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TIGHT EXPONENTIAL BOUNDS FOR HYPERBOLIC

TANGENT

YOGESH J. BAGUL, RAMKRISHNA M. DHAIGUDE, CHRISTOPHE CHESNEAU,

AND MARKO KOSTIĆ

Abstract. We aim to obtain very tight exponential bounds for hyperbolic
tangent by first establishing simple algebraic bounds for this function. Our
inequalities refine a double inequality for tanhx recently proved by Zhang
and Chen. In addition, a graphical analysis is carried out, and a number
of auxiliary lemmas may be of use on their own.

1. Introduction and main results

Hyperbolic tangent function usually denoted by tanh occurs in many branches
of mathematics, exact sciences and engineering and it is an important sig-
moidal function. Sharp and tractable bounds of tanh can be therefore useful
in the fields of concern. Even so, very little can be found related to the bounds
of this function in the literature. For instance, L. Zhu in [10] proved the fol-
lowing inequality:(

r2 − x2

r2 + x2

)β
≤ tanhx

x
≤
(
r2 − x2

r2 + x2

)α
, 0 < x < r, (1.1)

where α ≤ 0 and β ≥ r2/6. Also, for all x ∈ (0,∞), the inequalities

1

1 + 2 log
(

sinhx
x

) < tanhx

x
<

1

1 + log
(

sinhx
x

) (1.2)

appeared in [4] and [6]. It can be shown that the inequalities in (1.1) are
weaker than those in (1.2). On his side, Bhayo et al. [5] obtained a sharp
algebraic bound for tanhx as follows:

tanhx <
2x√

4x2 + 9− 1
, x > 0. (1.3)
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Very recently, Zhang and Chen [9] proposed an alternative by proving the
following double inequality:√

1− exp

(
− x2

√
x2 + 1

)
< tanhx < 3

√
1− exp

(
− x3

√
x3 + 1

)
, x > 0. (1.4)

The bounds in (1.3) and (1.4) are tighter than the corresponding bounds in
(1.1) and (1.2). Needless to say that the algebraic bounds are better over
transcendental bounds due to their computational efficiency and hence an
upper bound of tanhx in (1.3) is better. However, in terms of sharpness
the inequality (1.4) is strongest of all the inequalities listed above except in
(0, ζ), ζ ≈ 1.557, where an upper bound of tanhx in (1.3) is the best. In this
paper, we aim to refine the inequalities (1.3) and (1.4). Our main results are
presented in the following theorems.

Theorem 1. For x > 0, the inequalities√
1− exp

{
(15)5/7

2

[
(15)2/7 − (7x2 + 15)2/7

]}
< tanhx

<

√√√√1− exp

{
2
√

15

7

(√
15−

√
7x2 + 15

)}
(1.5)

hold.

Theorem 2. The inequalities√
1− exp

[
2
(

1−
√

1 + x2
)]

< tanhx <

√√√√1− exp

[
3

(
1−

√
1 +

2

3
x2

)]
(1.6)

are fulfilled for x > 0.

We claim that the inequalities in (1.5) and (1.6) are very tight and they are
clear refinements of the inequalities in (1.4). In order to support this claim,

• we point out that

1−
√

1 + x2 = − x2

1 +
√

1 + x2
≤ − x2

2
√

1 + x2
,

implying that the lower bound in (1.6) is uniformly better than the
one in (1.4).
• a graphical analysis is performed for comparison of the involved lower

and upper bounds in (1.4), (1.5) and (1.6) in Figures 1 and 2, respec-
tively.
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Figure 1. Selected plot of tanh(x) and the presented lower
bounds; the one by Zhang and Chen [9] and the two candidates
in Theorems 1 and 2.
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Figure 2. Selected plot of tanh(x) and the presented upper
bounds; the one by Zhang and Chen [9] and the two candidates
in Theorems 1 and 2.
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Note that, in Figure 1, the mentioned lower bounds are plotted for x ∈
(1.2, 1.5) for a zoom reason. In this setting, we can see that the black and
green curves, which correspond to tanhx and the lower bound of (1.5), are
almost confounded. The related upper bounds are displayed in Figure 2 for
x ∈ (0.6, 1), still for a zoom reason. In this figure, the upper bound of (1.6) is
the best.

In fact, with the help of any graphing calculator it can be found that the
double inequality (1.6) is a refinement of (1.5) except in the interval (0, γ),
with γ ≈ 4.279, where the lower bound of (1.5) dominates the corresponding
lower bound of (1.6).

In the last section, while obtaining the proofs of Theorems 1 and 2 we
also establish sharp exponential bounds for hyperbolic cosine function. The
proofs of main results will be based on auxiliary results in Section 2. These
auxiliary results give us simple algebraic bounds for tanhx, which may be of
independent interest. Section 3 contains the proofs of the main results. As
a complementary study, a discussion on the sharpness of (1.3) near the point
zero is finally given in Section 4.

2. Lemmas

We begin by presenting some well-known results in Lemmas 1 and 2.

Lemma 1. [1, p.10] Let f, g : [m,n]→ R be two continuous functions which
are differentiable on (m,n) and g′(x) 6= 0 for x ∈ (m,n). If f ′(x)/g′(x) is in-
creasing (or decreasing) on (m,n), then the ratio functions [f(x)−f(m)]/[g(x)−
g(m)] and [f(x) − f(n)]/[g(x) − g(n)] are also increasing (or decreasing) on
(m,n). If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the con-
clusion is also strict.

Lemma 2. ( [8]) Let A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞
k=0 bkx

k be convergent
for |x| < R, where ak and bk are real numbers for k = 0, 1, 2, · · · such that
bk > 0. If the sequence ak/bk is strictly increasing(or decreasing), then the
function A(x)/B(x) is also strictly increasing(or decreasing) on (0, R).

Besides, we state and prove following important lemmas.

Lemma 3. For a > 0, define the function

fa(x) =
log
(

tanhx
x

)
log
(

a
a+x2

) , x > 0.

Then the function fa(x) is strictly decreasing over (0,∞) if a ≥ 15/7.
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Proof. Let us decompose fa(x) as

fa(x) =
log
(

tanhx
x

)
log
(

a
a+x2

) :=
g(x)

ga(x)
, x > 0,

where g(x) = log (tanhx/x) and ga(x) = log
[
a/(a+ x2)

]
with g(0+) = 0 =

ga(0). Upon differentiation, it comes

g′(x)

g′a(x)
=

(a+ x2)

2

tanhx− x sech2 x

x2 tanhx
=

(a+ x2)

2

sinh 2x− 2x

x2 sinh 2x
:=

1

2

L(t)

M(t)
,

where L(t) = (4a + t2)(sinh t − t), M(t) = t2 sinh t and t = 2x. Using the
well-established series expansion of sinh t, we can write

L(t) = (4a+ t2)

∞∑
k=1

t2k+1

(2k + 1)!
=

∞∑
k=1

4a · t2k+1

(2k + 1)!
+

∞∑
k=1

t2k+3

(2k + 1)!

= −t3 +

∞∑
k=1

4a · t2k+1

(2k + 1)!
+

∞∑
k=0

t2k+3

(2k + 1)!

and

M(t) =

∞∑
k=0

t2k+3

(2k + 1)!
.

Therefore
L(t)

M(t)
:= 1 +

A(t)

B(t)
,

where

A(t) = −t3 +
∞∑
k=1

4a · t2k+1

(2k + 1)!
= −t3 +

∞∑
k=0

4a · t2k+3

(2k + 3)!

=

(
2a

3
− 1

)
t3 +

∞∑
k=1

4a · t2k+3

(2k + 3)!
:=

∞∑
k=0

akt
2k+3

and

B(t) = M(t) =

∞∑
k=0

t2k+3

(2k + 1)!
= t3 +

∞∑
k=1

t2k+3

(2k + 1)!
:=

∞∑
k=0

bkt
2k+3.

Here a0 = 2a/3 − 1, b0 = 1, ak = 4a/(2k + 3)!, bk = 1/(2k + 1)!, k ≥ 1 with
k ∈ N. Consider

ak
bk

=
2a

(k + 1)(2k + 3)
, k ≥ 1.
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Clearly {ak/bk}∞k=1 is a strictly decreasing sequence. By Lemma 2, A(t)/B(t)
and hence L(t)/M(t) or g′(x)/g′a(x) will be strictly decreasing if

a0

b0
≥ a1

b1
,

which is equivalent to a ≥ 15/7. Therefore, by Lemma 1, fa(x) is strictly
decreasing if a ≥ 15/7. This completes the proof. �

Corollary 1. Let x > 0 and a ≥ 15/7. Then the best possible constants such
that (

a

a+ x2

)α
<

tanhx

x
<

(
a

a+ x2

)β
(2.1)

are α = a/3 and β = 1/2.

Proof. Since the function fa(x) defined in Lemma 3 is strictly decreasing on
(0,∞) for a ≥ 15/7, we have

fa(0+) > fa(x) > fa(∞), x > 0.

The limits fa(0+) = a/3 and fa(∞) = 1/2 give the required inequalities in
(2.1). �

By putting a = 3 in (2.1) we get the inequalities

3

3 + x2
<

tanhx

x
<

(
3

3 + x2

)1/2

, x > 0. (2.2)

The left inequality of (2.2) already appeared in [2]. Similarly, by putting
a = 15/7 we obtain(

15

15 + 7x2

)5/7

<
tanhx

x
<

(
15

15 + 7x2

)1/2

, x > 0. (2.3)

Inequalities (2.3) are the sharpest inequalities of kind (2.1). A graphical com-
parison says that the lower bound in (2.3) is finer than the corresponding lower
bound in (1.4) for x ∈ (0, ς) where ς ≈ 2.4126. The upper bound in (2.3) is
not sharp enough, so we obtain better algebraic bounds for tanhx in the next
lemma.

Lemma 4. The best possible constants α and β such that

1√
1 + αx2

<
tanhx

x
<

1√
1 + βx2

, x > 0 (2.4)

are 1 and 2/3, respectively.
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Proof. Let

f(x) =
x2 − tanh2 x

x2 tanh2 x
,

which can be written as

f(x) =
x2 cosh2 x− sinh2 x

x2 sinh2 x
=
x2(1 + cosh 2x)− (cosh 2x− 1)

x2(cosh 2x− 1)

=
(x2 + 1) + (x2 − 1) cosh 2x

x2(cosh 2x− 1)
.

Using a known series expansion of coshx, we get

f(x) =
(x2 + 1) + (x2 − 1) +

∑∞
k=1

22k

(2k)!(x
2 − 1)x2k∑∞

k=1
22k

(2k)!x
2k+2

=
2x2 +

∑∞
k=1

22k

(2k)!x
2k+2 −

∑∞
k=1

22k

(2k)!x
2k∑∞

k=1
22k

(2k)!x
2k+2

=

∑∞
k=1

22k

(2k)!x
2k+2 −

∑∞
k=1

22k+2

(2k+2)!x
2k+2∑∞

k=1
22k

(2k)!x
2k+2

=

∑∞
k=1

22k

(2k)!

[
1− 2

(k+1)(2k+1)

]
x2k+2∑∞

k=1
22k

(2k)!x
2k+2

=

∑∞
k=1

22k

(2k)!

[
2k2+3k−1
2k2+3k+1

]
x2k+2∑∞

k=1
22k

(2k)!x
2k+2

:=

∑∞
k=1 akx

2k+2∑∞
k=1 bkx

2k+2
.

Here ak = (22k/(2k)!)
[
(2k2 + 3k − 1)/(2k2 + 3k + 1)

]
and bk = 22k/(2k)!.

Now
ak
bk

=
2k2 + 3k − 1

2k2 + 3k + 1
:= tk.

Suppose that tk < tk+1, i.e.,

2k2 + 3k − 1

2k2 + 3k + 1
<

2k2 + 7k + 4

2k2 + 7k + 6
.

Equivalently,

(2k2 + 3k − 1)(2k2 + 7k + 6) < (2k2 + 3k + 1)(2k2 + 7k + 4)

or after simplifying 11k − 6 < 19k + 4, i.e., 8k + 10 > 0, which is obviously
true for k ≥ 1. Thus a sequence {ak/bk} is strictly increasing for k ≥ 1 and
by Lemma 2, we conclude that the function f(x) is also strictly increasing for
x > 0. Hence

f(0+) < f(x) < f(∞).



8 Y. J. BAGUL, R. M. DHAIGUDE, C. CHESNEAU, AND M. KOSTIĆ

Lastly, the limits f(0+) = 2/3 and f(∞) = 1 prove the lemma. �

It should be noted that the upper bound in (2.4) is finer than the corre-
sponding upper bound in (1.4) for x ∈ (0, ε), where ε ≈ 1.2952.

3. Proofs of main results

In this section, we prove our main results.

3.1. Proof of theorem 1. Inequality (2.3) can be written as

t

(
15

7t2 + 15

)5/7

< tanh t < t

(
15

7t2 + 15

)1/2

, t > 0.

Let t ∈ (0, x) with x > 0. Then, an integration gives∫ x

0
t

(
15

7t2 + 15

)5/7

dt <

∫ x

0
tanh t dt <

∫ x

0
t

(
15

7t2 + 15

)1/2

dt

i.e.,

(15)5/7

14

∫ x

0
(7t2 + 15)−5/7 · 14t dt < log(coshx) <

√
15

14

∫ x

0

1√
7t2 + 15

· 14t dt

or

(15)5/7

4

[
(7x2 + 15)2/7 − (15)2/7

]
< log(coshx) <

√
15

7

(√
7x2 + 15−

√
15
)

i.e.,

exp

{
(15)5/7

4

[
(7x2 + 15)2/7 − (15)2/7

]}
< coshx

< exp

{√
15

7

(√
7x2 + 15−

√
15
)}

.

By first squaring and then taking reciprocals, we have

exp

{
(15)5/7

2

[
(7x2 + 15)2/7 − (15)2/7

]}
> sech2 x

> exp

{
2
√

15

7

(√
7x2 + 15−

√
15
)}

.
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Owing to the relation sech2 x = 1− tanh2 x, we get

1− exp

{
(15)5/7

2

[
(15)2/7 − (7x2 + 15)2/7

]}
< tanh2 x

1− exp

{
2
√

15

7

(√
15−

√
7x2 + 15

)}
.

This gives inequality (1.5). �

3.2. Proof of Theorem 2. We write the inequality (2.4) as

t√
1 + t2

< tanh t <
t√

1 + 2
3 t

2
, t > 0.

Let t ∈ (0, x) with x > 0. Then, through an integration, it comes∫ x

0

1

2
√

1 + t2
2t dt <

∫ x

0
tanh t dt <

3

4

∫ x

0

4
3 t√

1 + 2
3 t

2
dt

i.e., √
1 + x2 − 1 < log(coshx) <

3

2

(√
1 +

2

3
x2 − 1

)
or

exp
(√

1 + x2 − 1
)
< coshx < exp

[
3

2

(√
1 +

2

3
x2 − 1

)]
.

By squaring and then taking reciprocals as in the proof of Theorem 1 we get
the desired inequalities (1.6). �

If r > 0 then, for x ∈ (0, r), the inequalities

exp(λx2) < coshx < exp(x2/2), (3.1)

where λ = log(cosh r)/r2 and(
1 +

x2

3

)3/2

< coshx <

(
1 +

x2

3

)δ
, (3.2)

where δ = log(cosh r)/log(1 + r2/3) are proved in [3] and [7], respectively.
While giving proofs of Theorems 1 and 2, we in fact refined the inequalities

(3.1) and (3.2) and obtained better exponential bounds for hyperbolic cosine.
For x ∈ (0, r), with r →∞, the refined inequalities for coshx are given as
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exp

{
(15)5/7

4

[
(7x2 + 15)2/7 − (15)2/7

]}
< coshx

< exp

{√
15

7

(√
7x2 + 15− 15

)}
(3.3)

and

exp
(√

1 + x2 − 1
)
< coshx < exp

[
3

2

(√
1 +

2

3
x2 − 1

)]
. (3.4)

4. On the inequality (1.3)

We now complete the previous study by discussing the sharpness of the
inequality (1.3) near the point zero. First of all, observe that the inequality
(1.3) can be written as

e2x − 1

e2x + 1
≤ 2x√

4x2 + 9− 1
, x > 0,

i.e., as

ex − 1

ex + 1
≤ x√

x2 + 9− 1
, x > 0. (4.1)

Putting t = ex > 1, and observing that the mapping t 7→ (t − 1)/(t + 1),
t > 1 is strictly increasing, it can be simply shown that the inequality (4.1) is
equivalent on the interval (0, 4) with

ex ≤
1 + x√

x2+9−1

1− x√
x2+9−1

=
g(x) + x

g(x)− x
, x ∈ [0, 4). (4.2)

where g(x) :=
√
x2 + 9 − 1, x ∈ [0, 4), Our idea is to find a differentiable

function f : [0, 4) → (0,∞) such that f(0) = 2, f(x) ≥ g(x) for all x ∈ [0, 4)
and

ex ≤ f(x) + x

f(x)− x
, x ∈ [0, 4).

Since
f(x) + x

f(x)− x
≤ g(x) + x

g(x)− x
, x ∈ [0, 4),

we immediately get the following extension of (4.2):

ex ≤ f(x) + x

f(x)− x
≤ g(x) + x

g(x)− x
, x ∈ [0, 4). (4.3)
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The first inequality in (4.3), which will be considered in what follows, is equiv-
alent with

x ≤ ln

(
f(x) + x

f(x)− x

)
, x ∈ [0, 4).

Now let us set

F (x) := x− ln

(
f(x) + x

f(x)− x

)
, x ∈ [0, 4).

Since f(0) = 2, we have F (0) = 0. Moreover

F ′(x) =
f2(x) + 2xf ′(x)− x2 − 2f(x)

(f(x) + x)(f(x)− x)
, x ∈ [0, 4),

so that F ′(x) ≤ 0, x ∈ [0, 4) if f2(x) + 2xf ′(x) − x2 − 2f(x) ≤ 0, x ∈ [0, 4).
A detailed analysis of the class F consisting of differentiable functions f :
[0, 4)→ (0,∞) such that f(0) = 2, f(x) ≥ g(x) for all x ∈ [0, 4) and

f2(x) + 2xf ′(x)− x2 − 2f(x) ≤ 0, x ∈ [0, 4) (4.4)

is far from being trivial and falls out from the scope of this paper. We only
note that the solution y = f(x) = 2/(1 − Cx) of the associated Bernoulli
differential equation

y′ − y

x
= − y

2

2x

presents a good candidate for an element of the class F . In the particular case
C = 1/4, the function y = 2/(1− (x/4)) belongs to F since

2

1− (x/4)
≥
√
x2 + 9− 1, x ∈ [0, 4);

see https://www.desmos.com/calculator/2g7wpl8fri. Unfortunately, if we dis-
regard the term x2 in (4.4), then the solution of the associated Ricatti differ-
ential equation

y′ − y

x
+
y2

2x
= 0,

given by y = 6Cx/(Cx3 − 1) cannot belong to the class F because y(0) = 0
(the complete Ricatti differential equation associated to (4.4) is not solvable
in quadratures). We finally note all the established results are checked and
compared at https://www.desmos.com/calculator.
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References

[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invariants, In-
equalities and Quasiconformal Maps, John Wiley and Sons, New York, 1997.

[2] Y. J. Bagul, On simple Jordan type inequalities, Turkish Journal of Inequalities, Vol. 3,
No. 1, pp. 1-6, 2019.

[3] Y. J. Bagul On exponential bounds of hyperbolic cosine. Bull. Int. Math. Virtual Inst.,
Vol. 8, No. 2, pp. 365-367, 2018.

[4] Y. J. Bagul, On a result of Bhayo and Sándor, Anal. Math., 2021. Doi: 10.1007/s10476-
020-0060-8

[5] B. A. Bhayo, R. Klén and J. Sándor, New trigonometric and hyperbolic inequalities,
Miskolc Math. Notes, Vol. 18, No. 1, pp. 125-137, 2017. Doi: 10.18514/MMN.2017.1560

[6] B. A. Bhayo and J. Sándor, On certain old and new trigonomwtric and
hyperbolic inequalities, Anal. Math., Vol. 41, pp. 3-15, 2015. Online:
https://doi.org/10.1007/s10476-015-0102-9

[7] R. M. Dhaigude, Y. J. Bagul, and V. M. Raut, Generalized bounds for hyperbolic sine
and hyperbolic cosine functions, Tbilisi Math. J., Vol. 14, No. 1, pp. 41-47, 2021. Doi:
10.32513/tmj/1932200813

[8] V. Heikkala, M. K. Vamanamurthy and M. Vuorinen, Generalized elliptic integrals,
Comput. Methods Funct. Theory, Vol. 9, No. 1, pp. 75-109, 2009.

[9] B. Zhang, and C.-P. Chen, A double inequality for tanhx, J. Inequal. and Appl., Vol.
2020, 2020:19, 8 pp., 2020, Doi: 10.1186/s13660-020-2289-y

[10] L. Zhu, and J. Sun, Six new Redheffer-type inequalities for circular and hy-
perbolic functions, Comput. Math. Appl., Vol. 56, pp. 522-529, 2008. Doi:
10.1016/j.camwa.2008.01.012

Department of Mathematics, K. K. M. College, Manwath, Dist : Parbhani(M.S.)
- 431505, India

Email address: yjbagul@gmail.com

Department of Mathematics, Government Vidarbha Institute of Science and
Humanities, Amravati(M. S.) - 444604, India

Email address: rmdhaigude@gmail.com

LMNO, University of Caen-Normandie, Caen, France
Email address: christophe.chesneau@unicaen.fr

Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića
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