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Introduction and main results

Hyperbolic tangent function usually denoted by tanh occurs in many branches of mathematics, exact sciences and engineering and it is an important sigmoidal function. Sharp and tractable bounds of tanh can be therefore useful in the fields of concern. Even so, very little can be found related to the bounds of this function in the literature. For instance, L. Zhu in [START_REF] Zhu | Six new Redheffer-type inequalities for circular and hyperbolic functions[END_REF] proved the following inequality:

r 2 -x 2 r 2 + x 2 β ≤ tanh x x ≤ r 2 -x 2 r 2 + x 2 α , 0 < x < r, (1.1) 
where α ≤ 0 and β ≥ r 2 /6. Also, for all x ∈ (0, ∞), the inequalities

1 1 + 2 log sinh x x < tanh x x < 1 1 + log sinh x x (1.2)
appeared in [START_REF] Bagul | On a result of Bhayo and Sándor[END_REF] and [START_REF] Bhayo | On certain old and new trigonomwtric and hyperbolic inequalities[END_REF]. It can be shown that the inequalities in (1.1) are weaker than those in (1.2). On his side, Bhayo et al. [START_REF] Bhayo | New trigonometric and hyperbolic inequalities[END_REF] obtained a sharp algebraic bound for tanh x as follows:

tanh x < 2x √ 4x 2 + 9 -1 , x > 0. (1.3)
Very recently, Zhang and Chen [START_REF] Zhang | A double inequality for tanh x[END_REF] proposed an alternative by proving the following double inequality:

1 -exp - x 2 √ x 2 + 1 < tanh x < 3 1 -exp - x 3 √ x 3 + 1 , x > 0. (1.4)
The bounds in (1.3) and (1.4) are tighter than the corresponding bounds in (1.1) and (1.2). Needless to say that the algebraic bounds are better over transcendental bounds due to their computational efficiency and hence an upper bound of tanh x in (1.3) is better. However, in terms of sharpness the inequality (1.4) is strongest of all the inequalities listed above except in (0, ζ), ζ ≈ 1.557, where an upper bound of tanh x in (1.3) is the best. In this paper, we aim to refine the inequalities (1.3) and (1.4). Our main results are presented in the following theorems.

Theorem 1. For x > 0, the inequalities

1 -exp (15) 5/7 2 (15) 2/7 -(7x 2 + 15) 2/7 < tanh x < 1 -exp 2 √ 15 7 √ 15 -7x 2 + 15 (1.5)
hold.

Theorem 2. The inequalities

1 -exp 2 1 -1 + x 2 < tanh x < 1 -exp 3 1 -1 + 2 3 x 2 (1.6)
are fulfilled for x > 0.

We claim that the inequalities in (1.5) and (1.6) are very tight and they are clear refinements of the inequalities in (1.4). In order to support this claim,

• we point out that

1 -1 + x 2 = - x 2 1 + √ 1 + x 2 ≤ - x 2 2 √ 1 + x 2 ,
implying that the lower bound in (1.6) is uniformly better than the one in (1.4). • a graphical analysis is performed for comparison of the involved lower and upper bounds in (1.4), (1.5) and (1.6) in Figures 1 and2, respectively. Note that, in Figure 1, the mentioned lower bounds are plotted for x ∈ (1.2, 1.5) for a zoom reason. In this setting, we can see that the black and green curves, which correspond to tanh x and the lower bound of (1.5), are almost confounded. The related upper bounds are displayed in Figure 2 for x ∈ (0.6, 1), still for a zoom reason. In this figure, the upper bound of (1.6) is the best. In fact, with the help of any graphing calculator it can be found that the double inequality (1.6) is a refinement of (1.5) except in the interval (0, γ), with γ ≈ 4.279, where the lower bound of (1.5) dominates the corresponding lower bound of (1.6).

In the last section, while obtaining the proofs of Theorems 1 and 2 we also establish sharp exponential bounds for hyperbolic cosine function. The proofs of main results will be based on auxiliary results in Section 2. These auxiliary results give us simple algebraic bounds for tanh x, which may be of independent interest. Section 3 contains the proofs of the main results. As a complementary study, a discussion on the sharpness of (1.3) near the point zero is finally given in Section 4.

Lemmas

We begin by presenting some well-known results in Lemmas 1 and 2.

Lemma 1. [1, p.10] Let f, g : [m, n] → R be two continuous functions which are differentiable on (m, n) and g (x) = 0 for x ∈ (m, n). If f (x)/g (x) is in- creasing (or decreasing) on (m, n), then the ratio functions [f (x)-f (m)]/[g(x)- g(m)] and [f (x) -f (n)]/[g(x) -g(n)
] are also increasing (or decreasing) on (m, n). If f (x)/g (x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2. ( [8]) Let A(x) = ∞ k=0 a k x k and B(x) = ∞ k=0 b k x k be convergent for |x| < R, where a k and b k are real numbers for k = 0, 1, 2, • • • such that b k > 0.
If the sequence a k /b k is strictly increasing(or decreasing), then the function A(x)/B(x) is also strictly increasing(or decreasing) on (0, R).

Besides, we state and prove following important lemmas. Lemma 3. For a > 0, define the function

f a (x) = log tanh x x log a a+x 2 , x > 0.
Then the function f a (x) is strictly decreasing over (0, ∞) if a ≥ 15/7.

Proof. Let us decompose f a (x) as

f a (x) = log tanh x x log a a+x 2 := g(x) g a (x) , x > 0,
where g(x) = log (tanh x/x) and g a (x) = log a/(a + x 2 ) with g(0+) = 0 = g a (0). Upon differentiation, it comes

g (x) g a (x) = (a + x 2 ) 2 tanh x -x sech 2 x x 2 tanh x = (a + x 2 ) 2 sinh 2x -2x x 2 sinh 2x := 1 2 L(t) M (t) ,
where L(t) = (4a + t 2 )(sinh t -t), M (t) = t 2 sinh t and t = 2x. Using the well-established series expansion of sinh t, we can write

L(t) = (4a + t 2 ) ∞ k=1 t 2k+1 (2k + 1)! = ∞ k=1 4a • t 2k+1 (2k + 1)! + ∞ k=1 t 2k+3 (2k + 1)! = -t 3 + ∞ k=1 4a • t 2k+1 (2k + 1)! + ∞ k=0 t 2k+3 (2k + 1)! and M (t) = ∞ k=0 t 2k+3 (2k + 1)! . Therefore L(t) M (t) := 1 + A(t) B(t) ,
where

A(t) = -t 3 + ∞ k=1 4a • t 2k+1 (2k + 1)! = -t 3 + ∞ k=0 4a • t 2k+3 (2k + 3)! = 2a 3 -1 t 3 + ∞ k=1 4a • t 2k+3 (2k + 3)! := ∞ k=0 a k t 2k+3 and 
B(t) = M (t) = ∞ k=0 t 2k+3 (2k + 1)! = t 3 + ∞ k=1 t 2k+3 (2k + 1)! := ∞ k=0 b k t 2k+3 .
Here

a 0 = 2a/3 -1, b 0 = 1, a k = 4a/(2k + 3)!, b k = 1/(2k + 1)!, k ≥ 1 with k ∈ N. Consider a k b k = 2a (k + 1)(2k + 3) , k ≥ 1.
Clearly {a k /b k } ∞ k=1 is a strictly decreasing sequence. By Lemma 2, A(t)/B(t) and hence L(t)/M (t) or g (x)/g a (x) will be strictly decreasing if

a 0 b 0 ≥ a 1 b 1 ,
which is equivalent to a ≥ 15/7. Therefore, by Lemma 1, f a (x) is strictly decreasing if a ≥ 15/7. This completes the proof.

Corollary 1. Let x > 0 and a ≥ 15/7. Then the best possible constants such that

a a + x 2 α < tanh x x < a a + x 2 β (2.1)
are α = a/3 and β = 1/2.

Proof. Since the function f a (x) defined in Lemma 3 is strictly decreasing on (0, ∞) for a ≥ 15/7, we have

f a (0+) > f a (x) > f a (∞), x > 0.
The limits f a (0+) = a/3 and f a (∞) = 1/2 give the required inequalities in (2.1).

By putting a = 3 in (2.1) we get the inequalities

3 3 + x 2 < tanh x x < 3 3 + x 2 1/2 , x > 0.
(2.

2)

The left inequality of (2.2) already appeared in [START_REF] Bagul | On simple Jordan type inequalities[END_REF]. Similarly, by putting a = 15/7 we obtain 15 15 + 7x 

1 √ 1 + αx 2 < tanh x x < 1 1 + βx 2 , x > 0 (2.4)
are 1 and 2/3, respectively.

Proof. Let

f (x) = x 2 -tanh 2 x x 2 tanh 2 x ,
which can be written as

f (x) = x 2 cosh 2 x -sinh 2 x x 2 sinh 2 x = x 2 (1 + cosh 2x) -(cosh 2x -1)
x 2 (cosh 2x -1) = (x 2 + 1) + (x 2 -1) cosh 2x

x 2 (cosh 2x -1) .

Using a known series expansion of cosh x, we get

f (x) = (x 2 + 1) + (x 2 -1) + ∞ k=1 2 2k (2k)! (x 2 -1)x 2k ∞ k=1 2 2k (2k)! x 2k+2 = 2x 2 + ∞ k=1 2 2k (2k)! x 2k+2 -∞ k=1 2 2k (2k)! x 2k ∞ k=1 2 2k (2k)! x 2k+2 = ∞ k=1 2 2k (2k)! x 2k+2 -∞ k=1 2 2k+2 (2k+2)! x 2k+2 ∞ k=1 2 2k (2k)! x 2k+2 = ∞ k=1 2 2k (2k)! 1 - 2 (k+1)(2k+1) x 2k+2 ∞ k=1 2 2k (2k)! x 2k+2 = ∞ k=1 2 2k (2k)! 2k 2 +3k-1 2k 2 +3k+1 x 2k+2 ∞ k=1 2 2k (2k)! x 2k+2 := ∞ k=1 a k x 2k+2 ∞ k=1 b k x 2k+2 .
Here

a k = (2 2k /(2k)!) (2k 2 + 3k -1)/(2k 2 + 3k + 1) and b k = 2 2k /(2k)!. Now a k b k = 2k 2 + 3k -1 2k 2 + 3k + 1 := t k .
Suppose that t k < t k+1 , i.e.,

2k 2 + 3k -1 2k 2 + 3k + 1 < 2k 2 + 7k + 4 2k 2 + 7k + 6 .
Equivalently,

(2k 2 + 3k -1)(2k 2 + 7k + 6) < (2k 2 + 3k + 1)(2k 2 + 7k + 4)
or after simplifying 11k -6 < 19k + 4, i.e., 8k + 10 > 0, which is obviously true for k ≥ 1. Thus a sequence {a k /b k } is strictly increasing for k ≥ 1 and by Lemma 2, we conclude that the function f (x) is also strictly increasing for

x > 0. Hence f (0+) < f (x) < f (∞).
Lastly, the limits f (0+) = 2/3 and f (∞) = 1 prove the lemma.

It should be noted that the upper bound in (2.4) is finer than the corresponding upper bound in (1.4) for x ∈ (0, ), where ≈ 1.2952.

Proofs of main results

In this section, we prove our main results. Owing to the relation sech 2 x = 1 -tanh 2 x, we get

1 -exp (15) 5/7 2 (15) 2/7 -(7x 2 + 15) 2/7 < tanh 2 x 1 -exp 2 √ 15 7 √ 15 -7x 2 + 15 .
This gives inequality (1.5).

3.2.

Proof of Theorem 2. We write the inequality (2.4) as

t √ 1 + t 2 < tanh t < t 1 + 2 3 t 2
, t > 0.

Let t ∈ (0, x) with x > 0. Then, through an integration, it comes

x 0 1 2 √ 1 + t 2 2t dt < x 0 tanh t dt < 3 4 x 0 4 3 t 1 + 2 3 t 2 dt i.e., 1 + x 2 -1 < log(cosh x) < 3 2 1 + 2 3 x 2 -1 or exp 1 + x 2 -1 < cosh x < exp 3 2 1 + 2 3 x 2 -1 .
By squaring and then taking reciprocals as in the proof of Theorem 1 we get the desired inequalities (1.6).

If r > 0 then, for x ∈ (0, r), the inequalities exp(λx 2 ) < cosh x < exp(x 2 /2),

where λ = log(cosh r)/r 2 and 1 +

x 2 3 3/2 < cosh x < 1 + x 2 3 δ , (3.2) 
where δ = log(cosh r)/log(1 + r 2 /3) are proved in [START_REF] Bagul | On exponential bounds of hyperbolic cosine[END_REF] and [START_REF] Dhaigude | Generalized bounds for hyperbolic sine and hyperbolic cosine functions[END_REF], respectively. While giving proofs of Theorems 1 and 2, we in fact refined the inequalities (3.1) and (3.2) and obtained better exponential bounds for hyperbolic cosine. For x ∈ (0, r), with r → ∞, the refined inequalities for cosh x are given as exp (15) We now complete the previous study by discussing the sharpness of the inequality (1.3) near the point zero. First of all, observe that the inequality (1.3) can be written as

e 2x -1 e 2x + 1 ≤ 2x √ 4x 2 + 9 -1 , x > 0, i.e., as e x -1 e x + 1 ≤ x √ x 2 + 9 -1 , x > 0. ( 4.1) 
Putting t = e x > 1, and observing that the mapping t → (t -1)/(t + 1), t > 1 is strictly increasing, it can be simply shown that the inequality (4.1) is equivalent on the interval (0, 4) with

e x ≤ 1 + x √ x 2 +9-1 1 - x √ x 2 +9-1 = g(x) + x g(x) -x , x ∈ [0, 4). (4.2)
where g(x) := √ x 2 + 9 -1, x ∈ [0, 4), Our idea is to find a differentiable function f : [0, 4) → (0, ∞) such that f (0) = 2, f (x) ≥ g(x) for all x ∈ [0, 4) and

e x ≤ f (x) + x f (x) -x , x ∈ [0, 4). Since f (x) + x f (x) -x ≤ g(x) + x g(x) -x , x ∈ [0, 4),
we immediately get the following extension of (4.2):

e x ≤ f (x) + x f (x) -x ≤ g(x) + x g(x) -x , x ∈ [0, 4). ( 4.3) 
The first inequality in (4.3), which will be considered in what follows, is equivalent with

x ≤ ln f (x) + x f (x) -x , x ∈ [0, 4). Now let us set F (x) := x -ln f (x) + x f (x) -x , x ∈ [0, 4).
Since f (0) = 2, we have F (0) = 0. Moreover [START_REF] Bagul | On a result of Bhayo and Sándor[END_REF], so that F (x) ≤ 0, x ∈ [0, 4) if f 2 (x) + 2xf (x) -x 2 -2f (x) ≤ 0, x ∈ [0, 4). A detailed analysis of the class F consisting of differentiable functions f : [0, 4) → (0, ∞) such that f (0) = 2, f (x) ≥ g(x) for all x ∈ [0, 4) and given by y = 6Cx/(Cx 3 -1) cannot belong to the class F because y(0) = 0 (the complete Ricatti differential equation associated to (4.4) is not solvable in quadratures). We finally note all the established results are checked and compared at https://www.desmos.com/calculator.

F (x) = f 2 (x) + 2xf (x) -x 2 -2f (x) (f (x) + x)(f (x) -x) , x ∈ [0,
f 2 (x) + 2xf (x) -x 2 -2f (x) ≤ 0, x ∈ [0, 4) (4.

Figure 2 .

 2 Figure 2. Selected plot of tanh(x) and the presented upper bounds; the one by Zhang and Chen [9] and the two candidates in Theorems 1 and 2.
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 41 is far from being trivial and falls out from the scope of this paper. We only note that the solution y = f (x) = 2/(1 -Cx) of the associated Bernoulli differential equation candidate for an element of the class F. In the particular case C = 1/4, the function y = 2/(1 -(x/4)) belongs to F since 2 (x/4) ≥ x 2 + 9 -1, x ∈ [0, 4); see https://www.desmos.com/calculator/2g7wpl8fri. Unfortunately, if we disregard the term x 2 in (4.4), then the solution of the associated Ricatti differ-

  3.1. Proof of theorem 1. Inequality (2.3) can be written as

				t	15 7t 2 + 15	5/7	< tanh t < t	15 7t 2 + 15	1/2	, t > 0.
	Let t ∈ (0, x) with x > 0. Then, an integration gives
		0	x	t	15 7t 2 + 15	5/7	dt <	0	x	tanh t dt <	0	x	t	15 7t 2 + 15	1/2	dt
	i.e.,														
	(15) 5/7 14													√ 14 15	0	x	√	1 7t 2 + 15	• 14t dt
	or														
	(15) 5/7 4	(7x 2 + 15) 2/7 -(15) 2/7 < log(cosh x) <		√ 15 7	7x 2 + 15 -	√	15
	i.e.,														
	exp	(15) 5/7 4	(7x 2 + 15) 2/7 -(15) 2/7	< cosh x	
												< exp	√ 7 15	7x 2 + 15 -	√	15	.
	By first squaring and then taking reciprocals, we have
	exp	(15) 5/7 2	(7x 2 + 15) 2/7 -(15) 2/7	> sech 2 x
												> exp	2	√ 7 15	7x 2 + 15 -	√	15	.

x 0 (7t 2 + 15) -5/7 • 14t dt < log(cosh x) <