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Abstract: We address a Multi-Commodity two-echelon Distribution Problem (MC2DP) where

three sets of stakeholders are involved: suppliers, distribution centers, and customers. Multiple com-

modities have to be sent from suppliers to customers, using multiple distribution centers for consolida-

tion purposes. Commodities are collected from the suppliers and delivered to the distribution centers

with direct trips, while a fleet of homogeneous vehicles distributes commodities to customers. Com-

modities are compatible, that is any vehicle can transport any set of commodities as long as its capacity

is not exceeded. The goal is to minimize the total transportation cost from suppliers to customers.

We present two sequential schemes based on the solution, in a different order, of a collection and a

delivery subproblem. In both cases, the solution of the first subproblem determines the quantity of

each commodity at each distribution center. The second subproblem takes this information as input.

We also propose different strategies to guide the solution of the first subproblem in order to take into

account the impact of its solution on the second subproblem. The proposed sequential heuristics are

evaluated and compared both on randomly generated instances and on a case study related to a short

and local fresh food supply chain. The results show the impact of problem characteristics on solution

strategies.

Keywords: multicommodity, routing problem, local fresh food supply chain, sequential solution.
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1 Introduction

In this paper we study a complex distribution problem in a two-echelon supply chain where three

sets of stakeholders are involved: suppliers, distribution centers and customers. Multiple commodi-

ties are collected from the suppliers and delivered to the customers through distribution centers for

consolidation purposes. Each supplier has a given available quantity for each commodity and each

customer has a demand for each commodity.

We consider a single decision maker who manages all distribution centers and organizes the col-

lection and delivery operations. The commodities are collected from suppliers and delivered to distri-

bution centers through direct trips, and distributed from the distribution centers to customers with

a fleet of vehicles performing routes. Direct deliveries from suppliers to customers are not allowed.

Commodities are compatible, that is, any vehicle can transport any set of commodities as long as its

capacity is not exceeded. Multiple visits to a customer are allowed to reduce transportation costs.

However, for the sake of customers convenience, a single commodity has to be delivered at once. The

problem is named Multi-Commodity two-echelon Distribution Problem (MC2DP). The objective is to

find a collection and delivery plan that minimizes the total transportation cost, satisfying customer

demands, and not exceeding the available quantities at the suppliers and the vehicle capacities. The

MC2DP is a problem belonging to the operational decision level. The plan covers one day only, i.e.,

collection and delivery operations performed during a day. The study of this problem is motivated by

a case study presented in Section 6 for the collection and delivery of fresh agri-food products (fruits

and vegetables) through a short and local supply chain.

In the following, we detail the application on short and local fresh food supply chain to motivate

our work. The production and delivery of fresh food products have undergone important changes in

Europe since the 1950’s, especially through the modernization of the tools and processes in order to

meet the customer demand with low production costs. Multinational companies have played a major

role as intermediaries between farmers and consumers (Rucabado-Palomar and Cuéllar-Padilla, 2018).

Nowadays, one of the major problems faced by farmers is the shortfall of their incomes: over the last

decades they have been encouraged to produce more, while their unit selling price was decreasing.

However, in many regions there coexist (1) supplies with medium-sized farms where various products

of high quality (freshness, few pesticide) are cultivated and (2) customers with a strong desire for

product quality and traceability (King et al., 2015). Hence, the idea has emerged to locally connect

suppliers and customers (Berti and Mulligan, 2016), by means of a short (and/or) local food supply

chain. The main purpose of this kind of supply chain is to capture more end-use value for the farmers.

Short food supply chains are defined as an opportunity for agricultural products to reach the market

either through direct sales or through indirect sales with only one intermediary between producers and

consumers. Local food supply chains may involve several intermediaries with all the actors located on

a limited area (e.g. considering geographical or political restrictions). The maximum distance between

actors is usually around 80 km (Blanquart et al., 2010). In this paper, we consider short and local

food supply chains with indirect sales to canteens, restaurants or supermarkets.

Short and local supply chains involve few intermediaries. Hence, farmers have to take charge of a

large part of their products marketing and distribution, which is not their core business. It is feasible

for direct sales since the volumes are usually low, and consequently farmers can spend time selling

their products. For indirect sales (canteen, restaurants or supermarket), volumes are more important

and, therefore, the supply chain has to rely on a set of distribution centers in order to organize

product flows and to minimize transportation costs, with the aim to be competitive with conventional

food supply chains. Farmers supply these distribution centers by performing direct trips since the

volumes are large. The distribution centers are then in charge of consolidation and delivery of the

products to customers. In a local supply chain context, all the actors (farmers, distribution centers

and customers) are located in a restricted area. A single decision maker manages all the distribution
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centers, and coordinates the transportation planning for both collection and delivery operations. This

decision maker can be an association of farmers, or a local political authority. These distribution

centers are considered as the only intermediary in the supply chain.

The Multi-Commodity two-echelon Distribution Problem belongs to the broad class of two-echelon

routing problems, which are distribution problems where transportation activities take place in two

echelons of a supply chain. There exists a wide literature on this class of problems. We refer to Cuda

et al. (2015) for a recent survey on two-echelon routing problems and to Guastaroba et al. (2016) for

a more general survey on transportation problems with intermediate facilities. As mentioned in Cuda

et al. (2015), there are different classes of two-echelon routing problems. The closest to the MC2DP

is the 2-Echelon Vehicle Routing Problem (2E-VRP) for which a wide literature exists, as surveyed in

Cuda et al. (2015). We refer to Guimarães et al. (2019), Zhou et al. (2018) and Yu et al. (2020) for

recent applications of the problem.

The problem we study here contributes to the literature on two-echelon routing problems by

explicitly considering multiple commodities that are required by final customers. To the best of our

knowledge, multiple commodities have never been considered in two-echelon distribution systems. The

title of Dellaert et al. (2021) could make the reader think the opposite. However, in Dellaert et al.

(2021) the authors studied a one-to-one pickup and delivery problem in a two-echelon distribution

system. In other words, a commodity corresponds to an origin-destination pair. In our paper, instead,

we have a many-to-many setting where each commodity can be picked up from any origin (supplier in

our case) offering it and delivered to any destination (customer) requiring it. Multiple commodities

have been explicitly modeled in two-echelon location problems (see, for example, Hinojosa et al. (2000)

and Sadjady and Davoudpour (2012)). These problems do not involve routing decisions but evaluate

the cost of assigning final customers to a specific distribution center.

The distribution centers considered in this work can be viewed as cross-docking stations. Using

cross-dock platforms is a common practice for fresh products since it allows the transfer of incoming

shipments directly to outgoing vehicles, without the need to store them in between (Bruzzone et al.

(2009)). Cross-dock platforms are also often used for the delivery from manufacturers in e-commerce,

home delivery and urban logistics (Qiu et al., 2021). The direct consequence of this practice is to

have shorter delivery times that help to preserve the freshness of the foods. It is also well-known

that cross-docking or consolidation platforms increase the overall performance of a delivery system,

independently of the products that go through the platform. They allow cost reduction of the overall

logistics service (Ladier and Alpan, 2016, Van Belle et al., 2012).

Contributions on the management of a cross-docking platform, motivated by the fresh food delivery,

exist in the literature. These studies usually deal with the management and coordination of inbound

and outbound vehicles and the consolidation of products in outbound vehicles. Agustina et al. (2014)

consider the problem of building the delivery plan to serve customers while minimizing inventory and

routing costs plus earliness and tardiness delivery penalties. The authors propose a mixed integer

linear program that is solved with Cplex. Rahbari et al. (2019) propose a bi-objective model that

considers cost minimization as well as product freshness maximization. In both papers, customers’

demands do not explicitly consider multiple commodities.

The presence of multiple commodities makes the MC2DP substantially different with respect to the

standard 2E-VRP. In fact, the demand matching decision, i.e., the decision related to the assignment of

suppliers and customers to distribution centers, is constrained not only by the matching of quantities,

but also involves the matching of commodities. In addition, in the MC2DP, customers may be visited

more than once, according to the number of commodities they request. An additional consideration

is due to synchronization constraints that might be present in two-echelon distribution systems. The

two echelons may be linked by different kinds of synchronization constraints (see Drexl (2012)). The

most common one considered in the 2E-VRP is the load synchronization that establishes that the

quantity delivered to each distribution center in the first echelon has to be sufficient to satisfy the
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demand of the customers assigned to the distribution center in the second echelon. Another common

synchronization constraint is the operation synchronization, implying precedence constraints between

the collection and the delivery operations. In the MC2DP, only load synchronization is considered,

specified for each commodity. Operation synchronization is not considered. In other words, we assume

that all collection operations are performed before the delivery operations (for example, collection in

the morning and delivery in the afternoon).

The explicit consideration of different commodities is essential in the agri-food supply chains since

availability at the producer depends on the production of farmers and requirements made by customers

concern specific commodities.

There is a large literature on planning problems in agri-food supply chains. The main focus is, in

general, evaluating the level of degradation and the quality of products in the planning models (Yu

and Xiao, 2021). When focusing on short and local food supply chain, the literature is very scarce.

As pointed out by Flores and Villalobos (2018), there is a lack of supply chain planning tools for local

fresh food supply chains. Flores and Villalobos (2018) develop an agricultural planning framework

that determines an optimal production planning of vegetables for local supply chains. Bosona and

Gebresenbet (2011) address a case study in Sweden. They first study the location of distribution

centers using the centre-of-gravity technique. Then, farmers are assigned to one distribution center,

and can bring their products to the distribution center, or the latter can perform collection by grouping

farmers into routes. Routes are then optimized using a dedicated software (Route LogiX). Ogier et al.

(2013) propose a mixed integer linear programming model for service network design of a short and

local supply chain.

Even though the application presented in this paper deals with the agri-food supply chain, the

methods we propose can be applied to MC2DPs that consider direct delivery trips in the first echelon

and allow splitting the delivery of different commodities in the second level.

In this paper, we present a solution approach to the MC2DP. Due to the complexity of the problem,

we propose a sequential approach that first decomposes the MC2DP in two subproblems, associated

with the collection and delivery phases, respectively, and then sequentially solves them. Two sequential

schemes are presented, depending on which of the two subproblems is solved first. In both cases, the

solution of the first subproblem determines the quantity of each commodity at each distribution center.

The second subproblem takes this information as input. We also propose different strategies to guide

the solution of the first subproblem in order to take into account the impact of its solution on the

second subproblem. It is worth noting that the subproblem associated with the delivery phase is

itself a new problem. It is a Vehicle Routing Problem (VRP) with multiple commodities and multiple

depots, with a maximum available quantity of each commodity at the depots. The VRP with multiple

depots is a well-studied problem in the literature (Montoya-Torres et al., 2015). In this paper, the

delivery subproblem is an extension of the VRP with multiple depots where several commodities are

available at each depot with given quantities. A further contribution of this paper is a solution method

for the delivery subproblem, based on the Adaptive Large Neighborhood Search (ALNS) algorithm

proposed for the one depot case by Gu et al. (2019). The two proposed sequential heuristic schemes

and the different strategies are evaluated and compared both on randomly generated instances, with

different characteristics (supplier locations, customer locations, maximum supply quantities), and on

a case study for the collection and delivery of fresh food products (fruits and vegetables) through a

short and local supply chain using a set of distribution centers located in the French department of

Isère. The size of the instances for this case study is large, and two kinds of customers are considered:

school canteens and supermarkets. The computational results show the impact of the instance on the

solution approaches and strategies.

The remainder of this paper is organized as follows. A definition of the MC2DP is given in Section

2, as well as the problem formulation. A decomposition of the problem into a collection and a delivery

subproblems is presented in Section 3. Then, the sequential approach is described in Section 4. Section
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5 provides the computational results. The case study on short and local fresh food supply chains in the

French department of Isère is discussed in Section 6. Finally, conclusions and prospects are presented

in Section 7.

2 Problem definition and formulation

The Multi-Commodity two-echelon Distribution Problem (MC2DP) is defined on a directed graph

G = (V,A), in which V is the set of vertices and A is the set of arcs. More precisely, V is defined as

VS
⋃
VD

⋃
VC where VS = {1, . . . NS} represents the set of NS suppliers, VD = {NS+1, . . . , NS+ND}

is the set of ND distribution centers and VC = {NS + ND + 1, . . . , NS + ND + NC} represents the

set of NC customers. We only consider direct trips from suppliers to distribution centers. Direct

deliveries from suppliers to customers are not allowed. Moreover, transfers of commodities between

distribution centers are not considered. Thus, A = {(i, j), (j, i)|i ∈ VS , j ∈ VD} ∪ {(i, j), (j, i)|i ∈
VD, j ∈ VC} ∪ {(i, j)|i, j ∈ VC} is the set of arcs.

Suppliers provide a set of commodities M, which are transported to the distribution centers by

an unlimited fleet of homogeneous vehicles of capacity QS . Each supplier s ∈ VS is associated with

a maximum available quantity Osm ≥ 0 of commodity m ∈ M. Each distribution center has its own

unlimited fleet of homogeneous vehicles of capacity QD that are used to deliver the commodities to

the customers. Customer i ∈ VC requires a quantity Dim ≥ 0 of each commodity m ∈ M. For each

customer i ∈ VC , Mi = {m ∈M|Dim > 0} represents the set of commodities required by customer i.

Commodities are compatible, i.e., they can be transported on the same vehicle. The demand of a

customer can be split, that is the customer can be served by several vehicles. However, for the sake

of customer convenience, the split policy is constrained: each commodity has to be delivered by one

vehicle only. Without loss of generality, it is assumed that
∑

m∈MDim ≤ QD for all customers i ∈ VC .

Note that, in case there is a customer i such that
∑

m∈MDim > QD, then we split the customer and

create as many copies as the number of commodities requested by i.

A cost cij is associated with each arc (i, j) ∈ A and represents the non-negative cost of traversing

arc (i, j). In the MC2DP, the decision maker is the logistic provider who manages all the distribution

centers. He decides how to collect commodities from the suppliers and how to distribute the commodi-

ties from the distribution centers to the customers. The objective is to find a collection and delivery

plan that minimizes the total transportation cost, satisfying customer demands, not exceeding the

available quantities at the suppliers and the vehicle capacities.

The MC2DP is NP-hard as it reduces to the Traveling Salesman Problem (TSP) in the case where

|M| = |VD| = |VS | = 1 and vehicles have unlimited capacity.

In the following, we will call collection the transportation of commodities from suppliers to dis-

tribution centers and delivery the distribution of commodities from distribution centers to customers.

Note that, in the following, we will use the word truck to indicate a vehicle used for collection opera-

tions, to differentiate it from a vehicle used for delivery operations. The collection and delivery phases

of the MC2DP are connected through the quantities of commodities at the distribution centers. We

denote by Udm the unknown quantity of commodity m ∈M at distribution center d.

An example of an instance of the MC2DP is depicted in Figure 1. There are two commodities,

the truck capacity is QS = 8 and the vehicle capacity QD = 10. A feasible solution of this instance

is shown in Figure 2. In the solution, five trucks are used to supply the distribution centers, each

truck performing a direct trip. The numbers on the arcs representing direct trips report the quantities

transported for each commodity, where the number corresponding to the commodity is reported in

parentheses. Note that two trucks are used from supplier 1 to distribution center 4. Quantities Udm
are as follows: U41 = 4, U42 = 14, U51 = 5 and U52 = 3. For the distribution to customers, two

vehicles leave distribution center 4, while one vehicle leaves distribution center 5. Note that customer

9 is visited twice: one vehicle delivers commodity 1 while another vehicle delivers commodity 2.
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Round trip for the collection

Demand for each commodity

Routing for delivery

Supplier

Distribution center

Customer

Available quantity at the supplier

1

2

3

4

5

7

8

9

10

11

6

11 7O 

21 4O 

22 8O 

12 10O 

32 10O 

61 2D  62 1D 

71 2D 
72 3D 

82 8D 

91 3D  92 2D 

10,2 1D 
11,1 2D 

11,2 2D 

Figure 1: An instance of the MC2DP.
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11,2 2D 

2(1)

8(2)

2(1)+6(2)
5(1)

3(2)

Figure 2: A feasible solution of the MC2DP instance.

2.1 Problem formulation

We now propose a mathematical formulation of the problem. Let us indicate with Fd the fleet

associated with the delivery from distribution center d ∈ VD. Since this fleet in the MC2DP is

supposed to be unlimited, we set |Fd| = NC , ∀d ∈ VD. This is clearly an upper bound on the number

of vehicles needed at each distribution center, since
∑

m∈MDim ≤ QD for all i ∈ VC .

Let us number the vehicles such that F1 = {1, . . . , NC},F2 = {NC + 1, . . . , 2NC}, . . . ,FND
=

{NC(ND − 1) + 1, . . . , NDNC}. Let F = ∪ND
d=1Fd. Note that labelling the vehicles by increasing index

allows us to drop the distribution center index in the variable definition.

Let us indicate with A = A1 ∪ A2, where A1 = {(i, j)|i ∈ VS , j ∈ VD} and A2 =

{(i, j), (j, i)|i ∈ VD, j ∈ VC} ∪ {(i, j)|i, j ∈ VC}. Let us also define D−im = minm∈Mi{Dim} and

d(f) as the distribution center d ∈ VD associated with vehicle f ∈ F .

The following decision variables are introduced.

� x1
sd: non-negative integer variable equal to the number of trucks traversing arc (s, d) ∈ A1, s ∈
VS , d ∈ VD.

� x2
ijf : binary variable equal to 1 if arc (i, j) ∈ A2 is traversed by vehicle f ∈ F .

� zif : binary variable equal to 1 if customer or distribution center i ∈ VC ∪VD is visited by vehicle

f ∈ F .

� uif : non-negative real variable equal to the accumulated demand to be delivered by vehicle

f ∈ F when arriving at customer i ∈ VC .
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� ymif : binary variable equal to 1 if commodity m ∈ M of customer i ∈ VC is delivered by vehicle

f ∈ F .

� qmsd: non-negative variable equal to the quantity of commodity m ∈ M picked up at supplier

s ∈ VS and delivered to distribution center d ∈ VD.

In addition, we define as c̄sd = csd+cds the direct trip cost between supplier s ∈ VS and distribution

center d ∈ VD.

The compact formulation for the MC2DP, denoted as FMC2DP , is as follows:

(FMC2DP ) min
∑

(s,d)∈A1

c̄sdx
1
sd +

∑
(i,j)∈A2

∑
f∈F

cijx
2
ijf (1)

s.t.
∑
f∈Fd

∑
i∈VC

ymifDim ≤
∑
s∈VS

qmsd, ∀d ∈ VD,∀m ∈M, (2)

∑
m∈M

qmsd ≤ QSx1
sd, ∀s ∈ VS , ∀d ∈ VD, (3)∑

d∈VD

qmsd ≤ Osm, ∀s ∈ VS ,∀m ∈M, (4)

∑
f∈F

ymif = 1, ∀i ∈ VC ,∀m ∈Mi, (5)

∑
j|(i,j)∈A2

x2
ijf =

∑
j|(j,i)∈A2

x2
jif = zif , ∀i ∈ VC ∪ VD, ∀f ∈ F , (6)

∑
f∈F\Fd

zdf = 0, ∀d ∈ VD, (7)

ymif ≤ zif , ∀i ∈ VC ,∀m ∈Mi, ∀f ∈ F , (8)∑
i∈VC

∑
m∈Mi

Dimy
m
if ≤ QDzd(f)f , ∀f ∈ F , (9)

uif − ujf +QDx
2
ijf ≤ QD −D−jm, ∀(i, j) ∈ A2, ∀f ∈ F , (10)

x1
sd ∈ N, ∀(s, d) ∈ A1, (11)

x2
ijf ∈ {0, 1}, ∀(i, j) ∈ A2, ∀f ∈ F , (12)

zif ∈ {0, 1}, ∀i ∈ VC ∪ VD,∀f ∈ F , (13)

ymif ∈ {0, 1}, ∀i ∈ VC , f ∈ F ,∀m ∈M, (14)

uif ≥ 0, ∀i ∈ VC ,∀f ∈ F , (15)

qmsd ≥ 0, ∀(s, d) ∈ A1,∀m ∈M. (16)

The objective function (1) minimizes the total transportation costs. Constraints (2) impose that

the quantity of each commodity delivered to a distribution center is sufficient to carry out delivery

operations from there. Constraints (3) impose the use of a sufficient number of trucks for collec-

tion operations. Constraints (4) fix the maximum availability of each commodity at each supplier.

Constraints (5) state that each required commodity is distributed exactly once to each customer.

Constraints (6) are flow conservation constraints. Constraints (7) manage the assignment of vehicles

to distribution centers. Constraints (8) impose to use a vehicle if this delivers at least one commodity

of a customer. Constraints (9) are vehicle capacity constraints. Constraints (10) eliminate subtours

that do not contain a distribution center. Constraints (11)– (16) define the variables.
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3 Problem decomposition

The MC2DP integrates two subproblems, one considering the collection of commodities, that is the

transportation of the commodities from the suppliers to the distribution centers, the other considering

the delivery of commodities from the distribution centers to the customers. In this section, we present

a decomposition of the MC2DP and define the two subproblems: the SPC (SubProblem Collection)

and the SPD (SubProblem Delivery). The connection of these two problems is made by quantities

Udm that represent the available quantity of commodity m at distribution center d. For the sake of

clarity, when necessary, we will denote by UDdm the quantity of commodity m that is delivered from

the distribution center d to customers, and by UCdm the quantity of commodity m that is collected

at the suppliers and delivered to the distribution center d. Figure 3 illustrates the solutions of the

SPC and the SPD for the instance in Figure 2, with the associated Udm variables that link the two

subproblems.

11 7O 
1

2

3

4

5

21 4O 

22 8O 

12 10O 

32 10O 

2(1)

8(2)

2(1)+6(2)
5(1)

3(2)

41 4DU 

42 14DU 

51 5DU 

52 3DU 

7

8

9

10

11

6
61 2D  62 1D 

71 2D 
72 3D 

82 8D 

91 3D  92 2D 

10,2 1D 
11,1 2D 

11,2 2D 

4

5

41 4CU 

42 14CU 

51 5CU 

52 3CU 

(a) Solution of the SPC. (b) Solution of the SPD.

Figure 3: Solutions of the two subproblems based on the solution of the MC2DP in Figure 2.

We now provide a formal definition of the SPC and the SPD. Note that each subproblem is

concerned with the optimization of the related operations, i.e., SPC minimizes the cost of collection

operations only while SPD minimizes the cost of delivery operations only.

3.1 The collection subproblem (SPC)

The SPC is defined on a graph G1 = (V1,A1), where V1 = VS
⋃
VD and A1 = {(i, j), (j, i)|i ∈

VS , j ∈ VD}. The SPC consists in determining a set of direct trips for trucks between suppliers and

distribution centers with the associated quantities for each commodity. The objective is to minimize

the transportation cost, defined as the total cost for the direct trips, that is independent of the quantity

transported on each truck. For each commodity, the quantity transported to distribution centers has

to be sufficient to satisfy customer demands in the SPD. Moreover, the solution of the SPC must

satisfy the following constraints:

(1) the total quantity of commodities transported by each truck does not exceed the truck capacity

QS ;

(2) for each supplier s, the quantity of each commodity m that is transported to distribution centers

must be at most equal to the available quantity Osm;

(3) the quantity of each commodity m transported to each distribution center d is greater than the

required quantity UDdm.
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When the SPC is solved first, the values UDdm are not known and have to be set to a valid lower

bound. Next, the values UCdm are computed from the solution of the SPC and used as input to the

SPD.

The SPC is related to the Multi-commodity Capacitated fixed-charge Network Design problem

(MCND) (Magnanti and Wong, 1984). The MCND problem is a discrete optimization problem in

which a set of commodities has to be routed through a directed network. Each commodity has a

demand to be transported from an origin to a destination. Each arc has a limited capacity, a unit

cost flow, and a fixed cost if the arc is used (the flow is positive). The SPC differs from the MCND

problem because of the cost structure. In the SPC, the cost of an arc depends on the number of trucks

used: it is a step-wise cost function defined by a unitary cost associated with each truck used. Thus,

steps are defined as multiples of the truck capacity QS .

3.2 The delivery subproblem (SPD)

The SPD is defined on a graph G2 = (V2,A2) where V2 = VD
⋃
VC and A2 = {(i, j), (j, i)|i ∈

VD, j ∈ VC} ∪ {(i, j)|i, j ∈ VC}. In the following, we will use the word vehicle to indicate a vehicle

used in the SPD.

The SPD consists in assigning commodities to vehicles and in determining a set of vehicle routes

to meet all customer demands. The solution must satisfy the following constraints:

(1) the total quantity of commodities delivered by each vehicle does not exceed the vehicle capacity

QD;

(2) each commodity requested by each customer is delivered by a single vehicle;

(3) the demand of all customers is satisfied;

(4) the quantity of each commodity m distributed from each distribution center d does not exceed

the available quantity UCdm;

(5) each vehicle starts and ends its route at the same distribution center.

When the SPD is solved first, the values UCdm are not known and have to be set to a valid upper

bound. Next, the values UDdm are computed from the solution of the SPD and used as input to the

SPC.

The SPD is the multi-depot case of the Commodity constrained Split Delivery Vehicle Routing

Problem (C-SDVRP)(Archetti et al., 2014). The C-SDVRP is a problem where customers require

multiple commodities. Each customer can be served by different vehicles, but each commodity has to

be delivered at once by a single vehicle. The C-SDVRP considers only one distribution center with

sufficient quantity for each commodity to satisfy all the customer demands.

4 A sequential approach

In this section we describe the sequential solution approach for the MC2DP. We first describe a

solution method for the SPC based on the solution of a mathematical programming model. Then,

we propose a solution method for the SPD. It is an Adaptive Large Neighborhood Search (ALNS)

algorithm that extends the approach described in Gu et al. (2019). As the solution of the first

subproblem solved, whatever it is, has an impact on the solution of the second subproblem, we

describe, in Section 4.3, different strategies for taking into account this impact when solving the

first subproblem.
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We will make use of the concept of customer-commodity. A customer-commodity represents the

demand of a customer for a single commodity. A customer may be seen as a union of customer-

commodities.

4.1 Solution of the SPC

The SPC is modelled as a Mixed Integer linear Program (MIP). The formulation, that will be

solved to optimality, is based on the following decision variables:

� xsd: non-negative integer variable equal to the number of trucks traversing arc (s, d) ∈ A1, s ∈
VS , d ∈ VD;

� qmsd: non-negative variable equal to the quantity of commodity m ∈ M picked up at supplier

s ∈ VS and delivered to distribution center d ∈ VD;

� ymdi : binary variable equal to 1 if the demand of commodity m ∈ M of customer i ∈ VC is

assigned to distribution center d ∈ VD, and 0 otherwise.

Note that the variables xsd and qmsd have the same meaning as variables x1
sd and qmsd, respectively,

in the formulation FMC2DP . Variables ymdi are introduced for the formulation of the SPC.

The mathematical formulation that follows determines the quantities to transport from suppliers

to distribution centers in such a way that all commodities requested by customers are shipped, and

the availabilities at the suppliers and the truck capacity are not violated:

min
∑

(s,d)∈A1

c̄sdxsd (17)

s.t.
∑
d∈VD

ymdi = 1, ∀ i ∈ VC ,m ∈Mi, (18)

∑
i∈VC

Dimy
m
di ≤

∑
s∈VS

qmsd, ∀ d ∈ VD,m ∈M, (19)

∑
s∈VS

qmsd ≥ UDdm, ∀ d ∈ VD,m ∈M, (20)

∑
m∈M

qmsd ≤ QSxsd, ∀ s ∈ VS , d ∈ VD, (21)∑
d∈VD

qmsd ≤ Osm, ∀ s ∈ VS ,m ∈M, (22)

xsd ∈ N, ∀ s ∈ VS , d ∈ VD, (23)

ymdi ∈ {0, 1}, ∀ i ∈ VC , d ∈ VD,m ∈M, (24)

qmsd ≥ 0, ∀ s ∈ VS , d ∈ VD,m ∈M. (25)

The objective function (17) minimizes the transportation cost, that is the cost of the direct trips

of the trucks used to supply the distribution centers. Constraints (18) impose that, for each customer,

the demand of each commodity is assigned to one distribution center. Constraints (19) impose that

the quantity of each commodity delivered to each distribution center satisfies the demand of the

customers assigned to the same distribution center. Note that constraints (18) and (19) ensure that

any solution of the SPC is feasible for the SPD. Constraints (20) ensure that the quantity transported

to each distribution center is greater than the lower bound UDdm. Constraints (21) impose that the

total volume of all commodities transported from a supplier to a distribution center cannot exceed the

capacity of the trucks used on that arc. Constraints (22) impose not to exceed the available quantities

of commodities at the suppliers. Constraints (23)–(25) define the variables.
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The above formulation may have several equivalent optimal solutions. To break ties among solu-

tions with the same cost but delivering different quantities, we consider a small value ε and add to

the objective function (17) the term:

ε
∑
d∈VD

∑
i∈VC

∑
m∈Mi

cdiy
m
di , (26)

where cdi is the travelling cost between distribution center d and customer i. With this term, solutions

with different assignments of customer-commodities to distribution centers are evaluated differently.

This term favours solutions that minimize the total distance between customer-commodities and the

distribution center to which they are assigned.

We call FSPC the formulation (18)-(25) with objective function:

min
∑

(s,d)∈A1

c̄sdxsd + ε
∑
d∈VD

∑
i∈VC

∑
m∈Mi

cdiy
m
di . (27)

An optimal solution to the formulation FSPC gives the available quantities UCdm of each commodity

m at distribution center d as:

UCdm =
∑
s∈VS

qmsd.

We will see in Section 4.3, how such quantities are used in the sequential approach for the solution

of the MC2DP where the SPC is solved first. When the SPD is solved first, the assignment of customer-

commodities to distribution centers is known, that is the values of the y variables are known. In this

case, constraints (18) and (19) are removed from FSPC , and only constraints (20) are used to link

the two subproblems. It is noteworthy that when the SPC is solved first, the values UDdm are not set

according to the solution of the SPD but according to the strategies defined in Section 4.3.2. Then,

constraints (18) and (19) are necessary to ensure that the solution of the SPC is feasible for the SPD.

4.2 Solution of the SPD

The SPD deals with the delivery of commodities from distribution centers to customers. As already

mentioned, when the SPD is solved after the SPC, the values UCdm are known. Instead, when the SPD is

solved first, the values UCdm have to be set. Different strategies to determine these values are proposed

in Section 4.3.2. In the remaining of this section we assume that these quantities UCdm are given, either

from the solution of the SPC or from one of the strategies described in Section 4.3.1, when the SPD

is solved firsst.

In the following, we describe the solution approach we propose for the SPD, which is an Adaptive

Large Neighborhood Search (ALNS). Section 4.2.1 describes how we build an initial solution while the

ALNS is described in Section 4.2.2.

4.2.1 Initial solution

To solve the SPD, we start by assigning customer-commodities to distribution centers. To this

end, we solve a Generalized Assignment Problem (GAP) (Ross and Soland (1975), Cattrysse and

Van Wassenhove (1992)) which aims at finding the minimum cost assignment of customer-commodities

to distribution centers so that each customer-commodity is assigned to exactly one distribution center.

The assignment is subject to the availability of each commodity at the distribution centers. The

assignment cost of commodity m for customer i to distribution center d is cid that represents the

traveling cost from customer i to distribution center d.
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We now present the formulation of the GAP. Let xmid be the binary variables equal to 1 if and only

if commodity m ∈ M required by customer i ∈ VC is served from distribution center d ∈ VD, and 0

otherwise. The GAP is formulated as follows:

min
∑
i∈VC

∑
m∈Mi

∑
d∈VD

cidx
m
id (28)

s.t.
∑
i∈VC

Dimx
m
id ≤ UCdm, ∀ m ∈M, d ∈ VD, (29)

∑
d∈VD

xmid = 1, ∀ i ∈ VC ,m ∈Mi, (30)

xmid ∈ {0, 1}, ∀ i ∈ VC ,m ∈M, d ∈ VD. (31)

The objective function (28) minimizes the total assignment cost of customer-commodities to dis-

tribution centers. Constraints (29) impose not to exceed the quantity of commodity available at each

distribution center. Constraints (30) ensure that each customer-commodity is assigned to exactly one

distribution center. Constraints (31) define decision variables.

Given the assignment of customer-commodities to distribution centers provided by the solution

of the GAP, the set of initial routes is obtained by applying the split algorithm to each distribution

center. The split algorithm (Beasley (1983), Prins (2004)) starts from a giant-tour that visits all the

customers associated with a distribution center and decomposes the visiting sequence into a set of

feasible routes. The solution obtained is the initial solution for the ALNS.

4.2.2 The Adaptive Large Neighborhood Search

The basic idea of an ALNS is to improve the current solution by destroying it and building a

new one. The ALNS algorithm we present adopts the scheme proposed in Gu et al. (2019) for the

commodity constrained split delivery VRP with a single depot (distribution center). The presence, in

the problem we solve, of multiple depots and different quantities of each commodity in each of them

required substantial changes and the design of ad-hoc procedures. The basic scheme of the algorithm

is given in Algorithm 1, where f(s) is the objective value of solution s.

Algorithm 1 The ALNS algorithm.

1: s← initial solution
2: sbest ← initial solution
3: repeat
4: s←Destroy and Repair(s)

5: s←Local Search(s)

6: if f(s) < f(sbest) then
7: s←Intensification(s)

8: sbest ← s
9: end if

10: until stopping criterion is met

In the following we present the main features of the algorithm. We allow and penalize viola-

tions of the vehicle capacity in the cost function when customer-commodities are inserted into ex-

isting routes. A maximum capacity violation on each route is imposed. Hence, it is possible that a

customer-commodity cannot be inserted in any route of the current solution. In this case, we select

one distribution center from which serving this customer-commodity is feasible with respect to the

availability, and we create an additional route. If several distribution centers may be chosen, the one

that minimizes the delivery cost is selected. We also allow violations of the limited quantities UCdm of
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commodities available at each distribution center. Both the violation of vehicle capacity and quantities

UCdm are penalized in the objective function, proportionally to the violation. The penalty rates are

denoted as λ and γ, respectively. Hence, if a solution violates the vehicle capacity (available quantities

UCdm) by an amount v, then a term λv (γv) is added to the cost function. Initially, λ (γ) is set to a

minimum value λmin (γmin) that is equal to the cost of the initial solution. The penalty rate λ (γ) is

then dynamically modified during the search as follows. We keep track of the number of consecutive

feasible and infeasible solutions visited during the ALNS algorithm. If Einf infeasible solutions are

obtained consecutively, the value of λ (γ) is increased to 2λ (2γ). Similarly, if Efeas feasible solutions

are generated consecutively, the value of λ (γ) is decreased to max {λmin;λ/2} (max {γmin; γ/2}).

Destroy and Repair. This procedure aims at diversifying the search. It relies on a set of

removal and insertion operators which iteratively destroy and repair solutions. The removal and

insertion operators are selected using a roulette wheel mechanism. The probability of selecting an

operator is dynamically influenced by its performance in past iterations (Ropke and Pisinger, 2006).

It uses two removal operators (Shaw removal and random removal of customers), and three insertion

heuristics of customer-commodity based on greedy, regret-2 and regret-3 insertion paradigms.

Local search. The Local Search procedure (LS) considers classical operators (Laporte (2009),

Vidal et al. (2013), Laporte et al. (2014)): insertion, swap and 2-opt for customers, and insertion and

swap for customer-commodities. Insertion consists in relocating a customer or a customer-commodity

from its current position in a different position of the same or another route. Swap consists in

exchanging the position of two customers or customer-commodities. 2-opt replaces arcs (u, x) and (v, y)

in a route by arcs (u, v) and (x, y), where u and v represent customers and x and y their successors.

We do not consider the 2-opt operator based on customer-commodities. In fact this operator works on

elements of the same route and it is never beneficial to split apart customer-commodities associated

with the same customer. Note that when a move is applied on a customer (and not on a customer-

commodity), it means that all commodities delivered to the customer in the route are involved in the

move. These operators consider moves in the same route, moves between different routes assigned to

the same distribution center and moves between routes assigned to different distribution centers.

Intensification. When a new best solution is found, we intensify the search by applying a

Mathematical Programming Operator (MPO). The main goal is to define a new assignment of the

visits to a customer i by solving a capacitated facility location problem. The MPO has been introduced

in Gu et al. (2019) and we modified it for the solution of the SPD. For the sake of clarity, we provide

in the following the formulation of the MPO. We introduce the following notation:

� si: solution obtained from the current solution by removing all the visits to customer i;

� Ri: set of routes in si;

� Cir: cost for inserting customer i in route r ∈ Ri (cheapest insertion);

� Qir: remaining capacity in route r ∈ Ri.

The decision variables are the following:

� ximr: binary variable equal to 1 if the delivery of commodity m ∈ Mi of customer i ∈ VC is

assigned to route r ∈ Ri;

� xir: binary variable equal to 1 if customer i ∈ VC is inserted in route r ∈ Ri.
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The formulation of the MPO is the following:

(IPMPO) min
∑
r∈Ri

Cirx
i
r (32)

s.t.
∑
r∈Ri

ximr = 1, ∀ m ∈Mi, (33)

∑
m∈Mi

Dimx
i
mr ≤ Qirxir, ∀ r ∈ Ri, (34)

ximr ∈ {0, 1}, ∀ m ∈Mi, r ∈ Ri, (35)

xir ∈ {0, 1}, ∀ r ∈ Ri. (36)

The objective function (32) aims at minimizing the total insertion cost. Constraints (33) require

that each commodity is assigned to one route. Constraints (34) impose that the total quantity of

commodities assigned to a selected vehicle does not exceed its capacity. Constraints (35)-(36) define

the decision variables. (IPMPO) is solved for each i ∈ VC and only the reassignment of visits of

customer i associated with the largest cost reduction is implemented.

Formulation (32)–(36) corresponds to the one proposed in Gu et al. (2019). In order to solve the

SPD, we add another constraint ensuring that the distribution centers are not overloaded. Specifically,

let Qidm represent the remaining quantity of commodity m at depot d ∈ VD in si. Then, the following

constraints are added:

Dimx
i
mr ≤ Qidm, ∀ m ∈Mi, r ∈ Ri, (37)

which ensure that the quantity of commodity assigned to each distribution center does not exceed its

remaining availability.

4.3 Sequential solution approaches

In the previous two sections, we presented how the two subproblems, the SPC and the SPD, are

solved. We now show how we combine the two approaches in order to obtain a solution method

for the MC2DP. Different strategies are proposed, all based on the sequential solution of the two

subproblems: the SPD and the SPC. In particular, we propose strategies where the SPD is solved

first and the SPC second (indicated as SPD → SPC), or, vice-versa, first we solve the SPC and then

we solve the SPD (indicated as SPC → SPD). In both cases, the solution of the first subproblem

determines the quantity of each commodity at each distribution center. The second subproblem takes

this information and deals with delivery or collection accordingly. Note that when the first subproblem

is solved, the solution is such that the minimization of the transportation cost of that specific problem

only is considered, regardless of the other subproblem. This may lead to solutions of poor quality

for the MC2DP. As a consequence, we propose different strategies to guide the solution of the first

subproblem and obtain better solutions of the MC2DP.

4.3.1 Sequential solution: SPD → SPC

When the SPD is solved first, we consider three strategies to determine the values of quantities

UCdm available at the distribution centers. The SPD is then solved through the algorithm presented

in Section 4.2. Note that a solution of the SPD gives the required quantities UDdm of each commodity

m at each distribution center d, computed as the sum of the demands of the customer-commodities

assigned to this distribution center. Afterward, the SPC is solved by fixing the values of y variables

and the required quantities at the depots UDdm in FSPC according to the solution of the SPD. The

three strategies are as follows.
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SPD infinite → SPC. In this strategy, the values UCdm involved in the GAP formulation (Sec-

tion 4.2.1) and in the ALNS algorithm (Section 4.2.2) are set to a valid upper bound as follows:

UCdm =
∑
i∈VC

Dim, ∀d ∈ VD,m ∈M

and do not restrict the search.

SPD finite balanced → SPC. In this strategy, the values UCdm are restrictive and aim at balancing

the quantity of commodities distributed from each distribution center. As a consequence, the quantity

of each commodity available at each distribution center is determined as:

UCdm =

∑
i∈VC Dim

|VD|
+ max

i∈VC
{Dim}, ∀d ∈ VD,m ∈M.

Note that the second term involved in the computation of UCdm guarantees that the SPD has

a feasible solution and it also allows some flexibility in the assignment of customer-commodities to

distribution centers.

SPD finite supplier based → SPC. In this strategy, the values UCdm are determined taking into

account the location of the distribution centers and the suppliers. The idea is to compute the available

quantities UCdm at distribution center d based on the available quantities of the suppliers located close

to d. First, we assign each supplier to its k closest distribution centers. Then, the quantity UCdm of

commodity m available at distribution center d is computed as the sum of the available quantities

Osm for commodity m over all suppliers assigned to distribution center d. Note that if there are few

distribution centers, k will take value 1, but when there are several distribution centers, k can be

larger than 1 to consider larger values for UCdm, providing more flexibility for the solution of the SPD.

4.3.2 Sequential solution: SPC → SPD

When the SPC is solved first, we consider three strategies. Based on the strategy chosen, we define

different values for UDdm, and the formulation FSPC is solved to obtain a solution for the SPC. Then,

in order to solve the SPD, the UCdm values are defined from the solution of FSPC as follows:

UCdm =
∑
s∈VS

qmsd, ∀d ∈ VD,m ∈M. (38)

Finally, the SPD is solved. The three strategies considered when the SPC is solved first are listed

in the following.

SPC not full truck→ SPD. In this strategy, the SPC is first solved using the model FSPC presented

in Section 4.1 with values UDdm set to a non-binding value, i.e.:

UDdm = 0, ∀d ∈ VD,m ∈M.

SPC full truck → SPD. In this strategy, the SPC is first solved using the model FSPC presented

in Section 4.1 with values UDdm set to 0 as in the former strategy. Then, the solution of the SPC is

updated by using the remaining capacity of the trucks to increase the quantities qmsd brought to the

distribution centers. This does not modify the cost of the SPC, but offers more flexibility when solving

the SPD due to larger availabilities (UCdm) at distribution centers. More precisely, for each supplier s

and each distribution center d, we divide the remaining capacity of the trucks traveling from s to d
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by the number of commodities available at supplier s. This gives an equal maximum quantity qfill
for each commodity in order to fill the trucks. If the availability of some commodity is less than qfill,

we fill the trucks as much as we can and we possibly repeat the procedure. Details of the procedure

are given in Algorithm 2 in the Appendix A. This procedure increases the values of variables qmsd in

formulation FSPC . Then, in order to solve the SPD, UCdm values are defined as in Equation (38).

SPC full truck customer based → SPD. This strategy solves the model FSPC in which quantities

UDdm are determined on the basis of the locations of the customers. The idea is to compute the

quantities UDdm required at distribution center d based on the demands of the customers located

close to the distribution center d and far from other distribution centers. Customers close to several

distribution centers are not included in the computation of UDdm to ensure some flexibility.

Given two distribution centers d1 and d2 with a distance a between d1 and d2, we say that a

customer i is d1-d2 compatible if one of the following two conditions is satisfied: (1) the distance

between i and d1 is less than a/3; or (2) the distance between i and d1 is less than a, and the distance

between i and d2 is greater than a. An example is given in Figure 4. For each distribution center d,

we say that a customer i is assigned to d if for all other distribution centers d′ ∈ VD \ {d}, i is d-d′

compatible. With the choice of a/3, customers at similar distance from two distribution centers are

not assigned to any distribution center, as illustrated in Figure 4.

3
a

a

3
a

1d

2d

Figure 4: All customers in the grey zone are d1-d2 compatible.

Then, the quantity UDdm is computed as the sum of the demands of commodity m ∈M of customers

assigned to d ∈ VD. After solving FSPC , the strategy SPC full truck → SPD is applied to increase

the quantities qmsd. Finally, values UCdm are calculated as in Equation (38).

5 Computational experiments

In this section, we compare the solution algorithms proposed in Section 4.3 to solve the MC2DP

sequentially. An algorithm is determined by the sequence in which the two subproblems are solved

and the strategy to solve the first subproblem.

In Section 5.1, we describe the generation of the sets of instances for the MC2DP based on instances

for the C-SDVRP. Then, in Section 5.2, we report the results obtained when solving the instances with

the different sequential algorithms. Then, we provide in Section 5.3 an analysis of the results to identify

the instance characteristics that mostly impact the algorithm performance. Finally, in Section 5.4 we

evaluate the quality of the solutions obtained with the sequential approach, with respect to the solving

of the formulation FMC2DP with a commercial solver.

The algorithms have been implemented in C++ and run on an Intel (R) Core(TM) i7-4600U,

2.10GHz, and 16GB of RAM. We summarize the notation used to present the instances and the

results in Table 1.
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Symbol Meaning

nbIns Number of instances in each group
SPDcost Best solution cost for the SPD
SPCcost Best solution cost for the SPC
Cost Total cost for the MC2DP
avg.t(s) Average CPU time for computing the MC2DP solution (in seconds)
avg.SPDt(s) Average CPU time for computing the SPD solution (in seconds)
avg.SPCt(s) Average CPU time for computing the SPC solution (in seconds)

Table 1: Notation for computational results.

5.1 Instances

First, we create a base set of instances that is indicated as S. Then, the other 11 sets are generated

by modifying one of the characteristics of set S.

5.1.1 Generation of the base set of instances S

The delivery subproblem (SPD) of the MC2DP extends the C-SDVRP by considering multiple

distribution centers. Hence, we build the base set of instances from instances of the C-SDVRP. More

precisely, we consider the 64 small instances with 15 customers proposed by Archetti et al. (2014).

These instances are built from the customer locations of the R101 and C101 Solomon instances for

the VRP with Time Windows (Solomon, 1987). Each instance is characterized by five parameters

listed thereafter. I ∈ {R101, C101} indicates if the instance is based on R101 or C101. Only the

depot and the first 15 customer locations are considered from the Solomon instances. The number of

commodities, indicated by M , is equal to 2 or 3. A customer requires a commodity with probability p

equal to 0.6 or 1. The quantity of each commodity required by a customer varies within the intervals

∆ = [1, 100] or ∆ = [40, 60]. Last, parameter α ∈ {1.1, 1.5, 2, 2.5} determines the vehicle capacity by

multiplying the vehicle capacity in the original Solomon instances. We indicate by P = (I,M, p,∆, α)

the set of parameters listed above.

For each instance I of the C-SDVRP, we create an instance IMC2DP for the MC2DP as follows.

Given the coordinates (xd, yd) of the distribution center in I, one distribution center of IMC2DP is

located in (xd, yd), while another one is located in (xd + δ, yd + δ). Given the coordinates (x, y) of

a customer in I, one customer of IMC2DP is located in (x, y), while another customer is located in

(−x+2xd+δ,−y+2yd+δ). Both customers have the same demand as in I. Hence, the instance IMC2DP

contains one distribution center d1 and a set V1
C of 15 customers with the same locations as instance

I. It contains as well another distribution center d2 and a second set V2
C of 15 customers. Customers

in V2
C are transposed by (δ, δ) from the original locations, and are also rotated by 180 degrees around

the distribution center d2. After some preliminary experiments detailed in Appendix B, we set δ = 30.

To locate the 8 suppliers we proceeded as follows. We consider a circle of radius r centered at

each distribution center. We randomly created inside each circle four suppliers. Should the two circles

intersect, the intersection is not considered as a potential zone to locate suppliers. The value of the

radius r has been fixed to 30. Note that the cost cij associated with each arc (i, j) ∈ A is equal to the

Euclidean distance between i and j.

The quantity of commoditym ∈M available at each supplier is calculated asOsm = dζ·
∑

i∈VC
Dim

|VS | e,
where ζ is a parameter that has been fixed to 1.2. Hence, all suppliers produce all commodities with

the same amount. Globally, the total supply is 20% more than the total demand. The motivation

for this characteristic of the instances is to avoid feasibility problems and always obtain a solution

of the heuristics. We wanted to focus on the coordination aspect of the two echelons rather than

on feasibility issues. When SPD → SPC, once the SPD is solved, the assignment of customer-

commodities to distribution centers is known, that is the quantity of the commodity delivered to each

distribution center is known. Then the SPC is optimally solved by using the mathematical model.
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Thus, the 20% flexibility of the supply does not impact this heuristic. When SPC → SPD, we should

ensure that the solution of the SPC is feasible for the SPD. This is the reason why we allowed a larger

than demand supply. However, note that having a larger supply than the total demand does not imply

in practice a waste of products. Without being part of the system, the producers need to consecrate

a consistent part of their working time to sell and deliver operations that are not their core business.

The system would take care of a large segment of their production, freeing part of the working day.

The remaining products may be sold across different channels, as on-site sales.

The capacities QS and QD of the trucks and vehicles are equal to the capacity of vehicles in

I. Figure 5 shows the locations of customers, distribution centers and suppliers for C101 and R101

configurations.
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(a) Locations in instances obtained from C101. (b) Locations in instances obtained from R101.

Figure 5: Locations in instances in S.

In order to ensure the diversity of the instances to evaluate the proposed sequential approach, we

construct 11 additional sets of instances based on instances in S. Each of the 11 sets differs from S
by the modification of one characteristic.

5.1.2 Modification of the supplier locations

In set S, four suppliers are generated around each distribution center. We generate two other

sets of instances where we modify the location of suppliers by unbalancing the number of suppliers

generated around each distribution center. These two sets of instances are named SS1 and SS2 . As

for instance set S, we consider a circle of radius r = 30 centered at each distribution center, and no

supplier is located in the intersection of the two circles. The characteristics of the new sets of instances

are the following.

SS1 : Around distribution center d1 we randomly locate 6 suppliers. The other two suppliers are

randomly located around d2.

SS2 : Around distribution center d1 we randomly locate 8 suppliers. No supplier is generated around

d2.

Examples of the two configurations are presented in Figures 6 and 7.
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Figure 6: Locations in instances of SS1 .
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Figure 7: Locations in instances of SS2 .

5.1.3 Modification of the customer locations

In set S, each distribution center is surrounded by 15 customers. This makes the instances balanced

from the point of view of the customer locations with respect to the distribution centers. We generate

four sets of instances where we modified the location of customers by unbalancing the number of

customers around each distribution center. These four sets of instances are named SC1 , SC2 , SC3 and

SC4 . As with instance set S, given the coordinates (x, y) of a customer in I, one customer of IMC2DP

is located in (x, y), while another customer is located in (−x+ 2xd + δ,−y + 2yd + δ). For instances

in S, the value δ = 30 has been considered. For the new sets of instances, the locations of the 15

duplicated customers are defined as follows.

SC1 : For the first 5 customers in I, δ = −5; for the remaining 10 customers, δ = 30.

SC2 : For the first 5 customers in I, δ = 10; for the remaining 10 customers, δ = 30.

SC3 : For the first 10 customers in I, δ = −5; for the remaining 5 customers, δ = 30.
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SC4 : For the first 10 customers in I, δ = 10; for the remaining 5 customers, δ = 30.

An illustration of instances in SC1 is given in Figure 8.
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(a) Locations in instances obtained from C101. (b) Locations in instances obtained from R101.

Figure 8: Locations in instances of SC1 .

5.1.4 Modification of the available quantities at suppliers

In set S, given a commodity m ∈ M, all suppliers s ∈ VS have the same available quantity

Osm = dζ ·
∑

i∈VC
Dim

|VS | e, with ζ = 1.2. We generate a set of instances SO where we unbalance the

available quantities at suppliers. For this set of instances, we only consider the 32 instances where

the number of commodities is M=2. Half of the suppliers, all located around the same distribution

center, have Os1 = dζ ·
1.8

∑
i∈VC

Di1

|VS | e units of commodity 1 and Os2 = dζ ·
0.2

∑
i∈VC

Di2

|VS | e units of

commodity 2. On the contrary, the other suppliers, all located around the other distribution center,

have Os1 = dζ ·
0.2

∑
i∈VC

Di1

|VS | e units of commodity 1 and Os2 = dζ ·
1.8

∑
i∈VC

Di2

|VS | e units of commodity

2. ζ is still fixed to 1.2.

5.1.5 Modification of the number of suppliers

The instances in S all contain 8 suppliers. Thus, we create other two sets of instances, indicated

with SSadd
1 and SSadd

2 , that contain 10 and 12 suppliers, respectively. The number of customers is kept

as in the base set S, i.e., equal to 30 for all instances. The new added suppliers are randomly placed

around the two distribution centers, such that the same number of suppliers are placed around each

distribution center.

5.1.6 Modification of the number of customers

The instances in S all contain 30 customers. We then create two sets of instances, indicated with

SCadd
1 and SCadd

2 where the number of customers is increased to 50 and 70 respectively. The number

of suppliers is kept as in S, i.e., equal to 8.

To locate the new customers, we randomly select customers in the original instance and we relocate

them by translating the coordinates by a value that is randomly chosen in [−20, 20]. The demand of

the new customer is equal to the demand of the original customer. The quantity of each commodity

available at each supplier is determined as described in Section 5.1.1.
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To sum up, in this work, we generate 12 sets of instances. Each set contains 64 instances except

for set SO, which has 32 instances.

5.2 Comparison of the sequential heuristics to solve the MC2DP

The six heuristics presented in Section 4.3 for the solution of the MC2DP are tested on the 12

instance sets presented in Section 5.1. The mathematical programs presented in Section 4.2 are solved

using Cplex 12.6. The ALNS algorithm is run with a limit of 5000 iterations and the values of the

parameters used in Gu et al. (2019). The additional parameters introduced in Section 4.2.2 are set to

Einf = 50 and Efeas = 50 after preliminary experiments. We recall that the values of γmin and λmin
equal the cost of the initial solution. Moreover, for the algorithm SPD finite supplier based→ SPC,

we set k = 1 since the instances contain few distribution centers.

In order to compare the algorithms, for each instance set we report:

� ∆avg.SPCcost: percentage difference between the average cost for collection (avg.SPCcost)

and the minimum average cost for collection (minavg.SPCcost), i.e. avg.∆SPCcost = 100 ∗
(avg.SPCcost−minavg.SPCcost)/minavg.SPCcost;

� ∆avg.SPDcost: percentage difference between the average cost for delivery (avg.SPDcost)

and the minimum average cost for delivery (minavg.SPDcost), i.e. avg.∆SPDcost = 100 ∗
(avg.SPDcost−minavg.SPDcost)/minavg.SPDcost;

� ∆avg.Cost: percentage difference between the average total cost (avg.Cost) and the

minimum average total cost (minavg.Cost), i.e. ∆avg.Cost = 100 ∗ (avg.Cost −
minavg.Cost)/minavg.Cost.

We also report the minimum average results for the collection cost, the delivery cost and the total

cost in the last line of each table.

Table 2 reports the results for the instance set S. The best value obtained for the MC2DP, the SPC

and the SPD are provided in bold. The table shows that the best algorithm is SPD finite balanced→
SPC. The other algorithms that solve first the SPD provide also good results, always better than the

algorithms where the SPC is solved first. The worst algorithm is SPC not full truck → SPD, with

an average increase in total cost of 2.35%. We also note that, when solving the SPD first, we have an

increase in the cost of the SPC of more than 8%. Instead, when solving first the SPC, the increase

on the SPD cost goes from 4.49% to 7.54%. However, the algorithms solving thhe SPD first provide

better values of total cost. This is due to the unbalance in the total cost of the SPC and the SPD.

Finally, it is interesting to note that the algorithm providing the best total cost is not the best for

none of the two subproblems. On average, the CPU times are around 1 minute. Since computational

times on the other sets (SS1 , SS2 , SC1 , SC2 , SC3 , SC4 , SO) of instances are similar, we do not report them

in the following Tables 3, 4, 5 and 6.

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost avg.SPCt(s) avg.SPDt(s) avg.t(s)

SPD infinite→ SPC 8.60 0.01 0.02 0.15 46.84 46.99
SPD finite balanced→ SPC 8.55 0.01 0.00 0.15 54.27 54.42
SPD finite supplier based→ SPC 8.71 0.00 0.04 0.16 50.59 50.75
SPC not full truck → SPD 0.00 7.54 2.35 0.26 81.23 81.49
SPC full truck → SPD 0.00 4.74 0.49 0.27 73.21 73.47
SPC full truck customer based→ SPD 0.00 4.49 0.33 0.27 74.96 75.23

minimum average costs 331.92 711.99 1072.34 - - -

Table 2: Average results on instance set S.

Results on instance sets SS1 and SS2 with modification of the supplier locations are reported in

Table 3. We note that, among the three algorithms where the SPD is solved first, the algorithm
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SPD finite supplier based → SPC provides a high cost for the SPD. However this is compensated

by a low cost for the SPC resulting in the lowest cost for the whole problem. When supplier locations

around the distribution centers are unbalanced, the algorithm SPD finite supplier based → SPC

is very efficient in comparison with the other algorithms that solve first the SPD. We also note that,

for these sets of instances, the sequence in which the subproblems are solved has a significant impact

with respect to the instances in the base set S, providing a larger increase in the cost of the second

subproblem, especially on the set SS2 . The best algorithm is SPD finite supplier based→ SPC. On

SS2 , SPC not full truck → SPD has the same performance as SPD finite supplier based→ SPC.

However, we note that the remaining algorithms in which the SPC is solved first perform better than

the remaining algorithms where the SPD is solved first, especially on SS2 .

Instance set SS1 SS2
Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost

SPD infinite→ SPC 45.36 0.00 6.55 100.57 0.00 9.78
SPD finite balanced→ SPC 45.05 0.00 6.45 98.33 0.00 9.15
SPD finite supplier based→ SPC 3.94 9.01 0.00 0.00 34.86 0.00
SPC not full truck → SPD 0.00 17.57 4.27 0.00 34.86 0.00
SPC full truck → SPD 0.00 13.44 1.65 0.00 34.89 0.01
SPC full truck customer based→ SPD 7.01 9.04 0.93 42.52 12.62 0.14

minimum average costs 331.92 712.04 1121.17 376.85 712.08 1337.16

Table 3: Average results on instance sets SS1 and SS2 .

Results on sets SC1 , SC2 , SC3 , and SC4 are reported in Tables 4 and 5. These instances have

unbalanced customer locations around the distribution centers. For these four sets, the algorithms

SPD finite balanced → SPC and SPD supplier based → SPC provide the best results for the

whole problem. The total costs achieved with these two algorithms are very similar. It can be noticed

that when applying the algorithm SPD infinite → SPC, the results are not competitive with the

two other algorithms where the SPD is solved first: the cost of the SPD is smaller but the cost of the

SPC increases a lot, leading to a high value of the total cost. Moreover, for the three algorithms where

the SPC is solved first, we observe a similar behaviour for these sets of instances and the base set S.

The only difference is that the algorithm SPC full truck customer based→ SPD provides the best

results among the three algorithms where the SPC is solved first. Note that when the SPC is solved

first and the customer locations are not taken into account (algorithms SPC not full truck → SPD

and SPC full truck → SPD), the solutions that are obtained for the SPC are always the same and

have the lowest SPC cost for all the considered instances. However, the overall solution is never the

best. This clearly shows the importance of taking into account the location of final customers when

bringing commodities to distribution centers.

Instance set SC1 SC2
Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost

SPD infinite→ SPC 28.61 0.00 3.24 25.47 0.00 2.78
SPD finite balanced→ SPC 11.75 2.85 0.00 11.77 2.30 0.04
SPD finite supplier based→ SPC 14.78 1.48 0.03 13.64 1.35 0.00
SPC not full truck → SPD 0.00 14.62 4.05 0.00 12.82 3.15
SPC full truck → SPD 0.00 10.11 1.14 0.00 8.42 0.33
SPC full truck customer based→ SPD 0.84 8.85 0.58 0.23 8.24 0.29

minimum average costs 331.92 710.99 1102.21 331.92 690.85 1077.35

Table 4: Average results on instance sets SC1 and SC2 .

Table 6 presents the results obtained on set SO where the quantities available at the suppliers are

unbalanced. The results indicate that in this case, the algorithm SPC full truck customer based→
SPD provides the lowest total cost. Hence, when the suppliers have unbalanced available quantities,
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Instance set SC3 SC4
Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost

SPD infinite→ SPC 65.70 0.00 9.63 55.71 0.00 8.95
SPD finite balanced→ SPC 12.46 9.85 0.46 11.87 6.84 0.00
SPD finite supplier based→ SPC 15.79 7.56 0.00 15.30 5.22 0.03
SPC not full truck → SPD 0.00 23.99 5.67 0.00 18.89 3.90
SPC full truck → SPD 0.00 19.44 2.84 0.00 14.63 1.26
SPC full truck customer based→ SPD 10.20 12.15 1.25 0.72 13.58 0.82

minimum average costs 331.92 717.99 1156.61 331.92 684.00 1102.15

Table 5: Average results on instance sets SC3 and SC4 .

starting by solving the SPC in a sequential approach is the best choice.

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost

SPD infinite→ SPC 112.24 0.00 9.06
SPD finite balanced→ SPC 113.50 0.03 9.40
SPD finite supplier based→ SPC 4.25 38.77 2.09
SPC not full truck → SPD 0.00 45.59 4.68
SPC full truck → SPD 0.00 43.39 3.49
SPC full truck customer based→ SPD 40.16 17.74 0.00

minimum average costs 345.76 722.98 1335.83

Table 6: Average results on instance set SO.

The results on sets of instances SSadd
1 , SSadd

2 , SCadd
1 and SCadd

2 are reported in Tables 7, 8, 9 and

10, respectively.

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost avg.SPCt(s) avg.SPDt(s) avg.t(s)

SPD infinite→ SPC 10.70 0.01 0.23 0.04 52.45 52.48
SPD finite balanced→ SPC 10.18 0.00 0.08 0.06 93.26 93.32
SPD finite supplier based→ SPC 10.90 0.00 0.29 0.06 85.91 85.97
SPC not full truck → SPD 0.00 8.29 2.75 0.45 134.97 135.43
SPC full truck → SPD 0.00 4.54 0.20 0.46 107.30 107.76
SPC full truck customer based→ SPD 0.00 4.25 0.00 0.33 139.04 139.36

minimum average costs 304.89 712.03 1047.15 - - -

Table 7: Average results on instance set SSadd
1 .

It can be observed that the results obtained by the different sequential heuristics are similar to the

results obtained on the instance set S. In particular, the best results are generally obtained when the

SPD is solved first. It can also be noted the the worst strategy is, in all cases, SPC not full truck →
SPD, as it is the case for the instance set S. We can observe that the computational time increases

with respect to the number of customers, while it is little impacted by the addition of suppliers. This

can be explained by the greater difficulty in solving a larger SPD, where routes have to be determined,

compared with solving a larger SPC, where direct trips only are considered.

Results on the different sets of randomly generated instances reveal that

SPD finite supplier based → SPC and SPC full truck customer based → SPD are the

best algorithms. As a rule, SPD finite supplier based → SPC identifies the best solutions in

most cases except when the quantities available at the suppliers are unbalanced. In the latter case,

SPD finite supplier based→ SPC has a better performance.

5.3 Analysis of the performance of the algorithms

In this section, we present an analysis of the results presented in Section 5.2 to identify the instance

characteristics that mostly impact the algorithm performance. More specifically, we aim at finding
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Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost avg.SPCt(s) avg.SPDt(s) avg.t(s)

SPD infinite→ SPC 4.74 0.01 0.00 0.08 85.48 85.56
SPD finite balanced→ SPC 4.86 0.00 0.03 0.07 93.44 93.51
SPD finite supplier based→ SPC 4.78 0.00 0.01 0.07 88.58 88.65
SPC not full truck → SPD 0.00 2.99 0.64 0.35 120.08 120.42
SPC full truck → SPD 0.00 2.08 0.02 0.37 111.97 112.34
SPC full truck customer based→ SPD 0.00 2.18 0.09 0.39 113.24 113.63

minimum average costs 308.52 712.03 1035.21 - - -

Table 8: Average results on instance set SSadd
2 .

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost avg.SPCt(s) avg.SPDt(s) avg.t(s)

SPD infinite→ SPC 4.92 0.00 0.00 0.06 156.93 156.99
SPD finite balanced→ SPC 4.91 0.22 0.11 0.05 162.13 162.18
SPD finite supplier based→ SPC 4.17 1.38 0.42 0.07 165.33 165.39
SPC not full truck → SPD 0.00 13.53 5.25 0.29 266.26 266.55
SPC full truck → SPD 0.00 10.53 3.61 0.29 226.27 226.57
SPC full truck customer based→ SPD 0.64 5.59 1.19 0.30 219.97 220.27

minimum average costs 863.88 1087.28 1993.67 - - -

Table 9: Average results on instance set SCadd
1 .

Strategy ∆avg.SPCcost ∆avg.SPDcost ∆avg.Cost avg.SPCt(s) avg.SPDt(s) avg.t(s)

SPD infinite→ SPC 7.09 0.00 0.00 0.20 617.93 618.13
SPD finite balanced→ SPC 7.82 0.33 0.50 0.20 654.17 654.37
SPD finite supplier based→ SPC 2.79 6.84 1.60 0.18 573.09 573.27
SPC not full truck → SPD 0.00 12.06 3.03 0.75 1031.30 1032.04
SPC full truck → SPD 0.00 9.66 1.79 0.76 853.73 854.49
SPC full truck customer based→ SPD 2.02 4.51 0.04 0.32 462.36 462.68

minimum average costs 1384.20 1583.68 3066.04 - - -

Table 10: Average results on instance set SCadd
2 .
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rules to determine the best solution approach, among the ones we proposed, based on the instance

characteristics. This is of crucial importance for the decision-maker. In fact, instance characteristics

are known before determining a solution for the problem.

Starting from the results presented in Table 2, we already noticed that all algorithms in which the

SPD is solved first perform better than the ones in which the SPC is solved first, even though the gap

is not substantial. We note that the instances on which these results were obtained, set S, are well

balanced in terms of location of customers and suppliers: two distribution centers are present, and

customers and suppliers are evenly distributed in the neighborhood of the two. In such a case, the two

sequential schemes tend to give similar solutions, in terms of assignment of customers and suppliers

to distribution centers. We explain that all algorithms in which the SPD is solved first produce better

solutions than when the SPC is solved first by the fact that the major cost component in the instances

is the routing cost. The same is true in Tables 7–10, where instances are still balanced.

From Tables 3–6 we see, instead, that when instances are unbalanced in terms of location of

suppliers and/or customers or in terms of quantity requested/available, then it is important to take

into account this unbalance when choosing the most appropriate solution method. The best strat-

egy is the one that optimizes first the unbalanced part, i.e., the SPD first when customers are

unbalanced and the SPC first when suppliers are unbalanced. In addition, the results also show

that, in this case, it is important to consider a strategy that links the two subproblems. In fact,

SPD finite supplier based→ SPC and SPC full truck customer based→ SPD are the two more

robust strategies. Even though each of them is not always the best strategy among those solving the

SPD and the SPC first, respectively, their gap with respect to the best solution is always small and

has lower variations with respect to the other strategies.

A summary of the results in Tables 3–10 is reported in Table 11. We see that the maximum gap of

SPD finite supplier based→ SPC is 2.09% while the one of SPC full truck customer based→ SPD

is 1.25%. All other strategies present a gap that, in the worst case, is well above 3%.

Strategy SS1 SS2 SC1 SC2 SC3 SC4 SO SSadd
1 SSadd

2 SCadd
1 SCadd

2

SPD infinite→ SPC 6.55 9.78 3.24 2.78 9.63 8.95 9.06 0.23 0.00 0.00 0.00
SPD finite balanced→ SPC 6.45 9.15 0.00 0.04 0.46 0.00 9.40 0.08 0.03 0.11 0.50
SPD finite supplier based→ SPC 0.00 0.00 0.03 0.00 0.00 0.03 2.09 0.29 0.01 0.42 1.60
SPC not full truck → SPD 4.27 0.00 4.05 3.15 5.67 3.90 4.68 2.75 0.64 5.25 3.03
SPC full truck → SPD 1.65 0.01 1.14 0.33 2.84 1.26 3.49 0.20 0.02 3.61 1.79
SPC full truck customer based→ SPD 0.93 0.14 0.58 0.29 1.25 0.82 0.00 0.00 0.09 1.19 0.04

Table 11: Summary of ∆avg.Cost from Tables 3–10 .

5.4 Evaluation of the sequential heuristics

This section is devoted to the evaluation of the quality of the solutions obtained by the sequential

schemes. To this end, we created four sets of small instances. The new instances have 10, 15, 20 and

25 customers, respectively. Instances with 10 to 20 customers have 4 suppliers while instances with

25 customers have 6 suppliers. Each set contains 9 instances.

To create these instances we randomly selected 3 instances from S, SS1 and SS2 . The original

instances are all from the class C101 with α = 1.1 and ∆ = [1, 100]. From the selected instance we

randomly removed customers and suppliers.

The compact formulation FMC2DP for the MC2DP, presented in Section 2.1, as well as the se-

quential heuristics to solve the MC2DP are evaluated over these instances. Formulation FMC2DP is

solved using Cplex 12.8. A maximum computational time of 1 hour is given to Cplex.

The results are reported in Table 12. The first three columns of the table give the characteristics of

the instance, where M indicates the number of commodities and p is the probability that a customer

requires one commodity, as previously explained (see Section 5.1). Column set indicates the instance
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set from which the instance is created. The fourth, fifth and sixth columns report results obtained

by solving formulation FMC2DP with Cplex 12.8. Column UB reports the value of the best feasible

solution provided by Cplex, while Column LB reports the best lower bound. The symbol 7 indicates

that Cplex was not able to provide a feasible solution. Column t(s)/gap(%) is a hybrid column that

reports the computational time, in seconds, when Cplex solves the instance to optimality in the given

amount of time or the optimality percentage gap, computed as 100 · UB−LBLB . The last three columns

report the performance of the sequential heuristics. Column best reports the value of the best solution

obtained over the six sequential heuristics presented in Section 4.3, column t(s) reports the total time,

in seconds, needed to run the six heuristics. The last column provides the percentage gap between

the value of the solution obtained by Cplex and the value of the solution obtained by the sequential

approaches. This is computed as 100 · best−UBUB . Whenever columns UB and best report the same value,

a symbol S is used to indicate that the sequential approaches succeed in finding the optimal solution,

while the symbol 3 indicates that the sequential approaches found the same solution as Cplex, but

optimality has not been proved.

Instance Cplex Seq
M p set UB LB t(s)/gap(%) best t(s) gap

NC = 10
2 0.6 S 394.66 394.62 240 394.66 50 S
2 1 S 579.52 549.03 5.55% 579.52 58 3
3 0.6 S 470.77 470.73 378 470.77 59 S

2 0.6 SS1 406.52 406.49 108 406.52 48 S

2 1 SS1 562.34 562.28 1441 562.34 57 S

3 0.6 SS1 437.98 437.94 486 437.98 70 S

2 0.6 SS2 406.52 406.48 57 406.52 41 S

2 1 SS2 663.52 663.46 2261 663.52 52 S

3 0.6 SS2 463.58 463.53 41 463.58 58 S

average Cplex/ALNS gap 0.00%

NC = 15
2 0.6 S 512.50 472.59 8.45% 512.50 89 3
2 1 S 771.34 654.28 17.89% 765.47 133 -0.76%
3 0.6 S 561.62 525.54 6.87% 551.88 122 -1.73%
2 0.6 SS1 533.43 468.67 13.82% 533.43 96 3

2 1 SS1 790.28 682.49 15.79% 784.05 134 -0.79%
3 0.6 SS1 573.69 476.41 20.42% 554.73 152 -3.30%
2 0.6 SS2 590.55 550.62 7.25% 590.55 85 3

2 1 SS2 896.12 742.96 20.62% 893.09 133 -0.34%
3 0.6 SS2 590.71 512.49 15.26% 590.71 122 3

average Cplex/ALNS gap -0.77%

NC = 20
2 0.6 S 638.30 522.83 22.09% 636.71 270 -0.25%
2 1 S 1063.71 807.35 31.75% 1007.04 295 -5.63%
3 0.6 S 719.37 561.35 28.15% 708.62 376 -1.52%
2 0.6 SS1 705.02 512.40 37.59% 668.50 255 -5.46%
2 1 SS1 1108.31 851.34 30.18% 1077.43 292 -2.87%
3 0.6 SS1 787.84 571.23 37.92% 775.30 152 -1.62%
2 0.6 SS2 713.38 557.91 27.87% 713.16 236 -0.03%
2 1 SS2 1243.96 867.64 43.37% 1177.46 253 -5.65%
3 0.6 SS2 846.41 615.72 37.47% 835.00 311 -1.37%

average Cplex/ALNS gap -2.71%

NC = 25
2 0.6 S 7 621.30 818.57 141
2 1 S 1188.39 904.92 31.32% 1184.62 173 -0.32%
3 0.6 S 1049.31 661.20 58.70% 827.46 168 -26.81%
2 0.6 SS1 872.00 633.00 37.76% 849.29 138 -2.67%
2 1 SS1 1416.33 915.13 54.77% 1258.91 164 -12.50%
3 0.6 SS1 1209.09 643.48 87.90% 894.56 164 -35.16%
2 0.6 SS2 7 648.72 881.02 175
2 1 SS2 1526.08 952.69 60.19% 1367.61 147 -11.59%
3 0.6 SS2 1100.07 662.89 65.95% 939.52 151 -17.09%

average Cplex/ALNS gap -15.16%

Table 12: Comparison of the sequential approaches with results obtain from Cplex on FMC2DP (in 1
hour computation).
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As it can be seen from Table 12, on instances with 10 customers the sequential approaches can

always find the optimal solution whenever Cplex is able to prove optimality. When the number of

customers goes up to 20 or 25, the sequential approaches always find a better solution, with an average

improvement of more than 15% for instances with 25 customers. As expected, the lower bounds that

Cplex provides are too poor to draw any conclusions on the quality of the solutions that the sequential

approach obtains. The only conclusion that can be drawn from the analysis of Table 12 is that, as the

size of the instance increases, a heuristic approach is the only viable method, since Cplex begins to

struggle to provide feasible solutions. On tests run with 30 customers and not reported in the table,

Cplex identified a feasible solution for one instance only. In addition, we carried out additional tests

by letting Cplex run for two hours instead of one, but this led to a very minor improvement of the

lower bound. Thus, the corresponding results are not reported.

6 A case study

In this section, we present a study on instances generated from a real case application. The aim

is to show how the sequential solution approaches behave on real-case applications.

6.1 Context

The case study was proposed by local authorities of the French department of Isère (General

Council and Chamber of Agriculture). The aim is to increase the volume of fresh food products sold

through short and local supply chains in the department of Isère. The department of Isère is an

interesting location for fresh food supply chains since: i) there are many farmers producing a variety

of fruits and vegetables, ii) these farmers have very low revenues when selling their products through

classical distribution channels, iii) the inhabitants of the department are deeply interested in buying

local fruits and vegetables through short and local supply chains.

Local authorities of Isère identified two kinds of customers for short and local supply chains: school

canteens and supermarkets. For such customers, considering direct deliveries from the farmers is not

acceptable as farmers should devote a significant part of their working time to carrying out deliveries.

Hence, the idea is to use a set of distribution centers which would be jointly managed by associations

of farmers.

6.2 Description of the data sets

In this case study, the commodities are fresh fruits and vegetables: apple, pear, kiwi, straw-

berry, carrot, lettuce, tomato, zucchini, cucumber, potato. In order to reflect the seasonality of these

products, demand and supply are not constant over the year. Hence, we consider a set of patterns

for demand and supply. Each pattern gives rise to one instance whose objective is to capture the

availability of the products of the month.

Two sets of customers are considered: school canteens and supermarkets. A study conducted

with the General Council of Isère has permitted to collect and estimate actual demands for school

canteens. The demand associated with supermarkets has instead been generated according to the

following procedure. The selected supermarkets are the ones selling fresh food products with a sales

area of at least 300m2. Demands for each supermarket have been generated under the following

hypotheses: i) the demands for each product has the same proportion as for school canteens (i.e.

people have the same kind of food consumption at home and in school canteens), ii) demands are

proportional to the sales area of the supermarket, and iii) the global demand of all commodities is

proportional to the global revenue generated by the sales of the considered fresh products through

supermarkets, for which the data are provided by a statistical study from the General Council of
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Isère. For school canteens, 8 patterns of demands and supply are considered, and for supermarkets 10

patterns are considered. Hence, there is a set of 18 instances for the case study.

The instances are divided in two sets: one considering canteens and one considering supermarkets.

This is because the General Council of Isère is interested in evaluating the possibility of implementing

a network that supplies school canteens or supermarkets from producers using distribution centers.

However, the possibility of having a shared network to serve these two sets of customers is not taken

into account. This is mainly due to the different demand of products in the two cases, with the

supermarket demands being much more important. The effect of this difference is twofold. First,

when school canteens are involved, producers could use their vehicle to bring commodities to the

distribution centers since the daily demand is limited. On the other hand, when supermarkets are

considered this is not anymore a viable option since producers would spend an important part of their

working time performing round trips to the distribution centers. In this case, it is supposed that

farmers may wish to purchase larger vehicles as a counterpart of participating in the collaborative

system. Second, to deliver to supermarkets one can suppose that large trucks can be used efficiently

due to the volume of the demand. In addition, dedicated docks are usually available in supermarkets to

unload vehicles. On the other side, the demand of canteens is smaller and not sufficient to fill such large

trucks, which are also unlikely to be able to access them. Due to these reasons, the General Council

of Isère wishes to study the two cases separately in order to consider the possible implementation of

one network.

In the school canteens instances, there are 103 customers and up to 61 suppliers. For each pattern

of supply and demand, the number of commodities ranges from 5 to 8, and the number of suppliers

producing at least one commodity ranges from 54 to 61. In the supermarket instances, there are 188

customers and up to 61 suppliers. For each pattern of supply and demand, the number of commodities

ranges from 5 to 8, and the number of suppliers producing at least one commodity ranges from 45

to 61. In all instances, there are 5 distribution centers. Their locations have been proposed by the

General Council and the Chamber of Agriculture of Isère. The sizes of the instances are reported in

Tables 13 and 14. The locations of customers, suppliers and distribution centers in the department of

Isère are shown in Figure 9. The capacity of the vehicles is set such that QD = 2QS , since farmers in

short and local supply chains generally do not have large capacity vehicles while distribution centers

may invest in vehicles with bigger capacity to visit several customers.

instance id |VC | |VS | |VD| |M|
1 103 61 5 8
2 103 61 5 7
3 103 61 5 6
4 103 61 5 5
5 103 61 5 6
6 103 61 5 5
7 103 61 5 6
8 103 54 5 7

Table 13: School canteens instances.

6.3 Analysis of the results

The instances are very large with respect to the ones described in Section 5.1 since there are

up to 1500 customer-commodities. The computational time of the ALNS significantly increases with

the size of the instances. Hence, when solving the SPD, the ALNS algorithm is run with a limit

of 100 iterations. Moreover, due to the size of the instances, we set a time limit for solving mixed

integer linear programs. More specifically, we set a 5 minutes time limit to solve the GAP model
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instance id |VC | |VS | |VD| |M|
1 188 61 5 6
2 188 61 5 5
3 188 61 5 6
4 188 54 5 7
5 188 45 5 5
6 188 58 5 6
7 188 61 5 8
8 188 61 5 7
9 188 61 5 7
10 188 61 5 6

Table 14: Supermarkets instances.

Distribution
center

Customer
Supplier
(vegetables)

Supplier
(fruits)

(a) Locations in school canteens instances (b) Locations in supermarkets instances

Figure 9: Locations in the case study instances.

presented in Section 4.2.1 to obtain an initial solution of the SPD, and a 10 minutes time limit

to solve the formulation FSPC . As there are 5 distribution centers, when applying the algorithm

SPD finite supplier based → SPC, we set k = 2, i.e., each supplier is assigned to its two nearest

distribution centers.

The results obtained for each sequential approach are reported in Table 15 for the school canteens

and in Table 16 for the supermarkets. The columns nbT and nbV indicate the numbers of trucks

used for collection operations and the number of vehicles used for delivery operations, respectively.

The columns ∆SPCcost, ∆SPDcost and ∆Cost report the percentage difference between the SPC

cost and the minimum SPC cost, the SPD cost and the minimum SPD cost, the total cost and the

minimum total cost, respectively.

When customers are school canteens, two algorithms outperform the others, namely:

SPC full truck → SPD and SPD finite supplier based → SPC. It is interesting to note that

SPC full truck → SPD provides the best results on average. However, this algorithm gives low

collection costs and high delivery costs. This is an interesting observation: in fact, local authorities

might judge as inappropriate a solution where the cost is highly unbalanced, even if it provides the

best cost for the overall system. On the contrary, the algorithm SPD finite supplier based→ SPC

is a bit more costly on average, but has the advantage of balancing the costs between collec-

tion and delivery. It can also be noticed that the algorithms SPD finite balanced → SPC and

SPC full truck customer based→ SPD do not provide good solutions. This could be explained by

the fact that suppliers and customers are not located homogeneously around the distribution centers.

29



instance id Strategy ∆SPCcost ∆SPDcost ∆Cost SPCt(s) SPDt(s) t(s) nbT nbV

1 SPD infinite → SPC 144.24 0.00 9.76 9.57 683.38 693.41 45 15
SPD finite balanced → SPC 144.73 6.62 11.96 219.67 677.39 898.69 45 16
SPD finite supplier based → SPC 78.58 38.27 0.40 4.94 1256.32 1262.17 44 15
SPC not full truck → SPD 0.00 174.72 17.23 7.42 4763.64 4771.05 41 15
SPC full truck → SPD 0.00 119.01 0.00 6.81 1981.80 1988.61 41 16
SPC full truck customer based → SPD 18.42 121.12 6.60 46.42 2463.34 2509.75 41 15

minimum costs 928.66 889.69 2877.15 - - - - -

2 SPD infinite → SPC 143.59 0.00 13.71 36.51 397.44 434.31 45 14
SPD finite balanced → SPC 155.49 8.91 20.54 118.95 490.81 611.13 45 14
SPD finite supplier based → SPC 73.51 41.52 3.24 4.23 844.34 849.31 42 14
SPC not full truck → SPD 0.00 188.16 24.87 7.30 2883.20 2890.50 41 16
SPC full truck → SPD 0.00 109.56 0.00 6.62 1576.24 1582.87 41 14
SPC full truck customer based → SPD 15.80 104.43 3.70 10.53 1562.47 1573.00 42 15

minimum costs 928.66 872.17 2756.37 - - - - -

3 SPD infinite → SPC 199.86 0.00 11.48 2.56 373.58 376.46 32 8
SPD finite balanced → SPC 245.65 1.43 23.07 3.57 270.39 275.09 35 9
SPD finite supplier based → SPC 108.46 26.80 0.00 1.80 671.94 674.45 33 9
SPC not full truck → SPD 0.00 166.24 28.66 3.03 2324.59 2327.62 30 11
SPC full truck → SPD 0.00 93.72 0.17 3.09 1518.40 1521.50 30 9
SPC full truck customer based → SPD 46.56 92.17 10.78 6.93 1575.55 1582.48 30 10

minimum costs 498.48 813.24 2070.29 - - - - -

4 SPD infinite → SPC 169.70 0.00 16.60 3.00 312.69 315.97 36 8
SPD finite balanced → SPC 199.26 2.33 26.31 4.44 192.39 197.71 38 9
SPD finite supplier based → SPC 98.44 29.40 5.66 2.52 471.45 474.94 37 8
SPC not full truck → SPD 0.00 153.19 20.14 3.19 1887.38 1890.56 35 8
SPC full truck → SPD 0.00 96.58 0.00 3.22 787.23 790.45 35 8
SPC full truck customer based → SPD 36.04 87.90 7.73 6.30 942.31 948.61 35 9

minimum costs 644.11 763.10 2144.25 - - - - -

5 SPD infinite → SPC 133.83 0.00 19.27 22.02 301.71 324.09 49 12
SPD finite balanced → SPC 126.99 6.84 18.50 6.87 380.67 388.94 50 12
SPD finite supplier based → SPC 61.94 37.71 1.70 6.93 596.74 604.61 49 13
SPC not full truck → SPD 0.00 189.16 19.75 3.86 2227.06 2230.91 46 12
SPC full truck → SPD 0.00 118.38 0.00 3.80 1272.64 1276.44 46 11
SPC full truck customer based → SPD 20.44 121.19 8.77 6.86 1327.52 1334.38 46 12

minimum costs 1135.42 810.68 2905.79 - - - - -

6 SPD infinite → SPC 168.15 0.00 28.23 4.58 262.93 267.80 41 9
SPD finite balanced → SPC 160.32 6.14 27.50 7.85 142.78 151.62 42 9
SPD finite supplier based → SPC 69.19 34.51 4.66 2.89 345.44 348.85 42 7
SPC not full truck → SPD 0.00 175.68 27.12 3.06 1520.67 1523.72 38 8
SPC full truck → SPD 0.00 94.15 0.00 3.11 931.38 934.48 38 8
SPC full truck customer based → SPD 24.68 103.07 11.71 5.31 738.85 744.16 38 9

minimum costs 790.98 742.95 2233.42 - - - - -

7 SPD infinite → SPC 164.61 0.00 21.63 1.70 447.42 449.44 40 9
SPD finite balanced → SPC 147.56 1.22 16.34 4.61 287.01 292.67 42 9
SPD finite supplier based → SPC 73.91 26.23 0.00 3.56 861.23 865.45 41 10
SPC not full truck → SPD 0.00 167.72 22.18 4.27 1938.72 1942.99 38 11
SPC full truck → SPD 0.00 112.05 3.73 4.37 1570.88 1575.25 38 9
SPC full truck customer based → SPD 32.95 89.43 7.25 9.25 1793.77 1803.02 38 8

minimum costs 790.98 784.04 2365.34 - - - - -

8 SPD infinite → SPC 101.10 0.00 11.30 16.75 552.88 569.94 37 11
SPD finite balanced → SPC 111.95 5.87 17.49 2.34 371.81 375.29 36 9
SPD finite supplier based → SPC 68.41 15.25 5.24 0.89 779.23 780.76 36 9
SPC not full truck → SPD 0.00 172.27 40.32 3.37 3942.81 3946.19 34 10
SPC full truck → SPD 0.00 66.68 0.00 3.34 1570.57 1573.91 34 9
SPC full truck customer based → SPD 19.16 77.19 10.98 5.91 1494.92 1500.83 34 11

minimum costs 727.33 763.74 2000.32 - - - - -

Table 15: Detailed results for school canteens instances.

For the instances with supermarkets, two algorithms outperform the others, namely:

SPD finite supplier based→ SPC and SPD infinite→ SPC. SPD finite supplier based→ SPC

provides the best results on 7 instances out of 10, and has the advantage of balancing the costs between

collection and delivery operations. It can be noticed that some sequential algorithms lead to a very

high cost, namely SPD finite balanced→ SPC and SPC not full truck → SPD.

We note that the algorithm SPD finite supplier based→ SPC again provides very good results

on these additional sets of instances. However, depending on the instance setting, some approaches

based on the SPC solution first can be competitive.

From a computational point of view, solving the SPD first takes much less time than solving the

SPC first. Moreover, most of the time is spent on solving the SPD. When solving the SPC first,

the available quantities at the distribution centers are very limited, which may generate a significant

infeasibility when applying destroy and repair moves in the ALNS algorithm. This makes it more

difficult to obtain good solutions with the local search.
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instance id Strategy ∆SPCcost ∆SPDcost ∆Cost SPCt(s) SPDt(s) t(s) nbT nbV

1 SPD infinite → SPC 214.00 0.00 3.48 611.18 1820.26 2432.16 77 36
SPD finite balanced → SPC 245.69 20.25 16.42 606.65 2482.62 3091.35 76 36
SPD finite supplier based → SPC 108.98 93.16 0.00 51.29 2713.73 2767.41 76 35
SPC not full truck → SPD 0.00 265.70 15.04 6.97 8391.10 8398.06 77 36
SPC full truck → SPD 0.00 234.38 7.34 6.97 6459.01 6465.98 77 37
SPC full truck customer based → SPD 10.69 224.58 7.62 15.73 10286.01 10301.74 76 36

minimum costs 1620.35 1585.66 6449.01 - - - - -

2 SPD infinite → SPC 228.00 0.00 4.24 605.75 1277.51 1883.88 75 31
SPD finite balanced → SPC 268.59 24.63 20.04 605.28 2116.40 2723.28 73 32
SPD finite supplier based → SPC 125.48 88.55 0.00 40.10 2066.67 2108.86 73 31
SPC not full truck → SPD 0.00 250.33 7.44 4.89 5610.75 5615.64 71 33
SPC full truck → SPD 0.00 222.78 0.92 5.05 4205.70 4210.75 71 30
SPC full truck customer based → SPD 11.45 226.89 4.71 10.20 5946.75 5956.95 71 34

minimum costs 1519.26 1462.82 6183.81 - - - - -

3 SPD infinite → SPC 205.51 0.00 0.00 610.75 1931.09 2542.59 73 34
SPD finite balanced → SPC 252.42 23.57 17.42 612.11 2658.14 3272.19 73 35
SPD finite supplier based → SPC 116.08 90.33 0.76 33.61 2905.92 2940.85 72 34
SPC not full truck → SPD 0.00 242.07 10.40 6.78 8684.81 8691.59 71 36
SPC full truck → SPD 0.00 224.71 6.04 7.28 6999.63 7006.91 71 37
SPC full truck customer based → SPD 16.20 208.08 5.84 15.25 9249.36 9264.61 71 36

minimum costs 1512.12 1548.85 6168.55 - - - - -

4 SPD infinite → SPC 96.70 0.00 3.88 608.26 2972.43 3581.45 86 37
SPD finite balanced → SPC 116.11 22.50 18.04 603.28 4000.20 4605.78 85 38
SPD finite supplier based → SPC 48.34 45.47 0.00 155.32 3876.63 4033.38 84 37
SPC not full truck → SPD 0.00 231.68 39.65 8.27 14438.65 14446.91 84 38
SPC full truck → SPD 0.00 160.36 17.59 8.42 10476.51 10484.93 84 37
SPC full truck customer based → SPD 11.55 163.04 22.71 22.65 12376.38 12399.03 84 40

minimum costs 1985.06 1654.69 5351.62 - - - - -

5 SPD infinite → SPC 72.48 0.00 4.77 605.59 1257.91 1864.09 77 34
SPD finite balanced → SPC 110.85 21.16 27.70 604.33 1563.74 2169.92 77 34
SPD finite supplier based → SPC 47.10 16.78 0.00 604.88 1559.48 2165.50 77 33
SPC not full truck → SPD 0.00 178.09 35.17 7.99 5495.13 5503.12 74 34
SPC full truck → SPD 0.00 102.42 9.58 7.95 4345.60 4353.55 74 36
SPC full truck customer based → SPD 4.93 102.26 11.56 12.16 4415.38 4427.54 74 38

minimum costs 1816.33 1493.05 4415.45 - - - - -

6 SPD infinite → SPC 154.81 0.00 1.63 606.33 1554.77 2161.85 98 48
SPD finite balanced → SPC 193.37 22.16 18.83 606.05 2318.84 2927.02 98 44
SPD finite supplier based → SPC 85.71 72.96 0.00 175.93 2385.50 2562.88 95 43
SPC not full truck → SPD 0.00 238.19 17.34 10.68 8621.81 8632.49 96 45
SPC full truck → SPD 0.00 193.98 5.89 10.54 6007.16 6017.70 96 47
SPC full truck customer based → SPD 9.58 187.48 7.05 18.90 7724.43 7743.33 96 46

minimum costs 2091.43 1823.58 7037.98 - - - - -

7 SPD infinite → SPC 162.14 0.00 3.96 605.93 2970.73 3577.50 109 51
SPD finite balanced → SPC 199.68 22.26 20.81 605.41 6528.79 7136.93 109 50
SPD finite supplier based → SPC 80.68 83.98 0.00 610.58 6411.95 7024.80 108 49
SPC not full truck → SPD 0.00 258.95 18.69 14.14 16299.01 16313.14 107 49
SPC full truck → SPD 0.00 214.87 7.83 14.03 20570.22 20584.25 107 53
SPC full truck customer based → SPD 7.90 265.78 22.76 66.09 16548.57 16614.66 106 53

minimum costs 2374.80 1933.26 7847.62 - - - - -

8 SPD infinite → SPC 170.10 0.00 0.00 605.34 2497.02 3103.21 105 48
SPD finite balanced → SPC 206.99 25.41 16.43 607.10 5173.62 5783.09 107 46
SPD finite supplier based → SPC 104.89 81.77 0.84 604.99 4574.01 5181.14 105 46
SPC not full truck → SPD 0.00 258.53 12.85 17.90 10955.42 10973.32 102 48
SPC full truck → SPD 0.00 220.44 3.87 17.56 8705.85 8723.41 102 52
SPC full truck customer based → SPD 8.34 194.36 0.08 20.73 12724.18 12744.91 101 51

minimum costs 2250.39 1876.13 7954.41 - - - - -

9 SPD infinite → SPC 197.45 0.00 0.00 605.49 2294.35 2900.67 93 44
SPD finite balanced → SPC 235.90 27.01 16.25 606.94 3506.61 4115.86 91 45
SPD finite supplier based → SPC 126.24 83.97 1.48 605.33 3923.75 4534.08 93 41
SPC not full truck → SPD 0.00 265.42 11.78 9.30 12015.01 12024.31 87 42
SPC full truck → SPD 0.00 239.52 5.68 9.30 11836.48 11845.78 87 45
SPC full truck customer based → SPD 11.59 218.23 3.65 17.14 9850.93 9868.07 87 45

minimum costs 1911.03 1751.77 7436.06 - - - - -

10 SPD infinite → SPC 214.00 0.00 3.48 611.83 1812.64 2425.15 77 36
SPD finite balanced → SPC 246.19 20.25 16.55 606.66 2481.68 3090.51 76 36
SPD finite supplier based → SPC 108.98 93.16 0.00 55.61 2827.97 2887.82 76 35
SPC not full truck → SPD 0.00 245.62 10.11 6.88 8623.59 8630.47 77 36
SPC full truck → SPD 0.00 234.38 7.34 6.94 6372.42 6379.35 77 37
SPC full truck customer based → SPD 10.69 239.23 11.22 15.91 8250.89 8266.80 76 37

minimum costs 1620.35 1585.66 6449.01 - - - - -

Table 16: Detailed results for supermarkets.

When customers are school canteens, few trucks are used. Their number is less than the number of

suppliers. This means that some suppliers do not provide any commodity since they are far from each

distribution center. When customers are supermarkets, the total supply is not very large compared

to the total demand. Hence, more trucks are used for the delivery and several suppliers perform more

than one trip to a distribution center.
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6.4 On the benefit of consolidation

As explained in the previous section, delivery operations to school canteens and supermarkets

should be kept separated due to different vehicles used to perform the delivery. However, collection

operations may be consolidated and carried out only once for both school canteens and supermarkets.

To study this scenario, we created 5 new instances from the instances presented in the previous

section. These new instances are obtained by merging one school canteen and one supermarket instance

characterized by the same number of commodities, the same number of suppliers, and the same

distance matrix with respect to suppliers and distribution centers. It should be noted that the distance

between a canteen and a supermarket is assumed to be infinite. Indeed, the two sets of canteens and

supermarket were considered separately, and we only have a distance matrix for each set. Hence, we

were not able to recompute distances between the two sets of customers.

In order to keep the sequential nature of the solution approach, we tested three strategies and

compared the results with total cost obtained by simply summing up the costs obtained by solving

the two instances separately.

The three strategies are:

� solve the SPD for canteens and supermarkets, determine the quantity of each commodity required

at the distribution centers by summing up what is needed in each case, then solve the SPC with

this requirement. This strategy is indicated by SPD → SPC;

� simultaneously solve the SPC for canteens and supermarkets, then solve the SPD for canteens,

update the available quantity at distribution centers, then solve the SPD for supermarkets. This

strategy is indicated by SPC → SPDCanteens1st;

� simultaneously solve the SPC for canteens and supermarkets, then solve the SPD for supermar-

kets, update the available quantity at distribution centers, then solve the SPD for canteens. This

strategy is indicated by SPC → SPDSupermarkets1st

Each time an instance of the SPC or the SPD is solved, the three corresponding strategies, de-

fined in Section 4.3, are run in order to solve the suproblem, and the best result is kept. The results

are reported in Tables 17-18. A dash means that the approach did not find a feasible solution for

the corresponding instance. In Table 17, column Base reports the costs for the separated case. It

is calculated as the sum of the costs of the two original instances corresponding to the merged in-

stances, i.e., the sum of the costs of the canteen and supermarket instances. Columns SPD → SPC,

SPC → SPDCanteens1st, and SPC → SPDSupermarkets1st report the costs for the three pro-

posed strategies. In Table 18, we report the evolution in percentage, of the costs of the three strategies,

with respect to the cost of the separated case. As an example, the value 9.71 means that for the in-

stance merged1, when using the strategy SPD → SPC, the cost for the SPC increases by 9.71% with

respect to the cost for the SPC in the separated case.

Base SPD → SPC SPC → SPDCanteens1st SPC → SPDSupermarkets1st
Instance SPCcost SPDcost Cost SPCcost SPDcost Cost SPCcost SPDcost Cost SPCcost SPDcost Cost
merged1 5949.19 4787.02 10736.21 6526.92 2812.63 9339.55 2339.38 - - 2339.38 5819.71 8159.09
merged2 3513.41 7305.67 10819.08 6229.80 2770.40 9000.20 2216.94 - - 2216.94 5259.22 7476.16
merged3 4306.44 3979.17 8285.61 4564.18 2337.58 6901.77 1433.72 - - 1433.72 3928.00 5361.72
merged4 2163.38 6221.77 8385.15 4945.08 2184.41 7129.49 1486.66 - - 1486.66 3844.91 5331.57
merged5 4169.47 3287.29 7456.76 2623.92 3510.20 6134.12 1930.55 - - 1930.55 4419.69 6350.24

Table 17: Comparison of the results between separated and merged cases: solution cost.

As expected, consolidation of the collection reduces, in all the cases, the total cost of the solution

with respect to the Base case. These reduction in total cost are important since the total cost is

decreased by 13% to 36%. This cost reduction is often due to a very important cost reduction in the

first subproblem solved.

32



SPD → SPC SPC → SPDCanteens1st SPC → SPDSupermarkets1st
Instance ∆SPCcost ∆SPDcost ∆Cost ∆SPCcost ∆SPDcost ∆Cost ∆SPCcost ∆SPDcost ∆Cost
merged1 9.71 -41.24 -13.01 -60.68 - - -60.68 21.57 -24.00
merged2 77.31 -62.08 -16.81 -36.90 - - -36.90 -28.01 -30.90
merged3 5.98 -41.25 -16.70 -66.71 - - -66.71 -1.29 -35.29
merged4 128.58 -64.89 -14.97 -31.28 - - -31.28 -38.20 -36.42
merged5 -37.07 6.78 -17.74 -53.70 - - -53.70 34.45 -14.84

Table 18: Comparison of the results between separated and merged cases: percentage difference for
the merged cases with respect to the separated case (Base).

From Tables 17 and 18 one can observe that when the SPC is solved first, solving the SPD for

school canteens before solving the SPD for the supermarkets brings to infeasibility. This is explained

by the higher demands of supermarkets and the reduced flexibility that is left to the optimization

after solving the SPD for school canteens.

We can also note that, in most of the cases, the best results are obtained when the SPC is solved

first. In this case, larger savings are obtained from merging collection activities.

7 Conclusions and future research

In this paper, we presented a new and complex problem which occurs, for example, in local agri-

food supply chains, the MC2DP (Multi-Commodity two-echelon Distribution Problem). The problem

concerns the collection of commodities from suppliers to distribution centers and the delivery from

distribution centers to final customers. The objective is to jointly optimize the transportation plan

for the collection and delivery operations. In order to tackle this complex problem, we proposed two

sequential approaches based on the decomposition of the problem in two subproblems: collection and

delivery. For each sequential approach, three strategies are considered in order to take into account,

in the first subproblem solved, the impact of its solution on the second subproblem solved.

The proposed algorithms have been compared on several sets of instances derived from instances

from the literature. The best algorithm usually does not provide the lowest cost neither for the

collection nor for the delivery subproblem. The algorithms are also tested on a case study of a short and

local fresh food supply chain. Large size instances are considered with two types of customers, school

canteens and supermarkets. We compared the different algorithms and provided some managerial

insights about cost balancing between collection and delivery.

The MC2DP is a complex problem to solve. The proposed sequential approaches have the advan-

tage of being easy to design and to be understood by decision makers. However, it is well known that

sequential solution approaches may provide suboptimal solutions. Thus, the main future research

direction is to develop an integrated solution approach solving the MC2DP as a whole instead of

decomposing it in subproblems.

Future research will study the system in a multi-period horizon, allowing to take into account

fairness aspects. In practical settings, the offer of products is larger than the demand. This implies

that not all the producers may be involved in the supply of final customers during a given day.

Conditions might be imposed on the quantity collected from producers on a multi-day basis, thus

guaranteeing a fair treatment of each farmer.
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A Algorithm for the full truck strategy

Algorithm 2 Full truck strategy.

1: for each supplier s ∈ VS do
2: for each commodity m ∈M do
3: Compute the remaining quantity Rsm = Osm −

∑
∀d∈VD q

m
sd

4: end for
5: Let nbRs be the number of commodities of supplier s such that Rsm > 0
6: end for
7: for each distribution center d ∈ VD do
8: for each supplier s ∈ VS do
9: Compute the remaining capacity in the trucks Rsd = xsd ×QS −

∑
m∈M qmsd

10: while nbRs > 0 and Rsd > 0 do
11: Compute the average remaining capacity per commodity as avgRsd = Rsd/nbRs
12: for each commodity m ∈M do
13: Determine the maximum quantity of commodity m that supplier s can insert in the

trucks sent to DC d as Qmsd = min{avgRsd, Rsm}
14: Add Qmsd to qmsd
15: Remove Qmsd units from Rsd
16: Remove Qmsd units from Rsm
17: end for
18: Update nbRs
19: end while
20: end for
21: end for

B Detailed results for setting the value of δ

We discuss here how we set the value of δ that determines the location of duplicated customers and

distribution center. We solve the delivery subproblem (SPD) for each instance IMC2DP in the base

set S. The collection subproblem is not considered, and the SPD is solved as discussed in Section 4.2.

The ALNS is run with a limit of 5000 iterations. To evaluate the solutions, we compare the cost

obtained for the SPD (SPDcost) with twice the optimal value OPT for the corresponding instance

of the C-SDVRP, as reported in Archetti et al. (2014). By construction of the instances, 2OPT is a

valid upper bound for the SPD. These tests are performed with values of δ: 100, 50, 30, 20, 10, and 5.

The results are presented in Table 19. We present results for each group of instances, where a

group is defined by a triplet (I,M, p). Results for a group are averaged on the values of α and ∆.

Each instance contains 30 customers and 2 distribution centers. Table 19 reports the average number

of customer-commodities in each group of instances (avg.ncc), the number of instances in the group

(nbIns), the average deviation (avg.∆) of the cost obtained by solving the SPD and the upper bound

2OPT , the average CPU time in seconds (avg.t(s)). Moreover, the last three columns respectively

report the number of solutions such that the cost obtained by solving the SPD is higher than, equal

to or lower than 2OPT .

We observe that when δ is large (i.e., equal to 100), the solution value equals 2OPT most of

the time. In this case, by construction of the instances, this value is most likely to be the optimal

value. On the other side, when δ is smaller than 100, the value 2OPT is a valid upper bound that

can be improved by running the algorithm for the SPD. When δ equals 5 or 10, for all instances we

obtain a value lower than 2OPT since the distribution centers are then very close. We are interested

in generating a set of instances where the average deviation from 2OPT is negative, but with some

instances such that the cost of the SPD equals 2OPT . Hence, we set δ = 30.
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Case 1: δ=100

I M p avg.ncc nbIns avg.∆ avg.t(s) SPDcost > 2OPT SPDcost = 2OPT SPDcost < 2OPT

C101 2 0.6 44 8 0.00 33.21 0 8 0
C101 2 1 60 8 0.01 45.55 1 7 0
C101 3 0.6 56 8 0.00 52.80 0 8 0
C101 3 1 90 8 0.20 82.53 4 4 0
R101 2 0.6 44 8 0.00 32.53 0 8 0
R101 2 1 60 8 0.00 52.62 0 8 0
R101 3 0.6 56 8 0.00 49.43 0 8 0
R101 3 1 90 8 0.00 95.92 0 8 0

total 64 0.03 55.57 5 59 0

Case 2: δ=50

C101 2 0.6 44 8 0.00 32.70 0 8 0
C101 2 1 60 8 0.00 47.42 0 8 0
C101 3 0.6 56 8 0.00 48.98 0 8 0
C101 3 1 90 8 0.32 81.94 4 4 0
R101 2 0.6 44 8 -1.02 28.02 0 3 5
R101 2 1 60 8 -0.40 48.23 0 5 3
R101 3 0.6 56 8 -0.89 48.07 0 2 6
R101 3 1 90 8 -0.31 98.67 0 4 4

total 64 -0.29 54.25 4 42 18

Case 3: δ=30

C101 2 0.6 44 8 -0.04 30.87 0 7 1
C101 2 1 60 8 -0.15 46.21 0 7 1
C101 3 0.6 56 8 -0.13 50.06 0 6 2
C101 3 1 90 8 0.23 84.65 3 4 1
R101 2 0.6 44 8 -6.67 30.99 0 0 8
R101 2 1 60 8 -7.67 52.84 0 0 8
R101 3 0.6 56 8 -6.43 48.26 0 0 8
R101 3 1 90 8 -7.59 90.94 0 0 8

total 64 -3.56 54.35 3 24 37

Case 4: δ=20

C101 2 0.6 44 8 -4.32 30.41 0 0 8
C101 2 1 60 8 -3.44 41.52 0 0 8
C101 3 0.6 56 8 -3.80 43.25 0 0 8
C101 3 1 90 8 -2.76 80.34 0 0 8
R101 2 0.6 44 8 -14.94 28.73 0 0 8
R101 2 1 60 8 -14.98 40.78 0 0 8
R101 3 0.6 56 8 -14.90 43.97 0 0 8
R101 3 1 90 8 -14.10 88.89 0 0 8

total 64 -9.15 49.74 0 0 64

Case 5: δ=10

C101 2 0.6 44 8 -20.81 33.21 0 0 8
C101 2 1 60 8 -17.86 44.37 0 0 8
C101 3 0.6 56 8 -18.68 55.91 0 0 8
C101 3 1 90 8 -16.96 96.62 0 0 8
R101 2 0.6 44 8 -21.56 30.85 0 0 8
R101 2 1 60 8 -18.42 42.43 0 0 8
R101 3 0.6 56 8 -21.55 44.18 0 0 8
R101 3 1 90 8 -18.02 77.60 0 0 8

total 64 -19.23 53.15 0 0 64

Case 6: δ=5

C101 2 0.6 44 8 -15.40 30.55 0 0 8
C101 2 1 60 8 -14.01 44.46 0 0 8
C101 3 0.6 56 8 -14.35 53.59 0 0 8
C101 3 1 90 8 -13.00 96.31 0 0 8
R101 2 0.6 44 8 -20.46 31.24 0 0 8
R101 2 1 60 8 -15.97 41.87 0 0 8
R101 3 0.6 56 8 -20.54 47.92 0 0 8
R101 3 1 90 8 -16.92 74.95 0 0 8

total 64 -16.33 52.61 0 0 64

Table 19: Results for SPD with different values of δ in the instances.
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