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MODELING THE DYNAMICS OF WOLBACHIA-INFECTED AND

UNINFECTED AEDES AEGYPTI POPULATIONS BY DELAY DIFFERENTIAL

EQUATIONS

A. S. Benedito1, C. P. Ferreira1 and M. Adimy2

Abstract. Starting from an age structured partial differential model, constructed taking into account
the mosquito life cycle and the main features of the Wolbachia-infection, we derived a delay differential
model using the method of characteristics, to study the colonization and persistence of the Wolbachia-
transinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population
is already established. Under some conditions, the model can be reduced to a Nicholson-type delay
differential system; here, the delay represents the duration of mosquito immature phase that comprises
egg, larva and pupa. In addition to mortality and oviposition rates characteristic of the life cycle of
the mosquito, other biological features such as cytoplasmic incompatibility, bacterial inheritance, and
deviation on sex ratio are considered in the model. The model presents three equilibriums: the extinc-
tion of both populations, the extinction of Wolbachia-infected population and persistence of uninfected
one, and the coexistence. The conditions of existence for each equilibrium are obtained analytically
and have been interpreted biologically. It is shown that the increase of the delay can promote, through
Hopf bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the
delay increases and crosses predetermined thresholds, the populations go to extinction.

Mathematics Subject Classification. 34K13, 34K18, 34K20, 34K21, 92D25, 92D40.
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Introduction

Aedes aegypti is a widespread human blood-feeding mosquito responsible for the transmission of several
arboviruses including Dengue, Yellow fever, Zika, Murray Valley, La Crosse, Chikungunya and Rift Valley fever.
For most of these diseases an efficient vaccine is not available and the reduction of mosquito population still
be the only way to prevent epidemics [17]. The traditional approach to diminishing the mosquito population
includes the reduction of breeding sites and the use of larvicides and pesticides for adults. In general, mechanical
control and the application of larvicides are carried out before the period favorable to the proliferation of
mosquitoes, while pesticides for adults are applied during epidemics when the number of infected humans is
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high [41]. Environmentally-friendly techniques include the use of sterile males (SIT) [8, 16] and Wolbachia-
infected mosquitoes [7, 15]. While the first one focus on the reduction of mosquito population to halt disease
transmission, the second one aims to replace the wild population for an infected one that is not able to transmit
the virus. Both require the release of a large number of mosquitoes, hence a combination between traditional
and new technologies are encouraged [33].

The intracellular bacteria of the genus Wolbachia manipulates host reproductive systems to increase its
transmission by inducing parthenogenesis, feminization, male-killing or cytoplasmic incompatibility (CI) [2,
37]. Additionally, the bacteria is transmitted vertically from mother to its offspring. Put together, these
characteristics confer a fitness advantage over uninfected population that can drive the Wolbachia-infected
population to fixation [20, 24]. The same is not true for the SIT, since the mating with sterile mosquitoes does
not produce viable offspring; they must therefore be introduced periodically.

In field, the Wolbachia strains that have been used in releases come from Drosophila melanogaster, wMel
and wMelPop, and from Aedes albipicus, wAlbB. Artificial infections with new strains of bacteria still be
done in laboratory in order to increase technique factibility. This is because recent research has shown that
biotics and abiotics factors can influence Wolbachia densities and its distribution in mosquito tissue, and if the
thresholds related to heritability and cytoplasmic incompatibility cannot be achieved the technique efficacy is
lost [9, 35, 37]. The thermal sensitivity of Wolbachia-infection is variable and can differ considerably between
host species and strains. High temperatures might reduce its density in hosts, weaken the reproductive effects
induced by Wolbachia-infection and even eradicate Wolbachia completely. In Ae. aegypti, the wAlbB infection
type is more stable than wMel and wMelPop at high temperatures [35].

Moreover, for poikilothermic species such as the Aedes aegypti mosquito, the body temperature depends on
external factors and has strong effects over its entomological parameters and behavior. The lower and upper
developmental threshold are 16◦C and 34◦C, being the development time shorter at higher temperatures [34].
Also, the survival of immatures and adults may be negatively influenced by large diurnal temperature range
since their mortality rates present U-shaped forms [42]. The oviposition rate in turn increases quasi-linearly with
temperature increasing [42]. Both flight activity and mating rate were detected to increase with temperature
ranging from 18◦C to 31◦C [11]. Moreover, it was found that the length of the gonotrophic cycle was reduced
with increasing mean temperatures. Besides, wing beat frequency, blood-feeding, biting activity, host seek
among other behavior characters are significantly affected by temperature variation [34].

A lot of mathematical models have been addressing the use of Wolbachia-infected mosquitoes to control
Dengue (and other viruses) transmission, because the presence of the bacteria reduces vector competence
[28, 31, 32]. In [14], a sex-structured model taking into account cytoplasmic incompatibility, male killing,
incomplete maternal transmission, and different mortality rates for uninfected/infected population was devel-
oped. The boundedness of population was provided by considering competition among females for nesting
places which give an upper limit for egg-laying rate. The ordinary differential model was studied analytically,
and it was shown that the steady state where the Wolbachia-infected individuals dominate the population is
possible when the maternal transmission is complete and cytoplasmic incompatibility is high. Coexistence of
Wolbachia-infected and uninfected mosquito and Wolbachia-free equilibrium are found for a large set of relevant
biological parameters. By considering that density-dependent death rate controls the exponential growth of
populations, [27] showed that only when the initial level of infection (given by the percentage of Wolbachia-
infected population), breaks some critical thresholds that the infection takes off from the population (i.e. the
threshold for invasion is achieved). In [31], the aquatic stage was also included and population boundedness
was guaranteed by considering a logistic carrying capacity on this phase. It was shown that Wolbachia-infected
mosquitoes always dominate the population provided they persist. The same approach was done in [29] and the
existence of a minimum infection frequency above which Wolbachia could spread into the whole population of
mosquitoes was explored. All of these mathematical models used ordinary differential equations to model the
temporal dynamics of the mosquito population.

In turn, partial differential equations (PDE) are much less explored. Some studies such as [19, 21] present
reaction-diffusion models for the Wolbachia-infected and uninfected populations. They concluded that there is
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no spatial influence on the stability criteria for the steady states. Moreover, [21] focused on determining the
threshold for invasion of the wild population by the Wolbachia-infected one. Further, [13] compares the stability
results of the equilibriums obtained for an age-structured (PDE) with the one of an unstructured (ODE) model.
For simplicity, two asexual population were considered, uninfected and Wolbachia-infected one.

Finally, rarer is the use of delay differential equations (DDE) for such problem. In [22], a DDE phase-
structured model (larva and adult populations) evaluated the suppression of the wild population of Aedes
mosquitoes by releasing a continuous constant number of Wolbachia-infected male. This is modeled by changing
the growing rate of the population. The model considered two delays, one representing the average time from
adult emergence to the hatching of the first larval stage (which determines larva population growth), and the
other the average time from the first larval stage to adult emergence (which models adult population growth).
Also, a strong density-dependent death rate was considered in the larval stage. They concluded that the delays
do not impact population suppression. A modification of this model was proposed in [23] to compare two
opposite phenomena which are the decrease on mating competitiveness of the released males relative to the wild
males and the fitness advantage given by the cytoplasmic incompatibility probability to the Wolbachia-infected
population over the wild one. The model considers only adult population and the delay gives the contribution
of the last generation to the growth of the new population. They showed that CI plays a more important role
in the suppression of Aedes population.

Here, starting from an age structured PDE model that considers the mosquito entomological parameters
and also biological features associated to Wolbachia infection, a new two-population DDE model is obtained
and carefully assessed. Analytical results such as positiveness, boundedness, and uniqueness of solutions are
provided. Thresholds for existence and stability of the steady states were obtained and interpreted in the context
of population fitness. The role played by the delay on the insect temporal dynamics can help to understanding
the effect of changing on abiotic factors such as the temperature on the long-run behavior of this population.
The model appears for the first time in [15] where numerical results concerning population dynamics were
obtained.

1. Age structured partial differential model

Let w and u be Wolbachia-infected and uninfected mosquito status. We denote fj := fj(t, a), with j ∈ {w, u}
the female population density of mosquito, a ∈ [0, τ) the physiological age of the immature phase including egg,
larva and pupa, a ≥ τ the physiological age of the mature phase (fertile adults), t the calendar time, µw and
µu the adult mortality rates, and µ the immature mortality rate. We assume that the parameters τ and µ are
the same for infected and uninfected mosquitoes [31]. The temporal evolution of mosquito population satisfies
the following age-structured Lotka-McKendrick system

∂fj
∂t

+
∂fj
∂a

= −κj(a)fj , j ∈ {w, u}, (1)

where

κj(a) =

{
µ, a ∈ [0, τ),

µj , a ≥ τ.

The Wolbachia bacteria is transmitted from mother to its offspring with probability ξw ∈ (0, 1). Thus, with
probability

ξu := 1− ξw (2)

an infected female can produce uninfected offspring. The mating probability between an uninfected female
and an infected male is denoted by ν ∈ (0, 1) and the probability of cytoplasmic incompatibility occurrence is
q ∈ (0, 1). This means that the fraction of matings between uninfected females and infected males that produce
viable eggs is given by 1−qν. The average birth rates are φw > 0, φu > 0 with the average percentage of female



4 TITLE WILL BE SET BY THE PUBLISHER

births rw, ru ∈ (0, 1). We denote by

Fj(t) =

∫ +∞

τ

fj(t, a)da, j ∈ {w, u}, (3)

the total population of infected and uninfected adult females, respectively. Therefore, the newborn individuals
introduced into the population are given at a = 0 by

fw(t, 0) = ξwrwφwFw(t)G (Fw(t), Fu(t)) ,

fu(t, 0) = [(1− qν)ruφuFu(t) + ξurwφwFw(t)]G (Fw(t), Fu(t)) ,
(4)

where G(X,Y ) = e−α(EwX+EuY )η measures competition among individuals. More precisely, to take into account
the competition between mosquitoes for oviposition sites, the number of eggs per female is multiplied by the
density-dependent factor G (Fw(t), Fu(t)). The parameters α > 0 and η > 0 are, respectively, the environmental
carrying capacity and the measurement of how rapidly it is achieved [12]. The parameters Ew and Eu take
into account the different behaviors between infected and uninfected females. In addition, the populations are
assumed to satisfy

lim
a→+∞

fj(t, a) = 0, j ∈ {w, u}, t > 0. (5)

The initial age-distribution fj(0, a), j ∈ {w, u}, is assumed to be known. Finally, as we are assuming that the
mating between male and female is given by a constant parameter ν, we do not need to explicitly model the
male population, and we will omit it from the analysis.

2. Reduction to a delay differential system

Henceforth, we reduce the system (1)-(5) to delay differential equations. We denote by

F ij (t) =

∫ τ

0

fj(t, a)da, j ∈ {w, u}, (6)

the total population of immature females, Wolbachia-infected and uninfected, respectively. By integrating the
system (1) over the age variable from 0 to τ and from τ to +∞, respectively, we get for j ∈ {w, u},

d

dt
F ij (t) = −µF ij (t) + fj(t, 0)− fj(t, τ),

d

dt
Fj(t) = −µjFj(t) + fj(t, τ),

where Fj is given by (3) and F ij by (6). On the other hand, the method of characteristics (see [36]) implies that

fj(t, τ) =

{
fj(0, τ − t)e−µt, 0 ≤ t ≤ τ,

fj(t− τ, 0)e−µτ , t > τ.

As we are interested on the asymptotic behavior of the population, we can assume that t is large enough such
that t > τ . Then,

fj(t, τ) = fj(t− τ, 0)e−µτ , j ∈ {w, u}.
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By adding the boundary conditions (4), we get the following delay differential system

d

dt
F iw(t) = −µF iw(t) + ξwrwφwFw(t)G (Fw(t), Fu(t))

−e−µτξwrwφwFw(t− τ)G (Fw(t− τ), Fu(t− τ)) ,

d

dt
Fw(t) = −µwFw(t) + e−µτξwrwφwG (Fw(t− τ), Fu(t− τ))Fw(t− τ),

d

dt
F iu(t) = −µF iu(t) + [(1− qν)ruφuFu(t) + (1− ξ)rwφwFw(t)]

×G (Fw(t), Fu(t))

−e−µτ [(1− qν)ruφuFu(t− τ) + ξurwφwFw(t− τ)]

×G (Fw(t− τ), Fu(t− τ)) ,

d

dt
Fu(t) = −µuFu(t) + e−µτ [(1− qν)ruφuFu(t− τ) + ξurwφwFw(t− τ)]

×G (Fw(t− τ), Fu(t− τ)) ,

where F ij , Fj , j ∈ {w, u}, are the total population of immature and adult females, Wolbachia-infected and
uninfected, respectively. We can see that the equations of mature population Fj are independent on the
equations of immature one F ij . Then, we will omit the system of F ij and concentrate only on Fj . Remembering
that the nonlinear function G is given by

G(X,Y ) = e−α(EwX+EuY )η ,

we carry out the transformations

w(t) := α
1
ηEwFw(t), u(t) := α

1
ηEuFu(t),

and we define the new parameters

Pw := ξwrwφw, Pu := (1− qν)ruφu and Pwu := ξurwφw; (7)

respectively, the number of infected eggs per time per infected individual that will hatch, the number of unin-
fected eggs per time per uninfected individual that will hatch, and the number of uninfected eggs per time per
infected individual that will hatch.

Then, the model can be reduced, for t > τ , to
d

dt
w(t) = −µww(t) + e−µτPww(t− τ)e−(w(t−τ)+u(t−τ))η ,

d

dt
u(t) = −µuu(t) + e−µτ [Puu(t− τ) + Pwuw(t− τ)] e−(w(t−τ)+u(t−τ))η ,

(8)

with initial conditions given by

(w(t), u(t)) = (Ψ̄w(t), Ψ̄u(t)), t ∈ [0, τ ]. (9)

We make a translation in time so as to define the system (8) on the interval [0,+∞) and the initial conditions
(9) on the interval [−τ, 0].

Remark 2.1. If we consider the case

µw = µu := δ, Pw + Pwu = Pu and η = 1,
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then, we obtain the famous Nicholson’s blowflies equation

N ′(t) = −δN(t) + pN(t− τ)e−N(t−τ), (10)

where N = w + u and p = Pue
−µτ . The equation (10) has been extensively studied in the literature [5, 6, 10].

The main results on equation (10) deal with the global attractivity of the positive steady state and the existence
of oscillatory solutions (see [6]).

3. Positivity and boundedness of solutions

The positivity and boundedness of solutions are important in biological models. We first establish an existence
and uniqueness theorem about the positive solution for the nonlinear delay differential system (8)-(9).

Theorem 3.1. For any nonnegative continuous initial function (Ψ̄w, Ψ̄u) on [−τ, 0], there is a unique nonneg-
ative global solution (w, u) of the problem (8)-(9). Furthermore, t 7→ (w(t), u(t)) is such that w(t) > 0, u(t) > 0,
for t ≥ 0 provided that Ψ̄w(t) ≥ 0, Ψ̄u(t) ≥ 0, for all t ∈ [−τ, 0) and Ψ̄w(0) > 0, Ψ̄u(0) > 0.

Proof. It follows from the standard existence theorem [26], that there exists a unique local solution (w, u) of the
problem (8)-(9), defined on an interval [−τ, t0), t0 > 0. By steps, suppose that t ∈ [0, τ ]. Then, t− τ ∈ [−τ, 0],
and using the variation of constants formula for the system (8)-(9), we obtain for t ∈ [0, τ ],

w(t) = Ψ̄w(0)e−µwt + Pwe
−µτe−µwt

∫ t

0

Ψ̄w(s− τ)e−(Ψ̄w(s−τ)+Ψ̄u(s−τ))ηeµwsds (11)

and

u(t) = Ψ̄u(0)e−µut + e−µτe−µut
∫ t

0

[
PuΨ̄u(s− τ) + PwuΨ̄w(s− τ)

]
× e−(Ψ̄w(s−τ)+Ψ̄u(s−τ))ηeµusds.

(12)

Then, for a nonnegative initial condition (Ψ̄w, Ψ̄u) on [−τ, 0], we have a nonnegative solution (w, u) on [0, τ ].
Through the method of steps, we have w(t) ≥ 0, u(t) ≥ 0 on [τ, 2τ ], [2τ, 3τ ], and so on. Thus, w(t) ≥ 0, u(t) ≥ 0
for all t ∈ [0, t0). We suppose by contradiction that (w, u) exists only on an interval [−τ, t0) with 0 < t0 <∞.
Let

y(t) = w(t) + u(t), t ∈ [−τ, t0).

Then, limt→t−0
y(t) = +∞. We define the constantM = e−µτ max{Pu, Pw+Pwu} and the function g(x) = xe−x

η

.

We have

max
x≥0

g(x) = g

((
1

η

) 1
η

)
=

(
1

ηe

) 1
η

.

Then, from the system (8), we can write the following estimation

d

dt
y(t) = − µww(t)− µuu(t)

+ e−µτ [Puu(t− τ) + (Pw + Pwu)w(t− τ)] e−(w(t−τ)+u(t−τ))η ,

≤ −min{µw, µu}y(t) +M

(
1

ηe

) 1
η

.

Hence, y is bounded on the interval [−τ, t0). This gives a contradiction and proves that the problem (8)-(9) has
a global solution on the interval [−τ,+∞). Now, we assume that Ψ̄w, Ψ̄u ≥ 0 on [−τ, 0) and Ψ̄w(0), Ψ̄u(0) > 0.
Using the variation of constants formulas (11)-(12), we get w(t), u(t) > 0, for all t ∈ [0, τ ]. By steps, we prove
that w(t), u(t) > 0, for all t ≥ 0. �
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Proposition 3.2. The solution (w, u) of the system (8)-(9) is bounded on the interval [0,+∞), with

lim sup
t→+∞

w(t) ≤ Pwe
−µτ

µw

(
1

ηe

) 1
η

, lim sup
t→+∞

u(t) ≤ (Pu + Pwu)e−µτ

µu

(
1

ηe

) 1
η

.

Proof. Let f(x) = Pwe
−µτg(x), for x ≥ 0. We have

max
x≥0

f(x) = Pwe
−µτg

((
1

η

) 1
η

)
= Pwe

−µτ
(

1

ηe

) 1
η

.

Then, from (8) we obtain

d

dt
w(t) ≤ −µww(t) + Pwe

−µτw(t− τ)e−w(t−τ)η ≤ −µww(t) + Pwe
−µτ

(
1

ηe

) 1
η

.

The last inequality implies that

w(t) ≤ Pwe
−µτ

µw

(
1

ηe

) 1
η [

1− e−µwt
]

+ e−µwtw(0).

Then,

lim sup
t→+∞

w(t) ≤ Pwe
−µτ

µw

(
1

ηe

) 1
η

.

This completes the proof of the boundedness of w(t).
By using the same argument, we can write

d

dt
u(t) ≤ −µuu(t) + (Pu + Pwu)e−µτ

(
1

ηe

) 1
η

.

This implies that

u(t) ≤ (Pu + Pwu)e−µτ

µu

(
1

ηe

) 1
η [

1− e−µut
]

+ e−µutu(0).

Then, we conclude that

lim sup
t→+∞

u(t) ≤ (Pu + Pwu)e−µτ

µu

(
1

ηe

) 1
η

.

�

4. Existence of steady states

Let (w∗, u∗) be a steady state of the system (8). Then,{
Pwe

−µτw∗e−(w∗+u∗)η − µww∗ = 0,

(Puu
∗ + Pwuw

∗) e−µτe−(w∗+u∗)η − µuu∗ = 0.
(13)
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Defining

δw :=
Pw
µw

=
ξwrwφw
µw

, δu :=
Pu
µu

=
(1− qν)ruφu

µu
(14)

and

δwu :=
Pwu
µu

=
ξurwφw
µu

, (15)

the system (13) can be rewritten as{
δwe
−µτw∗e−(w∗+u∗)η − w∗ = 0,

(δuu
∗ + δwuw

∗) e−µτe−(w∗+u∗)η − u∗ = 0,

and we obtain three solutions S0, Su and Swu of this system:

(i) Extinction of both populations (trivial equilibrium)

S0 = (0, 0); (16)

(ii) Extinction of infected population and persistence of uninfected one

Su =
(

0, (lnRu)
1
η

)
, with Ru = δue

−µτ ; (17)

(iii) Persistence of both populations (coexistence of infected and uninfected mosquitoes)

Swu =
(

(lnRw)
1
η (1− βwu), (lnRw)

1
η βwu

)
,

with Rw = δwe
−µτ and βwu =

δwu
δw − δu + δwu

.
(18)

By examining the components of the steady states, we can deduce the following existence conditions.

Proposition 4.1. (a) S0 always exists;
(b) Su exists if and only if Ru > 1;
(c) Swu exists if and only if Rw > max{1, Ru}.

In terms of the original parameters, we have

Rw =
ξwrwφw
µw

e−µτ and Ru =
(1− qν)ruφu

µu
e−µτ .

The two dimensionless parameters Rw and Ru are, respectively, the mean number of female infected offspring
produced by a Wolbachia-infected female mosquito during her whole life, and the mean number of female
uninfected offspring produced by an uninfected female mosquito during her whole life.

As we are interested on the relationship between temperature variation (that affects strongly the maturation
time τ) and population dynamics of both Wolbachia-infected and uninfected mosquitoes, we have to study the
existence of the steady states in terms of the delay τ . We consider the following thresholds of the maturation
time

τj =
1

µ
ln (δj) , j ∈ {w, u}. (19)

In fact, τj ∈ R and we have:

(1) τj ≥ 0 if and only if δj ≥ 1, and
(2) τj < 0 if and only if 0 < δj < 1.

In terms of the delay, we obtain the following result.
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Proposition 4.2. (1) Su exists if and only if

0 ≤ τ < τu.

(2) Swu exists if and only if
0 ≤ τ < τw and τu < τw.

We remark that the steady states Su and Swu exist in the same time if and only if

0 ≤ τ < τu and τu < τw.

In summary, we can distinguish four situations.

Proposition 4.3. (i) Assume that 0 < δu ≤ 1 and 0 < δw ≤ 1 (which is equivalent to τu ≤ 0 and τw ≤ 0).
Then, for all τ ≥ 0, S0 is the only steady state.

(ii) Assume that τu > 0 and τw ≤ τu. Then,
(a) if 0 ≤ τ < τu, there are two steady states S0 and Su, with

lim
τ→τu

Su = S0;

(b) if τ ≥ τu, S0 is the only steady state.
(iii) Assume that τu ≤ 0 < τw, τu ≤ 0 means 0 < δu ≤ 1. Then,

(a) if 0 ≤ τ < τw, there are two steady states S0 and Swu, with

lim
τ→τw

Swu = S0;

(b) if τ ≥ τw, S0 is the only steady state.
(iv) Assume that 0 < τu < τw. Then,

(a) if 0 ≤ τ < τu, there are three steady states S0, Su and Swu, with

lim
τ→τu

Su = S0;

(b) if τu ≤ τ < τw, there are two steady states S0 and Swu, with

lim
τ→τw

Swu = S0;

(c) if τ ≥ τw, S0 is the only steady state.

Figure 1 summarizes the results obtained in Proposition 4.3. The different scenarios correspond to the three
parameter sets shown in Table 1. For each τ the corresponding steady state was obtained from (17) or (18).
The panel (a) corresponds to case (ii), the panel (b) to case (iii), and the panel (c) to case (iv).

5. Stability analysis of the steady states

5.1. Local asymptotic stability of the trivial steady state S0

We conclude from the four scenarios of Proposition 4.3, that the trivial steady state is the only equilibrium
if and only if

τ > max{0, τu, τw}. (20)

We prove in Theorem 5.2 that the local asymptotic stability of the trivial steady state S0 is given by the
condition (20). We will need the following useful lemma.
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Figure 1. Components X and Y of the steady states Sj = (X,Y ), with j = {0,u,wu} versus
the delay τ . The parameter sets used in the simulations are given in Table 1, and in all cases
η = 3.0. In (a), we plotted case (ii) in which τu > 0 and τw ≤ τu. Then, if 0 ≤ τ < τu, there are
two steady states S0 and Su, and if τ ≥ τu, S0 is the only steady state. In (b), we plotted case
(iii) in which τu ≤ 0 < τw. Then, if 0 ≤ τ < τw there are two steady states S0 and Swu, and if
τ ≥ τw, S0 is the only steady state. In (c), we plotted case (iv) in which 0 < τu < τw. Then, if
0 ≤ τ < τu, there are three steady states S0, Su and Swu, if τu ≤ τ < τw, there are two steady
states S0 and Swu, and if τ ≥ τw, S0 is the only steady state. In all panels S0 component Y
appears as a dotted line, Su component Y appears as a solid, and Swu component X and Y
appear, respectively, as a dot-dashed and dashed line.

Table 1. Parameters sets used in all Figures [1, 3, 30, 31, 38, 39, 40, 43].

Parameter
Value

Range [units]
case (ii) case (iii) case (iv)

q 0.3 0.8 0.7 (0,1)
ν 0.3 0.8 0.7 [0,1]
φu 3.0 1.25 1.25 (0.35,11.2) [per day per female]
φw 2.1φu 2.1φu 2.1φu (0.10,11.0) [per day per female]
ru 0.5 0.5 0.5 (0,1)
rw 0.5 0.5 0.5 (0,1)
µu 1/14 1/4 1/14 (1/4,1/37) [per day]
µw 1/7 1/7 1/7 (1/4,1/32) [per day]
µ 1/7.78 1/7.78 1/7.78 (1/7.5,1/30) [per day]
ξw 0.8 0.5 0.8 (0,1]

ξu 0.2 0.5 0.2 calculated by (2)
Pu 1.37 0.22 0.32 calculated by (7) [number of eggs per day per female]
Pw 2.52 0.65 1.05 calculated by (7) [number of eggs per day per female]
Pwu 0.63 0.65 0.26 calculated by (7) [number of eggs per day per female]
δu 19.11 0.9 4.46 calculated by (14) [number of eggs per female]
δw 17.64 4.59 7.35 calculated by (14) [number of eggs per female]
δwu 8.82 2.63 3.67 calculated by (14) [number of eggs per female]
βwu 1.2 0.41 0.56 calculated by (18)
τu 22.95 -0.81 11.64 calculated by (19) [days]
τw 22.33 11.86 15.52 calculated by (19)[days]
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Lemma 5.1. [Theorem A.5 in [26], p. 416, see also [18]] All roots of the algebraic equation

λ+ a+ be−λτ = 0,

have negative real parts if and only if

(i) aτ > −1,

(ii) a+ b > 0,

(iii) b < ζ sin ζ − aτ cos ζ, where ζ is the root of

ζ =

{
−aτ tan ζ, 0 < ζ < π, a 6= 0,

π/2, a = 0.

Theorem 5.2. (1) If (20) is satisfied, then the trivial steady state S0 is locally asymptotically stable.
(2) If (20) is not satisfied, then the trivial steady state S0 is unstable.

Proof. We linearize the system (8) around S0. Then, we obtain
d

dt
x(t) = −µwx(t) + e−µτPwx(t− τ),

d

dt
y(t) = −µuy(t) + e−µτPwux(t− τ) + e−µτPuy(t− τ).

The corresponding characteristic equation is given by

det
(
λI −A−Be−λτ

)
= 0,

with

A =

(
−µw 0

0 −µu

)
and B = e−µτ

(
Pw 0
Pwu Pu

)
and I the 2× 2 identity matrix. Therefore,(

λ+ µw − Pwe−µτe−λτ
) (
λ+ µu − Pue−µτe−λτ

)
= 0. (21)

The objective is to find conditions such that the solutions of (21) have negative real parts. We have to analyze
separately the solutions of each factor of the product given by (21). For the equation

λ+ µj − Pje−µτe−λτ = 0, j ∈ {u,w},

the statement (i) aτ = µjτ > −1 of Lemma 5.1, is always satisfied. On the other hand, the condition (ii)
a+ b = µj − Pje−µτ > 0 of Lemma 5.1, is equivalent to

τ > τj :=
1

µ
ln (δj) , j ∈ {u,w}.

For the statement (iii) of Lemma 5.1, as a 6= 0, we remark that the condition 0 < ζ < π, implies that sin ζ > 0.
Then, the relation ζ = −µjτ tan ζ means that cos ζ < 0. Thus, π/2 < ζ < π. Consequently, the statement (iii)
is always satisfied for τ > 0. We conclude that the conditions (i)-(iii) of Lemma 5.1, can be summed up in

τ > max{0, τu, τw}.

This conclude the proof of Theorem 5.2. �
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5.2. Global asymptotic stability of the trivial steady state S0

Let’s write the nonlinear system (8) in the following general form
dx

dt
= Ax(t) + F (x(t− τ)), t > 0,

x(t) = φ(t), t ∈ [−τ, 0] ,

(22)

where

A =

[
−µw 0

0 −µu

]
, x(t) =

[
w(t)
u(t)

]
, F (y) =

[
f1(y1, y2)
f1(y1, y2)

]
,

with {
f1(y1, y2) = Pwe

−µτy1e
−(y1+y2)η ,

f2(y1, y2) = (Puy2 + Pwuy1) e−µτe−(y1+y2)η .

To prove our result (Theorem 5.4) on the global asymptotic stability of the trivial steady state, we use the
following lemma.

Lemma 5.3. ([6, 25]). Suppose that there exists γ > 0 such that, for all y ∈ R2
+,

‖F (y)‖ ≤ γ‖y‖ and γ < −θ(A),

where ‖.‖ is a norm in R2 and θ(A) is the matrix measure of A,

θ(A) = lim
ε→0+

‖I + εA‖ − 1

ε
.

Then, the trivial equilibrium of (22) is globally asymptotically stable.

Theorem 5.4. Suppose that

τ >
1

µ
ln

(
max{Pw, Pu + Pwu}

min{µw, µu}

)
.

Then, the trivial steady state S0 of the system (8) is globally asymptotically stable.

Proof. We have to find 0 < γ < −θ(A), such that ‖F (y)‖ ≤ γ‖y‖, for all y ∈ R2
+. We choose the norm

‖x‖ = max{|w| , |u|} in R2. Then,

‖F (y)‖ ≤ e−µτ max{Pw, Pu + Pwu}‖y‖ := γ‖y‖.

We also have

θ(A) = lim
ε→0+

‖I + εA‖ − 1

ε
,

= lim
ε→0+

max{1− εµw, 1− εµu} − 1

ε
,

= lim
ε→0+

1− εmin{µu, µw} − 1

ε
,

= −min{µw, µu}.
Finally, provided that

0 < e−µτ max{Pw, Pu + Pwu} < min{µw, µu}, (23)
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Lemma 5.3 guarantees the global asymptotic stability of the trivial steady state S0. In fact, the condition (23)
is equivalent to

τ >
1

µ
ln

(
max{Pw, Pu + Pwu}

min{µw, µu}

)
.

This finishes the proof of the theorem. �

Remark 5.5. It is not difficult to see that the condition

τ >
1

µ
ln

(
max{Pw, Pu + Pwu}

min{µw, µu}

)
implies in particular that

τ > max{0, τu, τw}.
The local asymptotic stability of the other steady states will be analyzed by increasing the delay τ from zero

with the possibility of eigenvalues to cross on the imaginary axis and the appearance of Hopf bifurcation.

5.3. Local asymptotic stability and Hopf bifurcation of Wolbachia-free steady state Su

The Wolbachia-free steady state Su :=
(

0, (lnRu)
1
η

)
, Ru = δue

−µτ , exists only in the scenarios (ii)-(a) and

(iv)-(a) of Proposition 4.3. That is under the condition

0 ≤ τ < τu.

The linearization of the system (8) around the steady state Su is given by
d

dt
x(t) = −µwx(t) +

Pw
δu
x(t− τ),

d

dt
y(t) = −µuy(t) +

Pwu
δu

x(t− τ) +
Pu
δu

(1− η ln (Ru)) y(t− τ).

(24)

Note that Pu = µuδu, Pw = µwδw and Pwu = µuδwu. Then, the characteristic equation associate to (24) is
given by (

λ+ µw − µw
δw
δu
e−λτ

)(
λ+ µu − µu (1− η ln(Ru)) e−λτ

)
= 0. (25)

The roots of the first term of the characteristic equation (see Lemma 5.1),

λ+ µw − µw
δw
δu
e−λτ = 0,

have negative real parts if and only if

(i) µwτ > −1,

(ii) δu > δw,

(iii) −τµw
δw
δu

< ζ sin ζ − µwτ cos ζ, where ζ is the root of

ζ = −µwτ tan ζ, 0 < ζ < π.

The statements (i) and (iii) are always satisfied and the statement (ii) is equivalent to

τu > τw.

Then, we can immediately conclude the following result.
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Proposition 5.6. Suppose that
τu ≤ τw and 0 ≤ τ < τu.

Then, the steady state Su is unstable.

Now suppose that
τu > τw.

Then, the local asymptotic stability of the steady state Su is given by the roots of the second term of the
characteristic equation (25):

λ+ µu − µu (1− η ln(Ru)) e−λτ = 0. (26)

Thanks to Lemma 5.1, the roots of (26) have negative real parts if and only if

(i) µuτ > −1,

(ii) Ru > 1,

(iii) −τµu (1− η ln(Ru)) < ζ sin ζ − τµu cos ζ, where ζ is the root of

ζ = −τµu tan ζ, 0 < ζ < π.

The statement (i) is always satisfied and the statement (ii) is equivalent to the condition that gives the existence
of the steady state Su. Suppose that

η >
1

ln(Ru)
. (27)

Then, the statement (iii) is satisfied and we have the local asymptotic stability of the steady state Su. In fact,
the condition (27) is equivalent to

max

{
0, τu −

1

ηµ

}
< τ < τu. (28)

We directly conclude the following result.

Proposition 5.7. If the condition (28) is satisfied then, the steady state Su is locally asymptotically stable. In
particular, if

η <
1

ln(δu)
,

then, for all 0 ≤ τ < τu, Su is locally asymptotically stable.

Now suppose that

η >
1

ln(δu)
.

This inequality is equivalent to

τu := τu −
1

ηµ
> 0.

We proved that Su is locally asymptotically stable for τu < τ < τu. Suppose that

0 ≤ τ < τu.

When τ = 0, the characteristic equation (26) reads

∆(0, λ) = λ+ µu − µu (1− η ln(δu)) = 0.

It has only one root
λ0 = −µuη ln(δu) ∈ R.

As δu > 1, then λ0 < 0. We conclude that the steady state Su is locally asymptotically stable for τ = 0.
By using a continuity argument, it is straightforward that there exists % ∈ (0, τu), such that Su is locally
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asymptotically stable for τ ∈ [0, %). Consequently, when τ ∈ [0, τu) increases, the stability of Su can only be
lost if characteristic roots cross on the imaginary axis. We look for purely imaginary roots ±iω, ω ∈ R. Remark
that if λ is a characteristic root then its conjugate λ is also a characteristic root. Then, we look for purely
imaginary roots iω with ω > 0. By separating real and imaginary parts in the characteristic equation (26), we
get {

µu(1− η ln(Ru)) cos(τω) = µu,

µu(1− η ln(Ru)) sin(τω) = −ω.
(29)

Adding the squares of both hand sides of the last system and using the fact that cos2(τω) + sin2(τω) = 1, it
follows that

ω2

µ2
u

= η ln(Ru) (η ln(Ru)− 2) .

For the existence of ω > 0, it is necessary to have

0 < τ < τ̃u := τu −
2

ηµ
.

Then, it is immediate to conclude the following result.

Proposition 5.8. If

η <
2

ln(δu)

then, for all 0 ≤ τ < τu, Su is locally asymptotically stable.

Now suppose that

η >
2

ln(δu)

and consider the function $ : [0, τ̃u)→ (0,+∞) defined by

$(τ) = µu
√
η ln(Ru) (η ln(Ru)− 2), for all τ ∈ [0, τ̃u).

In fact, we have

$(τ) = ηµµu
√

(τu − τ) (τ̃u − τ), for all τ ∈ [0, τ̃u). (30)

Then, for each τ ∈ [0, τ̃u), there is a unique solution Θ(τ) ∈ [0, 2π) of the system
cos(Θ(τ)) = − 1

ηµ(τ̃u − τ) + 1
< 0,

sin(Θ(τ)) =
ηµ
√

(τu − τ) (τ̃u − τ)

ηµ(τ̃u − τ) + 1
> 0.

Then, Θ(τ) ∈ (π/2, π) and it is given by

Θ(τ) = arccos

(
− 1

ηµ(τ̃u − τ) + 1

)
. (31)

We conclude that the system (29) is equivalent to find τ ∈ [0, τ̃u) solution of

τ$(τ) = Θ(τ) + 2kπ, k ∈ N,

with $(τ) given by (30) and Θ(τ) by (31). We remark here that in all this study, the set N includes 0. This is
equivalent to solve

Zk(τ) := τ − 1

$(τ)
[Θ(τ) + 2kπ] = 0, k ∈ N, τ ∈ [0, τ̃u).
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More precisely, we have to solve for k ∈ N and τ ∈ [0, τ̃u),

Zk(τ) := τ − 1

ηµµu
√

(τu − τ) (τ̃u − τ)

[
arccos

(
− 1

ηµ(τ̃u − τ) + 1

)
+ 2kπ

]
= 0. (32)

The functions Zk(τ) are given explicitly. However, we cannot determine explicitly their roots. The roots can
be found numerically. The following lemma states some properties of the functions Zk, k ∈ N.

Lemma 5.9. For all k ∈ N and τ ∈ [0, τ̃u),

Zk(0) < 0, Zk+1(τ) < Zk(τ) and lim
τ→τ̃u

Zk(τ) = −∞.

Therefore, provided that no root of Zk is a local extremum, the number of positive roots of Zk, k ∈ N, on the
interval [0, τ̃u) is even.

This lemma implies, in particular, that, if Zk has no root on [0, τ̃u), then no function Zj , with j > k, has
roots on [0, τ̃u). The next proposition is a direct consequence of Lemma 5.9.

Proposition 5.10. If the function Z0 defined on the interval [0, τ̃u), by

Z0(τ) := τ −
arccos

(
− 1

ηµ(τ̃u − τ) + 1

)
ηµµu

√
(τu − τ) (τ̃u − τ)

(33)

has no root, then the steady state Su is locally asymptotically stable for all τ ∈ [0, τ̃u).

We now suppose that Z0, under the condition

η >
2

ln(δu)
,

has at least one positive root on the interval [0, τ̃u). Let τ∗u ∈ (0, τ̃u) be the smallest root of Z0. Then, Su is
locally asymptotically stable for τ ∈ [0, τ∗u), and loses its stability when τ = τ∗u . A finite number of stability
switch may occurs as τ increases and passes through roots of the Zk functions.

Our next objective is to prove that Su can be destabilized through a Hopf bifurcation as τ ∈ [0, τ̃u) in-
creases. We start by proving that if an imaginary characteristic root iω exists then, it is simple. Suppose, by
contradiction, that λ = iω is not a simple characteristic root. Then, λ is a solution of

∆(τ, λ) = 0 and
∂

∂λ
∆(τ, λ) = 0,

where

∆(τ, λ) = λ+ µu − µu (1− η ln(Ru)) e−λτ . (34)

This is equivalent to {
eλτ [λ+ µu] = µu [1− η ln(Ru)] ,

eλτ = −τµu [1− η ln(Ru)] .
(35)

The two equations of the system (35) lead to

(λ+ µu)τ + 1 = 0.

This a contradiction with the fact that λ = iω.
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As τ∗u is the smallest root of Z0 then, from the definition of Z0, the characteristic equation (34) has purely
imaginary roots ±i$(τ∗u), where $ is defined by (30). The stability of the positive steady state switches from
stable to unstable as τ passes through τ∗u . Other stability switch occur when τ passes through roots of the Zk
functions (see [4]).

Now, we rewrite the characteristic equation (34) in the following form

∆(τ, λ) := A(τ, λ) +B(τ)e−λτ = 0.

We define, for λ = iω, the polynomial function

H(τ, ω) := |A(τ, iω)|2 − |B(τ)|2.

Then,

H(τ, ω) = ω2 − η2µ2µ2
u (τu − τ) (τ̃u − τ) .

Let λ(τ) be a branch of roots of (34) such that λ(τ∗u) = i$(τ∗u). The Hopf bifurcation theorem says that a Hopf
bifurcation occurs at Su when τ = τ∗u if

sign

[(
d<(λ(τ))

dτ

)
τ=τ∗

u

]
> 0.

We know from [4] that

sign

[(
d<(λ(τ))

dτ

)
τ=τ∗

u

]
= sign

(
∂h

∂z
(τ∗u , $

2(τ∗u))

)
sign

(
dZ0(τ∗u)

dτ

)
,

with

h(τ, ω2) := H(τ, ω).

That is to say

h(τ, z) = z − η2µ2µ2
u (τu − τ) (τ̃u − τ) .

It is clear that
∂h

∂z
(τ∗u , $

2(τ∗u)) = 1.

It follows

sign

[(
d<(λ(τ))

dτ

)
τ=τ∗

u

]
= sign

(
dZ0(τ∗u)

dτ

)
.

The following proposition states the existence of a Hopf bifurcation at τ = τ∗u that destabilizes the positive
steady state Su.

Proposition 5.11. If Z0(τ) has at least one positive root on the interval (0, τ̃u), then the positive steady state
Su is locally asymptotically stable for τ ∈ [0, τ∗u), where τ∗u is the smallest root of Z0(τ) on (0, τ̃u), and Su loses
its stability when τ = τ∗u . A finite number of stability switch may occur as τ passes through roots of the Zk
functions. Moreover, if

dZ0(τ∗u)

dτ
> 0,

then a Hopf bifurcation occurs at Su for τ = τ∗u .

Figure 2 shows, for two set of parameters, the existence or non-existence of roots for the functions Z0 and
Z1, given by the equation (32). In each case, τ ∈ (0, τ̃u). On the left, we have η = 2.0 and no root for Zk. Then,
the equilibrium Su stays locally asymptotically stable on the interval (0, τ̃u). On the right, we have η = 3.0 and
two roots for Z0 (no root for Z1). A Hopf bifurcation occurs at τ = τ∗u and periodic oscillations around the
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Figure 2. The functions Zk, k = 0, 1, given by the equation (32), versus τ . On the left, we
can see that Z0 and Z1 have no roots. The vertical line shows the right end of Zk domain,
τ̃u = 13.65. On the right, we can see that Z0 has two roots τ∗u = 4.01 and τ+

u = 12.67, and
Z1 has no root. The vertical line shows the right end of Zk domain τ̃u = 15.98. At τ = τ∗u
a Hopf bifurcation occurs and periodic oscillations around the equilibrium are observed until
τ = τ+

u ; outside the interval (τ∗u , τ
+
u ), the equilibrium Su is locally asymptotically stable. In

both panels, we use the parameter set from case (ii) (Table 1). On the left, we set η = 2.0, and
on the right, we set η = 3.0.

equilibrium Su are observed until the threshold τ = τ+
u . The equilibrium Su corresponds to the extinction of

Wolbachia-infected mosquito and the persistence of uninfected one.
For the set of parameters given in the case (ii), Table 1, where the equilibrium Su exists for τ ∈ [0, τu), we

can see in Figure 3, for each value of η, the roots of Z0. For η less than a threshold, ηmin (ηmin ≈ 2), Z0 has no
root which implies that the steady state Su is stable. For η greater than ηmin, Z0 has two roots τ∗u and τ+

u . In
this case, Su looses stability at τ = τ∗u and periodic oscillations can be seen. For τ = τ+

u the stability of Su is
recovered. The equilibrium Su corresponds to the extinction of Wolbachia-infected mosquito and persistence of
uninfected one.

Using the set of parameters from case (ii), Table 1, and η = 3.0, in Figure 4, we can see in the panel (a)
the minimum and the maximum values of the periodic solutions u(t) of the system (8) plotted for τ∗u ≤ τ < τ+

u

(where Su is unstable). This corresponds to the amplitude of u(t) for τ∗u ≤ τ < τ+
u . In the panel (b), we plotted

the period of these periodic oscillations which is an increasing function of τ ∈ (τ∗u , τ
+
u ). Finally in the panel (c),

we can see an example of temporal evolution of the system (8) for η = 3.0 and τ = 10. The component u(t)
oscillates around the steady state and the component w(t) tends to zero with positive damped oscillations.

5.4. Local asymptotic stability of the coexistence steady state Swu

The coexistence steady state

Swu = (w∗, u∗) :=
(

(lnRw)
1
η (1− βwu), (lnRw)

1
η βwu

)
,

with Rw = δwe
−µτ and βwu =

δwu
δw − δu + δwu

, exists only under the condition

τu < τw and 0 ≤ τ < τw.
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Figure 3. η versus τ . The continuous curve provides the roots of Z0(τ) given η (see 33). For
the set of parameters chosen, case (ii) (Table 1), the horizontal dotted line highlights the lower
threshold to have Hopf bifurcation. The domain of Z0 is given by (0, τ̃u) with τ̃u = 17.76. As
an example, the dashed line is set for η = 3.0. For this value of η, the corresponding roots of
Z0 are τ∗u = 3.85 and τ+

u = 14.67. As dZ0(τ∗u)/dτ > 0 a Hopf bifurcation occurs at τ = τ∗u by
Proposition 5.11. At this point, the equilibrium Su looses his stability and periodic oscillations
can be seen until τ+

u . At τ = τ+
u the stability of Su is recovered. This corresponds to the

extinction of Wolbachia-infected mosquito and persistence of uninfected one.
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Figure 4. From the left to the right we have: (a) the minimum and the maximum values
of the component u(t) of the system (8) plotted against τ ∈ (τ∗u , τ

+
u ); (b) the period of the

oscillations of u(t) versus τ ∈ (τ∗u , τ
+
u ); and (c) the temporal evolution of u(t) (solid line) and

w(t) (dot-dash line) given by the system (8) with τ = 10. In all panels, the parameters were
taken from Table 1 case (iv) and η = 3. The thresholds given by τ∗u = 3.85, τ+

u = 14.67,
τ̃u = 17.76 and τu = 22.95 are, respectively, the first and second roots of Z0, the right end of
the domain of the function Z0, and the right end of τ that allows the existence of Su.

The linearization of the system (8) around the steady state Swu is given by
d

dt
x(t) = −µwx(t) + b11x(t− τ) + b12y(t− τ),

d

dt
y(t) = −µuy(t) + b21x(t− τ) + b22y(t− τ),
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with 

b11 = Pwe
−µτe−(w∗+u∗)η

(
1− ηw∗(w∗ + u∗)η−1

)
,

b12 = −ηPwe−µτe−(w∗+u∗)ηw∗(w∗ + u∗)η−1,

b21 = e−µτe−(w∗+u∗)η
(
Pwu − η(Puu

∗ + Pwuw
∗)(w∗ + u∗)η−1

)
,

b22 = e−µτe−(w∗+u∗)η
(
Pu − η(Puu

∗ + Pwuw
∗)(w∗ + u∗)η−1

)
.

When τ = 0, the Jacobian matrix evaluated at Swu is given by

J(Swu) =

−ηµw(1− βwu) ln(δw) −ηµw(1− βwu) ln(δw)

Pwu
δw
− ηµuβwu ln(δw)

Pu
δw
− ηµuβwu ln(δw)− µu

 .
Hence, the eigenvalues λ of J(Swu) satisfy the characteristic equation

λ2 + λ

(
−Pu
δw

+ ηµw(1− βwu) ln(δw) + ηµuβwu ln(δw) + µu

)
+

(
Pwu − Pu

δw
+ µu

)
ηµw(1− βwu) ln(δw) = 0.

Thus, by the Routh-Hurwitz criterion, the steady state Swu is stable when the following conditions are satisfied.
µu

(
1− δu

δw

)
+ ηµw(1− βwu) ln(δw) + ηµuβwu ln(δw) > 0,

ηµuµw

(
δwu + δw − δu

δw

)
(1− βwu) ln(δw) > 0.

Remember that the condition for the existence of Swu for τ = 0, is given by

δu < δw and δw > 1.

This means in particular, that 0 < βwu < 1. We conclude that the steady state Swu is always locally asymp-
totically stable for τ = 0. Thus, it is straightforward that there exists % ∈ (0, τw), such that Swu is locally
asymptotically stable for τ ∈ [0, %). Consequently, when τ ∈ [0, τw) increases, the stability of Swu can only be
lost if characteristic roots cross on the imaginary axis. Indeed, we showed numerically that this really happens
and, similarly to Su, there exists Hopf bifurcation for Swu. As an example, we plotted Figure 5. In (a), we
can see for each value of η > 0 the corresponding values of τ that limit the region where the equilibrium Swu

is stable and unstable (with periodic oscillations). For η = 4, a Hopf bifurcation occurs at τ ≈ 3.5 and the
stability of Swu is restored at τ ≈ 8.2. For values of τ ∈ [3.5, 8.2[ the temporal behaviour of the system (8)
shows periodic oscillations around Swu.

6. Discussion

Starting from an age structured partial differential model (4-equations), constructed taking into account
the mosquito life cycle and the main features of the Wolbachia-infection, we derived a delay differential model
(2-equations) using the method of characteristics, to study the colonization and persistence of the Wolbachia-
transinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population is
already established. The reduction of the model to a delay differential system permits that several important
and interesting questions, such as the equilibriums and their local and global stability, can be analytically
addressed while keeping all the biological assumptions behind the model.
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Figure 5. In (a), η versus τ (it was obtained using the package DDE-BIFTOOL v. 3.1.1 and
MATLAB R2019). For η = 4 the panels (b), (c) and (d) show the temporal evolution of u(t)
(solid line) and w(t) (dot-dash line) given by (8) with τ = 3.2, τ = 5 and τ = 8.9, respectively.
The other parameters were taken from the case (iv) of Table 1. A Hopf bifurcation occurs at
τ ≈ 3.5 and the stability of Swu is restored at τ ≈ 8.2; τ ∈ (0, 22.33).

Thus, the positivity, boundedness and uniqueness of solutions were proved. The model admits three steady
states: extinction of both populations (S0), extinction of infected population and persistence of uninfected
population (Su), and persistence of both populations (Swu). The conditions of existence of each equilibrium
were established as a combination of the entomological parameters that describe mosquito life’s cycle (such as
mortality, oviposition and development rates) and the effects of the Wolbachia presence in the host (vertical
transmission of the bacteria, cytoplasmic incompatibility, and sex-ratio-distorting). The two thresholds Rw and
Ru can be interpreted as the net reproductive rates which are defined as the average numbers of female offspring
that a female produces during her lifetime. Therefore, Rw measured the number of infected offspring produced
by an infected female and Ru measured the number of uninfected offspring produced by an uninfected female.
Moreover, we could prove that S0 always exists, Su exists if and only if Ru > 1 and Swu exists if and only if
Rw > max{1, Ru}.

As we were interested in analyzing the effect of variation on developmental time in population dynamics, we
rewrote the condition of existence of each equilibrium in terms of the delay τ which measures the time spent
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from egg to adult. Four scenarios can be drawn (Figure 1): (i) assume that τu, τw ≤ 0 (these thresholds are
equivalent to the ones on Ru and Rw, respectively). Then, for all τ ≥ 0, S0 is the only steady state; (ii) assume
that τu > 0 and τw ≤ τu. Then, if 0 ≤ τ < τu, there are two steady states S0 and Su, and if τ ≥ τu, S0 is the
only steady state; assume that τu ≤ 0 < τw. Then, if 0 ≤ τ < τw, there are two steady states S0 and Swu, if
τ ≥ τw, S0 is the only steady state; (iv) assume that 0 < τu < τw. Then, if 0 ≤ τ < τu, there are three steady
states S0, Su and Swu, if τu ≤ τ < τw, there are two steady states S0 and Swu, and if τ ≥ τw, S0 is the only
steady state.

The global stability of S0 was obtained under the condition τ > 1
µ ln (max{Pw, Pu + Pwu}/min{µw, µu}).

Therefore, the increase of the immature development time τ (which could occur under decreasing temperature
for example) leads both populations to extinction. Interestingly, the increase of the delay can also destabilize,
by a Hopf bifurcation, the equilibriums Su and Swu. For the equilibrium Su, we could determine analytically
a threshold τ∗u for the appearance of Hopf bifurcation (Figure 2). It depends on τu, µ, µu and η, which are
respectively the threshold for the existence of Su, the mortality rates of immature and mature uninfected
individuals and the velocity at which the carrying capacity is achieved. In turn, the bigger η the wider the
range of τ wherein oscillations around Su are observed (Figure 3 and 4) as well as stability switch occurs earlier
(i.e. for smaller τ values). Observe that during the transient time, damped oscillations are seen in one of
the components of Su. Although, we could not prove analytically the occurrence of Hopf bifurcation for the
equilibrium Swu, we could get oscillations around this equilibrium numerically (Figure 5).

For many arthropod-borne diseases such as Dengue, Zika, and others, vector control is the only available
way to control the transmission of the disease to the human population. In this context, the threshold for the
persistence of the disease depends on the ratio between the vector and the human population. As the mosquito
infected with Wolbachia transmits the virus less than the wild mosquito, the increase in the population of infected
mosquitoes with a good choice of bacterial strains (that promotes an increase of Rw), can make interesting the
technique proposed in this paper for mosquito control.

Several studies have addressed the importance of temperature on the dynamics of infected mosquitoes,
since the spread and quantity of bacteria on mosquito tissues are modulated by this abiotic factor [34, 35].
Reproduction, dispersal, mating behavior, bacterial inheritance and cytoplasmic incompatibility can be strongly
affected by temperature variations in the field. In our model, we varied the parameters Ru and Rw to take
into account the change in these factors which could lead to the extinction of one or both populations, or their
coexistence.

Based on observations both in laboratories and in nature, [34, 35], there is evidence of oscillations in mosquito
populations due to the variation in temperature. We showed in this paper that an increase in the duration of
the aquatic phase (the delay), due to a decrease in temperature, for instance, gives one of the following two
scenarios. In the first scenario, an increase in the delay leads to the extinction of the infected mosquito and
the persistence of the uninfected one (with oscillations that are first damped and then become periodic for
the uninfected mosquito). In the second scenario, an increase in the delay maintains the persistence of the
two populations with, first the appearance of damped oscillations and then the oscillations become periodic.
The existence of periodic solutions can be rather simply understood from the mathematical point of view as
produced by a Hopf bifurcation.

Finally, variation in temperature may make ineffective the use of Wolbachia-infected mosquito as a biological
technique to reduce the population of wild mosquito. In addition, several types of infection adapted to different
field conditions are necessary; besides, the right time for the release of infected mosquito to optimize the invasion
and colonization of this population in an environment already occupied by the wild population is an important
problem to be addressed. The present work may contribute to the study of the influence of abiotic factors on
the temporal dynamics of mosquito population.
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