gases is not much uncertain. Finally,
the differences between the reference (black) and MAP (red) model predictions are reasonably small at all
the times shown, while the reference isoline is always within the sample set’s isolines.

(a) t∗1 (b) t∗2 (c) t∗3

Figure 16: Progress variable isolines c = 0.5 at (a) t∗1, (b) t∗2 and (c) t∗3. Thin gray lines correspond to the samples of the
reduced models, the black line refers to the detailed chemistry model, while the red line corresponds to MAP model.

We now focus on global flame behavior to better assess the calibrated model’s predictive capabilities in
the flame-vortex interaction. Figure 17 shows the time-evolutions of the normalized IHR, and flame surface
Sf define by

Sf =

∫
Ω

|∇c(t)|dΩ. (20)

The plots report the solutions computed with the 60 samples of the calibrated model, together with the
average of the samples (blue lines) and ±3 standard deviation confidence interval (shaded areas), MAP model
prediction (red lines), and reference solution (black lines). As for the isolines of c = 0.5 presented above,
the reference solutions fall within the confidence intervals, and the agreement between the posterior mean
predictions, MAP model predictions, and reference solutions are reasonably good. The samples indicate
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that the calibrated two-step model tends to overestimate IHR and flame surface’s peak values. The posterior
uncertainty in the two-step model parameters mostly translates into uncertainty in the presented quantities’
growth and decay rates. The uncertainty impact explains that the posterior mean predictions are in better
agreement with the reference than the MAP prediction. The samples’ spread is mostly explained by the
variability of their respective laminar flame speed, which induces time-shifts in the IHR and flame surface
evolutions. Indeed the inlet velocity is set to the reference laminar flame velocity SL for all samples, leading
to differences in relative convective velocity between the vortex pair and flame front, depending on the
particular model sampled. We further illustrate the fundamental role of the flame thickness and the laminar
flame speed in the dynamics of the vortex-flame interactions in Fig. 18. The figure shows the evolutions of
the normalized flame surface for the different samples as functions of the time normalized by the respective
values of speed S∗L and thickness δ∗T associated with each sample of the model. With this sample-dependent
time-scaling, the spread of the curves dramatically reduces, demonstrating that, for this global quantity, the
impact of the calibrated two-step model uncertainty mostly translates into a time-scale uncertainty.

(a) (b)

Figure 17: Time evolutions of the (a) normalized IHR and (b) flame surface, for the calibrated two-step model. The time is
normalized using the reference flame speed and thickness. The MAP and reference (using GRI 3.0 [31]) predictions are also
reported.

Figure 18: Time evolutions of the normalized flame surface versus dimensionless time for the calibrated two-step model.
Contrary to the plot in Fig. 17, the normalization of time uses the flame speed and thickness of each sample. The MAP and
reference (using GRI 3.0 [31]) predictions are also reported.
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To complete the analysis of the predictive capability of the calibrated two-step model, we consider a
more challenging integral quantity which is much sensitive to flow stretching. Specifically, we focus on the
dependence of IHR on the flame surface Sf and report in Fig. 19 the evolutions of their normalized ratio ψ,
defined as

ψ(t) =

∫
Ω
HR(t)dΩ∫

Ω
|∇c(t)|dΩ

( ∫
Ω
HR0dΩ∫

Ω
|∇c0|dΩ

)−1

. (21)

This choice is motivated by the tangential velocity gradients’ critical role in the reaction zone (the ”flame
surface”). The tangential gradient modifies the local burning rate, affecting the chemical composition and
the whole dynamics of the premixed flame, in particular for mixtures with non-unit Lewis numbers. The
prediction of these highly non-linear processes, summarized here in the time evolutions of ψ(t), is challenging
for models that have not been calibrated on flames presenting such complicated features. This difficulty
is illustrated in Fig. 19. Although the reference and reduced model predictions present somehow similar
evolution in time, a significant increase in the samples variability of ψ(t) is reported after the peak time of
IHR and Sf (t∗ > 7), that is when stretching is maximum with the formation of fresh gas pockets. Again, the
spread could be reduced, to some extend, by relying on a time-scaling of the individual samples. However,
contrary to the previous quantities IHR and Sf , the reference solution is not contained in the ±3 standard
deviations bounds of the reduced model prediction. This mismatch denotes the inadequacy of the model
and the predictive limitations of the two-step model calibrated on un-stretched laminar flames.

Figure 19: Time evolutions of ψ(t) (see Eq. 21) for the calibrated two-step model. The MAP and reference (using GRI 3.0 [31])
predictions are also reported.

5. Conclusions

This work concerns the Bayesian inference of a reduced two-step reaction mechanism for CH4, using
observations of one-dimensional premixed laminar flames’ main physical features. Specifically, the calibration
of the global chemistry model parameters employs synthetic observations of the laminar flame speed or/and
thickness, generated from simulations using the GRI 3.0 methane detailed chemical mechanism.

To alleviate most of the Bayesian inference’s computational burden, we first construct surrogate models
of the reduced model flames’ characteristics. These surrogates combine a PCA to account for the dependence
on the equivalent ratio and PC expansions for the dependencies in the model parameters. The normalized
mean squared error of the surrogates, estimated on additional validation sets, are 1.44% for the thermal
flame thickness, 1.94% for the reaction zone thickness, and 1.97% for the laminar flame speed.

We conduct three different inference exercises using: (i) flame speed observations, (ii) thermal thickness
observations, and (iii) both flame speed and thermal thickness observations. The surrogate models of
the flame’s characteristics allow running the Metropolis-Hasting algorithm to draw 107 samples from the
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parameters’ approximated joint posterior. In all three calibration exercises, the differences between the prior
and posterior marginals are significant for only a subset of parameters, while the information gain on other
parameters is negligible. An a priori sensitivity analysis can anticipate the set of parameters informed by the
observations. The posteriors’ marginals of the informed parameters are also sensitive to the observations
used for the calibration. While these marginals are similar when using laminar flame speed or thermal
thickness observations, they can differ significantly when the two types of observations are combined. We
show that these differences translate in improved predictions of the flame’s speed and thickness, with lower
a posteriori spreads. However, these improvements come with the degradation of other flame characteristics
not involved in the calibration, such as the thermal flame thickness. This behavior reflects the global model’s
insufficiency, which is not complex enough to predict all the laminar flames’ features.

To further appreciate the calibrated model’s predictive capability and its posterior uncertainty, we finally
consider its application to the simulation of a two-dimensional DNS flame-vortex configuration. We assess
the quality of the posterior predictions using a detailed chemistry model simulation. The comparison
shows consistent predictions of the total heat release and flame surface time-evolutions, with the calibrated
model’s confidence intervals containing the detailed model evolutions. Additionally, the posterior predictions’
variability is mostly explained by a phase variability in the flame surface evolution caused by the uncertainty
in the ratio SL/δT for the calibrated model.

This challenging example highlights another limitation of the 2-step model concerning the heat release
rate per flame surface area. The calibrated model fails to reproduce the flame response to stretch correctly.
This limitation is not surprising since the observations used to calibrate the model did not encompass
stretched flame phenomenon.

As a first approach, the present work adopted constant model parameters for the 2-step global chemistry
mechanisms. This approach restricts the range of fuel-air ratio to lean mixtures. We plan to extend the
Bayesian inference to model parameters functions of the equivalence ratio in the future. Future calibration
should also incorporate other flame phenomena to provide models capable of handling more complex situ-
ations. The growing need for accurate and error-bounded results in modern combustion simulations turns
this well-grounded methodology into a promising approach to derive the new generation of stochastic global
chemical schemes accounting for posterior uncertainty.
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Appendix A. Model reduction

The original data correspond to Ns = 104 samples of the global feature considered (SL, δT and δHR)
evaluated at Nφ = 51 values of the equivalent ratio covering the range 0.6 ≤ φ < 1. Denoting SL, δT or δHR
by v; we then write vi = (vi1 · · · viNφ)>, for i = 1, . . . , Ns, the feature vector of the samples. Let [V ] be the

matrix gathering the vi:
[V ] = [v1 · · ·vNs ] ∈ RNφ×Ns . (A.1)

To ensure positivity of the final reduced model, we apply the PCA on the data preconditioned by applying
the logarithmic transformation to [V ]. In other words, we seek for the reduced modes of [lnV ] where, in
the present context, the logarithm is understood to apply entry-wise to matrices and vectors; for instance,
([lnV ])i,j = ln ([V ]i,j). We denote [C] ∈ RNφ×Nφ the SSCP (sum-of-squares-and-cross-products) matrix
associated to [lnV ]>,

[C]
.
= [lnV ][lnV ]>. (A.2)
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Clearly, [C] is symmetric and non negative. Let (λk, lk)1≤k≤Nφ be the normalized eigen-pairs of [C] satisfying

[C]lk = λklk, l>k lk′ = δk,k′ . (A.3)

The eigenvalues being real and non-negative, they can be sorted by decreasing value, λ1 ≥ · · · ≥ λNφ ≥ 0,
and we can set Nred the smallest positive integer such that

k=Nred∑
k=1

λk ≥ (1− ε)
k=Nφ∑
k=1

λk, (A.4)

for some positive ε� 1. In the present work we used ε = 10−6, leading a negligible reduction error, and an
adequate reduced representation of the original feature vectors vi. The reduced basis is expressed as

[L] = [l1 · · · lNred ] ∈ RNφ×Nred . (A.5)

The vector ai of the reduced coordinates associated to the i-th sample of the feature vector is obtained by
projecting lnvi onto the reduced basis [L]:

ai
.
= [L]> lnvi.

The previous expression readily extends to the case of the random feature vector v(ξ) to obtain the random
reduced coordinated a(ξ) = [L]> lnv(ξ), leading to the reduced approximation

v(ξ) ≈ exp [[L]a(ξ)] . (A.6)

The reduced modes of the ensemble of samples are shown in Fig. A.20 for the 3 features considered in
this work. Three to four reduced modes are needed to satisfy the error criterion in (A.4).

(a) (b) (c)

Figure A.20: Dominant reduced modes for the flame velocity (a), thermal flame thickness (b), and reaction zone thickness (c).
The reduction uses Ns = 104 samples of the feature vectors corresponding to a QMC sample set of the prior global model.

Appendix B. Polynomial chaos expansion

To construct the surrogates of the global features, it remains to approximate the dependences on ξ of the
reduced coordinates a(ξ). To this end we introduce a PC basis of orthonornal random polynomials Ψα(ξ).
The PC polynomials are orthonormal in the sense that

E [ΨαΨα′ ]
.
=

∫
Ψα(ξ)Ψα′(ξ)p(ξ)dξ = δα,α′ ,

where p(ξ) is the probability density function of the canonical random variables. The latter being inde-
pendent standard Gaussian or uniformly distributed random variables, the random polynomials Ψα are the
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product of univariate Hermite (Gaussian) and Legendre (uniform) polynomials. With these notations, and
assuming the reduced coordinates a(ξ) are second order random variables, they can be expanded as

a(ξ) =

α=∞∑
α=1

aαΨ(ξ).

In practice, the PC expansion of a must be truncated. In this work, we classically use the total degree
truncation, fixing an expansion order No. The truncation results in the truncated approximation,

a(ξ) ≈
α=Npol∑
α=1

aαΨ(ξ), (B.1)

with PC coefficients aα to be estimated. Several approach are available for the estimation of the PC
coefficients; in the present work we found suitable to apply a classical least squares minimization problem
derived as follows. The projection error, expressed as

∆2(a1, · · · ,aNpol)
.
= E


∥∥∥∥∥∥a(ξ)−

α=Npol∑
α=1

aαΨ(ξ)

∥∥∥∥∥∥
2
 , (B.2)

is substituted with the samples average:

∆̃2(a1, · · · ,aNpol)
.
=

i=Ns∑
i=1

∥∥∥∥∥∥a(ξi)−
α=Npol∑
α=1

aαΨ(ξi)

∥∥∥∥∥∥
2

. (B.3)

The minimization of this sum of squared residual is straightforward, recognizing that the determination of
the minimization over the different reduced coordinates separates. Therefore, the minimization requires the
inversion of a single Npol ×Npol symmetric matrix [Z]>[Z], where [Z] is the matrix of regressors (PC basis
polynomials evaluated at the sample points)

[Z]i,α
.
= Ψα(ξi).

For 1 ≤ l ≤ Nred, the minimization problem for the PC coefficients of al(ξ) writes

[Z]>[Z](al,1 · · · al,Npol)> = [Z]>(a1
l · · · a

Ns
l )>.

We also remark that the matrix Z is the same for all the global features, since they rely on the same sample
points.

Once the PC coefficients aα = (a1,α · · · aNred,α)> of the reduced coordinates are determined, the surrogate
of the feature vector is finally given by

v(ξ) ≈ vPC(ξ)
.
= exp

[L]

α=Npol∑
α=1

aαΨα(ξ)

 , (B.4)

where the exponential operator is understood to apply componentwise to vectors.

Appendix C. Markov chain Monte-Carlo (MCMC)

Let v ∈ RNφ be the true feature vector and vobs its observation. We assume that the observation error
εobs = v − vobs is a centred Gaussian vector with covariance matrix Σ2

ε . Following this assumption, the
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likelihood of the observations εobs for a given value of the canonical variables ξ is a multivariate normal
distribution:

L
(
vobs|ξ

)
=

1√
(2π)Nφ |Σ2

ε |
exp

[
−1

2

(
v (ξ)− vobs

)T (
Σ2
ε

)−1 (
v (ξ)− vobs

)]
. (C.1)

Assuming further that the observation errors are independent and identically distributed, Σ = σ2
ε [I], with

[I] the identity matrix, and substituting v(ξ) with its PC approximation vPC(ξ) in (B.4), the likelihood
function becomes

L
(
vobs|ξ

)
≈ 1

(2πσ2
ε )Nφ/2

exp

(
−
∥∥(vPC (ξ)− vobs

)∥∥2

2σ2
ε

)
. (C.2)

Denoting πξ(ξ) the prior density of ξ, the posterior distribution p (ξ|vobs) is given by the Bayes’ theorem

p
(
ξ|vobs

)
=
L
(
vobs|ξ

)
πξ (ξ)

p(vobs)
, (C.3)

where the evidence p(vobs) is fixed to ensure that the posterior density integrates to one. In practice, the
product of the likelihood and prior of ξ can be easily evaluated relying on the PC surrogate of v(ξ). In
the rest of this section, we denote p∗(ξ) = L

(
vobs|ξ

)
πξ (ξ) and observe that p∗(ξ) is equal to the posterior

density up to a multiplicative constant (the evidence).
To draw samples of ξ from its posterior (C.3), we rely on the Metropolis-Hastings method. This method

generates a Markov chain of successive steps ξk from the following algorithm:

1. Set k = 0 and draw at random the current state ξk from pξ(ξ).

2. Draw at random ξ′ from the transition density t (ξ|ξk).

3. Set r =
p∗(ξ′)t(ξk|ξ)

p∗(ξk)t(ξ′|ξk) .

4. Draw α uniformly in (0, 1).

5. If α < r set ξk+1 = ξ′ otherwise ξk+1 = ξk.

6. Increment k and repeat from step 2.

Under mild conditions concerning, in particular, the transition density t(ξ′|ξ), it can be shown that ξk ∼
p(ξ|vobs) as k →∞. In this work, we consider reversible Gaussian transition densities such that

ξ′ ∼ N (ξk, Σ
2
t ).

The covariance of the transition, Σ2
t is crucial to generate chains with minimal correlation between successive

steps (good mixing properties). To this end we relied on the classical adaptive procedure where Σ2
t is a

scaled version of the posterior covariance, which is estimated iteratively before running the chain. Also, the
steps ξk are considered samples of posterior only after the chain has been run long enough (i.e., k large
enough) such that the starting point has no influence on the samples generated. Note that because of the
reversible transition density, the ratio r in the third line of the algorithm reduces to the ratio between the
densities at the proposed and current states of the chain. Therefore, the method can be applied on p∗

without having to estimate the evidence.

References

References

[1] M. J. Evans, P. R. Medwell, Z. F. Tian, A. Frassoldati, A. Cuoci, A. Stagni, Ignition characteristics in spatially zero-,
one-and two-dimensional laminar ethylene flames, AIAA Journal 54 (2016) 3255–3264.

[2] T. Lu, C. K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Progress in Energy and
Combustion Science 35 (2009) 192–215.

[3] J. H. Chen, Petascale direct numerical simulation of turbulent combustion—fundamental insights towards predictive
models, Proceedings of the Combustion Institute 33 (2011) 99–123.

24



[4] A. Felden, P. Pepiot, L. Esclapez, E. Riber, B. Cuenot, Including analytically reduced chemistry (ARC) in CFD applica-
tions, Acta Astronautica 158 (2019) 444–459.

[5] B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier, N. Darabiha, et al., Modelling non-adiabatic partially
premixed flames using flame-prolongation of ildm, Combustion Theory and Modelling 7 (2003) 449–470.

[6] P. S. Volpiani, T. Schmitt, D. Veynante, Large eddy simulation of a turbulent swirling premixed flame coupling the tfles
model with a dynamic wrinkling formulation, Combustion and Flame 180 (2017) 124–135.

[7] T. Steinbacher, A. Albayrak, A. Ghani, W. Polifke, Response of premixed flames to irrotational and vortical velocity fields
generated by acoustic perturbations, Proceedings of the Combustion Institute 37 (2019) 5367–5375.

[8] C. Turquand d’Auzay, V. Papapostolou, S. Ahmed, N. Chakraborty, Effects of turbulence intensity and biogas composition
on the localized forced ignition of turbulent mixing layers, Combustion Science and Technology 191 (2019) 868–897.

[9] T. Steinbacher, A. Albayrak, A. Ghani, W. Polifke, Consequences of flame geometry for the acoustic response of premixed
flames, Combustion and Flame 199 (2019) 411–428.

[10] C. K. Westbrook, F. L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combustion
science and technology 27 (1981) 31–43.

[11] S. Li, F. Williams, K. Gebert, A simplified, fundamentally based method for calculating NOx emissions in lean premixed
combustors, Combustion and flame 119 (1999) 367–373.
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