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Abstract

We consider semiclassical self-adjoint operators whose symbol, defined on a two-dimensional
ymplectic manifold, reaches a non-degenerate minimum b0 on a closed curve. We derive a classical
nd quantum normal form which gives uniform eigenvalue asymptotics in a window (−∞, b0 + ϵ) for
> 0 independent on the semiclassical parameter. These asymptotics are obtained in two complementary

ettings: either an approximate invariance of the system under translation along the curve, which produces
scillating eigenvalues, or a Morse hypothesis reminiscent of Helffer–Sjöstrand’s “miniwell” situation.
c 2020 The Authors. Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
his is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The general framework of this article is the study of the discrete spectrum of semiclassical
perators (Ph̄)h̄>0 acting on the Hilbert space of a particle with one degree of freedom. Typical

examples include electro-magnetic Schrödinger operators:

Ph̄ =

(
h̄
i

d
dx

− α(x)
)2

+ V (x), (1)

acting on L2(X ) where X is a one-dimensional manifold, X = R or X = S1, and the
semiclassical parameter h̄ > 0 is very small. Here, the magnetic potential α and the electric
potential V are smooth functions on X , and may be allowed to depend on h̄. However, we
do not want to restrict the discussion to operators of the form (1), and will more generally
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onsider (Ph̄)h̄ to be pseudo-differential operators of the form Ph̄ = Oph̄(ph̄) of the form (4)
below, whose symbol ph̄ : T ∗ X → R may depend on h̄. Here, the cotangent space T ∗ X is
imply X × R endowed with the symplectic form ω = dx ∧ dξ .

The relevance of general 1D pseudo-differential operators stems from the fact that they are
ften effective operators coming from higher dimensional settings. For instance, in the regime
f strong magnetic fields, the spectrum of the purely magnetic Schrödinger operator in 2 or 3
imensions can be reduced to the spectral study of a one degree of freedom pseudo-differential
perator Ph̄ = Oph̄(p) (see for instance [21,35,37]), which is very rarely a differential operator,
et alone a Schrödinger operator: in the simplest 2D case treated in [37] it shown that the
rincipal symbol p0 = limh̄→0 ph̄ of the effective 1D operator is the magnetic field itself, and
here is no reason why it should be polynomial in the second variable, which is a necessary
nd sufficient condition for Ph̄ to be a differential operator.

It is natural to investigate cases where the exterior forces acting on the particle are able to
onfine it in a bounded region, leading to discrete spectrum for Ph̄ . This happens if p0 has a
lobal minimum on a compact set. Several interesting regimes have been abundantly studied;
key feature is that the various possible topologies of a level set {p0 = λ} give rise to very

ifferent eigenvalue asymptotics for Ph̄ near λ.
Two cases are particularly well understood in 1D. The first one corresponds to a global non-

egenerate minimum for p0, reached at a single point in phase space. The second is a regular
ompact level set of p0. In both cases, one can obtain [9,22,39,43] “uniform asymptotics”: one
oes not only have complete asymptotics for a finite number of eigenvalues (in a window of
ize h̄ around the minimal value or the regular level of p0, respectively), but for all eigenvalues
n a window of h̄-independent size, an expansion of the form

λ j (h̄) = f0(h̄ j) + h̄ f1(h̄ j) + h̄2 f2(h̄ j) + · · · (2)

here j belongs to an interval of Z of size h̄−1. In the case of a single minimal point for p0, this
llows in particular to obtain asymptotics for the low-energy spectrum. These results notably
se a quantum version of the “action–angle” coordinates [13]. They were recently extended to
erezin–Toeplitz 1D operators [7,30].

In this article, we are interested in the case where the minimum of the principal symbol is
eached on a connected compact submanifold γ (that is, a smooth topological circle) of the
hase space, see hypothesis (3) below. Under this hypothesis, we show how to obtain uniform
symptotics near the minimum of p0. Operators with such a feature have been studied in the
ramework of hypoellipticity (see the seminal articles [25,34]) but also spectrally [23]. To our
nowledge however, the precise information (both geometric and analytic) gained from the
omplete integrability of the 1D situation was not investigated before.

Generically, due to the presence of a subprincipal term in our pseudo-differential operator,
e expect a second-order quantum confinement within the minimal manifold, leading to a

ituation similar to (2), but on a smaller scale. This is the so-called “mini-well” phenomenon
escribed for Schrödinger operators in [23], and recently extended to Berezin–Toeplitz opera-
ors in [10]. One of our main results is to obtain a precise and uniform description of this case,
ee Propositions 6.8 and 6.10.

The degenerate case (where the subprincipal term vanishes) turns out to be interesting as
ell, especially given the relationship with the strong magnetic field situation described above.

ndeed, if a charged particle tends to be confined on a closed loop (for instance, the boundary
f a 2D domain), the absence of subprincipal symbol will lead to an oscillatory behaviour of
he low-lying eigenvalues, thus very different from what (2) describes; this is related to the

lack of strong diamagnetism” and the Little–Parks effect, see [20,28]. Another goal of the
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Fig. 1. Small eigenvalues for the operator Hsym in (5), as a function of 1/h̄. With the notations of Theorem 2.1,
one has Vh̄ = 0. The first eigenvalue jumps branches when 1/h̄ is a multiple of 1

I0
= 2. The operator Hsym is a

unction of the harmonic oscillator, and its eigenvalues are explicitly given by {(h̄(2k + 1) − 1)2, k ∈ N}.

resent article is to present a general framework explaining this behaviour and the link with
igenvalue crossings (or pseudo-crossings: the gap between the first and the second eigenvalue
eriodically collapses at dominant order), see Theorem 2.2 and Fig. 1.

Our results, both in the generic and degenerate cases, are consequences of a new “quantum
olded action–angle theorem” (Theorem 2.1), and its classical version (Proposition 3.8).

The article is organized as follows: Section 2 introduces the notation, related to the geometric
etting and its quantization, necessary to state the microlocal folded action–angle Theorem 2.1,
hose proof is delayed in Sections 3, 4, and 5. Section 3 contains a classical normal form for

unctions admitting a non-degenerate well on a closed loop and a reminder on the “Bohr-
ommerfeld invariant” I0. In preparation for the quantum normal form, Section 4 contains a

reatment of formal perturbations of the normal form above. Then, in Section 5 we derive a
orresponding quantum normal form, microlocally near the non-degenerate well. In Section 6
e apply this quantum normal form to obtain asymptotics of the low-lying eigenvalues. In an

Appendix, we recall a few topological notions that we use in Section 3.

. Wells on closed loops

.1. The classical problem

Let (M, ω) be a symplectic surface without boundary, which will be our classical phase
pace. When introducing quantization, we will assume for simplicity that M = T ∗R ≈ R×R
r M = T ∗S1

≈ S1
×R. Let γ ⊂ M be a smooth embedded closed loop. We say that a smooth

unction p ∈ C∞(M) — which will later be the principal symbol of a quantum operator — ad-
its a non-degenerate well on the loop γ if there exists a neighbourhood Ω of γ in M such that

Assumption 1.

1. p↾Ω is minimal on γ :

p−1(b0) ∩ Ω = γ, where inf p = min p = b0; (3)

Ω Ω
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2. and this minimum is Morse–Bott non-degenerate: at each point m ∈ γ , the restriction
of the Hessian p′′(m) to a transversal direction to γ does not vanish.

In particular, by the Morse–Bott lemma (see for instance [3, Theorem 2]), there exist a
neighbourhood Ω̃ ⊂ Ω of γ , and coordinates (z, t) : Ω̃ → γ × [−δ, δ] such that γ = {t = 0}

nd p = b0 + t2.
An example of an operator satisfying Assumption 1 is an electro-magnetic Schrödinger

f the form (1) with X = S1 and V = 0. In fact, for operators of the form (1), since
he principal symbol p = (ξ − α0(x))2

+ V0 is convex in ξ , the hypothesis (3) imposes
X = S1, V0 = 0. In this case, there is a well-known simplification of the problem: after the
hear (x, ξ ) ↦→ (x, ξ − α0(x) + α0), where α0 =

∫
S1 α0 is the magnetic flux, the function p

depends only on ξ .
Our first result (Proposition 3.8) generalizes the previous fact, by finding a symplectic

change of coordinates near γ such that p depends only on one variable, locally near γ . The
reduction to one variable will turn out to be important for having a manageable quantum normal
form.

2.2. The quantum problem

Let P = (Ph̄)h̄>0 be a semiclassical pseudo-differential operator on X = R or X = S1,
with a symbol ph̄ ∈ S0(T ∗ X ), where S0 denotes any class of symbols for which Egorov
theorem holds (see for instance [11,45]). An electro-magnetic Schrödinger operator (1) is a
good candidate as soon as the electro-magnetic fields α and V are smooth functions on X (with
at most polynomial growth at infinity, together with their derivatives, in the case X = R). We
shall always assume that ph̄ is classical, in the sense that it admits an asymptotic expansion
n integral powers of h̄, in the topology of S0. Without loss of generality, we may assume that
P has order zero:

ph̄ ∼ p0 + h̄ p1 + h̄2 p2 + · · ·

t will be convenient to use Weyl quantization, which is valid for both X = R and X = S1
=

/2πZ, and which will be denoted by Ph̄ = OpW
h̄ (ph̄):

Ph̄u(x) =
1

2π h̄

∫
X×R

e
i
h̄ (x−y)ξ ph̄( x+y

2 , ξ )u(y)dydξ. (4)

Assume now that the principal symbol p = p0 satisfies Assumption 1. Our next goal is
o find a quantum equivalent for the simple description of the classical problem found in
roposition 3.8. This is far from being automatic: as in [40], the geometric hypothesis (3)

s not stable under perturbations, so that the normal form of Proposition 3.8 cannot itself be
table by perturbation. Nevertheless, we are able to separate position and momentum variables
n the quantum problem. Another subtlety is of topological nature: an invariant I0, not present
n Proposition 3.8, appears in its quantum equivalent and lies behind the oscillatory effects
bserved in [20,28].

heorem 2.1 (Quantum Folded Action–Angle Theorem). Let P = (Ph̄)h̄>0 be a semiclassical
pseudo-differential operator, as above, with principal symbol p = p0 admitting a non-
degenerate well on a loop γ — see Assumption 1. Let α = ξdx be the Liouville 1-form on
T ∗ X, and let I0 =

∫
γ

α. There exist ϵ > 0, a neighbourhood Ω of γ , and a Fourier integral
2 2 1
operator Uh̄ : L (X ) → L (S ), uniformly bounded in operator norm, such that
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1. Uh̄ is microlocally unitary from Ω to {(θ, I ) ∈ T ∗S1, |I − I0| < ϵ}.
2. Uh̄ microlocally conjugates Ph̄ to a pseudo-differential operator Q h̄ of the form

Q h̄ := b0 +

(
gh̄
( h̄

i
∂

∂θ

))2
+ h̄Vh̄(θ ) + Rh̄,

in the sense that

Q h̄ = Uh̄ Ph̄U ∗

h̄ + Rh̄,

where, Rh̄ is such that, for every u h̄ ∈ L2(S1) with W Fh̄(u h̄) ⊂ {(θ, I ) ∈ T ∗S1, |I − I0|

< ϵ}, one has ∥Rh̄u h̄∥ = O(h̄∞)∥u h̄∥.
In the expression of Q h̄ , Vh̄ is an h̄-dependent potential on S1 with an asymptotic
expansion

Vh̄(θ ) = V0(θ ) + h̄V1(θ ) + · · · ,

gh̄ ∈ C∞

0 (R) is supported on an h̄-independent set, with

gh̄(I ) = g0(I ) + h̄g1(I ) + · · · ,

and g0 is a local diffeomorphism from a neighbourhood of I = I0 to a neighbourhood
of 0 ∈ R.

As usual in semiclassical analysis, the asymptotic expansions for Vh̄ and gh̄ hold in the C∞

opology. The number I0 is sometimes called the (first) Bohr–Sommerfeld invariant of γ (see
ection 3.1). The notation W Fh̄(u h̄) stands for the semiclassical wavefront set of u h̄ (initially
alled the Frequency Set in [19], see also [31, Definition 2.9.1]).

Fourier Integral Operators were first introduced in a microlocal (homogeneous) context
14,26] and a semiclassical theory of Canonical Operators was developed independently [32].
uistermaat was the first to build the bridge between both theories [12], paving the way to mod-

rn semiclassical analysis. The construction of such quantum maps Uh̄ in presence of non-trivial
topology was discussed already at the time when Fourier Integral Operators were invented,
see [44]. In the semiclassical setting, related constructions appear for instance in [42,43].

In particular, Theorem 2.1 can be used to study the low-energy spectrum of 2D magnetic
Laplacians, in the case where the magnetic field is positive everywhere and reaches a
non-degenerate minimum along a curve, by Theorem 1.6 in [37].

An interesting consequence of Theorem 2.1 is that, if the subprincipal contribution V0
is Morse, one can formulate Bohr-Sommerfeld conditions (in a folded covering) for the
eigenvalues in a macroscopic window

[min Spec(Ph̄), min Spec(Ph̄) + c]

for c small (see Propositions 6.8 and 6.10), since we in fact reduced the problem to the case
where p0 is Morse. This leads to uniform asymptotics of the form (2), but with an expansion in
integer powers of h̄

1
2 , which is known to be the effective semiclassical parameter in the study of

perators whose symbol reaches a Morse–Bott minimum on an isotropic manifold [10,23]. We
o not explicitly perform this analysis here: after Propositions 6.8 and 6.10, it simply remains
o apply the results of [9,12,41].

Theorem 2.1 is even more useful in the opposite case where V0 (and, possibly, higher-order
erms in V ) are constant. In this case, the asymptotics of low-lying eigenvalues for Ph̄ acquire
particularly nice oscillating form, in which the invariant I0 turns out to play a prominent role,

s stated in the following theorem.
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Fig. 2. First two eigenvalues for the perturbed operator 1
2 [((x −2)2

+1)Hsym + Hsym((x −2)2
+1)], as a function of

1/h̄. With the notations of Theorem 2.1, one has V0 = 0 and V1 not constant. The gaps are lifted by the symmetry
breaking, at the same order as the amplitude of oscillations.

Theorem 2.2. Let k ≥ 0. Suppose that, in Theorem 2.1, the k + 1 first terms V0, V1, . . . , Vk
f the potential do not depend on θ . Suppose also that Ph̄ − b0 is elliptic at infinity. Then the
ollowing is true.

1. There exists a smooth, non constant function f : S1
→ R such that the first eigenvalue

eh̄
0 of Ph̄ satisfies:

eh̄
0 = b0 + h̄V0(0) + h̄2 f

(
I0

h̄
mod Z

)
+ O(h̄max(k+2,3)).

2. Let eh̄
1 similarly denote the second eigenvalue of Ph̄ (with multiplicity). There exists a

sequence (h̄ j ) j∈N → 0 such that

e
h̄ j
1 − e

h̄ j
0 = O(h̄k+2

j ).

This oscillatory behaviour of the first eigenvalue was remarked in recent work on the
magnetic Laplacian [20], but to our knowledge our result on the spectral gap is entirely
new, even in the particular case of magnetic Laplacians. These phenomena are related to the
topological nature of the problem and sometimes coined under the term “Aharonov-Bohm
effect”: low-energy eigenfunctions are microsupported on a non-contractible set (here, γ ).

Generally, one cannot say anything about the actual gap between e
h̄ j
1 and e

h̄ j
0 . Fig. 1 shows

the low-energy spectrum of the solvable, rotation-invariant example

Hsym = OpW
h̄ ((x2

+ ξ 2
− 1)2

− h̄2) : L2(R) → L2(R) (5)

with actual eigenvalue crossings; these crossings are not stable under perturbations and a
generic O(h̄k+2) perturbation of p opens the gap by h̄k+2. This is the case in Fig. 2, where
we illustrate the case k = 0 with a numerical computation of the first two eigenvalues for the
Hamiltonian

1 [
((x − 2)2

+ 1)Hsym + Hsym((x − 2)2
+ 1)

]
.

2
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In Theorem 2.2, if k ≥ 1 then f is explicit and, piece-wise, a polynomial of degree 2 (it
coincides, up to rescaling, with Fig. 1). If k = 0 however, f is implicit and the fact that it is
not constant is given by the end of the proof of Proposition 6.5.

How likely is it that the first few terms V0, V1, . . . are independent of θ? The dominant
term V0(θ ) coincides with the Melin value: it is the dominant term, of order h̄, of the minimal
possible energy for a quantum state localized at the point of γ corresponding to θ [10]. In
particular, if Ph̄ = OpW

h̄ (p) where p satisfies Assumption 1 and is independent of h̄, then
V0 = 0 everywhere.

In the analogy with strong constant magnetic fields on smooth 2D domains, V0 corresponds
to the curvature at boundary points in the domain. If V0 is constant, then the domain is a
Euclidian disc, and the model operator is perfectly invariant by rotation, not just at order h̄.

In the strong magnetic field regime, oscillations (and crossings) of the first few eigenvalues
lso happen at a much finer scale on very symmetric domains. For instance, in the case of
strong constant magnetic field on a domain, recent results on smooth domains [6,27], and

umerical simulations for the square [5], indicate that the first few eigenvalues oscillate at a
cale e−S/h̄α

for some α > 0. Usual tools in the analysis of pseudo-differential operators are
imited to O(h̄∞); the study of this phenomenon might require the use of analytic microlocal

ethods, which allow one to reach O(e−c/h̄) precision. In the specific case of Schrödinger
perators, to the explicit shear (x, ξ ) ↦→ (x, ξ − α(x) + α) corresponds an explicit quantum

map, and one can hope to treat the tunnelling effect above without analytic microlocal tools.
In the generic case where V0 is a Morse function (i.e. its critical points are non-degenerate),

this oscillatory behaviour does not appear at the bottom of the spectrum: since V0 varies along
the circle, eigenfunctions with energies smaller than b0 + h̄ max(V0) will microlocalise on a
contractible set, and one can, in principle, build a quantum normal form independent on I0.

Schrödinger operators of the form (1) may either belong to the scope of Propositions 6.8 and
6.10, or of Theorem 2.2, depending on the way V (the one in (1)) depends on h̄. Recalling that
V = O(h̄), the term in V of order h̄ corresponds to V0 in Theorem 2.2. Magnetic Schrödinger
perators in 2D have a low-energy spectrum given by a 1D pseudodifferential operator whose
rincipal symbol is the magnetic field ([37], Theorem 1.6), times a supplementary factor h̄; to
ecide whether we fall in the scope of Propositions 6.8 and 6.10, or of Theorem 2.2, one must
tudy how the Fourier Integral Operator in [37], Theorem 1.6, acts at order h̄2.

The technical hypothesis that Ph̄ − b0 be elliptic at infinity is simply here to ensure discrete
pectrum in a neighbourhood of the ground state. Theorem 2.1 did not require this because that
as a purely microlocal result. It would be interesting to apply it in the absence of discrete

pectrum, for instance to the description of quantum resonances.
Another perspective is the quantum study of other (higher-dimensional) Hamiltonian in-

ariants. The Bohr–Sommerfeld invariant generalizes into an invariant of compact Lagrangian
ubmanifolds. Can you hear this invariant by oscillations of the ground state of a quantum
ystem? Does the quantum system need to be completely integrable in order to hear it?

. Reduction of Morse–Bott functions

In this section we discuss the classical problem: given the Hamiltonian p on the symplectic
anifold M = T ∗ X , we reduce the equations of motion given by p. We first review the

rst Bohr–Sommerfeld invariant, a real number associated with curves on M , invariant under
amiltonian dynamics (but not necessarily under general symplectic changes of variables).
hen, we create, in a neighbourhood Ω̃ of γ = {p = b0}, action–angle coordinates, that
s, a local change of coordinates simplifying p. Indeed, we construct (Proposition 3.8) a
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ymplectic change of variables (θ, I ) : Ω̃ → S1
θ × (−ϵ, ϵ)I from a neighbourhood Ω̃ of γ

o a neighbourhood of the zero section in T ∗S1, such that

p = b0 + g(I ), (6)

or some g : R → R+.
To conclude this section, we show (Propositions 3.10 and 3.12) that this symplectic change

f variables (θ, I ) can be extended from Ω̃ to the whole of T ∗ X after shifting I by I0; the
dentity (6) will only hold in the vicinity of {I = I0}, but the fact that this change of variables
s global will allow us to associate with it a well-behaved quantum transformation.

emark 3.1. Recall that the Morse–Bott Lemma mentioned in Section 2 gives p = b0 + f 2,
or some smooth function f defined in a neighbourhood of γ . However, in general it is not
ossible to find symplectic coordinates (θ, I ) such that f = I ; on the contrary, the function

g in (6) is a symplectic invariant of the Hamiltonian p, and will be crucial in obtaining the
ehaviour of eigenvalues when we turn to the quantum problem, see Section 5.

.1. The first Bohr-Sommerfeld invariant

efinition 3.2. Suppose M = T ∗ X where either X = R or X = S1. Let α be the standard
iouville 1-form on M , so that the canonical symplectic form is ω = dα. Let γ be a simple
urve in M . The first Bohr-Sommerfeld invariant is the action integral

I0(γ ) =
1

2π

∫
γ

α.

Remark 3.3. Using Stokes’ theorem, one can define I0(γ ) without referring to the Liouville
-form, as follows.

1. If γ is contractible, it is the boundary of a close, compact surface Σ ⊂ M . Then
I0 =

1
2π

∫
Σ ω.

2. If γ is not contractible, then M = T ∗S1 (with coordinates (θ, ξ ) ∈ S1
× R) and γ is a

curve with winding number 1 with respect to θ . For K ∈ N large enough, γ ∪{ξ = −K }

is the boundary of a close, compact surface Σ ⊂ M . Then I0 =
1

2π
(−K +

∫
Σ ω).

ndeed, Stokes’ theorem implies that all definitions agree up to a constant term, and we can
heck that all definitions give I0 = 0 on the zero section ξ = 0.

The following proposition is well known.

roposition 3.4 ([15]). I0(γ ) is a Hamiltonian invariant of γ .

roof. If Y is a Hamiltonian vector field, then by Cartan’s formula, LY α is an exact 1-form
nd hence acts on the cohomology class of α restricted to γ (known as the Liouville class of
). Therefore, a Hamiltonian flow preserves the Liouville class. Since γ ≃ S1 this means that

t preserves the integral
∫
γ

α. □

emark 3.5. In case 1 of Remark 3.3, I0 is clearly a symplectic invariant, and the proposition
bove is obvious. However, in case 2 above, I0 is not a symplectic invariant of γ ; indeed any
urve of the type {ξ = C}, for C ∈ R can be sent to {ξ = 0} by the symplectic change of
ariables (θ, I ) ↦→ (θ, I − C). However, for this curve, I = C .
0
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Remark 3.6. The Liouville class I0 is called the first Bohr-Sommerfeld invariant, because it
is the principal term in the Bohr-Sommerfeld cocycle defined in [42] (the subprincipal terms
involve Maslov indices and the 1-form induced by the subprincipal symbol of Ph̄). In the case
of Berezin–Toeplitz quantization, I0 can be defined using parallel transport along γ on the
prequantum bundle [8]. In this case, I0 is defined up to a sign and modulo Z, but the choice
does not impact the oscillations in Theorem 2.2 since, for Toeplitz quantization, h̄−1 takes
integer values.

Remark 3.7. The Liouville class can be defined on Lagrangian tori in higher dimensional
completely integrable systems, giving rise to a vector of Bohr–Sommerfeld invariants. These
invariants are important in the study of the spectrum of Laplace–Beltrami operators in the
integrable of KAM regime, see [36], or for the joint spectrum of commuting operators, see for
instance [1,42].

3.2. Local symplectic normal form

Let us use Definition 3.2 to find symplectic coordinates simplifying p near the simple curve
γ : after this change of variables, p depends only on one “action” variable.

Proposition 3.8. If a smooth function p admits a non-degenerate well along a closed curve
γ (see Assumption 1), then there exist smooth “folded action–angle” coordinates (θ, I ) near
γ that are adapted to p, in the sense that γ = {I = 0} and

p = b0 + (g(I ))2,

or some smooth function g : (R, 0) → (R, 0) with non-vanishing derivative. The neighbour-
ood of γ where this holds can be chosen saturated with respect to the level sets of p, i.e. of

the form {(θ, I ); |I | < ϵ} for some ϵ > 0.

roof. Recall that by the Morse–Bott Lemma there exists, on a neighbourhood Ω of γ , a
change of variables (z, f ) : Ω → S1

× R such that

p = b0 + f 2.

Without loss of generality, Ω is an open sublevel set of p (that is, the image of f is an interval
[− f0, f0]).

In particular, d f is everywhere non-zero in Ω ; hence we can now view f : Ω → R as
a non-critical Hamiltonian, and apply the action–angle theorem (see [13] and [24], Appendix
A2): on a small enough sublevel set Ω̂ of p, there exist a smooth symplectic change of variables
(θ, I ) : Ω̂ → S1

× R and a smooth diffeomorphism g : R → R such that f = g(I ). □

emark 3.9. It follows that the set of leaves defined by p, i.e. the space of connected
omponents of levels sets of p, is a smooth one-dimensional manifold C (parameterized by

I or Ĩ := g(I )) , and the induced map p̄ − b0 : C → R is a simple fold: Ĩ ↦→ Ĩ 2.

In the rest of this section, we use Proposition 3.8 to build normal forms on the whole phase
pace.

roposition 3.10. Let p : R2
→ R be a smooth function. Suppose that p admits a non-

egenerate well a curve γ , see assumption (3). Let I0 = I0(γ ) be the first Bohr-Sommerfeld
nvariant, see Definition 3.2.
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There exist ϵ > 0 and a smooth Hamiltonian change of variables σ : R2
→ R2, equal to

the identity outside of a compact set, such that, for all (x, ξ ) ∈ R2,

|x |
2
+ |ξ |

2
∈ (2I0 − ϵ, 2I0 + ϵ) ⇒ p ◦ σ (x, ξ ) = b0 + (g(x2

+ ξ 2
− 2I0))2.

roof. Since here M = R2, we know that 2π I0 is the area inside the loop γ , and hence I0 > 0.
et r0 =

√
2I0. We apply Proposition 3.8, and compose with symplectic polar coordinates

(θ, Ĩ ) ↦→ (x =

√
2 Ĩ cos θ, ξ =

√
2 Ĩ sin θ ), where Ĩ := I + I0 varies in a neighbourhood

of I0; this gives a symplectic change of variables σ0 from a neighbourhood Ω0 of γ to a
neighbourhood of {x2

+ ξ 2
= r2

0 }, and a local diffeomorphism g of (R, 0) such that

p ◦ σ0(x, ξ ) = b0 + (g(x2
+ ξ 2

− r2
0 ))2.

In particular, σ0 maps level sets of p to circles with centre 0.
By the Jordan curve theorem, R2

\ γ consists in two connected components: a bounded
“interior” component Ωi and an unbounded “exterior” component Ωe. Let γi ⊂ Ωi be a
onnected component of a level set of p, close to ∂Ω0. Let Di be the closure of the interior
omponent of R2

\ γi ; this is a closed topological disc with smooth boundary. We let ri > 0
e such that

πr2
i = vol(Di ).

ote, in particular, that for all (x, ξ ) ∈ γi , one has ∥σ0(x)∥2
= r2

i .
By Proposition A.5, there exists an orientation-preserving smooth diffeomorphism φi from

Di to the closed ball BR2 (0, ri ). In particular, by Proposition A.7, we can deform φi into another
rientation-preserving smooth diffeomorphism φ̃i which coincides with σ0 near the boundary.

We can play the same game on Ωe with an additional condition of compact support, using
roposition A.6: this produces an orientation-preserving diffeomorphism φ̃e on the complement
f an open topological ball in R2, equal to the identity outside a larger ball, and which coincides
ith σ0 near the boundary.
Gluing σ0, φ̃i and φ̃e, we obtain a diffeomorphism φ : M → M satisfying the following

ssumptions:

• There exists a neighbourhood Ω1 of γ on which φ is a symplectomorphism and

p = [(x, ξ ) ↦→ (b0 + g(x2
+ ξ 2

− 2I0))2] ◦ φ.

• The domain bounded by γ is sent by φ to B(0, r0).
• φ is identity outside a large ball B(0, R).

It only remains to modify φ into a volume-preserving transformation. To this end, we will
pply the Moser–Weinstein argument (see for instance [38, Theorem 7.3]). On R2, the canonical
ymplectic form ω = dα is exact; moreover, there is a canonical choice of symplectic potential
= ξdx (the Liouville 1-form).
Consider the difference α −φ∗α. It is a 1-form supported in B(0, R), which is closed inside

1. Since Ω1 retracts to a circle, α − φ∗α is exact if and only if its integral along such a
ircle vanishes. But by assumption,

∫
γ

α = 2π I0 = πr2
0 . On the other hand, by construction

γ
φ∗α =

∫
φ(γ ) α =

∫
Λr0

α = πr2
0 , where we used Stokes’ theorem for the last equality. Hence

here exists a smooth function f : Ω1 → R such that α − φ∗α = d f in Ω1. Using a cut-off
unction, let f̃ be equal to f near γ and to zero outside of Ω1. We now use the Moser–Weinstein
rgument with 1-form α − d f̃ , which vanishes near γ and outside of B(0, R). Since the
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support of α is compact, we may integrate along the Moser path and obtain a diffeomorphism
ϕ : R2

→ R2, which is the identity near γ and outside of B(0, R) — because there we
integrate the zero vector-field—, such that ϕ∗(φ∗ω) = ω. Thus, the symplectomorphism φ ◦ ϕ

answers the question. To conclude, every symplectomorphism of R2 with compact support is
amiltonian. □

emark 3.11. In Proposition 3.10, if a ball B(0, c) lies inside the compact component of R2
\γ ,

one can impose that σ is equal to identity on B(0, c−ϵ). Indeed, in this case, one can prescribe
that φi is the identity on B(0, c − ϵ/2) using Proposition A.6 rather than Proposition A.5, and
the corrections in the rest of the proof preserve the fact that φi is the identity on B(0, c − ϵ).

Proposition 3.12. Let p : T ∗S1
→ R be a smooth function admitting a non-degenerate well

along a curve γ . Suppose that γ is non-contractible.
Then there exist ϵ > 0 and a smooth Hamiltonian diffeomorphism σ : T ∗S1

→ T ∗S1, equal
to the identity outside of a compact set, such that, for all (x, ξ ) ∈ T ∗S1,

ξ ∈ (I0 − ϵ, I0 + ϵ) ⇒ p ◦ σ (x, ξ ) = b0 + (g(ξ − I0))2.

roof. Let R > 0; consider the following symplectomorphism from S1
× [−2R, 2R] to

(x, ξ ) ∈ R2, R ≤ x2
+ ξ 2

≤ 9R}:

(θ, I ) ↦→ {(
√

2(I + 5R/2) cos(θ ),
√

2(I + 5R/2) sin(θ ))}.

hrough this symplectomorphism, we are reduced to Proposition 3.10: because of the volume
onsiderations, one can extend the symplectic normal form given by Proposition 3.8 to a
amiltonian change of variables, equal to identity outside of {(x, ξ ) ∈ R2, R ≤ x2

+ ξ 2
≤

R}. □

The symplectic change of variables at the beginning of the last proof can be quantized; this
ill allow us in Section to quantize the normal form 3.8 into a unitary operator, up to O(h̄)

rror, but where I is replaced with I − I0. Improving this O(h̄) error is the topic of the next
ection.

. Formal perturbations

Before giving a quantum equivalent to Proposition 3.8, we now spend some time on
he symplectic reduction of small perturbations of a Hamiltonian p with a non-degenerate
ell along a curve. The Morse–Bott condition is not stable by perturbations: generic smooth
erturbations of p have a single, non-degenerate, minimal point. In particular, the action–angle
oordinates of Proposition 3.8 are not stable under perturbations. In this section, we study a
erturbation of the action–angle coordinates which simplifies as much as possible a perturbation
f p while staying close to the original ones. To our knowledge, this procedure was never
erformed for p satisfying Assumption 1; following the spirit of Poincaré–Birkhoff normal
orms, we will introduce the decomposition of C∞(Ω̃ ,R) into the kernel and image of the
ap a ↦→ {a, p}.
Suppose that p admits a non-degenerate well along γ , with p(γ ) = b0, and let

pϵ := p + ϵp1,

here p1 is smooth. We consider infinitesimal Hamiltonian deformations of p, i.e. functions
f the form exp(ϵad )p = p + ϵ{a, p } + O(ϵ2), where the generator of the deformation is
a ϵ ϵ
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he smooth function a and ada(h) := {a, h} = −adp(a) (see [2], Appendix 2A, for details on
he adjoint representation). We have

exp(ϵada)pϵ = p + ϵ(p1 + {a, p}) + O(ϵ2).

This leads to the study of the cohomological equation {a, p} = r where r is given and a is
unknown. As in the previous section, we let f be a smooth branch of

√
p − b0.

We use the notation C from Remark 3.9; all quantities that are invariant by the Hamiltonian
ow of p can be viewed as functions on C. In particular, for any δ ∈ C, and h ∈ C∞(Ω̂ ), we
efine the average

⟨h⟩δ :=
1

2π

∫ 2π

0
h(θ, I (δ))dθ.

iven a Hamiltonian H , let us denote by ϕt
H the Hamiltonian flow of H at time t . We notice

hat, since the flow of the Hamiltonian f = g(I ) introduced in the proof of Proposition 3.8 is
time-reparametrization of the flow of I , we get, for all m ∈ δ,

⟨h⟩δ =
1

2π

∫ 2π

0
(ϕt

I )∗h(m)dt =
1
Tδ

∫ Tδ

0
(ϕt

f )∗h(m)dt,

here Tδ =
2π

g′(I (δ)) is the period of the Hamiltonian flow of f on δ.
The following Lemma is standard for regular Hamiltonians; but we need here a version for

ur singular situation.

emma 4.1. There exists a neighbourhood Ω̂ of γ on which, for any h ∈ C∞(Ω̂ ), the
following holds.

1. h ∈ ker adp if and only if h = q ◦ f for some smooth function q.
2. h ∈ adp(C∞(Ω̂ )) if and only if

(a) for all δ ∈ C, ⟨h⟩δ = 0 and
(b) h↾γ = 0.

roof. We will work in the coordinates (θ, I ) introduced in Proposition 3.8 and proceed by
Fourier decomposition on θ . The fact that p does not depend on θ in these coordinates greatly
simplifies the discussion because it simplifies the expression of adp.

1. Recall

p : (θ, I ) ↦→ b0 + (g(I ))2,

where g : (R, 0) → (R, 0) is a smooth diffeomorphism.
On Ω2, one has

{p, h} = 2g′(I )g(I )∂θ h(θ, I ).

In particular, {p, h} = 0 if and only if h depends only on I , that is, h = q ◦ f for some
f ∈ C∞(R,R).

2. Let us decompose h ∈ C∞(Ω2,R) in Fourier series in θ :

h : (θ, I ) ↦→

∑
hk(I )eikθ .
k∈Z
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We search for a ∈ C∞(Ω2,R), of the form

a : (θ, I ) ↦→

∑
k∈Z

ak(I )eikθ .

such that

{a, p} = h.

One can compute

{ak(I )eikθ , p} = ikg′(I )g(I )ak(I )eikθ .

The action of adp is diagonal with respect to the Fourier series decomposition; h belongs
to its image if and only if h0 = 0 and for every k ̸= 0, hk belongs to the ideal generated
by g, that is, hk(0) = 0. This concludes the proof. □

Let πθ : Ω̂ → γ be given by (θ, I ) ↦→ θ . The space of functions that depend only on θ is
then denoted π∗

θ C∞(γ ).
A corollary of Lemma 4.1 is that the decomposition

C∞(Ω̂ ) = ker adp ⊕ adp(C∞(Ω̂ ))

is explicit. Inside ker adp, let (ker adp)0 denote the subspace of functions vanishing on γ . Let
us make the decomposition above more precise.

Proposition 4.2. Let p : M → R be a Hamiltonian with a non-degenerate well along a curve
γ . There exists a neighbourhood Ω̂ of γ on which the following direct sum decomposition
holds:

C∞(Ω̂ ) = (ker adp)0 ⊕ adp(C∞(Ω̂ )) ⊕ π∗

θ C∞(γ ).

Proof. Let us write again h as a Fourier series in θ :

h : (θ, I ) ↦→

∑
k∈Z

hk(I )eikθ .

We decompose h = h1 + h2 + h3, where

(ker adp)0 ∋ h1 : (θ, I ) ↦→ h0(I ) − h0(0)

adp(C∞(Ω2)) ∋ h2 : (θ, I ) ↦→

∑
k∈Z∗

(hk(I ) − hk(0))eikθ

π∗

θ C∞(γ ) ∋ h3 : (θ, I ) ↦→

∑
k∈Z

hk(0)eikθ .

This concludes the proof. □

In particular, we obtain the following:

Proposition 4.3. Let p : M → R be a Hamiltonian with a non-degenerate well along a
curve γ . There exists a neighbourhood Ω̂ of γ on which, given any r ∈ C∞(Ω̂ ), there exist

∈ C∞(Ω̂ ), q ∈ C∞(R, b0) with q(0) = 0, and V ∈ π∗

θ C∞(γ ), such that

{p, a} = r − q ◦ f − V .

By induction, this leads to the following Birkhoff normal form.
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heorem 4.4. Let p : M → R be a Hamiltonian with a non-degenerate well along a curve
γ (see Assumption 1). Let pϵ be a formal perturbation of p; that is, pϵ is the jet at order ∞

of a smooth family of smooth perturbations; we write

pϵ = p +

∞∑
j=1

ϵ j p j + O(ϵ∞),

where the p j ’s are smooth functions.
There exists a symplectic diffeomorphism ϕϵ in a neighbourhood of γ , depending smoothly

on ϵ, such that

ϕ∗

ϵ pϵ = b0 + (gϵ ◦ f )2
+ ϵVϵ + O(ϵ∞),

where gϵ ∈ C∞(R, 0), Vϵ = π∗

θ Ṽϵ for some Ṽϵ ∈ C∞(γ ); moreover both gϵ and Ṽϵ (and hence
Vϵ) admit an asymptotic expansion in integer powers of ϵ (for the C∞ topology), and moreover
gϵ = g + O(ϵ) and gϵ(0) = g(0).

In other words, there exist canonical coordinates (θ, I ) ∈ T ∗S1 in which

pϵ(θ, I ) = b0 + (gϵ(I ))2
+ ϵVϵ(θ ) + O(ϵ∞).

Proof. By Proposition 3.8, there holds p = b0 + (g ◦ I )2 where I : Ω̂ → R is smooth with
dI = 0 everywhere, and g : R → R with g′

̸= 0 everywhere. Suppose by induction that

ϕ∗

ϵ pϵ = b0 + (gϵ ◦ I )2
+ ϵVϵ + ϵN r,

for some N ≥ 1 (if N = 1 we choose gϵ = g and Vϵ = 0).
Let (a, q, V ) be as in Proposition 4.3. We have

exp(ϵN ada)ϕ∗

ϵ pϵ = ϕ∗

ϵ pϵ + ϵN
{a, ϕ∗

ϵ pϵ} + O(ϵ2N ).

Hence

exp(ϵN ada)ϕ∗

ϵ pϵ = b0 + (gϵ ◦ I )2
+ ϵVϵ + ϵN (r + {a, p}) + O(ϵN+1),

with

r + {a, p} = q ◦ I + V

where q(0) = 0.
Hence

exp(ϵN ada)ϕ∗

ϵ pϵ = b0 + (gϵ ◦ I )2
+ ϵN q ◦ I + ϵ(Vϵ + ϵN−1V ) + O(ϵN+1)

= b0 +

[(
gϵ + ϵN 1

2
q
)

◦ I
]2

+ ϵ(Vϵ + ϵN−1V ) + O(ϵN+1).
(7)

Finally, since we assumed that ϕϵ was the time-one flow of a Hamiltonian aϵ , we see that
he left-hand side of (7) is the flow of the Hamiltonian aϵ +ϵN a modulo O(ϵN+1). This proves
he induction step. □

. Semiclassical normal form

In this section, we use the discussion of Section 4 to give a quantum equivalent to
roposition 3.8. We rely on the properties of Weyl quantization, although those methods can
e adapted to other contexts. Recall that Weyl quantization, defined by (4), associates with a
unction p : M → R a pseudo-differential operator, which is a family of linear operators
epending on a parameter h̄; we refer to [45] for an introduction to pseudo-differential
perators.
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5.1. Quantum maps

In order to quantize the results of Section 3, we need a proper notion of quantum map
corresponding to a symplectic change of variables.

In the whole of this section, to simplify notation, we will use the subscript h̄ to denote that
an object depends on a parameter h̄ belonging to a punctured neighbourhood of zero within a
closed subset of R+.

Definition 5.1. Let (M1, σ 1, H 1
h̄ , Op1

h̄) and (M2, σ 2, H 2
h̄ , Op2

h̄) be two quantization procedures:
for i = 1, 2, (M i , σ i ) are symplectic manifolds, H i

h̄ are (h̄-dependent) Hilbert spaces and
Opi

h̄ : C∞
c (M i ,C) → B(H i

h̄) realize formal deformations of the Poisson algebras C∞
c (M i ,C).

The functors Opi
h̄ yield natural notions of h̄-wave front set for families of elements of H i

h̄ .
A quantum map consists of the data (Uh̄,Ω1,Ω2, σ ), where Ω1,Ω2 are respectively open

subsets of M1 and M2, σ : Ω1 → Ω2 is a smooth and proper symplectomorphism, and
h̄ : H 1

h̄ → H 2
h̄ is uniformly bounded in operator norm and satisfies the following properties:

1. For every K ⊂⊂ Ω1, for every u h̄ ∈ H 1 with ∥u h̄∥H1 = 1 such that

W Fh̄(u h̄) ⊂ K ,

one has

∥Uh̄u h̄∥H2 = 1 + O(h̄∞).

2. For every K ⊂⊂ Ω2, for every vh̄ ∈ H 2 with ∥vh̄∥H2 = 1 such that

W Fh̄(vh̄) ⊂ K ,

one has

∥U ∗

h̄ vh̄∥H1 = 1 + O(h̄∞).

3. For every a ∈ C∞
c (Ω2,R), there exists a sequence (bk)k≥0 of elements of C∞

c (Ω1,R),
such that b0 = a ◦ σ , supp(bk) ⊂ σ−1(supp(a)) for every k, and

U ∗

h̄ Op2
h̄(a)Uh̄ =

∞∑
k=0

h̄−kOp1
h̄(bk) + O(h̄∞).

A linear operator Uh̄ satisfying conditions 1 and 2 above will be called a microlocal unitary
transform.

Note that condition 3 of the definition implies the symmetric property where the roles of 1
and 2 are flipped: one can reconstruct a =

∑
h̄−kak from b by induction on k.

A broad class of examples of quantum maps is given by the Egorov Theorem (see [45],
Theorem 11.1). Indeed, if (M1, ω1) = (M2, ω2) = T ∗ X where X is a smooth, compact
manifold, if Opi

h̄ is the Weyl quantization, and if σ is a global Hamiltonian transformation
(corresponding to a time-dependent Hamiltonian H (t) for t ∈ [0, 1]), then one can construct

h̄ as follows: for u0 ∈ L2(X ), Uh̄u0 is the solution at time t = 1 of the differential equation
h̄∂t u(t) = OpW

h̄ (H (t))u(t) with initial value u(0) = u0. This procedure also works in more
general quantization contexts.

In this section, we will use two particular quantum maps from T ∗S1 to R2, which we define
now.
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efinition 5.2. Let Ω1 = S1
× R+

∗
and Ω2 = R2

\ {0}, which are open sets of T ∗S1 and R2,
respectively. Let σ : Ω1 → Ω2 be defined as

(θ, I ) ↦→ (
√

2I cos(θ ),
√

2I sin(θ )).

For h̄ > 0 and k ∈ N0, let φk,h̄ ∈ L2(R) denote the kth Hermite eigenfunction of the
h̄-harmonic oscillator, defined by the following induction relation:

φ0,h̄ : x ↦→
1

√
2π h̄

e−
x2
2h̄

φk+1,h̄ =
1

h̄
√

2(k + 1)
(−h̄∂ + x)φk,h̄ for k ≥ 0.

The toric quantum map (Th̄,Ω1,Ω2, σ ) is defined by its action on the Fourier basis as

Th̄(θ ↦→ eikθ ) =

{
φk,h̄ if k ≥ 0
0 if k < 0.

roposition 5.3. The toric quantum map is indeed a quantum map.

roof. Points 1 and 2 of the definition are almost automatic: Th̄ sends a Hilbert basis of L2(R)
o a subset of a Hilbert basis L2(S1), to which corresponds a projector Πh̄ . Then, by definition

of W Fh̄ , for all compact K ⊂ S1
× (0, +∞), one has, uniformly for all sequences (u h̄)h̄>0 with

wave front set in K ,

∥(Πh̄ − 1)u h̄∥L2 = O(h̄∞).

One can check from the definition of Th̄ that, for all 0 < I1 ≤ I2,

W F(u h̄) ⊂ {(θ, I ) ∈ T ∗S1, I ∈ [I1, I2]}

s equivalent to

W F(Th̄u h̄) ⊂ {(x, ξ ) ∈ T ∗R, x2
+ ξ 2

∈ [
√

2I1,
√

2I2]}.

et us use this property to check point 3. By definition, one has, for k ≥ 0,

T ∗

h̄ (−h̄∂ + x)Th̄(θ ↦→ eikθ ) = (θ ↦→
√

2h̄
√

k + 1ei(k+1)θ ).

n other terms, if Op1
h̄ denotes left quantization [45], one has the exact correspondence

T ∗

h̄ (−h̄∂ + x)Th̄ = Op1
h̄(

√
2I1I≥0eiθ ).

ven though (I, θ) ↦→
√

2I1I≥0eiθ is not smooth, it is the sum of a compactly supported
L1 function and an element of S

1
2 , so that the associated pseudo-differential operator is

ell-defined.
Let now K ⊂ S1

× (0, +∞) be a compact set and let us study the action of T ∗

h̄ (−h̄∂ + x)Th̄

on states with wave front set in K . Let χ : T ∗S1
→ R be a smooth cut-off, equal to 1 on K

and with compact support in S1
×R∗

+
. Suppose that χ is invariant by rotation. Then, uniformly

on families (u h̄)h̄>0 of normalized elements of L2(S1) with wave front set in K one has

Op1
h̄(

√
2I1I≥0eiθ )u h̄ = Op1

h̄(χ (I )
√

2I eiθ )u h̄ + O(h̄∞).

Weyl quantization and left quantization are equivalent for smooth symbols: given a classical
symbol a, there exists a classical symbol b such that Op1(a) = OpW (b) + O(h∞). In
h̄ h̄ ¯
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particular,for all K ⊂⊂ S1
× R∗

+
, for all χ ∈ C∞

c (S1
× R∗

+
) equal to 1 near K , there exists a

sequence (bk)k∈N>0 of elements of C∞
c (S1

× R∗
+
,R) such that, for all u h̄ ∈ L2(S1) normalized

with W Fh̄(u h̄) ⊂ K , one has

T ∗

h̄ (−h̄∂ + x)Th̄u h̄ = OpW
h̄

(
χ (I )

√
2I eiθ

+

+∞∑
k=1

h̄−kbk(θ, I )

)
u h̄ + O(h̄∞).

ll the sequences (bk) constructed in this fashion are unique near K .
Taking the symmetric and antisymmetric part yields, with the same hypotheses,

T ∗

h̄ OpW
h̄ (x)Th̄u h̄ = OpW

h̄

(
χ (I )

√
2I cos(θ ) +

+∞∑
k=1

h̄−kRe(bk)(θ, I )
)

u h̄

+ O(h̄∞)

T ∗

h̄ OpW
h̄ (ξ )Th̄u h̄ = OpW

h̄

(
χ (I )

√
2I sin(θ ) +

+∞∑
k=1

h̄−kIm(bk)(θ, I )
)

u h̄

+ O(h̄∞).

Then, using the explicit composition rules of Weyl quantization, one can determine T ∗

h̄ OpW
h̄

(Q(x, ξ ))Th̄ for any polynomial Q. The equivalence takes the following form: there exists a
sequence of differential operators (Dk), such that D0 = id and Dk has degree 2k, such that,
for every polynomial Q, for any compact set K , for any χ and (u h̄) as above,

T ∗

h̄ OpW
h̄ (Q(x, ξ ))Th̄u h̄ = OpW

h̄

(
χ (I )

+∞∑
k=0

h̄k[(Dk Q) ◦ σ ](θ, I )

)
u h̄ + O(h̄∞).

Since, in the equation above, the wave front set of Th̄u h̄ belongs to a compact set bounded
away from zero, one can add a smooth cut-off χ1 with compact support in the equation above:

T ∗

h̄ OpW
h̄ (χ1(x, ξ )Q(x, ξ ))Th̄u h̄ = OpW

h̄

(
χ (I )

+∞∑
k=0

h̄k[(Dk Q) ◦ σ ](θ, I )

)
u h̄

+O(h̄∞).

Let now K1 ⊂⊂ R2
\ {0, 0} and 0 < r < R be such that K1 ⊂ {x2

+ ξ 2
∈ [r2, R2]}. Let us

choose K ⊂⊂ S1
× R∗

+
containing an open neighbourhood of S1

× [r2/2, R2/2], then χ and
χ1 as previously. In particular, χ1 on K1.

Let a ∈ C∞(R2,R) be supported on K1. Let (Qn)n∈N be a sequence of polynomials such
hat (Qn)n∈N converges towards a in the C∞ topology, on a neighbourhood of the support
f χ1. Then, in particular, Qnχ1 converges towards a in the topology of S so that, by the
alderon–Vaillancourt theorem ([45], Theorem 4.23), in operator norm,

OpW
h̄ (χ1(x, ξ )Qn(x, ξ )) → OpW

h̄ (a).

n the right-hand side, one has similarly, for every k in N,

OpW
h̄ (χ (I )[(Dk Qn) ◦ σ ](θ, I )) → OpW

h̄ (χ (I )[(Dka) ◦ σ ](θ, I )).

Thus, for any sequence (u h̄) with wave front set in K , one has, by diagonal extraction of the
Qn’s,

T ∗

h̄ OpW
h̄ (a)Th̄u h̄ = OpW

h̄

(
χ (I )

+∞∑
h̄k[(Dka) ◦ σ ](θ, I )

)
u h̄ + O(h̄∞).
k=0
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n the other hand, if the wave front set of (u h̄) does not intersect K , then both terms in the
equation above are O(h̄∞). We conclude that

T ∗

h̄ OpW
h̄ (a)Th̄ = OpW

h̄

(
χ (I )

+∞∑
k=0

h̄k[(Dka) ◦ σ ](θ, I )

)
+ O(h̄∞). □

emark 5.4. The operator Th̄ acquires a somewhat closed expression through the Bargmann
ransform: given the power series

H : y ↦→

∑
k≥0

yk

√
k!

,

hich converges on the whole complex plane, Th̄ has the following integral kernel:

(x, θ) ↦→ Ch̄−2
∫
C

exp
[
−

1
h̄

(
|z|2 + |x |

2
− 2

√
2z · x

)]
H
(

ze−iθ

√
h̄

)
dz,

where C is a universal constant. One can check that this is a Fourier Integral Operator with
complex phase; however, this explicit form is not easily tractable because the function H is
transcendental [17].

An alternative representation of Th̄ uses the generative functions approach of Hörmander:
with

G : (x, θ) ↦→
1
2

x2 tan(θ ),

then the symplectic polar change of coordinates σ can be written

σ : (θ, ∂θ G(x, θ)) ↦→ (x, ∂x G(x, θ))

so that Th̄ is a Fourier Integral operator of the form

(x, θ) ↦→ h̄−1e
i
h̄ G(x,θ )ah̄(x, θ),

where ah̄ is a classical symbol. However, the function G is singular at θ =
π
2 , and one should

cut off this integral in phase space in x and add another contribution from the vicinity of θ =
π
2 .

Definition 5.5. Let (x0, ξ0) ∈ R2 and let r < π . Let

Ω1 = {(θ, I ) ∈ S1
× R, dist(θ + 2πZ, x0)2

+ (I − ξ0)2 < r}

Ω2 = {(x, ξ ) ∈ R2, (x − x0)2
+ (ξ − ξ0)2 < r}.

et σx0,ξ0,r : Ω1 → Ω2 be defined by (θ, I ) ↦→ (xθ , I ) where xθ ∈ θ + 2πZ and dist(xθ , x0) =

dist(θ + 2πZ, x0). Let χ : R ↦→ [0, 1] be a smooth function equal to 1 on a neighbourhood of
[−r, r ] and to 0 on a neighbourhood of R \ [−π, π].

We then define Wx0,ξ0,r : L2(S1) → L2(R) as follows: for u ∈ L2(S1),

Wx0,ξ0,r u : x ↦→ χ (x − x0)OpW
h̄ (1(θ,I )∈Ω1 )u(x mod 2πZ),

and we define the developing quantum map as (Wx0,ξ0,r ,Ω1,Ω2, σ ).

The developing quantum map is a quantum map by definition of OpW
h̄ on T ∗S1.

.2. Quantization of the normal form

From now on, M = T ∗ X , with X = R or X = S1; our semiclassical analysis will

e concerned with Weyl quantization. The results can be transported to other geometrical
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settings (manifolds with asymptotically conic or hyperbolic ends, Berezin–Toeplitz quantization
of compact manifolds, etc.) as long as one has a good notion of ellipticity at infinity and a
microlocal equivalence with Weyl quantization, and provided that one can make sense of the
invariant I0 above. One should note, however, that even the main term V0 in Theorem 2.1,
and in particular the Morse condition of Section 6.3 or the conditions in Theorem 2.2, are not
invariant under a change of quantization.

Let (Ph̄)h̄>0 be a semiclassical pseudo-differential operator on X with a classical symbol in
a standard class: Ph̄ = OpW

h̄ (ph̄), with

ph̄(x, ξ ) = p0(x, ξ ) + h̄ p1(x, ξ ) + · · ·

See [45]. We assume that the principal symbol p0 admits a non-degenerate well on a loop γ .
We are now ready to prove Theorem 2.1.

Proof. One proceeds as in Theorem 4.4. The starting point is a quantization (U0,h̄)h̄>0 of the
symplectic normal form given by Proposition 3.8.

In our setting, there are three possible topological situations for γ , and we give the three
corresponding constructions of U0.

1. If M = R2, then γ is contractible and one can apply Proposition 3.10. Let H be a (time-
dependent) Hamiltonian satisfying the conditions of Proposition 3.10 (in particular, H
is constant near infinity, so it belongs to the symbol class S0). We let exp(−i h̄−1 Ĥ ) be
the corresponding quantum evolution. We now let, for all h̄ > 0,

U0,h̄ = T ∗

h̄ exp(i h̄−1 Ĥ ).

2. If M = T ∗S1 and γ is contractible, we let Σ be the compact connected component of
M \γ , and we let (B((θi , ξi ), ri ))i∈I be a finite covering of a contractible neighbourhood
of Σ by discs of radius < π , and (χi )i∈I be an associated partition of unity. We then
let (xi )i∈I be a family of real numbers such that [xi ] = θi and (B((xi , ξi ), ri ))i∈I is a
covering of a connected preimage Σ̂ of Σ by the developing map. Then, we define

V =

∑
i∈I

Wxi ,θi ,ri OpW
h̄ (χi ).

Near Σ̂ , one can apply Proposition 3.10 as in the previous case, and we let

U0 = T ∗

h̄ exp(−i h̄−1 Ĥ )V.

3. If M = T ∗S1 and γ is not contractible, then we apply Proposition 3.12; if H is a
(time-dependent) Hamiltonian satisfying Proposition 3.12, then we let

U0 = exp(−i h̄−1 Ĥ ).

In all cases, by the Egorov theorem, there exists a classical symbol qh̄ =
∑

+∞

k=0 h̄−kqk +O(h̄∞)
such that, for all u microlocalised in a neighbourhood Ω of {ξ = I0}, one has

Q0u := U0,h̄ Ph̄U ∗

0,h̄u = b0u +

(
g0

(
h̄
i

∂

∂θ

))2

u + h̄OpW
h̄ (q)u + O(h̄∞).

It remains to correct U0 by induction, in order to get an O(h̄∞) remainder. To this end, we
roceed by induction, exactly as in Theorem 4.4. Let N ∈ N; suppose by induction that there
xists a quantum map (UN ,h̄) such that

U P U ∗
= b u + OpW (g2 (I )) + hOpW (V (θ )) + hN OpW (r ) + O(h∞),
N ,h̄ h̄ N ,h̄ 0 h̄ (N ),h̄ ¯ h̄ (N ),h̄ ¯ h̄ h̄ ¯
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here g(N ),h̄ and V(N ),h̄ are, respectively, degree N − 1 and N − 2 polynomials in h̄, and rh̄ is
classical symbol on Ω . (We start with N = 1, and by convention a polynomial with degree
1 is the zero function.) In particular, rh̄ = r0 + O(h̄).
We now let aN , qN , VN−1 be as in Proposition 4.3 (replacing p with p0 and r with r0). By

he Egorov theorem,

UN ,h̄ exp(i h̄N−1OpW
h̄ (a))Ph̄ exp(−i h̄N−1OpW

h̄ (a))U ∗

N ,h̄

is, up to O(h̄∞), a pseudo-differential operator with classical symbol. Moreover, this symbol
is equal to

(I + h̄N ada)(b0 + (g(N ),h̄(I ))2
+ h̄V(N ),h̄(θ ) + h̄N r0) + O(h̄N+1),

hich, by the construction above, is equal to

b0 + (g(N ),h̄(I ) + h̄N qN (I ))2
+ h̄(V(N ),h̄ + h̄N−1VN−1)(θ ) + O(h̄N+1).

etting

g(N+1),h̄ = g(N ),h̄ + h̄N qN

V(N+1),h̄ = V(N ),h̄ + h̄N−1VN ,

e can conclude the induction. □

. Low-energy spectrum under global ellipticity

Let Ph̄ be a pseudo-differential operator whose principal symbol admits a nondegenerate
ell on a loop γ . If γ is a global minimum for p, then one can hope to describe the spectrum
f Ph̄ at low energies by a microlocal analysis in a neighbourhood of γ , which should allow us
o use the normal form Q h̄ of Theorem 2.1. This section is devoted first to the proof that the
pectrum of Ph̄ can be very well approximated by the spectrum of Q h̄ , and then to the spectral
tudy of Q h̄ under two different assumptions.

1. Case where V0 (in Theorem 2.1) is constant. When h̄ varies, the eigenvalues are located
on smooth branches (parabolas) and the smallest eigenvalue regularly “jumps” from one
branch to the other (see Fig. 1). In the case of Schrödinger operators with a strong mag-
netic field, this oscillatory effect is known as “Little-Parks”, see Figure 1 in [28] and [16].

2. Generic subprincipal symbol. Then we can reduce to a Schrödinger-like operator with
Morse potential V , but after a

√
h̄ zoom in the variable I . We consider the following

two interesting cases.

(a) local minima of the potential: we get “mini-wells”;
(b) local maxima: we can describe the concentration on hyperbolic trajectories.

.1. Microlocal confinement

From now on, in addition to Assumption 1, we make the following hypothesis:

ssumption 2. The curve γ is a global minimum for p, with p = b0 on γ . Moreover, there
exist m1 ≥ 0, m2 ≥ 0 such that p satisfies the following conditions:

∀ j, k, ℓ ∈ N2, ∃C > 0, ∀(x, ξ ) ∈ T ∗ X,

|∂ j
x ∂k

ξ pℓ(x, ξ )| ≤ C(1 + |x |)m1 (1 + |ξ |)m2−k

∃K ⊂⊂ T ∗ X, ∃c > 0, ∀(x, ξ ) ∈ T ∗ X \ K ,
m m
p0(x, ξ ) − b0 ≥ c(1 + |x |) 1 (1 + |ξ |) 2 .
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Under the assumption above we say that Ph̄ is elliptic. Our first result is that, under this as-
sumption, the low-energy spectrum of Ph̄ is given by the low-energy spectrum of a modification
of its normal form Q h̄ (from Theorem 2.1), and reciprocally.

Proposition 6.1. Suppose Assumption 2 holds. With the notations of Theorem 2.1, let
g̃0 ∈ C∞(R,R) be equal to g0 near I0 and to 1 near infinity. In particular, if we replace
g0 with g̃0 in the expression of Q h̄ , we obtain an operator Q̃ h̄ which is elliptic, in the same
sense as Ph̄ .

By standard elliptic estimates, every sequence of eigenfunctions of Ph̄ or Q̃ h̄ with low enough
nergy has a wave front set near γ or {I = I0}, respectively.

In particular, there exists E0 > b0 such that, for any family of eigenpairs (u h̄, Eh̄) of Ph̄
with Eh̄ < E0 and ∥u h̄∥L2(X ) = 1, one has ∥Uh̄u h̄∥L2(S1) = 1 + O(h̄∞) and

∥Q̃ h̄Uh̄u h̄ − Uh̄u h̄∥L2(S1) = O(h̄∞).

Moreover, for any family of eigenpairs (vh̄, Eh̄) of Q̃ h̄ with Eh̄ < E0 and ∥vh̄∥L2(S1) = 1,
ne has ∥U ∗

h̄ vh̄∥L2(X ) = 1 + O(h̄∞) and

∥Ph̄U ∗

h̄ vh̄ − U ∗

h̄ vh̄∥L2(X ) = O(h̄∞).

Proof. Without loss of generality, b0 > 0. Let E1 > E0 > p(γ ) be such that

{p ≤ E1} ⊂⊂ Ω φ−1
0 ({p ≤ E1}) ⊂⊂ {|I − I0| ≤ η}.

We let χ : R → [0, 1] be any function equal to 1 on (−∞, E0] and to 0 on [E1, +∞).
Any sequence of normalized elements in the range of χ (Ph̄) has its wave front set on

p ≤ E1} and a similar property holds for χ (Q̃ h̄). The estimate

Uh̄ Ph̄U ∗

h̄ u h̄ = Q̃ h̄u h̄ + O(h̄∞)

olds uniformly on normalized sequences in the range of χ (Q̃ h̄); indeed, assuming the converse
as true, one could build by a diagonal extraction a counter-example to Theorem 2.1. In
articular, one has

Uh̄ Ph̄U ∗

h̄1(Q̃ h̄ ≤ E0) = Q̃ h̄1(Q̃ h̄ ≤ E0) + OL2→L2 (h̄∞),

nd similarly

Ph̄1(Ph̄ ≤ E0) = U ∗

h̄ Q̃ h̄Uh̄1(Ph̄ ≤ E0) + OL2→L2 (h̄∞).

In particular, eigenfunctions of Ph̄ with energy less than E0 give O(h̄∞) quasimodes for
Q̃ h̄ , and reciprocally. □

emark 6.2. The last couple of identities in the proof of Proposition 6.1 also yield Weyl laws
or the low-energy spectrum of Ph̄ . Indeed, they imply, for every c ≤ E0, for every k ∈ N,

1(Ph̄ ≤ c) = U ∗

h̄1(Q̃ h̄ ≤ c + h̄k)Uh̄1(Ph̄ ≤ c) + O(h̄∞),

o that

rank(1(Ph̄ ≤ c)) ≤ rank(1(Q̃ h̄ ≤ c + h̄k)),

nd a symmetric inequality.

The Sρ,δ-calculus for ρ + δ < 1 (see Chapter 3 in [18]) then leads to the following, more
recise frequency localization estimates.
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roposition 6.3. Suppose Assumption 2 holds. Let δ > 0 and δ′ > 0. For every h̄1−δ
≤ Eh̄ ≤

E0, where E0 is as in Proposition 6.3, for every unit eigenfunction vh̄ of Q h̄ with eigenvalue
Eh̄ , v̂h̄ is Oδ,δ′ (h̄∞) on {|I − I0| ≥ h̄

1−δ−δ′

2 }.

Here, for vh̄ ∈ L2(S1), v̂ is the semiclassical discrete Fourier transform of vh̄ , which we
view as an element of ℓ2(h̄Z).

6.2. Case with a symmetry

In this section we prove Theorem 2.2, where in particular V0 is assumed to be constant. We
first give a proof in the simpler case when V1 is constant as well. The following Proposition
is valid for k ≥ 0, and it allows us to complete the proof if k ≥ 1.

Proposition 6.4. Suppose that Assumption 2 holds and let Vh̄ be as in Theorem 2.1. Let
k ≥ 0, and suppose that V0, . . . , Vk do not depend on θ . Let E0 be as in Proposition 6.1. The
eigenvalues of Ph̄ in the window (−∞, b0 + E0) are given up to a uniform O(h̄k+2) error by

{b0 + h̄Vh̄(0) + gh̄(h̄ j)2
∩ [0, E0), j ∈ Z}.

Proof. From Proposition 6.1, the eigenvalues of Ph̄ in the window above are exactly given by
eigenvalues of Q h̄ in the same window, up to an O(h̄∞) error. Reciprocally, since low-energy
eigenfunctions of Q h̄ are themselves microlocalised in {|ξ − I0| < ϵ}, small eigenvalues of Q h̄
are O(h̄∞)-close to the spectrum of Ph̄ .

Since Vh̄ does not depend on θ up to O(h̄k+1), Q h̄ is a Fourier multiplier up to O(h̄k+2),
and we can conclude. □

This concludes the proof of Theorem 2.2 if k ≥ 1: the smallest eigenvalue is given by
minimizing g0(h̄ j)2, where g0 has only one non-degenerate zero at I0. For k = 0, this is not
enough, since it only describes the spectrum modulo O(h̄2).

roposition 6.5. Suppose that Assumption 2 holds and that V0 does not depend on θ . Then
the first eigenvalue of Ph̄ is given, up to O(h̄3), by b0 + h̄(g1(I0) + V0) + h̄2 f (I0h̄−1), where f
s a non-constant, 1-periodic function.

roof. For all k ∈ Z, let

λk = (k − I0h̄−1)g′

1(I0) + (k − I0h̄−1)2g′

0(I0).

et us also write a Fourier decomposition of V1 as

V1 : θ ↦→

∑
l∈Z

vleilθ .

hen, by the ellipticity assumption, the first eigenvalue of Ph̄ coincides, modulo O(h̄3), with
he first eigenvalue of

b0 + h̄(V0 + g1(I0)) + h̄2 A

here A is the following operator on ℓ2(Z):

∀(k, l) ∈ Z2, Ak,l =

{
λk + v0 if k = l

vl−k if k ̸= l.
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The spectrum of the operator A, as a set, is 1-periodic as a function of σ = I0h̄−1. Indeed,

λk(σ ) = λk+1(σ + 1).

In particular, the first eigenvalue of Ph̄ has the requested form, but it remains to prove that
f is not constant.

To this end, observe that A has compact resolvent and analytic dependence on σ , so that if
its first eigenvalue is constant, the corresponding eigenspace E0 is also constant.

However, we observe that ∂2
σ A = g′

0(I0)2Id, with g′

0(I0) ̸= 0. In particular, since E0 does
ot depend on σ , ∂2

σ A|E0 = g′

0(I0)2Id, so that the first eigenvalue cannot be constant. This
oncludes the proof. □

emark 6.6. Since g2
0 reaches a non-degenerate minimum at I0, the first eigenvalue of Ph̄ is,

n this case,

b0 + h̄g1(I0) + h̄(h̄kh̄ − I0)g′

1(I0) + (h̄kh̄ − I0)2g′

0(I0)2
+ O(h̄3),

here

kh̄ =

⌊
I0

h̄
−

1
2

g′

1(I0) −
1
2

⌋
,

for typical values of h̄ (unless I0
h̄ −

1
2 g′

1(I0) −
1
2 is h̄-close to an integer, in which case it might

e kh̄ + 1 or kh̄ − 1). In particular, this proves Theorem 2.2.
The function V0 is the pseudo-differential equivalent of the “Melin value” µ introduced

nd studied in [10]. In particular, if the subprincipal symbol p1 of the original operator is
dentically zero, then so is V0. However, the term V1 is, in general, non-zero.

xample 6.7. Let S ∈
1
2N>0. Consider the normalized spin operator

S2
z =

1
4(S + 1)2

⎛⎜⎜⎜⎜⎜⎝
(−S)2

(−S + 1)2

. . .

(S − 1)2

S2

⎞⎟⎟⎟⎟⎟⎠ .

his operator is the Berezin–Toeplitz quantization of the symbol (x, y, z) ↦→ z2
− h̄ on S2,

here the semiclassical parameter is h̄ =
1

2S . This symbol vanishes on the equator in a
Morse–Bott way; here I0 =

1
2 . In this rotational invariant case, one has V = 0.

Even though h̄ is a discrete parameter, the oscillation phenomenon of Fig. 1 is also found
ere: for integer values of S, the lowest eigenvalue of S2

z is 0; whereas for half-integer values
f S it is 1

8(S+1)2 .
Spin operators are models for magnetism in solids. In some contexts, the behaviour of a spin

system is expected to strongly depend on whether the spin is integer or half-integer (Haldane
conjecture). These effects may be related to the model case above. Strictly speaking, the results
of this article do not apply to Berezin–Toeplitz quantization, but it would be interesting to cover
this case as well, using the construction of I0 in [8].

.3. Morse case

In this section we make the assumption of a generic subprincipal symbol. We give Bohr-
ommerfeld quantization rules in two overlapping regimes: the first one consists of energies
maller than b + Ch for any fixed C > 0. The second consists of energies in the window
0 ¯
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b0 + Ch̄, b0 + c] for C > 0 large enough and c > 0 small enough. Propositions 6.8 and 6.10
yield together the spectrum of Ph̄ up to energies b0 + c.

.3.1. Small energies

roposition 6.8. Let the following unbounded operators act on L2(S1):

H0 = g′

0(I0)2
(√

h̄
i

∂

∂θ

)2

+ V0(θ )

H1 = 2g′

0(I0)
[

g1(I0) + g′

0(I0)
(

I0

h̄
−

⌊
I0

h̄

⌋)] √
h̄

i
∂

∂θ
.

heir respective domains are the Sobolev spaces W 2,2(S1) and W 1,2(S1). For every h̄ > 0, the
perator H0 +

√
h̄ H1 is bounded from below and has compact resolvent.

Let C > 0 and ϵ > 0. Then there exists C1 > 0 such that the spectrum of Ph̄ , in the interval
[b0, b0 + Ch̄], is the image by the affine function λ ↦→ b0 + h̄λ of the spectrum of H0 +

√
h̄ H1

in the interval [0, 2C], up to an error uniformly bounded by C1h̄2−ϵ .

emark 6.9. The operator H0 +
√

h̄ H1 is the quantization of a symbol on L2(S1), with
emiclassical parameter

√
h̄; H0 corresponds to the principal part and H1 to the subprincipal

part. The spectrum of this operator, on fixed intervals, can be described by Bohr-Sommerfeld
rules if V is Morse: we refer to [12] for the regular case, [9] for the elliptic case, and [41] for
the hyperbolic case.

In particular, away from the critical values of V0, for instance on [max V0 + c, C], the
principal symbol of H0 is regular and consists of two connected components. On each of
hese components, the Bohr-Sommerfeld rule yields O(h̄)-quasimodes for H0 +

√
h̄ H1, whose

ssociated eigenvalues are separated by ϵ
√

h̄ for ϵ small enough depending on c. Eigenmodes
orresponding to different components are microlocalised on disjoint regions of phase space
respectively {ξ > c} and {ξ < −c} so that they do not interact up to O(h̄∞). In conclusion, for

h̄ small enough, by a perturbative argument, one can construct O(h̄∞)-quasimodes for Q in this
pectral region, yielding O(h̄∞)-quasimodes for Ph̄ in the region [b0 + h̄(max V0 +c), b0 + h̄C].

roof. First, by Proposition 6.1 we are reduced to the study of the spectrum Q h̄ in the same
nterval [b0, b0 + Ch̄].

By Proposition 6.3, any eigenfunction v of Q h̄ in this interval is localized in frequency in
|ξ − I0| ≤ Ch̄

1
2 −ϵ

} for all ϵ > 0. In particular, if the Taylor expansions of g0 and g1 around
I0 are

g0(I ) = g′

0(I0)(I − I0) +
g′′

0 (I0)
2

(I − I0)2
+ O((I − I0)3)

g1(I ) = g1(I0) + O(I − I0),

hen [
g0

(
h̄
i

∂

∂θ

)
+ h̄g1

(
h̄
i

∂

∂θ

)]2

v

=

[
g′

0(I0)
(

h̄
i

∂

∂θ
− I0

)
+

g′′

0 (I0)
2

(
h̄
i

∂

∂θ
− I0

)2

+ h̄g1(I0) + O(h̄
3
2 −3ϵ)

]2

v

= h̄
[
g′ (I0)2 D2

+
√

h̄g′ (I0)
(
2g1(I0) + g′′(I0)D2) Dh + O(h̄1−3ϵ)

]
v
0 h̄ 0 0 h̄ ¯
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where we introduce

Dh̄ =

√
h̄

i
∂

∂θ
−

I0
√

h̄
.

Notice that, the unitary conjugation on L2(S1) given by multiplication by

x ↦→ exp
(

i
⌊

I0

h̄

⌋)
mounts to replacing Dh̄ with

D̃h̄ =

√
h̄

i
∂

∂θ
−

√
h{I0}h̄

here

{I0}h̄ =
I0

h̄
−

⌊
I0

h̄

⌋
= Oh̄→0(1).

In conclusion, the eigenvalues of Q h̄ in the interval [b0, b0 +Ch̄] are given, up to O(h̄2−3ϵ),
y the eigenvalues of[

g′

0(I0)2 D̃h̄
2
+ V0(θ )

]
+ h̄

1
2 g′

0(I0)
[
2g1(I0) + g′′

0 (I0)D̃2
h̄

]
D̃h̄

n the window [0, C], pushed by the map λ ↦→ b0 + h̄λ. This concludes the proof. □

.3.2. Large energies
It remains to study the spectrum of Q h̄ in the window [b0 + Ch̄, b0 + c1] for C large

nough. For any c2 > 0, in the window [b0 + c2, b0 + c1], the principal symbol p0 of Ph̄ has
o degenerate point and one can apply the usual Bohr-Sommerfeld rules. We prove here that,
n fact, this approach works as long as the level sets of p0 + h̄ p1 are two topological circles,
ne on each side of γ , that is, for energies above b0 + Ch̄.

To this end, let E ∈ [2Ch̄, c1]; we will determine the eigenvalues of Q h̄ in the window
b0 +

E
2 , b0 + 2E] up to an error O(h̄2) uniform in E . Since g0(I0) = 0 and g0 ∈ C∞([I0 −

, I0 + c],R), there exists g̃0 ∈ C∞([−c, c],R) such that

g0(I ) = (I − I0)g̃0(I ).

n particular, the following function belongs to C∞([−c, c] × [−c, c],R):

f : (x, y) ↦→
1
x

g0(xy + I0) = yg̃0(xy + I0).

In particular, f (0, y) = (g′

0(I0)y).
The function

hE,t
0 : (θ, η) ↦→ f 2(

√
E, η) + tV0(θ ),

is then a continuous deformation of h0,0
0 = f 2(0, η), whose Hamiltonian trajectories are circles.

We also let

hE
1 : (θ, η) ↦→ 2 f (

√
E, η)g1(η

√
E + I0).

We let c1 > 0, c2 > 0 be such that, for 0 ≤ E ≤ c1 and 0 ≤ t ≤ c2, the hamiltonian
trajectories of hE,t of energies in the window

[ 1 , 3
]

are nondegenerate circles.
0 3
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Now

1
E

(Q h̄ − b0) =
1
E

g0

(
h̄
i

∂

∂θ

)2

+ 2
h̄
E

g0

(
h̄
i

∂

∂θ

)
g1

(
h̄
i

∂

∂θ

)
+

h̄
E

V0(θ ) + O
(

h̄2

E

)
where

1
E

g0

(
h̄
i

∂

∂θ

)2

+
h
E

V0(θ ) = OpW
h̄

√
E

(
h

E, h
E

0

(
θ, η −

I0
√

E

))
nd

2
h̄
E

g0

(
h̄
i

∂

∂θ

)
g1

(
h̄
i

∂

∂θ

)
=

h̄
√

E
OpW

h̄
√

E

(
hE

1

(
θ, η −

I0
√

E

))
.

s previously, after unitary conjugation with x ↦→ exp
(
−i x

⌊
I0
h̄

⌋)
, one can replace I0√

E
with

h̄
√

E
{I0}h̄ .

Proposition 6.10. Let E ∈

[
1
c2

h̄, c1

]
. The eigenvalues of Ph̄ in the window

[
b0 +

E
2 , b0 + 2E

]
re given by the eigenvalues of

OpW
h̄

√
E

(
h

E, h̄
E

0

)
+

h̄
√

E
OpW

h̄
√

E

(
hE

1

)
in the window

[ 1
2 , 2

]
, by the transformation

λ ↦→ b0 +
λ

E
,

p to an error O(h̄2), uniform in E.

By definition of c2, the Hamiltonian trajectories of h
E, h̄

E
0 are non-degenerate circles, so that

he eigenvalues and eigenfunctions of the model operator are given by the Bohr-Sommerfeld
ules.

Again, the error O(h̄2) is very small compared to the spectral gap of the model operator in
ach branch, which is h̄

√
E , as long as h̄ is small enough. Hence, in practical cases one can

etermine O(h̄∞)-quasimodes for P by perturbation theory. The expansion is rather technical:
we perturb (via a power series in h̄) an operator with semiclassical parameter h̄

√
E

whose
ymbol depends smoothly on the parameter E : a complete expansion for the eigenvalues and
he quasimodes involves positive powers of h̄, h̄

√
E

and E .
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Appendix

In this Appendix we recall a few “classical” results in the topological study of smooth curves
on surfaces, and we provide either a direct proof or an explicit citation.

Definition A.1. Let us identify an oriented circle with {z ∈ C, |z| = 1} with counterclockwise
rientation.

The winding number of a smooth map ρ between oriented circles is defined as

ω(ρ) =
1

2iπ

∫ 2π

θ=0

ρ ′(eiθ )
eiθ

dθ.

Thus, the winding number of the identity map is 1.

Proposition A.2 (See [29], Section 4.4.4, and the Examples in Chapter 5 of [33]). The winding
umber of a smooth map between oriented circles is an integer. If this map is a diffeomorphism,
hen the winding number is ±1.

The winding number of a smooth diffeomorphism of {z ∈ C, |z| = 1} is equal to +1 if this
iffeomorphism preserves the orientation and −1 if it flips the orientation. In particular, by the
hain rule, the winding number of a map between oriented topological circles is independent
f the way we identify them with {z ∈ C, |z| = 1}.

Recall that the orientation of a manifold with boundary induces an orientation of its
oundary.

roposition A.3. Let M and N be closed oriented topological discs. An orientation-preserving
mooth diffeomorphism from M to N induces a diffeomorphism from ∂ M to ∂ N with winding
umber 1.

roof. This is a direct consequence of the previous remark; indeed the restriction to the
oundary of an orientation-preserving smooth diffeomorphism is an orientation-preserving
mooth diffeomorphism. □

roposition A.4. Let M, N be oriented circles. The set of smooth diffeomorphisms from M
to N with winding number 1 is connected by smooth paths.

Proof. Let us identify M and N with {z ∈ C, |z| = 1}. To an orientation-preserving
diffeomorphism of the unit circle, we can associate a smooth, 2π -periodic map f : R →

(0, +∞) such that ρ ′(eiθ ) = f (θ )ieiθ and
∫ 2π

0 f = 2π .
Reciprocally, to each such map f one can clearly associate an orientation-preserving

iffeomorphism of {z ∈ C, |z| = 1}.
The association ρ ↔ f is a C∞-diffeomorphism between Fréchet spaces, and the target

space is a convex subset of C∞(R,R), hence the claim. □

Proposition A.5. Let D ∈ R2 be a closed topological disc with smooth boundary. There exists
a smooth, orientation preserving diffeomorphism between D and {z ∈ C, |z| ≤ 1}.

Proof. One example of such a map is given by the famous Riemann mapping theorem
(identifying R2 with C). For a proof that, in the case above, the Riemann mapping and its
reciprocal can be smoothly extended to the boundary, see Theorem 8.2 in [4]. □
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roposition A.6. Let A ∈ R2 be a closed topological annulus. There exists a smooth,
rientation preserving diffeomorphism between A and {z ∈ C, 1 ≤ |z| ≤ 2}.

roof. This is a variant of the Riemann mapping theorem; see pp. 83 and following in [4]. □

roposition A.7. Let D = {z ∈ C, |z| ≤ 1}. Let φ : D → D be a smooth, orientation-
reserving diffeomorphism. For all r1 < 1, there exist r2 ∈ (1, r1) and φ̃ : D → D a smooth,

orientation-preserving diffeomorphism such that

|z| ≤ r1 ⇒ φ̃(z) = φ(z) |z| ∈ [r2, 1] ⇒ φ̃(z) = z.

Proof. Let W1 and W2 be two closed neighbourhoods of ∂ D such that φ(W1) = W2 and such
that 0 /∈ W1 ∪ W2.

Without loss of generality, r1 is such that {|z| ∈ [r1, 1]} ⊂ W1∩W2. We use polar coordinates
on W1 and W2 to write φ as

φ : (r1, θ1) ↦→ (r2(r1, θ1), θ2(r1, θ1)).

On the boundary {r1 = 1}, one has ∂r2
∂r1

> 0 and ∂r2
∂θ1

= 0. Since the map is orientation-

preserving, the Jacobian determinant is positive, so that ∂θ2
∂θ1

> 0 at the boundary. By continuity,
he inequalities

∂r2

∂r1
> 0

∂θ2

∂θ1
> 0

old in a neighbourhood of the boundary. Let W3 be a closed neighbourhood of the boundary
nd c > 0 be such that ∂r2

∂r1
≥ c on all of W3.

Let now ϵ > 0 and χ : R → R be a smooth function, supported on [1−ϵ, 1+ϵ], equal to 1
n [1 − ϵ/3, 1 + ϵ/3], and such that sup |χ ′

| ≤ 2ϵ−1. We also impose that χ is non-decreasing
n [0, 1].

We now define the following map from W1 to D:

φ1 : (r1, θ1) ↦→ (χ (r1)(1 +
3c
4

(z − 1)) + (1 − χ (r1))r2(r1, θ1), θ2(r1, θ1)).

his smooth map coincides with φ on {|z| ≤ 1 − ϵ}, so that we can glue it with φ outside of
W1.

Let us prove that φ1 is a diffeomorphism. The derivative of the second component with
espect to θ1 is positive for ϵ small enough. The derivative of the first component with respect
o r1 yields

3c
4

χ (r1) + (1 − χ (r1))∂r1r2(r1, θ1) + χ ′(r1)(1 +
3c
4

(r1 − 1) − r2(r1, θ1)).

e claim that this quantity is positive for every (r1, θ1) ∈ Ω3.
Indeed, by definition of c, on Ω3 one has

3c
4

χ (r1) + (1 − χ (r1))∂r1r2(r1, θ1) ≥
3c
4

.

Moreover χ ′(r1) ∈ [0, 2
ϵ
] is supported on [1 − ϵ, 1 + ϵ] and 1 − r2(r1, θ1) ≥ c(1 − r1), so

hat

χ ′(r1)(1 +
3c
4

(r1 − 1) − r2(r1, θ1)) ≥ −
2
ϵ

c
4

(1 − r1) ≥ −
c
2
;

in particular, the sum is larger than c .
4
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The diffeomorphism φ1 is not equal to the identity, but it maps the circle {|z| = r} to the
ircle {|z| = 1 +

3c
4 (r − 1)} for all r close to 1. One can easily modify φ1 near the boundary

nto φ2 such that the circle {|z| = r} is mapped to the circle {|z| = r} for all r ∈ [r0, 1].
For all such r , the restriction of φ2 to the disc {|z| = r} is the restriction to the boundary

f an orientation-preserving diffeomorphism of this disc. By Proposition A.3 it has winding
umber 1, so that, by Proposition A.4, it is smoothly isotopic to the identity. Let (ρr )r∈[r0,1]
e a smooth family of smooth diffeomorphisms of the circle, such that the ρr = φ for r close
o r0 and ρr = I for r close to 1. Then, using ρr , we can modify φ2 into φ̃ satisfying the
onditions in the claim. □
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