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SUMMARY

This paper aims at developing a novel method to assess the kinematic reliability of

robotic manipulators based on the fuzzy theory. The kinematic reliability quantifies the

probability of obtaining positioning errors within acceptable limits. For this purpose, the

fuzzy reliability evaluates the effect of the joint clearances on the end effector position

to compute a failure possibility index. As an alternative to the conventional methods

reported in the literature, this failure possibility index conveys a novel assessment of

the kinematic performance. The numerical results are compared with the well known

probabilistic approach based on the Monte Carlo simulation (MCS).

KEYWORDS: kinematics; Manipulator; Fuzzy; Uncertainties; Clearances.

1. Introduction

The design criteria aims at quantifying the mechanical properties of the robotic

manipulators. Several design criteria have been used to examine the kinematic and

dynamic capabilities [1]. The definition of these design criteria is challenging due to

the uncertainties associated to the operation of robotic manipulators [2]. The robotic

manipulators are unavoidably affected by uncertainties in their geometric parameters

produced by manufacturing and assembly error of the links, backlash positioning error
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2 Fuzzy Kinematic Reliability Assessment of Robotic Manipulators

of the actuators, and joints clearances. The calibration of the mechanism reduces the

effect of manufacturing and assembly errors of the links significantly. However, the

errors produced by joint clearances can not be correctly compensated by the calibration

methods [3]. Moreover, joint clearances are necessary for the relative motion between the

links; therefore, they are the most important source of error that affects the accuracy

and repeatability of the mechanisms [4]. For this reason, it is necessary to develop

computational methods to analyze the effects of joint clearances and uncertainties in

the pose error of mechanisms.

The joint clearances in passive joints of parallel mechanisms produce unconstrained

end effector motions when the active joints are blocked [5]. The clearances in the

axisymmetrical joints were previously modeled by [6]. Moreover, the uncertainty effect

of joint clearance has widely been studied by using probabilistic approaches [7–9].

Additionally, several approaches have been developed to assess the influence of joint

clearances on the kinematic accuracy of mechanisms. The pose error of the links has

been determined by using a kinematic method [10]. Moreover, the kinematic accuracy of

parallel manipulators with joint clearances has been analyzed. A systematic analysis of

the error of parallel manipulators was developed based on [10] by using standard convex

optimization [11].

The kinetostatic reliability has been widely evaluated by using probabilistic approaches

to evaluate the effect of random uncertainties. Consequently, several performance

measures based on the probabilistic methods have been proposed to evaluate the

kinematic reliability. The probability of failure defines the probability that the actual

position of an end effector falls into a specified error limit [8, 16]. The time-dependent

reliability to assess the time-dependency effect of the motion error [7]. The kinematic

sensitivity [12] finds out the influence of each error source on the kinematic reliability.

And, the error sensitively indexes that reflect the mapping relationship to evaluate the

level of kinematic accuracy under various configurations [14]. Alternative performance

indexes have been proposed based on the sensitivity of the clearances [11]. Nevertheless,

the fuzzy approach to evaluate uncertainties has not been used to assess the reliability

of the robotic manipulator. As an alternative to the probabilistic methods, the fuzzy

theory permits to model the uncertainty and to describe inaccurate information [17].

Consequently, the uncertainties can be modeled using fuzzy sets theory for applications

in which the stochastic process that models the random uncertainties is unknown. Based
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on the fuzzy approach, a new index is formulated to evaluate the possibility that the

positioning error exceeds an acceptable limit; the kinematic possibility is assessed by

considering the maximum error, differently of the probability of failure that is related

to how likely the error exceeds the acceptable limit. The fuzzy theory has successfully

applied to control of robotic manipulators [18–20].

The present contribution proposes a novel method to assess the kinematic reliability

of robotic manipulator based on the fuzzy theory. First, the clearance model with

uncertain parameters is presented based on the axisymmetric joint model with uncertain

parameters modeled as fuzzy variables. Then, the error propagation method determines

the uncertain fuzzy pose error of the end effector produced by the joint clearances

considering the kinematic constraints serial and parallel mechanism. Finally, the

kinematic reliability that expresses the possibility that error exeeds a determined limit

is computed. The novelty of the proposed method consists of estimating the possibility

of kinematic failure associated with the maximum error produced by clearances; this

approach permits defining the uncertainties for applications in which the probability

density is unknown. Existing studies demand the knowledge of uncertain parameters

probability densities.

This paper is organized into five sections. Initially, section 2 presents the literature

review. Section 3 presents the methods that consider the axisymmetric model of joint

clearances with the uncertainties, the error propagation method, and the fuzzy reliability

approach. Next, section 4 presents the numerical results that encompass the assessment

of the fuzzy reliability of a 3R serial manipulator and a Cartesian parallel manipulator.

Finally, the conclusion is presented.

The following notations have been used in this paper:
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δei,j: error screw of the joints

ri,j: orientation error of the joints

δei,j: translational error of the joints

λj: uncertain parameters of the j − th joint clearance

Fi,j: Frame of the i− th kinematic chain and j − th joint

Si,j: homogeneous transformation matrix

Ri,j: rotation matrix

ti,j: translation vector

δp positioning error of the end effector

Mi matrix to quantify the positioning error of the end effector

J Jacobian matrix

ẽT fuzzy error is the positioning error that takes into account the fuzzy parameters

µ(eT ) membership function of the fuzzy error

λ̃j fuzzy parameters of the j − th joint clearance

αf possibility of failure

2. Literature Review

This section aims at presenting the prior work on the kinematic reliability of robotic

manipulators and mechanisms. This review is mainly focused on the methods that have

been developed in order to illustrate the novelty of the proposed approach based on the

fuzzy kinematic reliability of manipulators.

The probabilistic approach has widely used in the literature to evaluate the reliability

of robotic manipulators. The kinematic reliability aims at estimating the probability of

failure produced by the unavoidable effect of uncertainties; the effect of the clearances on

the kinematic accuracy has taken the attention of researchers regarding the kinematic

performance [7, 8, 24]. Moreover, the kinematic reliability has recently emerged as an

alternative criterion to evaluate the effects of the uncertainties in manipulators [12].

Several methods have been established to evaluate the kinematic reliability. Kim et al

(2010) evaluated the kinematic reliability of manipulators using the advanced first order

second moment (AFOSM) method. Pandey and Zang (2012) used the fractional moments

to efficiently compute the kinematic reliability such that the position error remains within

acceptable limits. Cui et al. (2015) computed the kinematic reliability using the Monte

Carlo simulation and they evaluated three error sensitivity criteria based on the singular
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value decomposition of the error translation matrix. Zhan et al. (2018) proposed a hybrid

method based on the first order second moment to evaluate the uncertainties of a planar

parallel manipulator modeled as random and interval variables. Xu (2018) studied the

influence of each error source on the kinematic reliability of a delta parallel manipulator.

Zhang and Han (2020) developed an efficient reliability analysis method to account for

random dimensions and joint angles of robotic mechanisms.

As an alternative to the probabilistic methods, a non-probabilistic approach based

on the Lagrange multipliers and Taylor expansion has been proposed [23] to evaluate

the kinematic reliability of the mechanism with clearances. Moreover, a time-dependent

reliability index was described based on a combination of the nonprobabilistic interval

process and first-passage theories. [25].

The methods based on a probabilistic approach computes an indirect measure of the

effect of uncertainties based on the probability of failure. The probability of failure

expresses how likely the positioning error is greater than a maximum limit; it depends

on the probability distribution imposed on the uncertain parameters. Nevertheless, in

several applications, it is not possible to find the probability distribution of the uncertain

parameters based on experimental measures [23]. Additionally, it could be useful to define

the kinematic reliability based on the positioning error rather than using indirect indexes

based on the probability of failure. Therefore, the present manuscript proposes a fuzzy

approach to evaluate the kinematic reliability of robotic manipulators with clearances

that simplified the modeling of uncertainties and derive a new index based on the

maximum positioning error.

3. Methods

This section presents the method used to compute the fuzzy kinematic reliability. Initially,

the definition of joint clearance is presented as a function of the uncertain parameters.

Based on the joint clearances model, a method is defined to obtain the total positioning

error produced by the joint clearances on the end effector of the serial manipulators and

parallel manipulators. Finally, the approach to compute the fuzzy kinematic reliability

is presented based on the positioning error method.
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3.1. Joint Clearance Model

The axisymmetric model of the joint clearance was inspired in the model presented

by [6] and [11]. The novel developments of the contribution consist of introducing the

fuzzy uncertainties within the parameters that define the clearances.

Clearances introduce additional and uncontrollable degrees of freedom within the joints

according to the axisymmetric joint clearance model that considers the joint axis along

the z-axis (see Fig. 1). These additional degrees of freedom can be either rotational and

translational; consequently, the pose error at the local frame of the joint can be modeled

using the error screw δei,j, thus:

δei,j =

[
δri,j δti,j

]T
(1)

where i is the index of the kinematic chain, and j is the index of the joint in the respective

ith kinematic chain, δri,j =

[
δri,j,x δri,j,y δri,j,z

]T
is the orientation error, and δti,j =[

δti,j,x δti,j,y δti,j,z

]T
is the translational error produced by the clearances with respect

to the local frame Fi,j (see Fig. 1).

(a) xy plane (b) xz plane

Fig. 1. Joint Clearance Model.

The translational clearance along the axis joint z, and the rotational clearance with

respect to the axis z are defined as ∆bi,j,z and ∆βi,j,xy, respectively. Moreover, the

translational clearance in the xy plane and the rotational clearance related to the z

axis are defined as ∆bi,j,xy and ∆βi,j,z. Therefore, the elements of the error screw δei,j
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of Eq. (1) are defined by:



δri,j,x = ∆βi,j,xy cos(γi)

δri,j,y = ∆βi,j,xy sin(γi)

δri,j,z = ∆βi,j,z



δti,jx = ∆bi,j,xy cos(γi)

δti,jx = ∆bi,j,xy sin(γi)

δti,jz = ∆bi,j,z

with 0 ≤ γi ≤ 2π. Following this definition, the error pose should meet the

following constraints: δr2i,j,x + δr2i,j,y ≤ ∆β2
i,j,xy and δt2i,j,x + δt2i,j,y ≤ ∆b2i,j,xy. The fuzzy

uncertainties are introduced in the following five parameters that defines the clearances

of the joints: ∆βi,j,z, ∆βi,j,xy, γi, ∆bi,j,xy and ∆bi,j,z. The vector that joins the uncertain

parameters of a joint clearance for a serial kinematic chain is defined as:

λ =

[
λ1 λ2 . . . λj . . . λm

]
(2)

where j = 1, . . . , nj, and nj is the number of joints of the kinematic chain;

λj are the uncertain parameters of the j − th joint clearance, thus λj =[
∆βj,z ∆βj,xy γj ∆bj,xy ∆bj,z

]
.

3.2. Error Propagation Method

The present method for serial manipulators is based on [11]. Nevertheless, additional

developments were included in the present contribution to the error propagation of the

parallel manipulators.

3.2.1. Serial kinematic Chain. Initially, the Denavit-Hartenberg method is used to

obtain the pose of the end effector considering no clearances. Thus, the homogeneous

transformation matrix, Si,j, is defined as:

Si,j =

Ri,j ti,j

01×3 1

 (3)

with i = 1, . . . ,m and j = 1, . . . , ni,f , respectively; m is the number of kinematic chains

(for a single kinematic chainm = 1), and ni,f is the total number of frames. Si,j represents

the transformation matrix from the frame Fi,j to the frame Fi,j+1, Ri,j is the (3x3)

rotation matrix and ti,j =

[
xi,j yi,j zi,j

]T
translation (3x1) vector. The pose of the end
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effector related to the i− th kinematic chain, Pi, is defined as:

Pi =

nj,f∏
j=1

Si,j (4)

However, the pose of the end effector considering the joint clearances, P′i, will not be

equal to the pose Pi presented in Eq. (4). The adjoint map transformation matrix of Si,j

maps the error screw onto the end effector at a specific pose as presented in Eq. (5).

adj(Si,j) =

 Ri,j 03×3

Ti,jRi,j Ri,j

 (5)

where Ti,j =


0 −zi,j yi,j

zi,j 0 −xi,j
−yi,j xi,j 0

 is the skew-symmetric matrix of the vector ti,j. ti,j and

Ri,j can be extracted from the transformation matrix of Eq. (3). Moreover, The adjoint

of the inverse transformation matrix, adj(Si,j)
−1, permits to express screws at the frame

Fi,j+1 from Fi,j.

The error screw, δei,j, in the local frame Fi,j, can be expressed in the end effector frame,

Fi,ni,f , by multiplying all the inverse of the inverse adjoint transformation matrices from

ni,f to j + 1, thus:

(
j+1∏

k=ni,f

adj(Si,k)
−1

)
δei,j.

The following expression quantifies the pose error of the end effector considering all

the joint clearances:

δpi|Fi,P =
ni∑
j=1

j+1∏
k=ni,f

adj(Si,k)
−1δei,j (6)

with ni being the number of joints, and ni,f the number of frames; note that ni,f ≥ ni.

δpi|Fi,P is the pose error in the frame attached to the end effector Fi,P .

The pose error in the end effector δpi|Fi,P at the frame Fi,P should be expressed in

the reference frame attached to the fixed base Fi,1 by introducing the matrix Ni,j. Thus,

δpi|Fi,1 =

ni,f∏
j=1

(Ni,j) δpi|Fi,P (7)
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where Ni,j =

Ri,j 03×3

03×3 Ri,j

maps the orientation error and the translational error from

the frame Fi,P to the frame Fi,1. Therefore, an expression for δpi|Fi,1 is obtained by

substituting Eq. (6) into Eq. (7).

δpi|Fi,1 =
ni∑
j=1

ni,f∏
l=1

(Ni,l)
j+1∏

k=ni,f

adj(Si,k)
−1δei,j (8)

The expression of Eq. (8) can be written in the following compact form:

δp = Miδei =

[
δpr δpt

]T
(9)

where Mi =

[
Mi,1 . . .Mi,ni

]
, δei =

[
δeTi,1 . . . δe

T
i,ni

]
,

Mi,j =
ni,f∏
l=1

(Ni,l)
j+1∏

k=ni,f

(adj(Si,k)
−1), δpr and δpt are the orientation and translational

error of the end effector, respectively.

3.2.2. Parallel Mechanism. Parallel manipulators are composed of several kinematic

chains that connect a fixed base to a movable platform; nevertheless, the approach

proposed in the present contribution is limited to parallel manipulator with identical

kinematic chains. Differently of serial manipulators, the parallel manipulators are subject

to kinematic constraints introduced by their closed-loop kinematic configurations. These

kinematic constraints must be considered to propagate the errors of the joint clearance

onto the end effector. Moreover, the pose obtained from any kinematic chain should be

equal to each other, therefore P1 = P2 · · · = Pm.

The errors of the joints are correlated due to the kinematic constraints of the parallel

mechanism. The following assumptions are considered:

1. The errors of all the joint clearances of each kinematic chain defined by δei are

correlated. This correlation depends on the orientation of the local frames at the

base point of the kinematic chains, Ri, concerning the fixed frame. Thus, δei =

Qi

[
δeTi,1 . . . δe

T
i,ni

]
with Qi,j =

 Ri 03×3

03×3 Ri

.

2. The passive joints are free to move along the axisymmetric axis. Therefore no clearance

around the axial axis is considered for the passive joints, thus ∆βi,j,z = 0.
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3. The errors of the prismatic or revolute active joints are entirely independent. They

are defined by ∆q =

[
∆q1 . . .∆qm

]T
.

The errors of the joint clearances are propagated for every single kinematic chain

by using the expression of Eq. (8), and the error produced by the active joints is also

considered by using the Jacobian matrix J.

δpi = WJ−1δ∆q + Miδei (10)

where W transforms the end effector error to an error screw. The definition of this matrix

will depend on the kinematics of the parallel mechanism. The minor error along each

Cartesian coordinate of the errors of every kinematic chain δpi is considered in order to

respect the kinematic constraints of the parallel mechanism (P1 = P2 · · · = Pm). Thus,

the total error in the end effector of the parallel mechanism δp is defined by the following

expression.

δp = min

(
δp1 δp2 . . . δpm

)
=

[
δpr δpt

]T
(11)

where δpr and δpt are the orientation and translational error of the end effector,

respectively.

The clearances of the spherical joints can also be included in the proposed approach

based on the axisymmetric model of the joint clearance presented in Fig. 1. For this

purpose, the spherical joint should be represented by three intersecting revolute joints

as presented in [22]. Then, the clearances are modeled in the revolute joints by using the

axisymmetric model of sec. 3.1.

3.3. Fuzzy Kinematic Reliability Method

This method aims at computing the fuzzy reliability index to assess the kinematic

accuracy of a mechanism subject to an uncertain error produced by the joint clearances.

The proposed approach is based on the fuzzy uncertainty theory.

3.3.1. Definitions of Fuzzy Concepts. Let K be an universal set of objects whose generic

elements are denoted by k. A fuzzy parameter k̃ is defined by the membership function

µk : K→ [0, 1], where [0, 1] is a continuous interval. The membership function, µk,

establishes how compatible is the element k to k̃; i.e. the more belonging of k to k̃
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implies that the membership function µk(k) get values close to “1” (see Fig 2(a)). The

determinstic definition of the parameter kd (where, k ∈ K) is defined by the classical

membership function µk : K→{0, 1}, where µk = 1 specifically for kd, otherwise µk = 0

(see Fig 2(a)).

k̃ = {(k, µk(k))|k ∈ K} (12)

where 0 ≤ µk ≤ 1

(a) fuzzy parameter. (b) α-level representantion.

Fig. 2. Fuzzy definitions.

The fuzzy parameter k̃ can be represented by the intervals kαd weighted by

the membership function µk; these intervals are denominated as α-levels and this

representation is suitable for computational purposes (see Fig. 2(b)); thus:

kαd = {k ∈ K, µk(k) ≥ αd} (13)

The α-level interval kαd = [kαdl, kαdr] for the unidimensional fuzzy variables presented in

the Fig. 2 where:

kαdl = min[{k ∈ K, µk(k) ≥ αd}]

kαdr = max[{k ∈ K, µk(k) ≥ αd}]

The error of the end effector is evaluated by using the method presented in section 3.2;

the error, eT , is obtained based on the Eqs. (9) and (11) for serial and parallel

manipulators, respectively. It is worth mentioning that the error, eT , can consider the

orientation error (eT = ||δpr||) or the translational error (eT (c) = ||δpt||) separately

where ||.|| represents the magnitude of the vector. The uncertain parameters of the joint
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clearances are defined as fuzzy variables; thus: λ̃j =

[
∆β̃j,z ∆β̃j,xy γ̃j ∆b̃j,xy ∆b̃j,z

]
based

on the definition of Eq. (12). Therefore, the error will also be a fuzzy uncertain variable.

The uncertain fuzzy error ẽT is defined by using the α-level representation:

ẽT = {(eT , µ(e))|eT ∈ R>0} where 0 ≤ µ(eT ) ≤ 1 (14)

Moreover, the fuzzy error ẽT can be represented by α-levels, thus eαk = {eT ∈

R>0, µ(eT ) ≥ αk}. Alternatively, eαk can be defined as an interval weighted by the

membership function µ(eT ), thus:

eαk = (0, eαkr) (15)

where eαkr = max(eT ∈ R>0, µ(eT ) ≥ αk). The evaluation of eαkr demands the solution

of an optimization problem to determine the upper limit of the uncertain error

corresponding to the αk value of the µ(eT ) membership function.

3.3.2. Fuzzy Reliability Index. The possibility of the fuzzy error, ẽT , exeeds the maximum

error limit emax is quantified by the fuzzy kinematic reliability, αf , thus:

αf = µ{ẽT > emax} (16)

where µ{.} represents the possibility that is quantified by the membership function value

αf with 0 ≤ αf ≤ 1.

The fuzzy kinematic reliability aims at determining the possibility of failure by

examining the fuzzy error. Figure 3.3.2 shows that a failure is produced when ẽ > emax.

For this condition, the possibility of failure is given by αf .

Fig. 3. Fuzzy error, ẽT , and linear approximation to estimate αf .
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For this particular application, the membership function of the fuzzy error µ(ẽT ) is

approximated as a linear function in order to estimate the failure possibility considering

the maximum position error eα0 only. This linear approximation is the simplest form

to compute the possibility µ{.} of Eq. (16) to obtain the failure possibility αf ; however,

high order functions could be used to enhance the approximation of αf . If the fuzzy error

exeeds tha maximum error limint, i.e. if the fuzzy error surpass emax and it attains the

failure region (see Fig. 3.3.2), the following expression computes the linear estimation of

the failure possibility:

αf =
eα0
− emax
eα0

(17)

otherwise, if fuzzy error is less than emax, the fuzzy error is confined in the aceptable

region (see Fig. 3.3.2), then αf = 0. Moreover, eα0
which is the uncertain fuzzy error ẽT

evalueated at the α-level αk = 0 is obtained by solving the following maximization:

eα0
= max

λα0

e(λ) (18)

where λ =

[
λ1 . . . λj . . . λni,f

]
defined in Eq. (2) and λα0

= [λl,λr] is the crisp space

at αk = 0. The optimization problem of Eq. (18) could be solve to compute the failure

possibility αf of Eq. (17); this optimization was solved by using the Differential Evolution

(DE) algorithm [21].

The failure possibility, αf , is bounded as follows:

0 ≤ αf ≤ 1 (19)

where the desired performance of a manipulator consists of minimizing the failure

possibility. It is worth mentioning that the failure possibility indicates the percentual

rate of the maximum fuzzy error ẽT surpassing the maximum admissible error emax, e.g.

αf = 0.45 indicates that the maximum fuzzy error overpass 45% the maximum admissible

error emax.

Finally, the algorithm to compute the fuzzy kinematic reliability is illustrated in the

flow chart of Fig. 4. The kinematic reliability is computed based on the differential

evolution (DE) algorithm to find the maximum error eα0 as presented in Fig. 4(a).

Initially, a set of candidate of solutions αpl is generated by using the DE operators. The
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positioning error eT is evaluated for these candidate solutions and the candidate solutions

are optimized for several iterations until meeting the stopping criteria. As presented in

Fig. 4(b), the positioning error eT produced by the joint clearances is obtained based on

the uncertain parameters λ of the joint defined in Eq. (2).

(a) kinematic reliability method. (b) Function to compute error.

Fig. 4. Flow chart of the fuzzy kinematic reliability method.

4. Numerical Applications

The fuzzy kinematic reliability of a serial 3R manipulator, and a Cartesian parallel

manipulator (CPM) is analyzed in this section.

Initially, the fuzzy parameters of axisymmetric joint clearances of the manipulators

are defined. The parameters of the active joint clearances, according to the description

of Fig. 2, are defined as triangular fuzzy variables, thus β̃xy =< 0, 0.05, 0.1 >o,

β̃z =< 0, 0.025, 0.05 >o, b̃xy =< 0, 0.5, 1 > ×10−4m, b̃z =< 0, 0.5, 1 > ×10−4m, and γ̃ =<

0, 180, 360 >o. The passive joints have same parameters; nevertheless, no clearance

around the axial axis is considered, thus β̃z =0. Therefore, the translational error us

consider in this analysis, thus eT = ||δpt||, and emax = 1× 10− 3m to evaluate the

kinematic reliability.

The parameters selected to run the DE algorithm were: population size is 5 per

uncertain variable, 40 generations, crossover probability rate is 0.8, perturbation rate

is 0.8 and the DE/rand/1/bin strategy for the mutation mechanism.
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The Monte Carlo simulation (MCS) is also used to compute the kinematic reliability

using a probabilistic approach. The algorithm to estimate the kinematic reliability by

using the Monte Carlo simulation is presented in the appendix A.

Finally, the following hardware was used: i7 Intel i7-7500U CPU processor (2.9 GHz)

and RAM 8.0 GB.

4.1. 3R Serial Manipulator

The 3R serial arm is presented in Fig. 5, and its D-H parameters are defined in Tab. I.

Moreover, the maximum admissible error is defined as emax=1×10−3m and the number

of samples to compute the Monte Carlo simulation is ns=1.5×105 according to the

convergence analyis presented in the appendix B.

Fig. 5. 3R serial manipulator.

According to the error propagation method of section 3.2.1, i = 1 and j = 1, . . . , 3.

The link lengths and maximum limits of the rotational joints are defined as a2 = 0, 15m,

d3 = 0, 01m, d4 = 0, 10m, −100o ≤ θ1 ≤ 90o, −90o ≤ θ2 ≤ 45o and, −90o ≤ θ3 ≤ 90o.

Table I . D-H parameters of 3R manipulator..

j αj−1 aj−1 dj θj

1 0 0 0 θ1
2 -90o 0 0 θ2
3 0 a2 d3 θ3
4 -90o 0 d4 0

Initially, the propagation error method proposed in section 3.2.1 is evaluated. The

parameters of the active joint clearances are defined as βxy = 0.05o, βz = 0.025o, bxy =

0.5× 10−4m, bz = 0.5× 10−4m, and γ = 180o. The orientation and translational error

for the xy plane of the workspace is presented in Fig. 6. It is observed that the error
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is amplified in the lowest region of the workspace for this specific definition of the joint

clearances.
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Fig. 6. Error over the xz plane of the workspace.

The error is also computed at the Cartesian positioning of the end effector p =[
0.2 0 0

]T
by using the fuzzy approach and the Monte Carlo simulation (see Fig. 7).

According to the definition of the fuzzy parameters of the clearances λ̃, the maximum

possibility µ(eT ) = 1 corresponds to a null error µ(eT )) = 0m, i.e. it is expected a null

positioning error and the positioning error increases with the decrease of the possibility

µ(eT ) (see Fig. 7(a)). Moreover, it is observed that the linear approximation fits the

membership function µ(eT ) as presented the Eq. (15), this approximation is useful to

compute the fuzzy kinematic reliability. The probability density function (PDF) was

also estimated based on the results obtained by using the MSC (see Fig. 7(b)).

0 0.5 1 1.5 2

x 10
−3

0

0.2

0.4

0.6

0.8

1

eT [m]

µ
(e

T
)

 

 
ẽT
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Fig. 7. Error evaluation using the fuzzy approach and MCS.

Then, the kinematic dexterity based on the condition number of the Jacobian matrix is

also computed to evaluate the performance of the manipulator over the usable workspace

as presented in Fig. 8. The local kinematic dexterity corresponds to 1/κ(J), where κ(.)

is the condition number of a matrix, and J is the Jacobian matrix.

The kinematic reliability is also evaluated over the usable workspace using the Monte

Carlo simulation as shown in Fig. 9. The failure probability, pf , increases in the outer
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Fig. 8. 1/k(J) over the usable workspace.

limit of the usable workspace that corresponds to poses in which the 3R manipulator

is extended. The increment of pf is produced by the increasing of the kinematic error

in the outer borders of the usable workspace. The left side of the usable workspace

corresponds to poses in which the manipulator is retract; therefore, the kinematic error

and pf decreases (see Figs. 9(a) and 9(b)). For this specific manipulator, it is observed

an inverse relationship between kinematic reliability (see Fig. 9) and kinematic dexterity

(see Fig. 8) for the poses in which the manipulator is extended, i.e. pf increases and

1/κ(J) decreases. Nevertheless, this behavior is not observed for the poses in which the

manipulator is retracted.

z
[m

]

x[m]

 

 

0 0.05 0.1 0.15 0.2 0.25
−0.2

−0.1

0

0.1

0.2

0 0.02 0.04 0.06 0.08 0.1 0.12

(a) xz plane.

y
[m

]

x[m]

 

 

−0.05 0 0.05 0.1 0.15 0.2 0.25

−0.2

−0.1

0

0.1

0.2

0 0.02 0.04 0.06 0.08 0.1 0.12

(b) xy plane.

Fig. 9. pf over the usable workspace.

Finally, the fuzzy kinematic reliability is computed and analyzed (see Fig. 10). The

possibility of failure, αf , over the xy plane of the workspace is presented in Fig. 10. αf

increases for the regions of workspace in which the manipulator is extended and therefore

the maximum fuzzy error also increases; these poses located in the border of the right

side. Additionally, it is observed that the possibility of failure has similar behavior with

the probability of failure estimated with the MCS method (see Figs. 9 and 10).
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Fig. 10. αf over the usable workspace.

4.2. Cartesian Parallel Manipulator

The Cartesian Parallel Manipulator (CPM) has three symmetric kinematic chains that

joint the moving platform P to the fixed frame (see Fig. 11). The three active prismatic

joints (q = [q1 q2 q3]
T ) act along the X, Y , and Z axes. The moving platform has three

translational degrees of freedom defined by (x, y, z). Every kinematic chain is located

at the frame Oj, and it has three passive rotational joints defined by θj,i, for i = 1, 2, 3,

and j = 1, 2, 3. The link’s lengths of every kinematic chain are defined by l1, l2, and the

geometry of the moving platform is defined by lp. The active joints specify the Cartesian

position of the moving platform directly, thus q1 = x, q2 = y, and q3 = z. Therefore, the

Jacobian matrix is a 3x3 identity matrix, J = I3x3.

Fig. 11. Cartesian Parallel Manipulator (CPM).

The D-H parameters of the j − th kinematic chain from the frame Oj to P are

presented in table II.

For this numerical application the geometric parameters of the manipulator and the

clearances were defined as follows. The link’s length was defined specifically as l1 =

0.077m, l2 = 0.077m and lp = 0.022m. A fuzzy triangular position error was considered
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Table II . D-H parameters of Cartecian parallel manipulator..

j αj−1 aj−1 dj θj

1 0 0 0 θj,1
2 0 l1 0 θj,2
3 0 l2 0 θj,3
P 0 lp 0 0

for every prismatic active joint ∆q̃j =< 0, 0.5, 1 > ×10−4m. Moreover, the maximum

admissible error is defined as emax = 2.5× 10−4m.

The orientation of the kinematic chains Qi is defined by the orientation matrices:

R1 = I3x3, R2 = R(90o, X) and R3 = R(90o, Y ). According to Eq. (10), the position

error is evaluated with W = [0 I3x3]T . The position error of P , δp(θ), at the end effector

position

[
0.069 0.089 0.089

]
m.

Initially, the propagation error method for parallel manipulators of section 3.2.2 is

analyzed. The parameters of each of the prismatic active joint is ∆qj = 0.5× 10−4m.

The parameters of each passive joint clearances is defined as βxy = 0.05o, βz = 0.025o,

bxy = 0.5× 10−4m, bz = 0.5× 10−4m, and γ = 180o. The translational error eT for the

xy plane and the xy plane of the workspace is presented in Fig. 12.
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Fig. 12. Translational eT error over the workspace of the CPM.

Figure 13(a) presents the fuzzy translational error ẽT . The failure possibility αf

estimated with the linear approximation of Eq. (17) is 0.5142 and evaluated g̃ is 0.4940

(see Fig. 13(a)); the percentage difference between these results is about 4.08%; therefore,

the linear approximation of αf is valid. The obtained αf means 51.42% of the possibility

that position error exceeds the maximum admissible limit. Moreover, the kinematic

reliability was also evaluated using the Monte Carlo simulation as presented in Fig. 13(b).

Thus, the failure probability was estimated as pf = 0.045; This probability means the

ratio between all the computed errors and the error outside the maximum limit sphere

(see Fig. 13(b)).
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(a) g̃.
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Fig. 13. Position error of P .

The kinematic reliability of the CPM was estimated using the Monte Carlo method

over two planes of the workspace as shown in Fig.14. The failure probability, pf , increases

in the regions of the workspace where in the uncertain kinematic error augments.
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Fig. 14. Kinematic reliability over the workspace of the CPM.

The possibility of failure αf is presented in Fig. 15. αf increases for the regions of

workspace in which all the kinematic chains are extended, i.e., the extension of kinematic

chain increases position error and αf . Moreover, one can observe that the possibility

of failure has similar behavior with the probability of failure estimated with the MCS

method (see Fig. 14), i.e., the possibility and probability of failure increase and decrease

in the same regions of the workspace.
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Fig. 15. αf over the workspace of the CPM:.
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4.3. Computational Complexity

The algorithm of the fuzzy reliability is based on the computation of the positioning

error ||δpt|| as presented in the algorithm of Fig. 4. Moreover, the reliability algorithm

to compute the probability of failure described in the appendix A is also based on

the computation of positioning error. Therefore, the computational complexity of the

fuzzy kinematic reliability algorithm is analyzed in terms of number of positioning error

evaluations (ne) and the computational time (tc).

A comparison is presented between the fuzzy approach and the Monte Carlo Method

in Tab. III for the Cartesian parallel manipulator. Thus, three Cartesian positions of the

end effector are considered for this analysis.

Table III . Computational complexity of the fuzzy reliability algorithm.

Fuzzy Method MCS
p[m] ne tc[s] ne tc[s]

p1 = [0.04 0.04 0.04]
T

3198 5.3855 1.5×105 4.1137

p2 = [0.08 0.08 0.06]
T

3198 5.3844 1.5×105 4.0995

p3 = [0.12 0.12 0.08]
T

3198 5.3853 1.5×105 4.1770

The results show that the fuzzy method demands the computation of positioning

error fewer times than the Monte Carlo Simulation. Nevertheless, the operations of the

differential evolution (DE) optimization (mutation, crossover, and selection) increase the

computational time when comparing to the Monte Carlo simulation.

5. Conclusion

The proposed fuzzy reliability method permitted to compute the kinematic failure

possibility of manipulators as an alternative to the probabilistic approaches widely used in

the literature. Moreover, the proposed approach allows quantifying a kinematic reliability

index that takes into account the kinematic constraints and the effect of clearances on

the kinematic chains of serial and parallel manipulators.

The kinematic criteria based on the condition number of the Jacobian matrix will

not reveal enough information about the effects of clearances on the kinematic accuracy

of the manipulator. The kinematic reliability demonstrated an alternative criterion that

takes directly into account the effects of errors and uncertainty simultaneously. Moreover,

the fuzzy kinematic reliability computes a ratio of uncertain error surpassing a maximum

admissible limit; this information could be used for the optimal design of manipulators.
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Future work will encompass the optimal design of the mechanism based on the

proposed fuzzy kinematic reliability method.
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A. Reliability using the Monte Carlo Simulation

The Monte Carlo simulation is used to estimate the reliability as presented in the

following algorithm. The procedure consists of estimating the rate between the frequency

that the positioning error exceeds the maximum limit and the total number of samples

ns considered in the simulation.
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Result: pf

Definition of the geometric parameters of the manipulator;

Definition of the maximum limit of the positioning error emax;

nf = 1;

Sample the uncertain parameters of the clearances to obtain a set of ns random

inputs ; // Defined in Eq. (2)

for i = 1 : ns do

Compute the positioning error δpt for each random input ; // Eq. (9) for

serial manipulator and Eq. (10) for parallel manipulator.

if ||δpt|| ≥ emax then

nf = nf + 1;

end

end

pf =
nf
ns

; // Probability of failure

Algorithm 1: Estimation of the kinematic reliability by using the MCS.

B. Convergence Analysis

In this appendix is evaluated the number of samples necessary to carry out the Monte

Carlo simulation. Figure B shows the convergence results for the maximum translational

error max(||δpt||) and orientation error max(||δpr||) = max |e|, respectively.

max(||δpt||) = max(

[
||δpt||1 ||δpt||2 . . . ||δpt||ns

]
) (A1)

It is verified that the solution always converge for ns ≥1.5×105.
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Fig. 16. Convergence in the maximum error for the numbers os samples (ns) used in the MCS.




